Compare commits

...

8 Commits

43 changed files with 807 additions and 1250 deletions

View File

@@ -20,3 +20,15 @@ repos:
language: system
types: [rust]
pass_filenames: false
- id: cargo-check
name: cargo check
entry: cargo check --all-targets
language: system
types_or: [rust, cargo, cargo-lock]
pass_filenames: false
- id: cargo-check-wasm
name: cargo check for wasm32-unknown-emscripten
entry: cargo check --all-targets --target=wasm32-unknown-emscripten
language: system
types_or: [rust, cargo, cargo-lock]
pass_filenames: false

View File

@@ -12,6 +12,11 @@ use crate::constants::{CANVAS_SIZE, LOOP_TIME, SCALE};
use crate::game::Game;
use crate::platform::get_platform;
/// Main application wrapper that manages SDL initialization, window lifecycle, and the game loop.
///
/// Handles platform-specific setup, maintains consistent frame timing, and delegates
/// game logic to the contained `Game` instance. The app manages focus state to
/// optimize CPU usage when the window loses focus.
pub struct App {
pub game: Game,
last_tick: Instant,
@@ -20,6 +25,16 @@ pub struct App {
}
impl App {
/// Initializes SDL subsystems, creates the game window, and sets up the game state.
///
/// Performs comprehensive initialization including video/audio subsystems, platform-specific
/// console setup, window creation with proper scaling, and canvas configuration. All SDL
/// resources are leaked to maintain 'static lifetimes required by the game architecture.
///
/// # Errors
///
/// Returns `GameError::Sdl` if any SDL initialization step fails, or propagates
/// errors from `Game::new()` during game state setup.
pub fn new() -> GameResult<Self> {
let sdl_context: &'static Sdl = Box::leak(Box::new(sdl2::init().map_err(|e| GameError::Sdl(e.to_string()))?));
let video_subsystem: &'static VideoSubsystem =
@@ -70,6 +85,16 @@ impl App {
})
}
/// Executes a single frame of the game loop with consistent timing and optional sleep.
///
/// Calculates delta time since the last frame, runs game logic via `game.tick()`,
/// and implements frame rate limiting by sleeping for remaining time if the frame
/// completed faster than the target `LOOP_TIME`. Sleep behavior varies based on
/// window focus to conserve CPU when the game is not active.
///
/// # Returns
///
/// `true` if the game should continue running, `false` if the game requested exit.
pub fn run(&mut self) -> bool {
{
let start = Instant::now();

View File

@@ -5,17 +5,28 @@
use std::borrow::Cow;
use strum_macros::EnumIter;
/// Enumeration of all game assets with cross-platform loading support.
///
/// Each variant corresponds to a specific file that can be loaded either from
/// binary-embedded data or embedded filesystem (Emscripten).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, EnumIter)]
pub enum Asset {
Wav1,
Wav2,
Wav3,
Wav4,
/// Main sprite atlas containing all game graphics (atlas.png)
AtlasImage,
/// Terminal Vector font for text rendering (TerminalVector.ttf)
Font,
}
impl Asset {
/// Returns the relative file path for this asset within the game's asset directory.
///
/// Paths are consistent across platforms and used by the Emscripten backend
/// for filesystem loading. Desktop builds embed assets directly and don't
/// use these paths at runtime.
#[allow(dead_code)]
pub fn path(&self) -> &str {
use Asset::*;
@@ -35,7 +46,17 @@ mod imp {
use crate::error::AssetError;
use crate::platform::get_platform;
/// Returns the raw bytes of the given asset.
/// Loads asset bytes using the appropriate platform-specific method.
///
/// On desktop platforms, returns embedded compile-time data via `include_bytes!`.
/// On Emscripten, loads from the filesystem using the asset's path. The returned
/// `Cow` allows zero-copy access to embedded data while supporting owned data
/// when loaded from disk.
///
/// # Errors
///
/// Returns `AssetError::NotFound` if the asset file cannot be located (Emscripten only),
/// or `AssetError::Io` for filesystem I/O failures.
pub fn get_asset_bytes(asset: Asset) -> Result<Cow<'static, [u8]>, AssetError> {
get_platform().get_asset_bytes(asset)
}

View File

@@ -114,9 +114,11 @@ impl Audio {
}
}
/// Plays the "eat" sound effect.
/// Plays the next waka eating sound in the cycle of four variants.
///
/// If audio is disabled or muted, this function does nothing.
/// Automatically rotates through the four eating sound assets. The sound plays on channel 0 and the internal sound index
/// advances to the next variant. Silently returns if audio is disabled, muted,
/// or no sounds were loaded successfully.
#[allow(dead_code)]
pub fn eat(&mut self) {
if self.disabled || self.muted || self.sounds.is_empty() {
@@ -136,9 +138,11 @@ impl Audio {
self.next_sound_index = (self.next_sound_index + 1) % self.sounds.len();
}
/// Instantly mute or unmute all channels.
/// Instantly mutes or unmutes all audio channels by adjusting their volume.
///
/// If audio is disabled, this function does nothing.
/// Sets all 4 mixer channels to zero volume when muting, or restores them to
/// their default volume (32) when unmuting. The mute state is tracked internally
/// regardless of whether audio is disabled, allowing the state to be preserved.
pub fn set_mute(&mut self, mute: bool) {
if !self.disabled {
let channels = 4;
@@ -151,12 +155,19 @@ impl Audio {
self.muted = mute;
}
/// Returns `true` if the audio is muted.
/// Returns the current mute state regardless of whether audio is functional.
///
/// This tracks the user's mute preference and will return `true` if muted
/// even when the audio system is disabled due to initialization failures.
pub fn is_muted(&self) -> bool {
self.muted
}
/// Returns `true` if the audio system is disabled.
/// Returns whether the audio system failed to initialize and is non-functional.
///
/// Audio can be disabled due to SDL2_mixer initialization failures, missing
/// audio device, or failure to load any sound assets. When disabled, all
/// audio operations become no-ops.
#[allow(dead_code)]
pub fn is_disabled(&self) -> bool {
self.disabled

View File

@@ -4,6 +4,11 @@ use std::time::Duration;
use glam::UVec2;
/// Target frame duration for 60 FPS game loop timing.
///
/// Calculated as 1/60th of a second (≈16.67ms).
///
/// Written out explicitly to satisfy const-eval constraints.
pub const LOOP_TIME: Duration = Duration::from_nanos((1_000_000_000.0 / 60.0) as u64);
/// The size of each cell, in pixels.
@@ -14,9 +19,16 @@ pub const BOARD_CELL_SIZE: UVec2 = UVec2::new(28, 31);
/// The scale factor for the window (integer zoom)
pub const SCALE: f32 = 2.6;
/// The offset of the game board from the top-left corner of the window, in cells.
/// Game board offset from window origin to reserve space for HUD elements.
///
/// The 3-cell vertical offset (24 pixels) provides space at the top of the
/// screen for score display, player lives, and other UI elements.
pub const BOARD_CELL_OFFSET: UVec2 = UVec2::new(0, 3);
/// The offset of the game board from the top-left corner of the window, in pixels.
/// Pixel-space equivalent of `BOARD_CELL_OFFSET` for rendering calculations.
///
/// Automatically calculated from the cell offset to maintain consistency
/// when the cell size changes. Used for positioning sprites and debug overlays.
pub const BOARD_PIXEL_OFFSET: UVec2 = UVec2::new(BOARD_CELL_OFFSET.x * CELL_SIZE, BOARD_CELL_OFFSET.y * CELL_SIZE);
/// The size of the canvas, in pixels.
pub const CANVAS_SIZE: UVec2 = UVec2::new(
@@ -24,22 +36,24 @@ pub const CANVAS_SIZE: UVec2 = UVec2::new(
(BOARD_CELL_SIZE.y + BOARD_CELL_OFFSET.y) * CELL_SIZE,
);
/// An enum representing the different types of tiles on the map.
/// Map tile types that define gameplay behavior and collision properties.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum MapTile {
/// An empty tile.
/// Traversable space with no collectible items
Empty,
/// A wall tile.
Wall,
/// A regular pellet.
/// Small collectible. Implicitly a traversable tile.
Pellet,
/// A power pellet.
/// Large collectible. Implicitly a traversable tile.
PowerPellet,
/// A tunnel tile.
/// Special traversable tile that connects to tunnel portals.
Tunnel,
}
/// The raw layout of the game board, as a 2D array of characters.
/// ASCII art representation of the classic Pac-Man maze layout.
///
/// Uses character symbols to define the game world. This layout is parsed by `MapTileParser`
/// to generate the navigable graph and collision geometry.
pub const RAW_BOARD: [&str; BOARD_CELL_SIZE.y as usize] = [
"############################",
"#............##............#",

View File

@@ -1,128 +0,0 @@
// use smallvec::SmallVec;
// use std::collections::HashMap;
// use crate::entity::{graph::NodeId, traversal::Position};
// /// Trait for entities that can participate in collision detection.
// pub trait Collidable {
// /// Returns the current position of this entity.
// fn position(&self) -> Position;
// /// Checks if this entity is colliding with another entity.
// #[allow(dead_code)]
// fn is_colliding_with(&self, other: &dyn Collidable) -> bool {
// positions_overlap(&self.position(), &other.position())
// }
// }
// /// System for tracking entities by their positions for efficient collision detection.
// #[derive(Default)]
// pub struct CollisionSystem {
// /// Maps node IDs to lists of entity IDs that are at that node
// node_entities: HashMap<NodeId, Vec<EntityId>>,
// /// Maps entity IDs to their current positions
// entity_positions: HashMap<EntityId, Position>,
// /// Next available entity ID
// next_id: EntityId,
// }
// /// Unique identifier for an entity in the collision system
// pub type EntityId = u32;
// impl CollisionSystem {
// /// Registers an entity with the collision system and returns its ID
// pub fn register_entity(&mut self, position: Position) -> EntityId {
// let id = self.next_id;
// self.next_id += 1;
// self.entity_positions.insert(id, position);
// self.update_node_entities(id, position);
// id
// }
// /// Updates an entity's position
// pub fn update_position(&mut self, entity_id: EntityId, new_position: Position) {
// if let Some(old_position) = self.entity_positions.get(&entity_id) {
// // Remove from old nodes
// self.remove_from_nodes(entity_id, *old_position);
// }
// // Update position and add to new nodes
// self.entity_positions.insert(entity_id, new_position);
// self.update_node_entities(entity_id, new_position);
// }
// /// Removes an entity from the collision system
// #[allow(dead_code)]
// pub fn remove_entity(&mut self, entity_id: EntityId) {
// if let Some(position) = self.entity_positions.remove(&entity_id) {
// self.remove_from_nodes(entity_id, position);
// }
// }
// /// Gets all entity IDs at a specific node
// pub fn entities_at_node(&self, node: NodeId) -> &[EntityId] {
// self.node_entities.get(&node).map(|v| v.as_slice()).unwrap_or(&[])
// }
// /// Gets all entity IDs that could collide with an entity at the given position
// pub fn potential_collisions(&self, position: &Position) -> Vec<EntityId> {
// let mut collisions = Vec::new();
// let nodes = get_nodes(position);
// for node in nodes {
// collisions.extend(self.entities_at_node(node));
// }
// // Remove duplicates
// collisions.sort_unstable();
// collisions.dedup();
// collisions
// }
// /// Updates the node_entities map when an entity's position changes
// fn update_node_entities(&mut self, entity_id: EntityId, position: Position) {
// let nodes = get_nodes(&position);
// for node in nodes {
// self.node_entities.entry(node).or_default().push(entity_id);
// }
// }
// /// Removes an entity from all nodes it was previously at
// fn remove_from_nodes(&mut self, entity_id: EntityId, position: Position) {
// let nodes = get_nodes(&position);
// for node in nodes {
// if let Some(entities) = self.node_entities.get_mut(&node) {
// entities.retain(|&id| id != entity_id);
// if entities.is_empty() {
// self.node_entities.remove(&node);
// }
// }
// }
// }
// }
// /// Checks if two positions overlap (entities are at the same location).
// fn positions_overlap(a: &Position, b: &Position) -> bool {
// let a_nodes = get_nodes(a);
// let b_nodes = get_nodes(b);
// // Check if any nodes overlap
// a_nodes.iter().any(|a_node| b_nodes.contains(a_node))
// // TODO: More complex overlap detection, the above is a simple check, but it could become an early filter for more precise calculations later
// }
// /// Gets all nodes that an entity is currently at or between.
// fn get_nodes(pos: &Position) -> SmallVec<[NodeId; 2]> {
// let mut nodes = SmallVec::new();
// match pos {
// Position::AtNode(node) => nodes.push(*node),
// Position::BetweenNodes { from, to, .. } => {
// nodes.push(*from);
// nodes.push(*to);
// }
// }
// nodes
// }

View File

@@ -1,254 +0,0 @@
// //! Ghost entity implementation.
// //!
// //! This module contains the ghost character logic, including movement,
// //! animation, and rendering. Ghosts move through the game graph using
// //! a traverser and display directional animated textures.
// use pathfinding::prelude::dijkstra;
// use rand::prelude::*;
// use smallvec::SmallVec;
// use tracing::error;
// use crate::entity::{
// collision::Collidable,
// direction::Direction,
// graph::{Edge, EdgePermissions, Graph, NodeId},
// r#trait::Entity,
// traversal::Traverser,
// };
// use crate::texture::animated::AnimatedTexture;
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// use crate::error::{EntityError, GameError, GameResult, TextureError};
// /// Determines if a ghost can traverse a given edge.
// ///
// /// Ghosts can move through edges that allow all entities or ghost-only edges.
// fn can_ghost_traverse(edge: Edge) -> bool {
// matches!(edge.permissions, EdgePermissions::All | EdgePermissions::GhostsOnly)
// }
// /// The four classic ghost types.
// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
// pub enum GhostType {
// Blinky,
// Pinky,
// Inky,
// Clyde,
// }
// impl GhostType {
// /// Returns the ghost type name for atlas lookups.
// pub fn as_str(self) -> &'static str {
// match self {
// GhostType::Blinky => "blinky",
// GhostType::Pinky => "pinky",
// GhostType::Inky => "inky",
// GhostType::Clyde => "clyde",
// }
// }
// /// Returns the base movement speed for this ghost type.
// pub fn base_speed(self) -> f32 {
// match self {
// GhostType::Blinky => 1.0,
// GhostType::Pinky => 0.95,
// GhostType::Inky => 0.9,
// GhostType::Clyde => 0.85,
// }
// }
// }
// /// A ghost entity that roams the game world.
// ///
// /// Ghosts move through the game world using a graph-based navigation system
// /// and display directional animated sprites. They randomly choose directions
// /// at each intersection.
// pub struct Ghost {
// /// Handles movement through the game graph
// pub traverser: Traverser,
// /// The type of ghost (affects appearance and speed)
// pub ghost_type: GhostType,
// /// Manages directional animated textures for different movement states
// texture: DirectionalAnimatedTexture,
// /// Current movement speed
// speed: f32,
// }
// impl Entity for Ghost {
// fn traverser(&self) -> &Traverser {
// &self.traverser
// }
// fn traverser_mut(&mut self) -> &mut Traverser {
// &mut self.traverser
// }
// fn texture(&self) -> &DirectionalAnimatedTexture {
// &self.texture
// }
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture {
// &mut self.texture
// }
// fn speed(&self) -> f32 {
// self.speed
// }
// fn can_traverse(&self, edge: Edge) -> bool {
// can_ghost_traverse(edge)
// }
// fn tick(&mut self, dt: f32, graph: &Graph) {
// // Choose random direction when at a node
// if self.traverser.position.is_at_node() {
// self.choose_random_direction(graph);
// }
// if let Err(e) = self.traverser.advance(graph, dt * 60.0 * self.speed, &can_ghost_traverse) {
// error!("Ghost movement error: {}", e);
// }
// self.texture.tick(dt);
// }
// }
// impl Ghost {
// /// Creates a new ghost instance at the specified starting node.
// ///
// /// Sets up animated textures for all four directions with moving and stopped states.
// /// The moving animation cycles through two sprite variants.
// pub fn new(graph: &Graph, start_node: NodeId, ghost_type: GhostType, atlas: &SpriteAtlas) -> GameResult<Self> {
// let mut textures = [None, None, None, None];
// let mut stopped_textures = [None, None, None, None];
// for direction in Direction::DIRECTIONS {
// let moving_prefix = match direction {
// Direction::Up => "up",
// Direction::Down => "down",
// Direction::Left => "left",
// Direction::Right => "right",
// };
// let moving_tiles = vec![
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "a"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "a"
// )))
// })?,
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "b"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "b"
// )))
// })?,
// ];
// let stopped_tiles =
// vec![
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "a"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "a"
// )))
// })?,
// ];
// textures[direction.as_usize()] = Some(AnimatedTexture::new(moving_tiles, 0.2)?);
// stopped_textures[direction.as_usize()] = Some(AnimatedTexture::new(stopped_tiles, 0.1)?);
// }
// Ok(Self {
// traverser: Traverser::new(graph, start_node, Direction::Left, &can_ghost_traverse),
// ghost_type,
// texture: DirectionalAnimatedTexture::new(textures, stopped_textures),
// speed: ghost_type.base_speed(),
// })
// }
// /// Chooses a random available direction at the current intersection.
// fn choose_random_direction(&mut self, graph: &Graph) {
// let current_node = self.traverser.position.from_node_id();
// let intersection = &graph.adjacency_list[current_node];
// // Collect all available directions
// let mut available_directions = SmallVec::<[_; 4]>::new();
// for direction in Direction::DIRECTIONS {
// if let Some(edge) = intersection.get(direction) {
// if can_ghost_traverse(edge) {
// available_directions.push(direction);
// }
// }
// }
// // Choose a random direction (avoid reversing unless necessary)
// if !available_directions.is_empty() {
// let mut rng = SmallRng::from_os_rng();
// // Filter out the opposite direction if possible, but allow it if we have limited options
// let opposite = self.traverser.direction.opposite();
// let filtered_directions: Vec<_> = available_directions
// .iter()
// .filter(|&&dir| dir != opposite || available_directions.len() <= 2)
// .collect();
// if let Some(&random_direction) = filtered_directions.choose(&mut rng) {
// self.traverser.set_next_direction(*random_direction);
// }
// }
// }
// /// Calculates the shortest path from the ghost's current position to a target node using Dijkstra's algorithm.
// ///
// /// Returns a vector of NodeIds representing the path, or an error if pathfinding fails.
// /// The path includes the current node and the target node.
// pub fn calculate_path_to_target(&self, graph: &Graph, target: NodeId) -> GameResult<Vec<NodeId>> {
// let start_node = self.traverser.position.from_node_id();
// // Use Dijkstra's algorithm to find the shortest path
// let result = dijkstra(
// &start_node,
// |&node_id| {
// // Get all edges from the current node
// graph.adjacency_list[node_id]
// .edges()
// .filter(|edge| can_ghost_traverse(*edge))
// .map(|edge| (edge.target, (edge.distance * 100.0) as u32))
// .collect::<Vec<_>>()
// },
// |&node_id| node_id == target,
// );
// result.map(|(path, _cost)| path).ok_or_else(|| {
// GameError::Entity(EntityError::PathfindingFailed(format!(
// "No path found from node {} to target {}",
// start_node, target
// )))
// })
// }
// /// Returns the ghost's color for debug rendering.
// pub fn debug_color(&self) -> sdl2::pixels::Color {
// match self.ghost_type {
// GhostType::Blinky => sdl2::pixels::Color::RGB(255, 0, 0), // Red
// GhostType::Pinky => sdl2::pixels::Color::RGB(255, 182, 255), // Pink
// GhostType::Inky => sdl2::pixels::Color::RGB(0, 255, 255), // Cyan
// GhostType::Clyde => sdl2::pixels::Color::RGB(255, 182, 85), // Orange
// }
// }
// }
// impl Collidable for Ghost {
// fn position(&self) -> crate::entity::traversal::Position {
// self.traverser.position
// }
// }

View File

@@ -1,117 +0,0 @@
// use crate::{
// constants,
// entity::{collision::Collidable, graph::Graph},
// error::{EntityError, GameResult},
// texture::sprite::{Sprite, SpriteAtlas},
// };
// use sdl2::render::{Canvas, RenderTarget};
// use strum_macros::{EnumCount, EnumIter};
// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
// pub enum ItemType {
// Pellet,
// Energizer,
// #[allow(dead_code)]
// Fruit {
// kind: FruitKind,
// },
// }
// impl ItemType {
// pub fn get_score(self) -> u32 {
// match self {
// ItemType::Pellet => 10,
// ItemType::Energizer => 50,
// ItemType::Fruit { kind } => kind.get_score(),
// }
// }
// }
// #[derive(Debug, Clone, Copy, PartialEq, Eq, EnumIter, EnumCount)]
// #[allow(dead_code)]
// pub enum FruitKind {
// Apple,
// Strawberry,
// Orange,
// Melon,
// Bell,
// Key,
// Galaxian,
// }
// impl FruitKind {
// #[allow(dead_code)]
// pub fn index(self) -> u8 {
// match self {
// FruitKind::Apple => 0,
// FruitKind::Strawberry => 1,
// FruitKind::Orange => 2,
// FruitKind::Melon => 3,
// FruitKind::Bell => 4,
// FruitKind::Key => 5,
// FruitKind::Galaxian => 6,
// }
// }
// pub fn get_score(self) -> u32 {
// match self {
// FruitKind::Apple => 100,
// FruitKind::Strawberry => 300,
// FruitKind::Orange => 500,
// FruitKind::Melon => 700,
// FruitKind::Bell => 1000,
// FruitKind::Key => 2000,
// FruitKind::Galaxian => 3000,
// }
// }
// }
// pub struct Item {
// pub node_index: usize,
// pub item_type: ItemType,
// pub sprite: Sprite,
// pub collected: bool,
// }
// impl Item {
// pub fn new(node_index: usize, item_type: ItemType, sprite: Sprite) -> Self {
// Self {
// node_index,
// item_type,
// sprite,
// collected: false,
// }
// }
// pub fn is_collected(&self) -> bool {
// self.collected
// }
// pub fn collect(&mut self) {
// self.collected = true;
// }
// pub fn get_score(&self) -> u32 {
// self.item_type.get_score()
// }
// pub fn render<T: RenderTarget>(&self, canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, graph: &Graph) -> GameResult<()> {
// if self.collected {
// return Ok(());
// }
// let node = graph
// .get_node(self.node_index)
// .ok_or(EntityError::NodeNotFound(self.node_index))?;
// let position = node.position + constants::BOARD_PIXEL_OFFSET.as_vec2();
// self.sprite.render(canvas, atlas, position)?;
// Ok(())
// }
// }
// impl Collidable for Item {
// fn position(&self) -> crate::entity::traversal::Position {
// crate::entity::traversal::Position::AtNode(self.node_index)
// }
// }

View File

@@ -1,7 +0,0 @@
pub mod collision;
pub mod direction;
pub mod ghost;
pub mod graph;
pub mod item;
pub mod pacman;
pub mod r#trait;

View File

@@ -1,115 +0,0 @@
// //! Pac-Man entity implementation.
// //!
// //! This module contains the main player character logic, including movement,
// //! animation, and rendering. Pac-Man moves through the game graph using
// //! a traverser and displays directional animated textures.
// use crate::entity::{
// collision::Collidable,
// direction::Direction,
// graph::{Edge, EdgePermissions, Graph, NodeId},
// r#trait::Entity,
// traversal::Traverser,
// };
// use crate::texture::animated::AnimatedTexture;
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// use tracing::error;
// use crate::error::{GameError, GameResult, TextureError};
// /// Determines if Pac-Man can traverse a given edge.
// ///
// /// Pac-Man can only move through edges that allow all entities.
// fn can_pacman_traverse(edge: Edge) -> bool {
// matches!(edge.permissions, EdgePermissions::All)
// }
// /// The main player character entity.
// ///
// /// Pac-Man moves through the game world using a graph-based navigation system
// /// and displays directional animated sprites based on movement state.
// pub struct Pacman {
// /// Handles movement through the game graph
// pub traverser: Traverser,
// /// Manages directional animated textures for different movement states
// texture: DirectionalAnimatedTexture,
// }
// impl Entity for Pacman {
// fn traverser(&self) -> &Traverser {
// &self.traverser
// }
// fn traverser_mut(&mut self) -> &mut Traverser {
// &mut self.traverser
// }
// fn texture(&self) -> &DirectionalAnimatedTexture {
// &self.texture
// }
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture {
// &mut self.texture
// }
// fn speed(&self) -> f32 {
// 1.125
// }
// fn can_traverse(&self, edge: Edge) -> bool {
// can_pacman_traverse(edge)
// }
// fn tick(&mut self, dt: f32, graph: &Graph) {
// if let Err(e) = self.traverser.advance(graph, dt * 60.0 * 1.125, &can_pacman_traverse) {
// error!("Pac-Man movement error: {}", e);
// }
// self.texture.tick(dt);
// }
// }
// impl Pacman {
// /// Creates a new Pac-Man instance at the specified starting node.
// ///
// /// Sets up animated textures for all four directions with moving and stopped states.
// /// The moving animation cycles through open mouth, closed mouth, and full sprites.
// pub fn new(graph: &Graph, start_node: NodeId, atlas: &SpriteAtlas) -> GameResult<Self> {
// let mut textures = [None, None, None, None];
// let mut stopped_textures = [None, None, None, None];
// for direction in Direction::DIRECTIONS {
// let moving_prefix = match direction {
// Direction::Up => "pacman/up",
// Direction::Down => "pacman/down",
// Direction::Left => "pacman/left",
// Direction::Right => "pacman/right",
// };
// let moving_tiles = vec![
// SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_a.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_a.png"))))?,
// SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_b.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?,
// SpriteAtlas::get_tile(atlas, "pacman/full.png")
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
// ];
// let stopped_tiles = vec![SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_b.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?];
// textures[direction.as_usize()] = Some(AnimatedTexture::new(moving_tiles, 0.08)?);
// stopped_textures[direction.as_usize()] = Some(AnimatedTexture::new(stopped_tiles, 0.1)?);
// }
// Ok(Self {
// traverser: Traverser::new(graph, start_node, Direction::Left, &can_pacman_traverse),
// texture: DirectionalAnimatedTexture::new(textures, stopped_textures),
// })
// }
// }
// impl Collidable for Pacman {
// fn position(&self) -> crate::entity::traversal::Position {
// self.traverser.position
// }
// }

View File

@@ -1,114 +0,0 @@
// //! Entity trait for common movement and rendering functionality.
// //!
// //! This module defines a trait that captures the shared behavior between
// //! different game entities like Ghosts and Pac-Man, including movement,
// //! rendering, and position calculations.
// use glam::Vec2;
// use sdl2::render::{Canvas, RenderTarget};
// use crate::entity::direction::Direction;
// use crate::entity::graph::{Edge, Graph, NodeId};
// use crate::entity::traversal::{Position, Traverser};
// use crate::error::{EntityError, GameError, GameResult, TextureError};
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// /// Trait defining common functionality for game entities that move through the graph.
// ///
// /// This trait provides a unified interface for entities that:
// /// - Move through the game graph using a traverser
// /// - Render using directional animated textures
// /// - Have position calculations and movement speed
// #[allow(dead_code)]
// pub trait Entity {
// /// Returns a reference to the entity's traverser for movement control.
// fn traverser(&self) -> &Traverser;
// /// Returns a mutable reference to the entity's traverser for movement control.
// fn traverser_mut(&mut self) -> &mut Traverser;
// /// Returns a reference to the entity's directional animated texture.
// fn texture(&self) -> &DirectionalAnimatedTexture;
// /// Returns a mutable reference to the entity's directional animated texture.
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture;
// /// Returns the movement speed multiplier for this entity.
// fn speed(&self) -> f32;
// /// Determines if this entity can traverse a given edge.
// fn can_traverse(&self, edge: Edge) -> bool;
// /// Updates the entity's position and animation state.
// ///
// /// This method advances movement through the graph and updates texture animation.
// fn tick(&mut self, dt: f32, graph: &Graph);
// /// Calculates the current pixel position in the game world.
// ///
// /// Converts the graph position to screen coordinates, accounting for
// /// the board offset and centering the sprite.
// fn get_pixel_pos(&self, graph: &Graph) -> GameResult<Vec2> {
// let pos = match self.traverser().position {
// Position::AtNode(node_id) => {
// let node = graph.get_node(node_id).ok_or(EntityError::NodeNotFound(node_id))?;
// node.position
// }
// Position::BetweenNodes { from, to, traversed } => {
// let from_node = graph.get_node(from).ok_or(EntityError::NodeNotFound(from))?;
// let to_node = graph.get_node(to).ok_or(EntityError::NodeNotFound(to))?;
// let edge = graph.find_edge(from, to).ok_or(EntityError::EdgeNotFound { from, to })?;
// from_node.position + (to_node.position - from_node.position) * (traversed / edge.distance)
// }
// };
// Ok(Vec2::new(
// pos.x + crate::constants::BOARD_PIXEL_OFFSET.x as f32,
// pos.y + crate::constants::BOARD_PIXEL_OFFSET.y as f32,
// ))
// }
// /// Returns the current node ID that the entity is at or moving towards.
// ///
// /// If the entity is at a node, returns that node ID.
// /// If the entity is between nodes, returns the node it's moving towards.
// fn current_node_id(&self) -> NodeId {
// match self.traverser().position {
// Position::AtNode(node_id) => node_id,
// Position::BetweenNodes { to, .. } => to,
// }
// }
// /// Sets the next direction for the entity to take.
// ///
// /// The direction is buffered and will be applied at the next opportunity,
// /// typically when the entity reaches a new node.
// fn set_next_direction(&mut self, direction: Direction) {
// self.traverser_mut().set_next_direction(direction);
// }
// /// Renders the entity at its current position.
// ///
// /// Draws the appropriate directional sprite based on the entity's
// /// current movement state and direction.
// fn render<T: RenderTarget>(&self, canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, graph: &Graph) -> GameResult<()> {
// let pixel_pos = self.get_pixel_pos(graph)?;
// let dest = crate::helpers::centered_with_size(
// glam::IVec2::new(pixel_pos.x as i32, pixel_pos.y as i32),
// glam::UVec2::new(16, 16),
// );
// if self.traverser().position.is_stopped() {
// self.texture()
// .render_stopped(canvas, atlas, dest, self.traverser().direction)
// .map_err(|e| GameError::Texture(TextureError::RenderFailed(e.to_string())))?;
// } else {
// self.texture()
// .render(canvas, atlas, dest, self.traverser().direction)
// .map_err(|e| GameError::Texture(TextureError::RenderFailed(e.to_string())))?;
// }
// Ok(())
// }
// }

View File

@@ -31,9 +31,6 @@ pub enum GameError {
#[error("Entity error: {0}")]
Entity(#[from] EntityError),
#[error("Game state error: {0}")]
GameState(#[from] GameStateError),
#[error("SDL error: {0}")]
Sdl(String),
@@ -51,6 +48,8 @@ pub enum GameError {
pub enum AssetError {
#[error("IO error: {0}")]
Io(#[from] io::Error),
#[allow(dead_code)]
#[error("Asset not found: {0}")]
NotFound(String),
}
@@ -109,18 +108,8 @@ pub enum EntityError {
#[error("Edge not found: from {from} to {to}")]
EdgeNotFound { from: usize, to: usize },
#[error("Invalid movement: {0}")]
InvalidMovement(String),
#[error("Pathfinding failed: {0}")]
PathfindingFailed(String),
}
/// Errors related to game state operations.
#[derive(thiserror::Error, Debug)]
pub enum GameStateError {}
/// Errors related to map operations.
#[derive(thiserror::Error, Debug)]
pub enum MapError {

View File

@@ -1,18 +1,37 @@
use bevy_ecs::prelude::*;
use bevy_ecs::{entity::Entity, event::Event};
use crate::map::direction::Direction;
/// Player input commands that trigger specific game actions.
///
/// Commands are generated by the input system in response to keyboard events
/// and processed by appropriate game systems to modify state or behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum GameCommand {
/// Request immediate game shutdown
Exit,
MovePlayer(crate::entity::direction::Direction),
/// Set Pac-Man's movement direction
MovePlayer(Direction),
/// Cycle through debug visualization modes
ToggleDebug,
/// Toggle audio mute state
MuteAudio,
/// Restart the current level with fresh entity positions and items
ResetLevel,
/// Pause or resume game ticking logic
TogglePause,
}
/// Global events that flow through the ECS event system to coordinate game behavior.
///
/// Events enable loose coupling between systems - input generates commands, collision
/// detection reports overlaps, and various systems respond appropriately without
/// direct dependencies.
#[derive(Event, Clone, Copy, Debug, PartialEq, Eq)]
pub enum GameEvent {
/// Player input command to be processed by relevant game systems
Command(GameCommand),
/// Physical overlap detected between two entities requiring gameplay response
Collision(Entity, Entity),
}

View File

@@ -3,10 +3,10 @@
include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
use crate::constants::CANVAS_SIZE;
use crate::entity::direction::Direction;
use crate::error::{GameError, GameResult, TextureError};
use crate::events::GameEvent;
use crate::map::builder::Map;
use crate::map::direction::Direction;
use crate::systems::blinking::Blinking;
use crate::systems::movement::{BufferedDirection, Position, Velocity};
use crate::systems::player::player_movement_system;
@@ -48,18 +48,37 @@ use crate::{
texture::sprite::{AtlasMapper, SpriteAtlas},
};
pub mod state;
/// The `Game` struct is the main entry point for the game.
/// Core game state manager built on the Bevy ECS architecture.
///
/// It contains the game's state and logic, and is responsible for
/// handling user input, updating the game state, and rendering the game.
/// Orchestrates all game systems through a centralized `World` containing entities,
/// components, and resources, while a `Schedule` defines system execution order.
/// Handles initialization of graphics resources, entity spawning, and per-frame
/// game logic coordination. SDL2 resources are stored as `NonSend` to respect
/// thread safety requirements while integrating with the ECS.
pub struct Game {
pub world: World,
pub schedule: Schedule,
}
impl Game {
/// Initializes the complete game state including ECS world, graphics, and entity spawning.
///
/// Performs extensive setup: creates render targets and debug textures, loads and parses
/// the sprite atlas, renders the static map to a cached texture, builds the navigation
/// graph from the board layout, spawns Pac-Man with directional animations, creates
/// all four ghosts with their AI behavior, and places collectible items throughout
/// the maze. Registers event types and configures the system execution schedule.
///
/// # Arguments
///
/// * `canvas` - SDL2 rendering context with static lifetime for ECS storage
/// * `texture_creator` - SDL2 texture factory for creating render targets
/// * `event_pump` - SDL2 event polling interface for input handling
///
/// # Errors
///
/// Returns `GameError` for SDL2 failures, asset loading problems, atlas parsing
/// errors, or entity initialization issues.
pub fn new(
canvas: &'static mut Canvas<Window>,
texture_creator: &'static mut TextureCreator<WindowContext>,
@@ -291,7 +310,12 @@ impl Game {
Ok(Game { world, schedule })
}
/// Spowns all four ghosts at their starting positions with appropriate textures.
/// Creates and spawns all four ghosts with unique AI personalities and directional animations.
///
/// # Errors
///
/// Returns `GameError::Texture` if any ghost sprite cannot be found in the atlas,
/// typically indicating missing or misnamed sprite files.
fn spawn_ghosts(world: &mut World) -> GameResult<()> {
// Extract the data we need first to avoid borrow conflicts
let ghost_start_positions = {
@@ -396,9 +420,21 @@ impl Game {
Ok(())
}
/// Ticks the game state.
/// Executes one frame of game logic by running all scheduled ECS systems.
///
/// Returns true if the game should exit.
/// Updates the world's delta time resource and runs the complete system pipeline:
/// input processing, entity movement, collision detection, item collection,
/// audio playback, animation updates, and rendering. Each system operates on
/// relevant entities and modifies world state, with the schedule ensuring
/// proper execution order and data dependencies.
///
/// # Arguments
///
/// * `dt` - Frame delta time in seconds for time-based animations and movement
///
/// # Returns
///
/// `true` if the game should terminate (exit command received), `false` to continue
pub fn tick(&mut self, dt: f32) -> bool {
self.world.insert_resource(DeltaTime(dt));

View File

@@ -1,153 +0,0 @@
// use std::collections::VecDeque;
// use sdl2::{
// image::LoadTexture,
// render::{Texture, TextureCreator},
// video::WindowContext,
// };
// use smallvec::SmallVec;
// use crate::{
// asset::{get_asset_bytes, Asset},
// audio::Audio,
// constants::RAW_BOARD,
// entity::{
// collision::{Collidable, CollisionSystem, EntityId},
// ghost::{Ghost, GhostType},
// item::Item,
// pacman::Pacman,
// },
// error::{GameError, GameResult, TextureError},
// game::events::GameEvent,
// map::builder::Map,
// texture::{
// sprite::{AtlasMapper, SpriteAtlas},
// text::TextTexture,
// },
// };
// include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
// /// The `GameState` struct holds all the essential data for the game.
// ///
// /// This includes the score, map, entities (Pac-Man, ghosts, items),
// /// collision system, and rendering resources. By centralizing the game's state,
// /// we can cleanly separate it from the game's logic, making it easier to manage
// /// and reason about.
// pub struct GameState {
// pub paused: bool,
// pub score: u32,
// pub map: Map,
// pub pacman: Pacman,
// pub pacman_id: EntityId,
// pub ghosts: SmallVec<[Ghost; 4]>,
// pub ghost_ids: SmallVec<[EntityId; 4]>,
// pub items: Vec<Item>,
// pub item_ids: Vec<EntityId>,
// pub debug_mode: bool,
// pub event_queue: VecDeque<GameEvent>,
// // Collision system
// pub(crate) collision_system: CollisionSystem,
// // Rendering resources
// pub(crate) atlas: SpriteAtlas,
// pub(crate) text_texture: TextTexture,
// // Audio
// pub audio: Audio,
// // Map texture pre-rendering
// pub(crate) map_texture: Option<Texture<'static>>,
// pub(crate) map_rendered: bool,
// pub(crate) texture_creator: &'static TextureCreator<WindowContext>,
// }
// impl GameState {
// /// Creates a new `GameState` by initializing all the game's data.
// ///
// /// This function sets up the map, Pac-Man, ghosts, items, collision system,
// /// and all rendering resources required to start the game. It returns a `GameResult`
// /// to handle any potential errors during initialization.
// pub fn new(texture_creator: &'static TextureCreator<WindowContext>) -> GameResult<Self> {
// let map = Map::new(RAW_BOARD)?;
// let start_node = map.start_positions.pacman;
// let atlas_bytes = get_asset_bytes(Asset::Atlas)?;
// let atlas_texture = texture_creator.load_texture_bytes(&atlas_bytes).map_err(|e| {
// if e.to_string().contains("format") || e.to_string().contains("unsupported") {
// GameError::Texture(TextureError::InvalidFormat(format!("Unsupported texture format: {e}")))
// } else {
// GameError::Texture(TextureError::LoadFailed(e.to_string()))
// }
// })?;
// let atlas_mapper = AtlasMapper {
// frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
// };
// let atlas = SpriteAtlas::new(atlas_texture, atlas_mapper);
// let text_texture = TextTexture::new(1.0);
// let audio = Audio::new();
// let pacman = Pacman::new(&map.graph, start_node, &atlas)?;
// // Generate items (pellets and energizers)
// let items = map.generate_items(&atlas)?;
// // Initialize collision system
// let mut collision_system = CollisionSystem::default();
// // Register Pac-Man
// let pacman_id = collision_system.register_entity(pacman.position());
// // Register items
// let item_ids = items
// .iter()
// .map(|item| collision_system.register_entity(item.position()))
// .collect();
// // Create and register ghosts
// let ghosts = [GhostType::Blinky, GhostType::Pinky, GhostType::Inky, GhostType::Clyde]
// .iter()
// .zip(
// [
// map.start_positions.blinky,
// map.start_positions.pinky,
// map.start_positions.inky,
// map.start_positions.clyde,
// ]
// .iter(),
// )
// .map(|(ghost_type, start_node)| Ghost::new(&map.graph, *start_node, *ghost_type, &atlas))
// .collect::<GameResult<SmallVec<[_; 4]>>>()?;
// // Register ghosts
// let ghost_ids = ghosts
// .iter()
// .map(|ghost| collision_system.register_entity(ghost.position()))
// .collect();
// Ok(Self {
// paused: false,
// map,
// atlas,
// pacman,
// pacman_id,
// ghosts,
// ghost_ids,
// items,
// item_ids,
// text_texture,
// audio,
// score: 0,
// debug_mode: false,
// collision_system,
// map_texture: None,
// map_rendered: false,
// texture_creator,
// event_queue: VecDeque::new(),
// })
// }
// }

View File

@@ -1,10 +0,0 @@
use glam::{IVec2, UVec2};
use sdl2::rect::Rect;
pub fn centered_with_size(pixel_pos: IVec2, size: UVec2) -> Rect {
// Ensure the position doesn't cause integer overflow when centering
let x = pixel_pos.x.saturating_sub(size.x as i32 / 2);
let y = pixel_pos.y.saturating_sub(size.y as i32 / 2);
Rect::new(x, y, size.x, size.y)
}

View File

@@ -4,11 +4,9 @@ pub mod app;
pub mod asset;
pub mod audio;
pub mod constants;
pub mod entity;
pub mod error;
pub mod events;
pub mod game;
pub mod helpers;
pub mod map;
pub mod platform;
pub mod systems;

View File

@@ -10,11 +10,9 @@ mod asset;
mod audio;
mod constants;
mod entity;
mod error;
mod events;
mod game;
mod helpers;
mod map;
mod platform;
mod systems;

View File

@@ -1,7 +1,7 @@
//! Map construction and building functionality.
use crate::constants::{MapTile, BOARD_CELL_SIZE, CELL_SIZE};
use crate::entity::direction::Direction;
use crate::entity::graph::{Graph, Node, TraversalFlags};
use crate::map::direction::Direction;
use crate::map::graph::{Graph, Node, TraversalFlags};
use crate::map::parser::MapTileParser;
use crate::systems::movement::NodeId;
use bevy_ecs::resource::Resource;
@@ -11,25 +11,37 @@ use tracing::debug;
use crate::error::{GameResult, MapError};
/// The starting positions of the entities in the game.
/// Predefined spawn locations for all game entities within the navigation graph.
///
/// These positions are determined during map parsing and graph construction.
pub struct NodePositions {
/// Pac-Man's starting position in the lower section of the maze
pub pacman: NodeId,
/// Blinky starts at the ghost house entrance
pub blinky: NodeId,
/// Pinky starts in the left area of the ghost house
pub pinky: NodeId,
/// Inky starts in the right area of the ghost house
pub inky: NodeId,
/// Clyde starts in the center of the ghost house
pub clyde: NodeId,
}
/// The main map structure containing the game board and navigation graph.
/// Complete maze representation combining visual layout with navigation pathfinding.
///
/// Transforms the ASCII board layout into a fully connected navigation graph
/// while preserving tile-based collision and rendering data. The graph enables
/// smooth entity movement with proper pathfinding, while the grid mapping allows
/// efficient spatial queries and debug visualization.
#[derive(Resource)]
pub struct Map {
/// The node map for entity movement.
/// Connected graph of navigable positions.
pub graph: Graph,
/// A mapping from grid positions to node IDs.
/// Bidirectional mapping between 2D grid coordinates and graph node indices.
pub grid_to_node: HashMap<IVec2, NodeId>,
/// A mapping of the starting positions of the entities.
/// Predetermined spawn locations for all game entities
pub start_positions: NodePositions,
/// The raw tile data for the map.
/// 2D array of tile types for collision detection and rendering
tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
}
@@ -162,7 +174,18 @@ impl Map {
})
}
/// Builds the house structure in the graph.
/// Constructs the ghost house area with restricted access and internal navigation.
///
/// Creates a multi-level ghost house with entrance control, internal movement
/// areas, and starting positions for each ghost. The house entrance uses
/// ghost-only traversal flags to prevent Pac-Man from entering while allowing
/// ghosts to exit. Internal nodes are arranged in vertical lines to provide
/// distinct starting areas for each ghost character.
///
/// # Returns
///
/// Tuple of node IDs: (house_entrance, left_center, center_center, right_center)
/// representing the four key positions within the ghost house structure.
fn build_house(
graph: &mut Graph,
grid_to_node: &HashMap<IVec2, NodeId>,
@@ -296,7 +319,10 @@ impl Map {
))
}
/// Builds the tunnel connections in the graph.
/// Creates horizontal tunnel portals for instant teleportation across the maze.
///
/// Establishes the tunnel system that allows entities to instantly travel from the left edge of the maze to the right edge.
/// Creates hidden intermediate nodes beyond the visible tunnel entrances and connects them with zero-distance edges for instantaneous traversal.
fn build_tunnels(
graph: &mut Graph,
grid_to_node: &HashMap<IVec2, NodeId>,

View File

View File

@@ -1,6 +1,8 @@
//! This module defines the game map and provides functions for interacting with it.
pub mod builder;
pub mod direction;
pub mod graph;
pub mod layout;
pub mod parser;
pub mod render;

View File

@@ -4,16 +4,21 @@ use crate::constants::{MapTile, BOARD_CELL_SIZE};
use crate::error::ParseError;
use glam::IVec2;
/// Represents the parsed data from a raw board layout.
/// Structured representation of parsed ASCII board layout with extracted special positions.
///
/// Contains the complete board state after character-to-tile conversion, along with
/// the locations of special gameplay elements that require additional processing
/// during graph construction. Special positions are extracted during parsing to
/// enable proper map builder initialization.
#[derive(Debug)]
pub struct ParsedMap {
/// The parsed tile layout.
/// 2D array of tiles converted from ASCII characters
pub tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
/// The positions of the house door tiles.
/// Two positions marking the ghost house entrance (represented by '=' characters)
pub house_door: [Option<IVec2>; 2],
/// The positions of the tunnel end tiles.
/// Two positions marking tunnel portals for wraparound teleportation ('T' characters)
pub tunnel_ends: [Option<IVec2>; 2],
/// Pac-Man's starting position.
/// Starting position for Pac-Man (marked by 'X' character in the layout)
pub pacman_start: Option<IVec2>,
}
@@ -21,15 +26,18 @@ pub struct ParsedMap {
pub struct MapTileParser;
impl MapTileParser {
/// Parses a single character into a map tile.
/// Converts ASCII characters from the board layout into corresponding tile types.
///
/// # Arguments
/// Interprets the character-based maze representation: walls (`#`), collectible
/// pellets (`.` and `o`), traversable spaces (` `), tunnel entrances (`T`),
/// ghost house doors (`=`), and entity spawn markers (`X`). Special characters
/// that don't represent tiles in the final map (like spawn markers) are
/// converted to `Empty` tiles while their positions are tracked separately.
///
/// * `c` - The character to parse
/// # Errors
///
/// # Returns
///
/// The parsed map tile, or an error if the character is unknown.
/// Returns `ParseError::UnknownCharacter` for any character not defined
/// in the game's ASCII art vocabulary.
pub fn parse_character(c: char) -> Result<MapTile, ParseError> {
match c {
'#' => Ok(MapTile::Wall),

View File

@@ -10,29 +10,29 @@ mod desktop;
#[cfg(target_os = "emscripten")]
mod emscripten;
/// Platform abstraction trait that defines cross-platform functionality.
/// Cross-platform abstraction layer providing unified APIs for platform-specific operations.
pub trait CommonPlatform {
/// Sleep for the specified duration using platform-appropriate method.
/// Platform-specific sleep function (required due to Emscripten's non-standard sleep requirements).
///
/// Provides access to current window focus state, useful for changing sleep algorithm conditionally.
fn sleep(&self, duration: Duration, focused: bool);
/// Get the current time in seconds since some reference point.
/// This is available for future use in timing and performance monitoring.
#[allow(dead_code)]
fn get_time(&self) -> f64;
/// Initialize platform-specific console functionality.
/// Configures platform-specific console and debugging output capabilities.
fn init_console(&self) -> Result<(), PlatformError>;
/// Get canvas size for platforms that need it (e.g., Emscripten).
/// This is available for future use in responsive design.
/// Retrieves the actual display canvas dimensions.
#[allow(dead_code)]
fn get_canvas_size(&self) -> Option<(u32, u32)>;
/// Load asset bytes using platform-appropriate method.
/// Loads raw asset data using the appropriate platform-specific method.
fn get_asset_bytes(&self, asset: Asset) -> Result<Cow<'static, [u8]>, AssetError>;
}
/// Get the current platform implementation.
/// Returns the appropriate platform implementation based on compile-time target.
#[allow(dead_code)]
pub fn get_platform() -> &'static dyn CommonPlatform {
#[cfg(not(target_os = "emscripten"))]

View File

@@ -9,6 +9,13 @@ use crate::map::builder::Map;
use crate::systems::components::{Collider, ItemCollider, PacmanCollider};
use crate::systems::movement::Position;
/// Detects overlapping entities and generates collision events for gameplay systems.
///
/// Performs distance-based collision detection between Pac-Man and collectible items
/// using each entity's position and collision radius. When entities overlap, emits
/// a `GameEvent::Collision` for the item system to handle scoring and removal.
/// Collision detection accounts for both entities being in motion and supports
/// circular collision boundaries for accurate gameplay feel.
pub fn collision_system(
map: Res<Map>,
pacman_query: Query<(Entity, &Position, &Collider), With<PacmanCollider>>,

View File

@@ -2,7 +2,7 @@ use bevy_ecs::{bundle::Bundle, component::Component, resource::Resource};
use bitflags::bitflags;
use crate::{
entity::graph::TraversalFlags,
map::graph::TraversalFlags,
systems::movement::{BufferedDirection, Position, Velocity},
texture::{animated::AnimatedTexture, sprite::AtlasTile},
};
@@ -41,6 +41,7 @@ impl Ghost {
}
/// Returns the ghost's color for debug rendering.
#[allow(dead_code)]
pub fn debug_color(&self) -> sdl2::pixels::Color {
match self {
Ghost::Blinky => sdl2::pixels::Color::RGB(255, 0, 0), // Red

View File

@@ -3,18 +3,18 @@ use rand::prelude::*;
use smallvec::SmallVec;
use crate::{
entity::{direction::Direction, graph::Edge},
map::builder::Map,
map::{
builder::Map,
direction::Direction,
graph::{Edge, TraversalFlags},
},
systems::{
components::{DeltaTime, Ghost},
movement::{Position, Velocity},
},
};
/// Ghost AI system that handles randomized movement decisions.
///
/// This system runs on all ghosts and makes periodic decisions about
/// which direction to move in when they reach intersections.
/// Autonomous ghost AI system implementing randomized movement with backtracking avoidance.
pub fn ghost_movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
@@ -32,9 +32,7 @@ pub fn ghost_movement_system(
// Collect all available directions that ghosts can traverse
for edge in Direction::DIRECTIONS.iter().flat_map(|d| intersection.get(*d)) {
if edge.traversal_flags.contains(crate::entity::graph::TraversalFlags::GHOST)
&& edge.direction != opposite
{
if edge.traversal_flags.contains(TraversalFlags::GHOST) && edge.direction != opposite {
non_opposite_options.push(edge);
}
}

View File

@@ -10,8 +10,8 @@ use sdl2::{event::Event, keyboard::Keycode, EventPump};
use crate::systems::components::DeltaTime;
use crate::{
entity::direction::Direction,
events::{GameCommand, GameEvent},
map::direction::Direction,
};
#[derive(Resource, Default, Debug, Copy, Clone)]

View File

@@ -1,10 +1,13 @@
use crate::entity::direction::Direction;
use crate::entity::graph::Graph;
use crate::error::{EntityError, GameResult};
use crate::map::direction::Direction;
use crate::map::graph::Graph;
use bevy_ecs::component::Component;
use glam::Vec2;
/// A unique identifier for a node, represented by its index in the graph's storage.
/// Zero-based index identifying a specific node in the navigation graph.
///
/// Nodes represent discrete movement targets in the maze. The index directly corresponds to the node's position in the
/// graph's internal storage arrays.
pub type NodeId = usize;
/// A component that represents the speed and cardinal direction of an entity.
@@ -24,15 +27,19 @@ pub enum BufferedDirection {
Some { direction: Direction, remaining_time: f32 },
}
/// Pure spatial position component - works for both static and dynamic entities.
/// Entity position state that handles both stationary entities and moving entities.
///
/// Supports precise positioning during movement between discrete navigation nodes.
/// When moving, entities smoothly interpolate along edges while tracking exact distance remaining to the target node.
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub enum Position {
Stopped {
node: NodeId,
},
/// Entity is stationary at a specific graph node.
Stopped { node: NodeId },
/// Entity is traveling between two nodes.
Moving {
from: NodeId,
to: NodeId,
/// Distance remaining to reach the target node.
remaining_distance: f32,
},
}
@@ -82,9 +89,21 @@ impl Position {
))
}
/// Moves the position by a given distance towards it's current target node.
/// Advances movement progress by the specified distance with overflow handling.
///
/// Returns the overflow distance, if any.
/// For moving entities, decreases the remaining distance to the target node.
/// If the distance would overshoot the target, the entity transitions to
/// `Stopped` state and returns the excess distance for chaining movement
/// to the next edge in the same frame.
///
/// # Arguments
///
/// * `distance` - Distance to travel this frame (typically speed × delta_time)
///
/// # Returns
///
/// `Some(overflow)` if the target was reached with distance remaining,
/// `None` if still moving or already stopped.
pub fn tick(&mut self, distance: f32) -> Option<f32> {
if distance <= 0.0 || self.is_at_node() {
return None;
@@ -127,159 +146,3 @@ impl Position {
}
}
}
// pub fn movement_system(
// map: Res<Map>,
// delta_time: Res<DeltaTime>,
// mut entities: Query<(&mut Position, &mut Movable, &EntityType)>,
// mut errors: EventWriter<GameError>,
// ) {
// for (mut position, mut movable, entity_type) in entities.iter_mut() {
// let distance = movable.speed * 60.0 * delta_time.0;
// match *position {
// Position::Stopped { .. } => {
// // Check if we have a requested direction to start moving
// if let Some(requested_direction) = movable.requested_direction {
// if let Some(edge) = map.graph.find_edge_in_direction(position.current_node(), requested_direction) {
// if can_traverse(*entity_type, edge) {
// // Start moving in the requested direction
// let progress = if edge.distance > 0.0 {
// distance / edge.distance
// } else {
// // Zero-distance edge (tunnels) - immediately teleport
// tracing::debug!(
// "Entity entering tunnel from node {} to node {}",
// position.current_node(),
// edge.target
// );
// 1.0
// };
// *position = Position::Moving {
// from: position.current_node(),
// to: edge.target,
// remaining_distance: progress,
// };
// movable.current_direction = requested_direction;
// movable.requested_direction = None;
// }
// } else {
// errors.write(
// EntityError::InvalidMovement(format!(
// "No edge found in direction {:?} from node {}",
// requested_direction,
// position.current_node()
// ))
// .into(),
// );
// }
// }
// }
// Position::Moving {
// from,
// to,
// remaining_distance,
// } => {
// // Continue moving or handle node transitions
// let current_node = *from;
// if let Some(edge) = map.graph.find_edge(current_node, *to) {
// // Extract target node before mutable operations
// let target_node = *to;
// // Get the current edge for distance calculation
// let edge = map.graph.find_edge(current_node, target_node);
// if let Some(edge) = edge {
// // Update progress along the edge
// if edge.distance > 0.0 {
// *remaining_distance += distance / edge.distance;
// } else {
// // Zero-distance edge (tunnels) - immediately complete
// *remaining_distance = 1.0;
// }
// if *remaining_distance >= 1.0 {
// // Reached the target node
// let overflow = if edge.distance > 0.0 {
// (*remaining_distance - 1.0) * edge.distance
// } else {
// // Zero-distance edge - use remaining distance for overflow
// distance
// };
// *position = Position::Stopped { node: target_node };
// let mut continued_moving = false;
// // Try to use requested direction first
// if let Some(requested_direction) = movable.requested_direction {
// if let Some(next_edge) = map.graph.find_edge_in_direction(position.node, requested_direction) {
// if can_traverse(*entity_type, next_edge) {
// let next_progress = if next_edge.distance > 0.0 {
// overflow / next_edge.distance
// } else {
// // Zero-distance edge - immediately complete
// 1.0
// };
// *position = Position::Moving {
// from: position.current_node(),
// to: next_edge.target,
// remaining_distance: next_progress,
// };
// movable.current_direction = requested_direction;
// movable.requested_direction = None;
// continued_moving = true;
// }
// }
// }
// // If no requested direction or it failed, try to continue in current direction
// if !continued_moving {
// if let Some(next_edge) = map.graph.find_edge_in_direction(position.node, direction) {
// if can_traverse(*entity_type, next_edge) {
// let next_progress = if next_edge.distance > 0.0 {
// overflow / next_edge.distance
// } else {
// // Zero-distance edge - immediately complete
// 1.0
// };
// *position = Position::Moving {
// from: position.current_node(),
// to: next_edge.target,
// remaining_distance: next_progress,
// };
// // Keep current direction and movement state
// continued_moving = true;
// }
// }
// }
// // If we couldn't continue moving, stop
// if !continued_moving {
// *movement_state = MovementState::Stopped;
// movable.requested_direction = None;
// }
// }
// } else {
// // Edge not found - this is an inconsistent state
// errors.write(
// EntityError::InvalidMovement(format!(
// "Inconsistent state: Moving on non-existent edge from {} to {}",
// current_node, target_node
// ))
// .into(),
// );
// *movement_state = MovementState::Stopped;
// position.edge_progress = None;
// }
// } else {
// // Movement state says moving but no edge progress - this shouldn't happen
// errors.write(EntityError::InvalidMovement("Entity in Moving state but no edge progress".to_string()).into());
// *movement_state = MovementState::Stopped;
// }
// }
// }
// }
// }

View File

@@ -6,10 +6,10 @@ use bevy_ecs::{
};
use crate::{
entity::graph::Edge,
error::GameError,
events::{GameCommand, GameEvent},
map::builder::Map,
map::graph::Edge,
systems::{
components::{AudioState, DeltaTime, EntityType, GlobalState, PlayerControlled},
debug::DebugState,
@@ -17,7 +17,12 @@ use crate::{
},
};
// Handles player input and control
/// Processes player input commands and updates game state accordingly.
///
/// Handles keyboard-driven commands like movement direction changes, debug mode
/// toggling, audio muting, and game exit requests. Movement commands are buffered
/// to allow direction changes before reaching intersections, improving gameplay
/// responsiveness. Non-movement commands immediately modify global game state.
pub fn player_control_system(
mut events: EventReader<GameEvent>,
mut state: ResMut<GlobalState>,
@@ -64,11 +69,16 @@ pub fn player_control_system(
}
}
fn can_traverse(entity_type: EntityType, edge: Edge) -> bool {
pub fn can_traverse(entity_type: EntityType, edge: Edge) -> bool {
let entity_flags = entity_type.traversal_flags();
edge.traversal_flags.contains(entity_flags)
}
/// Executes frame-by-frame movement for Pac-Man.
///
/// Handles movement logic including buffered direction changes, edge traversal validation, and continuous movement between nodes.
/// When stopped, prioritizes buffered directions for responsive controls, falling back to current direction.
/// Supports movement chaining within a single frame when traveling at high speeds.
pub fn player_movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,

View File

@@ -7,6 +7,7 @@ use bevy_ecs::entity::Entity;
use bevy_ecs::event::EventWriter;
use bevy_ecs::prelude::{Changed, Or, RemovedComponents};
use bevy_ecs::system::{NonSendMut, Query, Res, ResMut};
use sdl2::rect::{Point, Rect};
use sdl2::render::{Canvas, Texture};
use sdl2::video::Window;
@@ -99,9 +100,10 @@ pub fn render_system(
let pos = position.get_pixel_position(&map.graph);
match pos {
Ok(pos) => {
let dest = crate::helpers::centered_with_size(
glam::IVec2::new(pos.x as i32, pos.y as i32),
glam::UVec2::new(renderable.sprite.size.x as u32, renderable.sprite.size.y as u32),
let dest = Rect::from_center(
Point::from((pos.x as i32, pos.y as i32)),
renderable.sprite.size.x as u32,
renderable.sprite.size.y as u32,
);
renderable

View File

@@ -1,11 +1,19 @@
use crate::error::{AnimatedTextureError, GameError, GameResult, TextureError};
use crate::texture::sprite::AtlasTile;
/// Frame-based animation system for cycling through multiple sprite tiles.
///
/// Manages automatic frame progression based on elapsed time.
/// Uses a time banking system to ensure consistent animation speed regardless of frame rate variations.
#[derive(Debug, Clone)]
pub struct AnimatedTexture {
/// Sequence of sprite tiles that make up the animation frames
tiles: Vec<AtlasTile>,
/// Duration each frame should be displayed (in seconds)
frame_duration: f32,
/// Index of the currently active frame in the tiles vector
current_frame: usize,
/// Accumulated time since the last frame change (for smooth timing)
time_bank: f32,
}
@@ -25,6 +33,16 @@ impl AnimatedTexture {
})
}
/// Advances the animation by the specified time delta with automatic frame cycling.
///
/// Accumulates time in the time bank and progresses through frames when enough
/// time has elapsed. Supports frame rates independent of game frame rate by
/// potentially advancing multiple frames in a single call if `dt` is large.
/// Animation loops automatically when reaching the final frame.
///
/// # Arguments
///
/// * `dt` - Time elapsed since the last tick (typically frame delta time)
pub fn tick(&mut self, dt: f32) {
self.time_bank += dt;
while self.time_bank >= self.frame_duration {

View File

@@ -8,8 +8,10 @@ use std::collections::HashMap;
use crate::error::TextureError;
/// Atlas frame mapping data loaded from JSON metadata files.
#[derive(Clone, Debug, Deserialize)]
pub struct AtlasMapper {
/// Mapping from sprite name to frame bounds within the atlas texture
pub frames: HashMap<String, MapperFrame>,
}
@@ -72,10 +74,19 @@ impl AtlasTile {
}
}
/// High-performance sprite atlas providing fast texture region lookups and rendering.
///
/// Combines a single large texture with metadata mapping to enable efficient
/// sprite rendering without texture switching. Caches color modulation state
/// to minimize redundant SDL2 calls and supports both named sprite lookups
/// and optional default color modulation configuration.
pub struct SpriteAtlas {
/// The combined texture containing all sprite frames
texture: Texture<'static>,
/// Mapping from sprite names to their pixel coordinates within the texture
tiles: HashMap<String, MapperFrame>,
default_color: Option<Color>,
/// Cached color modulation state to avoid redundant SDL2 calls
last_modulation: Option<Color>,
}
@@ -89,6 +100,12 @@ impl SpriteAtlas {
}
}
/// Retrieves a sprite tile by name from the atlas with fast HashMap lookup.
///
/// Returns an `AtlasTile` containing the texture coordinates and dimensions
/// for the named sprite, or `None` if the sprite name is not found in the
/// atlas. The returned tile can be used for immediate rendering or stored
/// for repeated use in animations and entity sprites.
pub fn get_tile(&self, name: &str) -> Option<AtlasTile> {
self.tiles.get(name).map(|frame| AtlasTile {
pos: U16Vec2::new(frame.x, frame.y),

View File

@@ -1,14 +0,0 @@
use pacman::asset::Asset;
use std::path::Path;
use strum::IntoEnumIterator;
#[test]
fn test_asset_paths_valid() {
let base_path = Path::new("assets/game/");
for asset in Asset::iter() {
let path = base_path.join(asset.path());
assert!(path.exists(), "Asset path does not exist: {:?}", path);
assert!(path.is_file(), "Asset path is not a file: {:?}", path);
}
}

View File

@@ -2,27 +2,34 @@ use pacman::constants::*;
#[test]
fn test_raw_board_structure() {
// Test board dimensions match expected size
assert_eq!(RAW_BOARD.len(), BOARD_CELL_SIZE.y as usize);
for row in RAW_BOARD.iter() {
assert_eq!(row.len(), BOARD_CELL_SIZE.x as usize);
}
// Test boundaries
// Test boundaries are properly walled
assert!(RAW_BOARD[0].chars().all(|c| c == '#'));
assert!(RAW_BOARD[RAW_BOARD.len() - 1].chars().all(|c| c == '#'));
// Test tunnel row
let tunnel_row = RAW_BOARD[14];
assert_eq!(tunnel_row.chars().next().unwrap(), 'T');
assert_eq!(tunnel_row.chars().last().unwrap(), 'T');
}
#[test]
fn test_raw_board_content() {
let power_pellet_count = RAW_BOARD.iter().flat_map(|row| row.chars()).filter(|&c| c == 'o').count();
assert_eq!(power_pellet_count, 4);
assert!(RAW_BOARD.iter().any(|row| row.contains('X')));
assert!(RAW_BOARD.iter().any(|row| row.contains("==")));
fn test_raw_board_contains_required_elements() {
// Test that essential game elements are present
assert!(
RAW_BOARD.iter().any(|row| row.contains('X')),
"Board should contain Pac-Man start position"
);
assert!(
RAW_BOARD.iter().any(|row| row.contains("==")),
"Board should contain ghost house door"
);
assert!(
RAW_BOARD.iter().any(|row| row.chars().any(|c| c == 'T')),
"Board should contain tunnel entrances"
);
assert!(
RAW_BOARD.iter().any(|row| row.chars().any(|c| c == 'o')),
"Board should contain power pellets"
);
}

View File

@@ -1,5 +1,5 @@
use glam::IVec2;
use pacman::entity::direction::*;
use pacman::map::direction::*;
#[test]
fn test_direction_opposite() {

158
tests/error.rs Normal file
View File

@@ -0,0 +1,158 @@
use pacman::error::{
AnimatedTextureError, AssetError, EntityError, GameError, GameResult, IntoGameError, MapError, OptionExt, ParseError,
ResultExt, TextureError,
};
use std::io;
#[test]
fn test_game_error_from_asset_error() {
let asset_error = AssetError::NotFound("test.png".to_string());
let game_error: GameError = asset_error.into();
assert!(matches!(game_error, GameError::Asset(_)));
}
#[test]
fn test_game_error_from_parse_error() {
let parse_error = ParseError::UnknownCharacter('Z');
let game_error: GameError = parse_error.into();
assert!(matches!(game_error, GameError::MapParse(_)));
}
#[test]
fn test_game_error_from_map_error() {
let map_error = MapError::NodeNotFound(42);
let game_error: GameError = map_error.into();
assert!(matches!(game_error, GameError::Map(_)));
}
#[test]
fn test_game_error_from_texture_error() {
let texture_error = TextureError::LoadFailed("Failed to load".to_string());
let game_error: GameError = texture_error.into();
assert!(matches!(game_error, GameError::Texture(_)));
}
#[test]
fn test_game_error_from_entity_error() {
let entity_error = EntityError::NodeNotFound(10);
let game_error: GameError = entity_error.into();
assert!(matches!(game_error, GameError::Entity(_)));
}
#[test]
fn test_game_error_from_io_error() {
let io_error = io::Error::new(io::ErrorKind::NotFound, "File not found");
let game_error: GameError = io_error.into();
assert!(matches!(game_error, GameError::Io(_)));
}
#[test]
fn test_texture_error_from_animated_error() {
let animated_error = AnimatedTextureError::InvalidFrameDuration(-1.0);
let texture_error: TextureError = animated_error.into();
assert!(matches!(texture_error, TextureError::Animated(_)));
}
#[test]
fn test_asset_error_from_io_error() {
let io_error = io::Error::new(io::ErrorKind::PermissionDenied, "Permission denied");
let asset_error: AssetError = io_error.into();
assert!(matches!(asset_error, AssetError::Io(_)));
}
#[test]
fn test_parse_error_display() {
let error = ParseError::UnknownCharacter('!');
assert_eq!(error.to_string(), "Unknown character in board: !");
let error = ParseError::InvalidHouseDoorCount(3);
assert_eq!(error.to_string(), "House door must have exactly 2 positions, found 3");
}
#[test]
fn test_entity_error_display() {
let error = EntityError::NodeNotFound(42);
assert_eq!(error.to_string(), "Node not found in graph: 42");
let error = EntityError::EdgeNotFound { from: 1, to: 2 };
assert_eq!(error.to_string(), "Edge not found: from 1 to 2");
}
#[test]
fn test_animated_texture_error_display() {
let error = AnimatedTextureError::InvalidFrameDuration(0.0);
assert_eq!(error.to_string(), "Frame duration must be positive, got 0");
}
#[test]
fn test_into_game_error_trait() {
let result: Result<i32, io::Error> = Err(io::Error::new(io::ErrorKind::Other, "test error"));
let game_result: GameResult<i32> = result.into_game_error();
assert!(game_result.is_err());
if let Err(GameError::InvalidState(msg)) = game_result {
assert!(msg.contains("test error"));
} else {
panic!("Expected InvalidState error");
}
}
#[test]
fn test_into_game_error_trait_success() {
let result: Result<i32, io::Error> = Ok(42);
let game_result: GameResult<i32> = result.into_game_error();
assert_eq!(game_result.unwrap(), 42);
}
#[test]
fn test_option_ext_some() {
let option: Option<i32> = Some(42);
let result: GameResult<i32> = option.ok_or_game_error(|| GameError::InvalidState("Not found".to_string()));
assert_eq!(result.unwrap(), 42);
}
#[test]
fn test_option_ext_none() {
let option: Option<i32> = None;
let result: GameResult<i32> = option.ok_or_game_error(|| GameError::InvalidState("Not found".to_string()));
assert!(result.is_err());
if let Err(GameError::InvalidState(msg)) = result {
assert_eq!(msg, "Not found");
} else {
panic!("Expected InvalidState error");
}
}
#[test]
fn test_result_ext_success() {
let result: Result<i32, io::Error> = Ok(42);
let game_result: GameResult<i32> = result.with_context(|_| GameError::InvalidState("Context".to_string()));
assert_eq!(game_result.unwrap(), 42);
}
#[test]
fn test_result_ext_error() {
let result: Result<i32, io::Error> = Err(io::Error::new(io::ErrorKind::Other, "original error"));
let game_result: GameResult<i32> = result.with_context(|_| GameError::InvalidState("Context error".to_string()));
assert!(game_result.is_err());
if let Err(GameError::InvalidState(msg)) = game_result {
assert_eq!(msg, "Context error");
} else {
panic!("Expected InvalidState error");
}
}
#[test]
fn test_error_chain_conversions() {
// Test that we can convert through multiple levels
let animated_error = AnimatedTextureError::InvalidFrameDuration(-5.0);
let texture_error: TextureError = animated_error.into();
let game_error: GameError = texture_error.into();
assert!(matches!(game_error, GameError::Texture(TextureError::Animated(_))));
}

117
tests/events.rs Normal file
View File

@@ -0,0 +1,117 @@
use pacman::events::{GameCommand, GameEvent};
use pacman::map::direction::Direction;
#[test]
fn test_game_command_variants() {
// Test that all GameCommand variants can be created
let commands = vec![
GameCommand::Exit,
GameCommand::MovePlayer(Direction::Up),
GameCommand::MovePlayer(Direction::Down),
GameCommand::MovePlayer(Direction::Left),
GameCommand::MovePlayer(Direction::Right),
GameCommand::ToggleDebug,
GameCommand::MuteAudio,
GameCommand::ResetLevel,
GameCommand::TogglePause,
];
// Just verify they can be created and compared
assert_eq!(commands.len(), 9);
assert_eq!(commands[0], GameCommand::Exit);
assert_eq!(commands[1], GameCommand::MovePlayer(Direction::Up));
}
#[test]
fn test_game_command_equality() {
assert_eq!(GameCommand::Exit, GameCommand::Exit);
assert_eq!(GameCommand::ToggleDebug, GameCommand::ToggleDebug);
assert_eq!(
GameCommand::MovePlayer(Direction::Left),
GameCommand::MovePlayer(Direction::Left)
);
assert_ne!(GameCommand::Exit, GameCommand::ToggleDebug);
assert_ne!(
GameCommand::MovePlayer(Direction::Left),
GameCommand::MovePlayer(Direction::Right)
);
}
#[test]
fn test_game_command_copy_clone() {
let original = GameCommand::MovePlayer(Direction::Up);
let copied = original;
let cloned = original.clone();
assert_eq!(original, copied);
assert_eq!(original, cloned);
assert_eq!(copied, cloned);
}
#[test]
fn test_game_event_variants() {
let command_event = GameEvent::Command(GameCommand::Exit);
let collision_event = GameEvent::Collision(bevy_ecs::entity::Entity::from_raw(1), bevy_ecs::entity::Entity::from_raw(2));
// Test that events can be created and compared
assert_eq!(command_event, GameEvent::Command(GameCommand::Exit));
assert_ne!(command_event, collision_event);
}
#[test]
fn test_game_command_to_game_event_conversion() {
let command = GameCommand::ToggleDebug;
let event: GameEvent = command.into();
assert_eq!(event, GameEvent::Command(GameCommand::ToggleDebug));
}
#[test]
fn test_game_command_to_game_event_conversion_all_variants() {
let commands = vec![
GameCommand::Exit,
GameCommand::MovePlayer(Direction::Up),
GameCommand::ToggleDebug,
GameCommand::MuteAudio,
GameCommand::ResetLevel,
GameCommand::TogglePause,
];
for command in commands {
let event: GameEvent = command.into();
assert_eq!(event, GameEvent::Command(command));
}
}
#[test]
fn test_move_player_all_directions() {
let directions = [Direction::Up, Direction::Down, Direction::Left, Direction::Right];
for direction in directions {
let command = GameCommand::MovePlayer(direction);
let event: GameEvent = command.into();
if let GameEvent::Command(GameCommand::MovePlayer(dir)) = event {
assert_eq!(dir, direction);
} else {
panic!("Expected MovePlayer command with direction {:?}", direction);
}
}
}
#[test]
fn test_game_event_debug_format() {
let event = GameEvent::Command(GameCommand::Exit);
let debug_str = format!("{:?}", event);
assert!(debug_str.contains("Command"));
assert!(debug_str.contains("Exit"));
}
#[test]
fn test_game_command_debug_format() {
let command = GameCommand::MovePlayer(Direction::Left);
let debug_str = format!("{:?}", command);
assert!(debug_str.contains("MovePlayer"));
assert!(debug_str.contains("Left"));
}

View File

@@ -19,7 +19,7 @@ fn get_formatted_output() -> impl IntoIterator<Item = String> {
}
#[test]
fn test_formatting_alignment() {
fn test_complex_formatting_alignment() {
let mut colon_positions = vec![];
let mut first_decimal_positions = vec![];
let mut second_decimal_positions = vec![];
@@ -93,3 +93,80 @@ fn test_formatting_alignment() {
second_unit_positions
);
}
#[test]
fn test_format_timing_display_basic() {
let timing_data = vec![
("render".to_string(), Duration::from_micros(1500), Duration::from_micros(200)),
("input".to_string(), Duration::from_micros(300), Duration::from_micros(50)),
("physics".to_string(), Duration::from_nanos(750), Duration::from_nanos(100)),
];
let formatted = format_timing_display(timing_data);
// Should have 3 lines (one for each system)
assert_eq!(formatted.len(), 3);
// Each line should contain the system name
assert!(formatted.iter().any(|line| line.contains("render")));
assert!(formatted.iter().any(|line| line.contains("input")));
assert!(formatted.iter().any(|line| line.contains("physics")));
// Each line should contain timing information with proper units
for line in formatted.iter() {
assert!(line.contains(":"), "Line should contain colon separator: {}", line);
assert!(line.contains("±"), "Line should contain ± symbol: {}", line);
}
}
#[test]
fn test_format_timing_display_empty() {
let timing_data = vec![];
let formatted = format_timing_display(timing_data);
assert!(formatted.is_empty());
}
#[test]
fn test_format_timing_display_units() {
let timing_data = vec![
("seconds".to_string(), Duration::from_secs(2), Duration::from_millis(100)),
("millis".to_string(), Duration::from_millis(15), Duration::from_micros(200)),
("micros".to_string(), Duration::from_micros(500), Duration::from_nanos(50)),
("nanos".to_string(), Duration::from_nanos(250), Duration::from_nanos(25)),
];
let formatted = format_timing_display(timing_data);
// Check that appropriate units are used
let all_lines = formatted.join(" ");
assert!(all_lines.contains("s"), "Should contain seconds unit");
assert!(all_lines.contains("ms"), "Should contain milliseconds unit");
assert!(all_lines.contains("µs"), "Should contain microseconds unit");
assert!(all_lines.contains("ns"), "Should contain nanoseconds unit");
}
#[test]
fn test_format_timing_display_alignment() {
let timing_data = vec![
("short".to_string(), Duration::from_micros(100), Duration::from_micros(10)),
(
"very_long_name".to_string(),
Duration::from_micros(200),
Duration::from_micros(20),
),
];
let formatted = format_timing_display(timing_data);
// Find colon positions - they should be aligned
let colon_positions: Vec<usize> = formatted.iter().map(|line| line.find(':').unwrap_or(0)).collect();
// All colons should be at the same position (aligned)
if colon_positions.len() > 1 {
let first_pos = colon_positions[0];
assert!(
colon_positions.iter().all(|&pos| pos == first_pos),
"Colons should be aligned at the same position"
);
}
}

View File

@@ -1,5 +1,5 @@
use pacman::entity::direction::Direction;
use pacman::entity::graph::{Graph, Node, TraversalFlags};
use pacman::map::direction::Direction;
use pacman::map::graph::{Graph, Node, TraversalFlags};
fn create_test_graph() -> Graph {
let mut graph = Graph::new();

View File

@@ -1,19 +0,0 @@
use glam::{IVec2, UVec2};
use pacman::helpers::centered_with_size;
#[test]
fn test_centered_with_size() {
let test_cases = [
((100, 100), (50, 30), (75, 85)),
((50, 50), (51, 31), (25, 35)),
((0, 0), (100, 100), (-50, -50)),
((-100, -50), (80, 40), (-140, -70)),
((1000, 1000), (1000, 1000), (500, 500)),
];
for ((pos_x, pos_y), (size_x, size_y), (expected_x, expected_y)) in test_cases {
let rect = centered_with_size(IVec2::new(pos_x, pos_y), UVec2::new(size_x, size_y));
assert_eq!(rect.origin(), (expected_x, expected_y));
assert_eq!(rect.size(), (size_x, size_y));
}
}

View File

@@ -1,46 +0,0 @@
// use glam::U16Vec2;
// use pacman::texture::sprite::{AtlasTile, Sprite};
// #[test]
// fn test_item_type_get_score() {
// assert_eq!(ItemType::Pellet.get_score(), 10);
// assert_eq!(ItemType::Energizer.get_score(), 50);
// let fruit = ItemType::Fruit { kind: FruitKind::Apple };
// assert_eq!(fruit.get_score(), 100);
// }
// #[test]
// fn test_fruit_kind_increasing_score() {
// // Build a list of fruit kinds, sorted by their index
// let mut kinds = FruitKind::iter()
// .map(|kind| (kind.index(), kind.get_score()))
// .collect::<Vec<_>>();
// kinds.sort_unstable_by_key(|(index, _)| *index);
// assert_eq!(kinds.len(), FruitKind::COUNT);
// // Check that the score increases as expected
// for window in kinds.windows(2) {
// let ((_, prev), (_, next)) = (window[0], window[1]);
// assert!(prev < next, "Fruits should have increasing scores, but {prev:?} < {next:?}");
// }
// }
// #[test]
// fn test_item_creation_and_collection() {
// let atlas_tile = AtlasTile {
// pos: U16Vec2::new(0, 0),
// size: U16Vec2::new(16, 16),
// color: None,
// };
// let sprite = Sprite::new(atlas_tile);
// let mut item = Item::new(0, ItemType::Pellet, sprite);
// assert!(!item.is_collected());
// assert_eq!(item.get_score(), 10);
// assert_eq!(item.position().from_node_id(), 0);
// item.collect();
// assert!(item.is_collected());
// }

100
tests/player.rs Normal file
View File

@@ -0,0 +1,100 @@
use pacman::map::direction::Direction;
use pacman::map::graph::{Edge, TraversalFlags};
use pacman::systems::components::EntityType;
use pacman::systems::player::can_traverse;
#[test]
fn test_can_traverse_player_on_all_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Up,
traversal_flags: TraversalFlags::ALL,
};
assert!(can_traverse(EntityType::Player, edge));
}
#[test]
fn test_can_traverse_player_on_pacman_only_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Right,
traversal_flags: TraversalFlags::PACMAN,
};
assert!(can_traverse(EntityType::Player, edge));
}
#[test]
fn test_can_traverse_player_blocked_on_ghost_only_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Left,
traversal_flags: TraversalFlags::GHOST,
};
assert!(!can_traverse(EntityType::Player, edge));
}
#[test]
fn test_can_traverse_ghost_on_all_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Down,
traversal_flags: TraversalFlags::ALL,
};
assert!(can_traverse(EntityType::Ghost, edge));
}
#[test]
fn test_can_traverse_ghost_on_ghost_only_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Up,
traversal_flags: TraversalFlags::GHOST,
};
assert!(can_traverse(EntityType::Ghost, edge));
}
#[test]
fn test_can_traverse_ghost_blocked_on_pacman_only_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Right,
traversal_flags: TraversalFlags::PACMAN,
};
assert!(!can_traverse(EntityType::Ghost, edge));
}
#[test]
fn test_can_traverse_static_entities_flags() {
let edge = Edge {
target: 3,
distance: 8.0,
direction: Direction::Left,
traversal_flags: TraversalFlags::ALL,
};
// Static entities have empty traversal flags but can still "traverse"
// in the sense that empty flags are contained in any flag set
// This is the expected behavior since empty ⊆ any set
assert!(can_traverse(EntityType::Pellet, edge));
assert!(can_traverse(EntityType::PowerPellet, edge));
}
#[test]
fn test_entity_type_traversal_flags() {
assert_eq!(EntityType::Player.traversal_flags(), TraversalFlags::PACMAN);
assert_eq!(EntityType::Ghost.traversal_flags(), TraversalFlags::GHOST);
assert_eq!(EntityType::Pellet.traversal_flags(), TraversalFlags::empty());
assert_eq!(EntityType::PowerPellet.traversal_flags(), TraversalFlags::empty());
}