Compare commits

...

122 Commits

Author SHA1 Message Date
Ryan Walters
f92c9175b9 test: add ttf renderer tests 2025-09-06 12:15:06 -05:00
Ryan Walters
d561b446c5 test: remove useless/redundant tests 2025-09-06 12:15:05 -05:00
Ryan Walters
9219c771d7 test: improve input & map_builder test coverage 2025-09-06 12:15:05 -05:00
Ryan Walters
cd501aafc4 test: general game testing 2025-09-06 12:15:05 -05:00
Ryan Walters
feae1ee191 test: add asset tests, file exists & has min size 2025-09-06 12:15:04 -05:00
Ryan Walters
2f0b9825c6 test: blinking system tests 2025-09-06 12:15:04 -05:00
Ryan Walters
cac490565e refactor: use speculoos for all test assertions 2025-09-06 12:15:04 -05:00
Ryan Walters
b60888219b fix: remove unused BlinkingTexture 2025-09-06 12:15:03 -05:00
Ryan Walters
3c50bfeab6 refactor: add ticks to DeltaTime, rewrite Blinking system for tick-based calculations with absolute calculations, rewrite Blinking/Direction tests 2025-09-06 12:15:03 -05:00
Ryan Walters
132067c573 feat: re-implement CustomFormatter to clone Full formatterr 2025-09-06 12:15:03 -05:00
Ryan Walters
42e309a46b feat: enhance profiling with tick-based timing management and zero-padding for skipped frames 2025-09-06 12:15:02 -05:00
Ryan Walters
a38423f006 refactor: use welford's algorithm for one-pass avg/std dev. calculations, input logging tweaks 2025-09-06 12:15:02 -05:00
Ryan Walters
07bd127596 chore: move ttf context out of game.rs, remove unnecessary window event logging 2025-09-06 12:15:01 -05:00
Ryan Walters
da42d017e7 refactor: reorganize game.rs new() into separate functions 2025-09-06 12:15:01 -05:00
Ryan Walters
8b623ffabe feat: sprite enums for avoiding hardcoded string paths 2025-09-06 12:15:01 -05:00
Ryan Walters
af81390e30 fix: use LARGE_SCALE for BatchedLineResource calculations 2025-09-06 12:15:00 -05:00
Ryan Walters
2fabd5d7a2 feat: measure total system timings using threading indifferent method, padded formatting 2025-09-06 12:15:00 -05:00
Ryan Walters
bcd9865430 chore: move BufferedWriter into tracing_buffer.rs 2025-09-06 12:15:00 -05:00
Ryan Walters
ed16da1e8f feat: special formatting with game tick counter, remove date from tracing formatter 2025-09-06 12:14:59 -05:00
Ryan Walters
14882531c9 fix(ci): allow dead code in buffered_writer & tracing_buffer for desktop non-windows checks 2025-09-06 12:14:59 -05:00
Ryan Walters
2d36d49b13 feat: enumerate and display render driver info, increase node id text opacity 2025-09-06 12:14:59 -05:00
Ryan Walters
0f1e1d4d42 fix: do not use canvas.output_size() for calculations due to browser behavior 2025-09-04 16:06:28 -05:00
Ryan Walters
9e029966dc chore: setup --debug/--release args for web build script & recipe, fix test lint 2025-09-04 14:47:35 -05:00
Ryan Walters
968eb39b64 feat: fix emscripten browser logging, streamline console initialization and logging 2025-09-04 14:07:24 -05:00
Ryan Walters
0759019c8b fix: allow Window events, allows proper logical canvas resizing
You have no idea how much pain this has been causing me.
2025-09-04 13:26:08 -05:00
Ryan Walters
17188df729 refactor(test): remove dead code and consolidate test utilities 2025-09-04 11:53:29 -05:00
Ryan Walters
b34c63cf9c feat: add aspect ratio demo bin 2025-09-04 11:20:00 -05:00
Ryan Walters
57e7f395d7 feat: add drag reference control relaxation with easing, mild refactor 2025-09-04 11:19:48 -05:00
Ryan Walters
1f5af2cd96 feat: touch movement controls 2025-09-04 11:02:51 -05:00
Ryan Walters
36a2f00d8c chore: set explicit ARGB8888 pixel format for transparency support, 'web' task with caddy fs 2025-09-04 00:13:48 -05:00
Ryan Walters
b8c7c29376 fix: calculation for rect position scaling in debug_renderer 2025-09-03 23:23:56 -05:00
Ryan Walters
a3c4e5267f refactor: consolidate rendering systems into a combined render system for improved performance and reduced overhead 2025-09-03 23:09:19 -05:00
Ryan Walters
3e630bcbef feat: run input_system less, rework profiling system to allow for conditional ticks, prepopulate and simplify locking mechanisms, drop RwLock 2025-09-03 23:09:19 -05:00
Ryan Walters
33775166a7 feat: add batching & merging of lines in debug rendering 2025-09-03 19:45:55 -05:00
Ryan Walters
f2732a7ff7 feat: improve debug rendering performance via batch rendering of rects 2025-09-03 19:15:05 -05:00
Ryan Walters
6771dea02b fix: avoid padding jitter with constant name padding, minor timing calculation fixes 2025-09-03 19:00:45 -05:00
Ryan Walters
23f43288e1 feat: implement optimized text rendering by caching font characters into special atlas 2025-09-03 17:31:48 -05:00
Ryan Walters
028ee28840 fix: remove redundant double canvas copy 2025-09-03 17:31:06 -05:00
Ryan Walters
a489bff0d1 chore: add timing demo bin 2025-09-03 17:31:06 -05:00
Ryan Walters
0907b5ebe7 chore: remove unused functions, add 'web' task to Justfile 2025-09-03 16:31:21 -05:00
Ryan Walters
4cc5816d1f refactor: use small_rng for Emscripten only, simplify platform to top-level functions only, no trait/struct 2025-09-03 11:11:04 -05:00
Ryan Walters
208ad3e733 chore: move spin-sleep to desktop only, rearrange Cargo dependencies 2025-09-03 11:04:06 -05:00
Ryan Walters
24e8b3e3bc fix: retain main SDL & audio contexts for application lifetime 2025-09-03 09:33:03 -05:00
dependabot[bot]
da0f4d856a chore(deps): bump actions/upload-pages-artifact (#5)
Bumps the dependencies group with 1 update: [actions/upload-pages-artifact](https://github.com/actions/upload-pages-artifact).


Updates `actions/upload-pages-artifact` from 3 to 4
- [Release notes](https://github.com/actions/upload-pages-artifact/releases)
- [Commits](https://github.com/actions/upload-pages-artifact/compare/v3...v4)

---
updated-dependencies:
- dependency-name: actions/upload-pages-artifact
  dependency-version: '4'
  dependency-type: direct:production
  update-type: version-update:semver-major
  dependency-group: dependencies
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-09-03 08:28:39 -05:00
Ryan Walters
aaf30efde7 fix: only run coverage upload if secret is available 2025-09-03 08:23:33 -05:00
Ryan Walters
89f1e71568 chore: add 'samply' profiling helper task to Justfile 2025-09-02 15:42:13 -05:00
Ryan Walters
d6d0f47483 feat: optimize input system, avoid heap allocations, disable as many events as possible 2025-09-02 14:57:01 -05:00
Ryan Walters
1b0624a174 chore: add profiling profile for flamegraph 2025-09-02 14:52:11 -05:00
Ryan Walters
7dfab26898 refactor: drop remaining Box::leak & statics where possible 2025-09-02 13:44:40 -05:00
Ryan Walters
f2fc60b250 chore: add LICENSE, add missing metadata, clean up dependencies & use dev-dependencies, document choices 2025-09-02 13:23:43 -05:00
Ryan Walters
7cdd1b6ad9 refactor: use 'unsafe_textures' sdl2 feature to hide lifetimes & obscure leaks into upstream 2025-09-02 12:59:06 -05:00
Ryan Walters
d0a68faa51 chore: update dependencies, solve tracing-subscriber vulnerability 2025-09-02 09:47:11 -05:00
Ryan Walters
055dc85f2b refactor: improve console handling & logs, scoped mutex lock, fix linux unused imports 2025-09-02 09:09:48 -05:00
Ryan Walters
39a5df1ffd fix: use c-style strings instead of manual termination, cast pointer, use then_some 2025-09-02 08:52:08 -05:00
Ryan Walters
6637691157 feat: setup windows system console output detection for dynamic console attach 2025-09-02 00:31:59 -05:00
Ryan Walters
c79ba0d824 feat: buffer tracing logs before console init 2025-09-01 17:22:22 -05:00
Ryan Walters
b1b03b0e9c refactor: move magic numbers & constants 2025-09-01 15:47:41 -05:00
Ryan Walters
a62ae8dfe7 fix: energizers don't change dead (eyes) ghosts 2025-09-01 15:39:17 -05:00
Ryan Walters
a21459f337 feat: revamp with better separate directional/linear animations, direction independent ticking 2025-09-01 15:28:57 -05:00
Ryan Walters
b53db3788d refactor: unify ghost state management and animation handling, use integers for texture animation 2025-09-01 14:27:48 -05:00
Ryan Walters
e1a2e6ab62 fix: avoid switching ghost back to normal during eyes animation 2025-09-01 13:14:16 -05:00
Ryan Walters
2bdb039aa9 fix: correct broken timing format tests 2025-09-01 12:57:48 -05:00
Ryan Walters
6dd0152938 chore: remove unused dependencies 2025-09-01 12:46:39 -05:00
Ryan Walters
4881e33c6f refactor: use U16Vec2 for sprites, remove unnecessary Deserialize trait 2025-09-01 12:44:13 -05:00
Ryan Walters
0cbd6f1aac refactor: switch NodeId to u16, use I8Vec2 for grid coordinates 2025-09-01 12:37:44 -05:00
Ryan Walters
1206cf9ad1 feat: implement high score text rendering 2025-09-01 12:13:18 -05:00
Ryan Walters
bed913d016 fix: profiling system calculates mean of sums, not mean of means 2025-09-01 12:01:39 -05:00
Ryan Walters
98196f3e07 feat: ghost animation states, frightened/eaten behaviors, smallvec animation arrays 2025-09-01 11:46:18 -05:00
Ryan Walters
8f504d6c77 fix: correctly unhide in second pre-freeze stage 2025-09-01 10:28:08 -05:00
Ryan Walters
66499b6285 fix: remove broken console stream re-attach on Windows 2025-08-29 10:56:26 -05:00
Ryan Walters
a8e62aec56 fix: force dirty render using resource_change conditions, hide ghosts & player on initial spawn 2025-08-28 20:20:38 -05:00
Ryan Walters
cde1ea5394 feat: allow freezing of blinking entities, lightly refactor game.rs structure 2025-08-28 20:02:27 -05:00
Ryan Walters
d0628ef70b feat: use backbuffer fully, proper 'present' system, debug texture draws with transparency 2025-08-28 19:40:31 -05:00
Ryan Walters
9bfe4a9ce7 fix: add expected MovementModifiers to spawn_test_player to fix movement tests 2025-08-28 18:35:47 -05:00
Ryan Walters
2da8a312f3 chore: remove PlayerLifecycle, move MovementModifiers directly into PlayerBundle 2025-08-28 18:32:19 -05:00
Ryan Walters
2bdd4f0d04 feat: re-implement visbility via 'Hidden' tag component, move stage visibility logic into stage system 2025-08-28 18:24:47 -05:00
Ryan Walters
5cc9b1a6ee fix: avoid acquiring filtered player query until movement command received 2025-08-28 14:17:46 -05:00
Ryan Walters
5d4adb7743 refactor: merge 'formatting' submodule into 'profiling' 2025-08-28 14:12:23 -05:00
Ryan Walters
633d467f2c chore: remove LevelTiming resource 2025-08-28 13:21:21 -05:00
Ryan Walters
d3e83262db feat: better 'Vulnerable' tag for ghosts, fix movement issues 2025-08-28 13:18:47 -05:00
Ryan Walters
f31b4952e4 chore: remove wildcard/prelude imports, remove unused functions 2025-08-28 13:14:40 -05:00
Ryan Walters
ad3f896f82 chore: reorganize component definitions into relevant system files 2025-08-28 12:54:52 -05:00
Ryan Walters
80ebf08dd3 feat: stage sequence, ghost collisions & energizer logic, text color method, scheduler ordering 2025-08-28 12:40:02 -05:00
Ryan Walters
f14b3d38a4 feat: create hud rendering system 2025-08-27 22:55:26 -05:00
Ryan Walters
bf65c34b28 chore: remove unused code 2025-08-27 22:43:21 -05:00
Ryan Walters
89b0790f19 chore: fix clippy lints 2025-08-27 22:28:14 -05:00
Ryan Walters
9624bcf359 feat: collision helper, ghost/pacman collision events, collision tests
minor format updates from copilot's commit
2025-08-27 22:26:49 -05:00
Copilot
67a5c4a1ed Remove 9 redundant and non-valuable tests to improve test suite quality (#4)
* Initial plan

* Remove 9 redundant and non-valuable tests across events, formatting, and item modules

Co-authored-by: Xevion <44609630+Xevion@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: Xevion <44609630+Xevion@users.noreply.github.com>
2025-08-19 13:07:14 -05:00
Ryan Walters
8b5e66f514 refactor: update debug state management and rendering systems 2025-08-19 11:31:31 -05:00
Ryan
5109457fcd test: add input tests 2025-08-19 09:40:59 -05:00
Ryan
5497e4b0b9 feat: improve input system to handle multiple keypress & release states 2025-08-19 09:35:55 -05:00
d72b6eec06 test: add item testing 2025-08-18 09:32:35 -05:00
ae42f6ead0 chore: solve clippy warnings 2025-08-18 00:06:47 -05:00
471b118efd test: add tests for item systems & movement types 2025-08-18 00:04:07 -05:00
13a9c165f7 test: add player control & movement system testing 2025-08-18 00:03:29 -05:00
da3c8e8284 test: add player traversal flag tests, remove old disabled movement_system, public can_traverse 2025-08-17 23:52:03 -05:00
9c0711a54c test: add more formatting tests 2025-08-17 23:47:47 -05:00
4598dc07e2 test: add tests for errors & events data structs 2025-08-17 23:46:23 -05:00
9c9dc5f423 test: remove asset.rs tests, revamp constants tests 2025-08-17 23:45:42 -05:00
12ee16faab docs: document many major functions, types, enums for important functionality 2025-08-17 23:29:43 -05:00
398d041d96 Merge pull request #3 from Xevion/ecs
ECS Refactor
2025-08-16 15:25:34 -05:00
7a02d6b0b5 chore: add cargo checks to pre-commit 2025-08-16 15:14:16 -05:00
d47d70ff5b refactor: remove dead code, move direction & graph into 'map' module 2025-08-16 15:14:16 -05:00
313ca4f3e6 fix: proper font loading, cross platform assets, better platform independent trait implementation, conditional modules 2025-08-16 14:17:28 -05:00
f940f01d9b refactor: optimize debug system, remove redundant code & tests 2025-08-16 13:41:15 -05:00
90adaf9e84 feat: add cursor-based node highlighting for debug 2025-08-16 12:26:24 -05:00
2140fbec1b fix: allow key holddown 2025-08-16 12:00:58 -05:00
78300bdf9c feat: rewrite movement systems separately for player/ghosts 2025-08-16 11:44:10 -05:00
514a447162 refactor: use strum::EnumCount for const compile time system mapping 2025-08-16 11:43:46 -05:00
3d0bc66e40 feat: ghosts system 2025-08-15 20:38:18 -05:00
e0a15c1ca8 feat: implement audio muting functionality 2025-08-15 20:30:41 -05:00
fa12611c69 feat: ecs audio system 2025-08-15 20:28:47 -05:00
342f378860 fix: use renderable layer properly, sorting entities before presenting 2025-08-15 20:10:16 -05:00
e8944598cc chore: fix clippy warnings 2025-08-15 20:10:16 -05:00
6af25af5f3 test: better formatting tests, alignment-based 2025-08-15 19:39:59 -05:00
f1935ad016 refactor: use smallvec instead of collect string, explicit formatting, accumulator fold 2025-08-15 19:15:06 -05:00
4d397bba5f feat: item collection system, score mutations 2025-08-15 18:41:08 -05:00
80930ddd35 fix: use const MAX_SYSTEMS to ensure micromap maps are aligned in size 2025-08-15 18:40:24 -05:00
0133dd5329 feat: add background for text contrast to debug window 2025-08-15 18:39:39 -05:00
635418a4da refactor: use stack allocated circular buffer, use RwLock+Mutex for concurrent system timing access 2025-08-15 18:06:25 -05:00
31193160a9 feat: debug text rendering of statistics, formatting with tests 2025-08-15 17:52:16 -05:00
3086453c7b chore: adjust collider sizes 2025-08-15 16:25:42 -05:00
87 changed files with 8607 additions and 3420 deletions

View File

@@ -151,7 +151,7 @@ jobs:
done
- name: Upload Artifact
uses: actions/upload-pages-artifact@v3
uses: actions/upload-pages-artifact@v4
if: github.ref == 'refs/heads/master' && github.event_name == 'push'
with:
path: "./dist/"

View File

@@ -9,6 +9,8 @@ env:
jobs:
coverage:
runs-on: ubuntu-latest
env:
COVERALLS_REPO_TOKEN: ${{ secrets.COVERALLS_REPO_TOKEN }}
steps:
- name: Checkout code
uses: actions/checkout@v5
@@ -49,13 +51,13 @@ jobs:
just coverage
- name: Download Coveralls CLI
if: ${{ env.COVERALLS_REPO_TOKEN != '' }}
run: |
# use GitHub Releases URL instead of coveralls.io because they can't maintain their own files; it 404s
curl -L https://github.com/coverallsapp/coverage-reporter/releases/download/v0.6.15/coveralls-linux-x86_64.tar.gz | tar -xz -C /usr/local/bin
- name: Upload coverage to Coveralls
env:
COVERALLS_REPO_TOKEN: ${{ secrets.COVERALLS_REPO_TOKEN }}
if: ${{ env.COVERALLS_REPO_TOKEN != '' }}
run: |
if [ ! -f "lcov.info" ]; then
echo "Error: lcov.info file not found. Coverage generation may have failed."

4
.gitignore vendored
View File

@@ -15,3 +15,7 @@ assets/site/build.css
# Coverage reports
lcov.info
coverage.html
# Profiling output
flamegraph.svg
/profile.*

View File

@@ -20,3 +20,15 @@ repos:
language: system
types: [rust]
pass_filenames: false
- id: cargo-check
name: cargo check
entry: cargo check --all-targets
language: system
types_or: [rust, cargo, cargo-lock]
pass_filenames: false
- id: cargo-check-wasm
name: cargo check for wasm32-unknown-emscripten
entry: cargo check --all-targets --target=wasm32-unknown-emscripten
language: system
types_or: [rust, cargo, cargo-lock]
pass_filenames: false

431
Cargo.lock generated
View File

@@ -85,7 +85,7 @@ dependencies = [
"bevy_reflect",
"bevy_tasks",
"bevy_utils",
"bitflags 2.9.1",
"bitflags 2.9.4",
"bumpalo",
"concurrent-queue",
"derive_more",
@@ -221,9 +221,9 @@ checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"
[[package]]
name = "bitflags"
version = "2.9.1"
version = "2.9.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1b8e56985ec62d17e9c1001dc89c88ecd7dc08e47eba5ec7c29c7b5eeecde967"
checksum = "2261d10cca569e4643e526d8dc2e62e433cc8aba21ab764233731f8d369bf394"
dependencies = [
"serde",
]
@@ -252,6 +252,12 @@ version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "circular-buffer"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23bdce1da528cadbac4654b5632bfcd8c6c63e25b1d42cea919a95958790b51d"
[[package]]
name = "concurrent-queue"
version = "2.5.0"
@@ -295,6 +301,15 @@ dependencies = [
"syn",
]
[[package]]
name = "deranged"
version = "0.5.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d630bccd429a5bb5a64b5e94f693bfc48c9f8566418fda4c494cc94f911f87cc"
dependencies = [
"powerfmt",
]
[[package]]
name = "derive_more"
version = "1.0.0"
@@ -316,6 +331,12 @@ dependencies = [
"unicode-xid",
]
[[package]]
name = "diff"
version = "0.1.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56254986775e3233ffa9c4d7d3faaf6d36a2c09d30b20687e9f88bc8bafc16c8"
[[package]]
name = "disqualified"
version = "1.0.0"
@@ -324,9 +345,9 @@ checksum = "c9c272297e804878a2a4b707cfcfc6d2328b5bb936944613b4fdf2b9269afdfd"
[[package]]
name = "downcast-rs"
version = "2.0.1"
version = "2.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ea8a8b81cacc08888170eef4d13b775126db426d0b348bee9d18c2c1eaf123cf"
checksum = "117240f60069e65410b3ae1bb213295bd828f707b5bec6596a1afc8793ce0cbc"
[[package]]
name = "equivalent"
@@ -515,11 +536,11 @@ checksum = "b5e6163cb8c49088c2c36f57875e58ccd8c87c7427f7fbd50ea6710b2f3f2e8f"
[[package]]
name = "matchers"
version = "0.1.0"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8263075bb86c5a1b1427b5ae862e8889656f126e9f77c484496e8b47cf5c5558"
checksum = "d1525a2a28c7f4fa0fc98bb91ae755d1e2d1505079e05539e35bc876b5d65ae9"
dependencies = [
"regex-automata 0.1.10",
"regex-automata",
]
[[package]]
@@ -542,12 +563,81 @@ checksum = "610a5acd306ec67f907abe5567859a3c693fb9886eb1f012ab8f2a47bef3db51"
[[package]]
name = "nu-ansi-term"
version = "0.46.0"
version = "0.50.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "77a8165726e8236064dbb45459242600304b42a5ea24ee2948e18e023bf7ba84"
checksum = "d4a28e057d01f97e61255210fcff094d74ed0466038633e95017f5beb68e4399"
dependencies = [
"overload",
"winapi",
"windows-sys 0.52.0",
]
[[package]]
name = "num"
version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "35bd024e8b2ff75562e5f34e7f4905839deb4b22955ef5e73d2fea1b9813cb23"
dependencies = [
"num-bigint",
"num-complex",
"num-integer",
"num-iter",
"num-rational",
"num-traits",
]
[[package]]
name = "num-bigint"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a5e44f723f1133c9deac646763579fdb3ac745e418f2a7af9cd0c431da1f20b9"
dependencies = [
"num-integer",
"num-traits",
]
[[package]]
name = "num-complex"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "73f88a1307638156682bada9d7604135552957b7818057dcef22705b4d509495"
dependencies = [
"num-traits",
]
[[package]]
name = "num-conv"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "51d515d32fb182ee37cda2ccdcb92950d6a3c2893aa280e540671c2cd0f3b1d9"
[[package]]
name = "num-integer"
version = "0.1.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
dependencies = [
"num-traits",
]
[[package]]
name = "num-iter"
version = "0.1.45"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1429034a0490724d0075ebb2bc9e875d6503c3cf69e235a8941aa757d83ef5bf"
dependencies = [
"autocfg",
"num-integer",
"num-traits",
]
[[package]]
name = "num-rational"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f83d14da390562dca69fc84082e73e548e1ad308d24accdedd2720017cb37824"
dependencies = [
"num-bigint",
"num-integer",
"num-traits",
]
[[package]]
@@ -559,47 +649,51 @@ dependencies = [
"autocfg",
]
[[package]]
name = "num-width"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "faede9396d7883a8c9c989e0b53c984bf770defb5cb8ed6c345b4c0566cf32b9"
[[package]]
name = "once_cell"
version = "1.21.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42f5e15c9953c5e4ccceeb2e7382a716482c34515315f7b03532b8b4e8393d2d"
[[package]]
name = "overload"
version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b15813163c1d831bf4a13c3610c05c0d03b39feb07f7e09fa234dac9b15aaf39"
[[package]]
name = "pacman"
version = "0.2.0"
dependencies = [
"anyhow",
"bevy_ecs",
"bitflags 2.9.1",
"bitflags 2.9.4",
"circular-buffer",
"glam 0.30.5",
"lazy_static",
"libc",
"micromap",
"once_cell",
"num-width",
"parking_lot",
"pathfinding",
"phf",
"pretty_assertions",
"rand",
"sdl2",
"serde",
"serde_json",
"smallvec",
"speculoos",
"spin_sleep",
"strum",
"strum_macros",
"thiserror",
"thousands",
"time",
"tracing",
"tracing-error",
"tracing-subscriber",
"winapi",
"windows",
"windows-sys 0.60.2",
]
[[package]]
@@ -647,9 +741,9 @@ dependencies = [
[[package]]
name = "phf"
version = "0.12.1"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "913273894cec178f401a31ec4b656318d95473527be05c0752cc41cdc32be8b7"
checksum = "c1562dc717473dbaa4c1f85a36410e03c047b2e7df7f45ee938fbef64ae7fadf"
dependencies = [
"phf_macros",
"phf_shared",
@@ -658,9 +752,9 @@ dependencies = [
[[package]]
name = "phf_generator"
version = "0.12.1"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2cbb1126afed61dd6368748dae63b1ee7dc480191c6262a3b4ff1e29d86a6c5b"
checksum = "135ace3a761e564ec88c03a77317a7c6b80bb7f7135ef2544dbe054243b89737"
dependencies = [
"fastrand",
"phf_shared",
@@ -668,9 +762,9 @@ dependencies = [
[[package]]
name = "phf_macros"
version = "0.12.1"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d713258393a82f091ead52047ca779d37e5766226d009de21696c4e667044368"
checksum = "812f032b54b1e759ccd5f8b6677695d5268c588701effba24601f6932f8269ef"
dependencies = [
"phf_generator",
"phf_shared",
@@ -681,9 +775,9 @@ dependencies = [
[[package]]
name = "phf_shared"
version = "0.12.1"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06005508882fb681fd97892ecff4b7fd0fee13ef1aa569f8695dae7ab9099981"
checksum = "e57fef6bc5981e38c2ce2d63bfa546861309f875b8a75f092d1d54ae2d64f266"
dependencies = [
"siphasher",
]
@@ -709,6 +803,31 @@ dependencies = [
"portable-atomic",
]
[[package]]
name = "powerfmt"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "439ee305def115ba05938db6eb1644ff94165c5ab5e9420d1c1bcedbba909391"
[[package]]
name = "ppv-lite86"
version = "0.2.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "85eae3c4ed2f50dcfe72643da4befc30deadb458a9b590d720cde2f2b1e97da9"
dependencies = [
"zerocopy",
]
[[package]]
name = "pretty_assertions"
version = "1.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3ae130e2f271fbc2ac3a40fb1d07180839cdbbe443c7a27e1e3c13c5cac0116d"
dependencies = [
"diff",
"yansi",
]
[[package]]
name = "proc-macro2"
version = "1.0.95"
@@ -739,6 +858,17 @@ version = "0.9.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6db2770f06117d490610c7488547d543617b21bfa07796d7a12f6f1bd53850d1"
dependencies = [
"rand_chacha",
"rand_core",
]
[[package]]
name = "rand_chacha"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d3022b5f1df60f26e1ffddd6c66e8aa15de382ae63b3a0c1bfc0e4d3e3f325cb"
dependencies = [
"ppv-lite86",
"rand_core",
]
@@ -757,28 +887,7 @@ version = "0.5.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5407465600fb0548f1442edf71dd20683c6ed326200ace4b1ef0763521bb3b77"
dependencies = [
"bitflags 2.9.1",
]
[[package]]
name = "regex"
version = "1.11.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b544ef1b4eac5dc2db33ea63606ae9ffcfac26c1416a2806ae0bf5f56b201191"
dependencies = [
"aho-corasick",
"memchr",
"regex-automata 0.4.9",
"regex-syntax 0.8.5",
]
[[package]]
name = "regex-automata"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6c230d73fb8d8c1b9c0b3135c5142a8acee3a0558fb8db5cf1cb65f8d7862132"
dependencies = [
"regex-syntax 0.6.29",
"bitflags 2.9.4",
]
[[package]]
@@ -789,15 +898,9 @@ checksum = "809e8dc61f6de73b46c85f4c96486310fe304c434cfa43669d7b40f711150908"
dependencies = [
"aho-corasick",
"memchr",
"regex-syntax 0.8.5",
"regex-syntax",
]
[[package]]
name = "regex-syntax"
version = "0.6.29"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f162c6dd7b008981e4d40210aca20b4bd0f9b60ca9271061b07f78537722f2e1"
[[package]]
name = "regex-syntax"
version = "0.8.5"
@@ -881,9 +984,9 @@ dependencies = [
[[package]]
name = "serde_json"
version = "1.0.142"
version = "1.0.143"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "030fedb782600dcbd6f02d479bf0d817ac3bb40d644745b769d6a96bc3afc5a7"
checksum = "d401abef1d108fbd9cbaebc3e46611f4b1021f714a0597a71f41ee463f5f4a5a"
dependencies = [
"itoa",
"memchr",
@@ -927,6 +1030,16 @@ dependencies = [
"serde",
]
[[package]]
name = "speculoos"
version = "0.13.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "00c84ba5fa63b0de837c0d3cef5373ac1c3c6342053b7f446a210a1dde79a034"
dependencies = [
"num",
"serde_json",
]
[[package]]
name = "spin"
version = "0.9.8"
@@ -942,7 +1055,7 @@ version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "14ac0e4b54d028c2000a13895bcd84cd02a1d63c4f78e08e4ec5ec8f53efd4b9"
dependencies = [
"windows-sys",
"windows-sys 0.60.2",
]
[[package]]
@@ -982,18 +1095,18 @@ dependencies = [
[[package]]
name = "thiserror"
version = "2.0.14"
version = "2.0.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0b0949c3a6c842cbde3f1686d6eea5a010516deb7085f79db747562d4102f41e"
checksum = "3467d614147380f2e4e374161426ff399c91084acd2363eaf549172b3d5e60c0"
dependencies = [
"thiserror-impl",
]
[[package]]
name = "thiserror-impl"
version = "2.0.14"
version = "2.0.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cc5b44b4ab9c2fdd0e0512e6bece8388e214c0749f5862b114cc5b7a25daf227"
checksum = "6c5e1be1c48b9172ee610da68fd9cd2770e7a4056cb3fc98710ee6906f0c7960"
dependencies = [
"proc-macro2",
"quote",
@@ -1016,6 +1129,36 @@ dependencies = [
"once_cell",
]
[[package]]
name = "time"
version = "0.3.43"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "83bde6f1ec10e72d583d91623c939f623002284ef622b87de38cfd546cbf2031"
dependencies = [
"deranged",
"num-conv",
"powerfmt",
"serde",
"time-core",
"time-macros",
]
[[package]]
name = "time-core"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "40868e7c1d2f0b8d73e4a8c7f0ff63af4f6d19be117e90bd73eb1d62cf831c6b"
[[package]]
name = "time-macros"
version = "0.2.24"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "30cfb0125f12d9c277f35663a0a33f8c30190f4e4574868a330595412d34ebf3"
dependencies = [
"num-conv",
"time-core",
]
[[package]]
name = "toml_datetime"
version = "0.6.11"
@@ -1088,14 +1231,14 @@ dependencies = [
[[package]]
name = "tracing-subscriber"
version = "0.3.19"
version = "0.3.20"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e8189decb5ac0fa7bc8b96b7cb9b2701d60d48805aca84a238004d665fcc4008"
checksum = "2054a14f5307d601f88daf0553e1cbf472acc4f2c51afab632431cdcd72124d5"
dependencies = [
"matchers",
"nu-ansi-term",
"once_cell",
"regex",
"regex-automata",
"sharded-slab",
"smallvec",
"thread_local",
@@ -1246,7 +1389,7 @@ version = "24.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "50ac044c0e76c03a0378e7786ac505d010a873665e2d51383dcff8dd227dc69c"
dependencies = [
"bitflags 2.9.1",
"bitflags 2.9.4",
"js-sys",
"log",
"serde",
@@ -1254,26 +1397,115 @@ dependencies = [
]
[[package]]
name = "winapi"
version = "0.3.9"
name = "windows"
version = "0.61.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
checksum = "9babd3a767a4c1aef6900409f85f5d53ce2544ccdfaa86dad48c91782c6d6893"
dependencies = [
"winapi-i686-pc-windows-gnu",
"winapi-x86_64-pc-windows-gnu",
"windows-collections",
"windows-core",
"windows-future",
"windows-link",
"windows-numerics",
]
[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
name = "windows-collections"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
checksum = "3beeceb5e5cfd9eb1d76b381630e82c4241ccd0d27f1a39ed41b2760b255c5e8"
dependencies = [
"windows-core",
]
[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
name = "windows-core"
version = "0.61.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"
checksum = "c0fdd3ddb90610c7638aa2b3a3ab2904fb9e5cdbecc643ddb3647212781c4ae3"
dependencies = [
"windows-implement",
"windows-interface",
"windows-link",
"windows-result",
"windows-strings",
]
[[package]]
name = "windows-future"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fc6a41e98427b19fe4b73c550f060b59fa592d7d686537eebf9385621bfbad8e"
dependencies = [
"windows-core",
"windows-link",
"windows-threading",
]
[[package]]
name = "windows-implement"
version = "0.60.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a47fddd13af08290e67f4acabf4b459f647552718f683a7b415d290ac744a836"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "windows-interface"
version = "0.59.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bd9211b69f8dcdfa817bfd14bf1c97c9188afa36f4750130fcdf3f400eca9fa8"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "windows-link"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5e6ad25900d524eaabdbbb96d20b4311e1e7ae1699af4fb28c17ae66c80d798a"
[[package]]
name = "windows-numerics"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9150af68066c4c5c07ddc0ce30421554771e528bde427614c61038bc2c92c2b1"
dependencies = [
"windows-core",
"windows-link",
]
[[package]]
name = "windows-result"
version = "0.3.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56f42bd332cc6c8eac5af113fc0c1fd6a8fd2aa08a0119358686e5160d0586c6"
dependencies = [
"windows-link",
]
[[package]]
name = "windows-strings"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56e6c93f3a0c3b36176cb1327a4958a0353d5d166c2a35cb268ace15e91d3b57"
dependencies = [
"windows-link",
]
[[package]]
name = "windows-sys"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
"windows-targets 0.52.6",
]
[[package]]
name = "windows-sys"
@@ -1316,6 +1548,15 @@ dependencies = [
"windows_x86_64_msvc 0.53.0",
]
[[package]]
name = "windows-threading"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b66463ad2e0ea3bbf808b7f1d371311c80e115c0b71d60efc142cafbcfb057a6"
dependencies = [
"windows-link",
]
[[package]]
name = "windows_aarch64_gnullvm"
version = "0.52.6"
@@ -1427,5 +1668,31 @@ version = "0.39.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6f42320e61fe2cfd34354ecb597f86f413484a798ba44a8ca1165c58d42da6c1"
dependencies = [
"bitflags 2.9.1",
"bitflags 2.9.4",
]
[[package]]
name = "yansi"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cfe53a6657fd280eaa890a3bc59152892ffa3e30101319d168b781ed6529b049"
[[package]]
name = "zerocopy"
version = "0.8.26"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1039dd0d3c310cf05de012d8a39ff557cb0d23087fd44cad61df08fc31907a2f"
dependencies = [
"zerocopy-derive",
]
[[package]]
name = "zerocopy-derive"
version = "0.8.26"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9ecf5b4cc5364572d7f4c329661bcc82724222973f2cab6f050a4e5c22f75181"
dependencies = [
"proc-macro2",
"quote",
"syn",
]

View File

@@ -1,70 +1,100 @@
[package]
name = "pacman"
version = "0.2.0"
authors = ["Xevion"]
edition = "2021"
rust-version = "1.86.0"
description = "A cross-platform retro Pac-Man clone, written in Rust and supported by SDL2"
readme = true
homepage = "https://pacman.xevion.dev"
repository = "https://github.com/Xevion/Pac-Man"
license = "GPL-3.0-or-later"
keywords = ["game", "pacman", "arcade", "sdl2"]
categories = ["games", "emulators"]
publish = false
exclude = ["/assets/unpacked/**", "/assets/site/**", "/bacon.toml", "/Justfile"]
default-run = "pacman"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
bevy_ecs = "0.16.1"
glam = "0.30.5"
pathfinding = "4.14"
tracing = { version = "0.1.41", features = ["max_level_debug", "release_max_level_debug"]}
tracing-error = "0.2.0"
tracing-subscriber = {version = "0.3.17", features = ["env-filter"]}
lazy_static = "1.5.0"
sdl2 = { version = "0.38.0", features = ["image", "ttf"] }
spin_sleep = "1.3.2"
rand = { version = "0.9.2", default-features = false, features = ["small_rng", "os_rng"] }
pathfinding = "4.14"
once_cell = "1.21.3"
thiserror = "2.0.14"
tracing-subscriber = {version = "0.3.20", features = ["env-filter"]}
time = { version = "0.3.43", features = ["formatting", "macros"] }
thiserror = "2.0.16"
anyhow = "1.0"
glam = "0.30.5"
serde = { version = "1.0.219", features = ["derive"] }
serde_json = "1.0.142"
smallvec = "1.15.1"
bitflags = "2.9.4"
micromap = "0.1.0"
circular-buffer = "1.1.0"
parking_lot = "0.12.3"
strum = "0.27.2"
strum_macros = "0.27.2"
phf = { version = "0.12.1", features = ["macros"] }
bevy_ecs = "0.16.1"
bitflags = "2.9.1"
parking_lot = "0.12.3"
micromap = "0.1.0"
thousands = "0.2.0"
num-width = "0.1.0"
# While not actively used in code, `build.rs` generates code that relies on this. Keep the versions synchronized.
phf = { version = "0.13.1", features = ["macros"] }
# Windows-specific dependencies
[target.'cfg(target_os = "windows")'.dependencies]
# Used for customizing console output on Windows; both are required due to the `windows` crate having poor Result handling with `GetStdHandle`.
windows = { version = "0.61.3", features = ["Win32_Security", "Win32_Storage_FileSystem", "Win32_System_Console"] }
windows-sys = { version = "0.60.2", features = ["Win32_System_Console"] }
# Desktop-specific dependencies
[target.'cfg(not(target_os = "emscripten"))'.dependencies]
# On desktop platforms, build SDL2 with cargo-vcpkg
sdl2 = { version = "0.38", default-features = false, features = ["image", "ttf", "gfx", "mixer", "unsafe_textures", "static-link", "use-vcpkg"] }
rand = { version = "0.9.2", default-features = false, features = ["thread_rng"] }
spin_sleep = "1.3.2"
# Browser-specific dependencies
[target.'cfg(target_os = "emscripten")'.dependencies]
# On Emscripten, we don't use cargo-vcpkg
sdl2 = { version = "0.38", default-features = false, features = ["image", "ttf", "gfx", "mixer", "unsafe_textures"] }
# TODO: Document why Emscripten cannot use `os_rng`.
rand = { version = "0.9.2", default-features = false, features = ["small_rng", "os_rng"] }
libc = "0.2.175" # TODO: Describe why this is required.
[dev-dependencies]
pretty_assertions = "1.4.1"
speculoos = "0.13.0"
[build-dependencies]
phf = { version = "0.13.1", features = ["macros"] }
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0.143"
# phf generates runtime code which machete will not detect
[package.metadata.cargo-machete]
ignored = ["phf"]
# Release profile for profiling (essentially the default 'release' profile with debug enabled)
[profile.profile]
inherits = "release"
debug = true
# Undo the customizations for our release profile
opt-level = 3
lto = false
panic = 'unwind'
# Optimized release profile for size
[profile.release]
opt-level = "z"
lto = true
panic = "abort"
opt-level = "z"
[target.'cfg(target_os = "windows")'.dependencies.winapi]
version = "0.3"
features = ["consoleapi", "fileapi", "handleapi", "processenv", "winbase", "wincon", "winnt", "winuser", "windef", "minwindef"]
[target.'cfg(target_os = "emscripten")'.dependencies.sdl2]
version = "0.38"
default-features = false
features = ["ttf","image","gfx","mixer"]
[target.'cfg(not(target_os = "emscripten"))'.dependencies.sdl2]
version = "0.38"
default-features = false
features = ["ttf","image","gfx","mixer","static-link","use-vcpkg"]
[package.metadata.vcpkg]
dependencies = ["sdl2", "sdl2-image", "sdl2-ttf", "sdl2-gfx", "sdl2-mixer"]
git = "https://github.com/microsoft/vcpkg"
rev = "2024.05.24" # release 2024.05.24 # to check for a new one, check https://github.com/microsoft/vcpkg/releases
rev = "2024.05.24" # to check for a new one, check https://github.com/microsoft/vcpkg/releases
[package.metadata.vcpkg.target]
x86_64-pc-windows-msvc = { triplet = "x64-windows-static-md" }
x86_64-unknown-linux-gnu = { triplet = "x64-linux" }
x86_64-apple-darwin = { triplet = "x64-osx" }
aarch64-apple-darwin = { triplet = "arm64-osx" }
[target.'cfg(target_os = "emscripten")'.dependencies]
libc = "0.2.175"
[build-dependencies]
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
phf = { version = "0.12.1", features = ["macros"] }

View File

@@ -3,7 +3,9 @@ set windows-shell := ["powershell.exe", "-NoLogo", "-Command"]
# Regex to exclude files from coverage report, double escapes for Justfile + CLI
# You can use src\\\\..., but the filename alone is acceptable too
coverage_exclude_pattern := "src\\\\app.rs|audio.rs|src\\\\error.rs|platform\\\\emscripten.rs"
coverage_exclude_pattern := "src\\\\app\\.rs|audio\\.rs|src\\\\error\\.rs|platform\\\\emscripten\\.rs|bin\\\\.+\\.rs|main\\.rs|platform\\\\desktop\\.rs|platform\\\\tracing_buffer\\.rs|platform\\\\buffered_writer\\.rs|systems\\\\debug\\.rs|systems\\\\profiling\\.rs"
binary_extension := if os() == "windows" { ".exe" } else { "" }
# !!! --ignore-filename-regex should be used on both reports & coverage testing
# !!! --remap-path-prefix prevents the absolute path from being used in the generated report
@@ -31,3 +33,13 @@ coverage:
--output-path lcov.info \
--profile coverage \
--no-fail-fast nextest
# Profile the project using 'samply'
samply:
cargo build --profile profile
samply record ./target/profile/pacman{{ binary_extension }}
# Build the project for Emscripten
web *args:
bun run web.build.ts {{args}};
caddy file-server --root dist

675
LICENSE Normal file
View File

@@ -0,0 +1,675 @@
# GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
<https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
## Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program--to make sure it remains
free software for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply
it to your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
## TERMS AND CONDITIONS
### 0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a "modified version" of
the earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
An interactive user interface displays "Appropriate Legal Notices" to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
### 1. Source Code.
The "source code" for a work means the preferred form of the work for
making modifications to it. "Object code" means any non-source form of
a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same
work.
### 2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes
it unnecessary.
### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work's users, your or third parties' legal rights to forbid
circumvention of technological measures.
### 4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
### 5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
- a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
- b) The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4
to "keep intact all notices".
- c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
- d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
### 6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
- a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
- b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.
- c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
- d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
- e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
"normally used" refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
### 7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
- a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
- b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
- c) Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
- d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or
- e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
- f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions
of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly
impose on those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.
### 8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
### 9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
### 10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
### 11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
### 12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.
### 13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
### 14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free
Software Foundation.
If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
### 15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
### 16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
### 17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
## How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state
the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper
mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands \`show w' and \`show c' should show the
appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you would
use an "about box".
You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. For more information on this, and how to apply and follow
the GNU GPL, see <https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first,
please read <https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@@ -19,6 +19,15 @@ struct MapperFrame {
height: u16,
}
impl MapperFrame {
fn to_u16vec2_format(self) -> String {
format!(
"MapperFrame {{ pos: glam::U16Vec2::new({}, {}), size: glam::U16Vec2::new({}, {}) }}",
self.x, self.y, self.width, self.height
)
}
}
fn main() {
let path = Path::new(&env::var("OUT_DIR").unwrap()).join("atlas_data.rs");
let mut file = BufWriter::new(File::create(&path).unwrap());
@@ -37,12 +46,7 @@ fn main() {
.unwrap();
for (name, frame) in atlas_mapper.frames {
writeln!(
&mut file,
" \"{}\" => MapperFrame {{ x: {}, y: {}, width: {}, height: {} }},",
name, frame.x, frame.y, frame.width, frame.height
)
.unwrap();
writeln!(&mut file, " \"{}\" => {},", name, frame.to_u16vec2_format()).unwrap();
}
writeln!(&mut file, "}};").unwrap();

View File

@@ -1,42 +1,40 @@
use std::collections::HashMap;
use std::time::{Duration, Instant};
use glam::Vec2;
use sdl2::render::TextureCreator;
use sdl2::ttf::Sdl2TtfContext;
use sdl2::video::WindowContext;
use sdl2::{AudioSubsystem, EventPump, Sdl, VideoSubsystem};
use thousands::Separable;
use tracing::info;
use crate::error::{GameError, GameResult};
use crate::constants::{CANVAS_SIZE, LOOP_TIME, SCALE};
use crate::formatter;
use crate::game::Game;
use crate::platform::get_platform;
use crate::systems::profiling::SystemTimings;
use crate::platform;
use sdl2::pixels::PixelFormatEnum;
use sdl2::render::RendererInfo;
use sdl2::{AudioSubsystem, Sdl};
use tracing::debug;
/// Main application wrapper that manages SDL initialization, window lifecycle, and the game loop.
pub struct App {
pub game: Game,
last_timings: Instant,
last_tick: Instant,
focused: bool,
_cursor_pos: Vec2,
// Keep SDL alive for the app lifetime so subsystems (audio) are not shut down
_sdl_context: Sdl,
_audio_subsystem: AudioSubsystem,
}
impl App {
/// Initializes SDL subsystems, creates the game window, and sets up the game state.
///
/// # Errors
///
/// Returns `GameError::Sdl` if any SDL initialization step fails, or propagates
/// errors from `Game::new()` during game state setup.
pub fn new() -> GameResult<Self> {
let sdl_context: &'static Sdl = Box::leak(Box::new(sdl2::init().map_err(|e| GameError::Sdl(e.to_string()))?));
let video_subsystem: &'static VideoSubsystem =
Box::leak(Box::new(sdl_context.video().map_err(|e| GameError::Sdl(e.to_string()))?));
let _audio_subsystem: &'static AudioSubsystem =
Box::leak(Box::new(sdl_context.audio().map_err(|e| GameError::Sdl(e.to_string()))?));
let _ttf_context: &'static Sdl2TtfContext =
Box::leak(Box::new(sdl2::ttf::init().map_err(|e| GameError::Sdl(e.to_string()))?));
let event_pump: &'static mut EventPump =
Box::leak(Box::new(sdl_context.event_pump().map_err(|e| GameError::Sdl(e.to_string()))?));
// Initialize platform-specific console
get_platform().init_console()?;
let sdl_context = sdl2::init().map_err(|e| GameError::Sdl(e.to_string()))?;
let ttf_context = sdl2::ttf::init().map_err(|e| GameError::Sdl(e.to_string()))?;
let video_subsystem = sdl_context.video().map_err(|e| GameError::Sdl(e.to_string()))?;
let audio_subsystem = sdl_context.audio().map_err(|e| GameError::Sdl(e.to_string()))?;
let event_pump = sdl_context.event_pump().map_err(|e| GameError::Sdl(e.to_string()))?;
let window = video_subsystem
.window(
@@ -49,63 +47,84 @@ impl App {
.build()
.map_err(|e| GameError::Sdl(e.to_string()))?;
let canvas = Box::leak(Box::new(
window
.into_canvas()
.accelerated()
.build()
.map_err(|e| GameError::Sdl(e.to_string()))?,
));
#[derive(Debug)]
struct DriverDetail {
info: RendererInfo,
index: usize,
}
let drivers: HashMap<&'static str, DriverDetail> = sdl2::render::drivers()
.enumerate()
.map(|(index, d)| (d.name, DriverDetail { info: d, index }))
.collect::<HashMap<_, _>>();
let get_driver =
|name: &'static str| -> Option<u32> { drivers.get(name.to_lowercase().as_str()).map(|d| d.index as u32) };
{
let mut names = drivers.keys().collect::<Vec<_>>();
names.sort_by_key(|k| get_driver(k));
debug!("Drivers: {names:?}")
}
// Count the number of times each pixel format is supported by each driver
let pixel_format_counts: HashMap<PixelFormatEnum, usize> = drivers
.values()
.flat_map(|d| d.info.texture_formats.iter())
.fold(HashMap::new(), |mut counts, format| {
*counts.entry(*format).or_insert(0) += 1;
counts
});
debug!("Pixel format counts: {pixel_format_counts:?}");
let index = get_driver("direct3d");
debug!("Driver index: {index:?}");
let mut canvas = window
.into_canvas()
.accelerated()
// .index(index)
.build()
.map_err(|e| GameError::Sdl(e.to_string()))?;
canvas
.set_logical_size(CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
debug!("Renderer: {:?}", canvas.info());
let texture_creator: &'static mut TextureCreator<WindowContext> = Box::leak(Box::new(canvas.texture_creator()));
let texture_creator = canvas.texture_creator();
let game = Game::new(canvas, texture_creator, event_pump)?;
// game.audio.set_mute(cfg!(debug_assertions));
let game = Game::new(canvas, ttf_context, texture_creator, event_pump)?;
Ok(App {
game,
focused: true,
last_tick: Instant::now(),
last_timings: Instant::now() - Duration::from_secs_f32(0.5),
_cursor_pos: Vec2::ZERO,
_sdl_context: sdl_context,
_audio_subsystem: audio_subsystem,
})
}
/// Executes a single frame of the game loop with consistent timing and optional sleep.
///
/// Calculates delta time since the last frame, runs game logic via `game.tick()`,
/// and implements frame rate limiting by sleeping for remaining time if the frame
/// completed faster than the target `LOOP_TIME`. Sleep behavior varies based on
/// window focus to conserve CPU when the game is not active.
///
/// # Returns
///
/// `true` if the game should continue running, `false` if the game requested exit.
pub fn run(&mut self) -> bool {
{
let start = Instant::now();
// for event in self
// .game
// .world
// .get_non_send_resource_mut::<&'static mut EventPump>()
// .unwrap()
// .poll_iter()
// {
// match event {
// Event::Window { win_event, .. } => match win_event {
// WindowEvent::FocusGained => {
// self.focused = true;
// }
// WindowEvent::FocusLost => {
// self.focused = false;
// }
// _ => {}
// },
// Event::MouseMotion { x, y, .. } => {
// // Convert window coordinates to logical coordinates
// self.cursor_pos = Vec2::new(x as f32, y as f32);
// }
// _ => {}
// }
// }
let dt = self.last_tick.elapsed().as_secs_f32();
self.last_tick = Instant::now();
self.last_tick = start;
// Increment the global tick counter for tracing
formatter::increment_tick();
let exit = self.game.tick(dt);
@@ -113,33 +132,11 @@ impl App {
return false;
}
if self.last_timings.elapsed() > Duration::from_secs(1) {
// Show timing statistics over the last 90 frames
if let Some(timings) = self.game.world.get_resource::<SystemTimings>() {
let stats = timings.get_stats();
let (total_avg, total_std) = timings.get_total_stats();
let mut individual_timings = String::new();
for (name, (avg, std_dev)) in stats.iter() {
individual_timings.push_str(&format!("{}={:?} ± {:?} ", name, avg, std_dev));
}
let effective_fps = match 1.0 / total_avg.as_secs_f64() {
f if f > 100.0 => (f as u32).separate_with_commas(),
f if f < 10.0 => format!("{:.1} FPS", f),
f => format!("{:.0} FPS", f),
};
info!("({effective_fps}) {total_avg:?} ± {total_std:?} ({individual_timings})");
}
self.last_timings = Instant::now();
}
// Sleep if we still have time left
if start.elapsed() < LOOP_TIME {
let time = LOOP_TIME.saturating_sub(start.elapsed());
if time != Duration::ZERO {
get_platform().sleep(time, self.focused);
platform::sleep(time, self.focused);
}
}

View File

@@ -5,16 +5,28 @@
use std::borrow::Cow;
use strum_macros::EnumIter;
/// Enumeration of all game assets with cross-platform loading support.
///
/// Each variant corresponds to a specific file that can be loaded either from
/// binary-embedded data or embedded filesystem (Emscripten).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, EnumIter)]
pub enum Asset {
Wav1,
Wav2,
Wav3,
Wav4,
Atlas,
/// Main sprite atlas containing all game graphics (atlas.png)
AtlasImage,
/// Terminal Vector font for text rendering (TerminalVector.ttf)
Font,
}
impl Asset {
/// Returns the relative file path for this asset within the game's asset directory.
///
/// Paths are consistent across platforms and used by the Emscripten backend
/// for filesystem loading. Desktop builds embed assets directly and don't
/// use these paths at runtime.
#[allow(dead_code)]
pub fn path(&self) -> &str {
use Asset::*;
@@ -23,7 +35,8 @@ impl Asset {
Wav2 => "sound/waka/2.ogg",
Wav3 => "sound/waka/3.ogg",
Wav4 => "sound/waka/4.ogg",
Atlas => "atlas.png",
AtlasImage => "atlas.png",
Font => "TerminalVector.ttf",
}
}
}
@@ -31,11 +44,21 @@ impl Asset {
mod imp {
use super::*;
use crate::error::AssetError;
use crate::platform::get_platform;
use crate::platform;
/// Returns the raw bytes of the given asset.
/// Loads asset bytes using the appropriate platform-specific method.
///
/// On desktop platforms, returns embedded compile-time data via `include_bytes!`.
/// On Emscripten, loads from the filesystem using the asset's path. The returned
/// `Cow` allows zero-copy access to embedded data while supporting owned data
/// when loaded from disk.
///
/// # Errors
///
/// Returns `AssetError::NotFound` if the asset file cannot be located (Emscripten only),
/// or `AssetError::Io` for filesystem I/O failures.
pub fn get_asset_bytes(asset: Asset) -> Result<Cow<'static, [u8]>, AssetError> {
get_platform().get_asset_bytes(asset)
platform::get_asset_bytes(asset)
}
}

View File

@@ -114,9 +114,11 @@ impl Audio {
}
}
/// Plays the "eat" sound effect.
/// Plays the next waka eating sound in the cycle of four variants.
///
/// If audio is disabled or muted, this function does nothing.
/// Automatically rotates through the four eating sound assets. The sound plays on channel 0 and the internal sound index
/// advances to the next variant. Silently returns if audio is disabled, muted,
/// or no sounds were loaded successfully.
#[allow(dead_code)]
pub fn eat(&mut self) {
if self.disabled || self.muted || self.sounds.is_empty() {
@@ -136,9 +138,11 @@ impl Audio {
self.next_sound_index = (self.next_sound_index + 1) % self.sounds.len();
}
/// Instantly mute or unmute all channels.
/// Instantly mutes or unmutes all audio channels by adjusting their volume.
///
/// If audio is disabled, this function does nothing.
/// Sets all 4 mixer channels to zero volume when muting, or restores them to
/// their default volume (32) when unmuting. The mute state is tracked internally
/// regardless of whether audio is disabled, allowing the state to be preserved.
pub fn set_mute(&mut self, mute: bool) {
if !self.disabled {
let channels = 4;
@@ -151,12 +155,19 @@ impl Audio {
self.muted = mute;
}
/// Returns `true` if the audio is muted.
/// Returns the current mute state regardless of whether audio is functional.
///
/// This tracks the user's mute preference and will return `true` if muted
/// even when the audio system is disabled due to initialization failures.
pub fn is_muted(&self) -> bool {
self.muted
}
/// Returns `true` if the audio system is disabled.
/// Returns whether the audio system failed to initialize and is non-functional.
///
/// Audio can be disabled due to SDL2_mixer initialization failures, missing
/// audio device, or failure to load any sound assets. When disabled, all
/// audio operations become no-ops.
#[allow(dead_code)]
pub fn is_disabled(&self) -> bool {
self.disabled

130
src/bin/aspect_demo.rs Normal file
View File

@@ -0,0 +1,130 @@
use std::time::{Duration, Instant};
use sdl2::event::Event;
use sdl2::keyboard::Keycode;
use sdl2::pixels::Color;
use sdl2::rect::Rect;
// A self-contained SDL2 demo showing how to keep a consistent aspect ratio
// with letterboxing/pillarboxing in a resizable window.
//
// This uses SDL2's logical size feature, which automatically sets a viewport
// to preserve the target aspect ratio and adds black bars as needed.
// We also clear the full window to black and then clear the logical viewport
// to a content color, so bars remain visibly black.
const LOGICAL_WIDTH: u32 = 320; // target content width
const LOGICAL_HEIGHT: u32 = 180; // target content height (16:9)
fn main() -> Result<(), String> {
// Initialize SDL2
let sdl = sdl2::init()?;
let video = sdl.video()?;
// Create a resizable window
let window = video
.window("SDL2 Aspect Ratio Demo", 960, 540)
.resizable()
.position_centered()
.build()
.map_err(|e| e.to_string())?;
let mut canvas = window.into_canvas().build().map_err(|e| e.to_string())?;
// Set the desired logical (virtual) resolution. SDL will letterbox/pillarbox
// as needed to preserve this aspect ratio when the window is resized.
canvas
.set_logical_size(LOGICAL_WIDTH, LOGICAL_HEIGHT)
.map_err(|e| e.to_string())?;
// Optional: uncomment to enforce integer scaling only (more retro look)
// canvas.set_integer_scale(true)?;
let mut events = sdl.event_pump()?;
let mut running = true;
let start = Instant::now();
let mut last_log = Instant::now();
while running {
for event in events.poll_iter() {
match event {
Event::Quit { .. }
| Event::KeyDown {
keycode: Some(Keycode::Escape),
..
} => {
running = false;
}
Event::Window { win_event, .. } => {
// Periodically log window size and the computed viewport
// to demonstrate how letterboxing/pillarboxing behaves.
use sdl2::event::WindowEvent;
match win_event {
WindowEvent::Resized(_, _)
| WindowEvent::SizeChanged(_, _)
| WindowEvent::Maximized
| WindowEvent::Restored => {
if last_log.elapsed() > Duration::from_millis(250) {
let out_size = canvas.output_size()?;
let viewport = canvas.viewport();
println!(
"window={}x{}, viewport x={}, y={}, w={}, h={}",
out_size.0,
out_size.1,
viewport.x(),
viewport.y(),
viewport.width(),
viewport.height()
);
last_log = Instant::now();
}
}
_ => {}
}
}
_ => {}
}
}
// 1) Clear the entire window to black (no viewport) so the bars are black
canvas.set_viewport(None);
canvas.set_draw_color(Color::RGB(0, 0, 0));
canvas.clear();
// 2) Re-apply logical size so SDL sets a viewport that preserves aspect
// ratio. Clearing now only affects the letterboxed content area.
canvas
.set_logical_size(LOGICAL_WIDTH, LOGICAL_HEIGHT)
.map_err(|e| e.to_string())?;
// Fill the content area with a background color to differentiate from bars
canvas.set_draw_color(Color::RGB(30, 30, 40));
canvas.clear();
// Draw a simple grid to visualize scaling clearly
canvas.set_draw_color(Color::RGB(60, 60, 90));
let step = 20i32;
for x in (0..=LOGICAL_WIDTH as i32).step_by(step as usize) {
let _ = canvas.draw_line(sdl2::rect::Point::new(x, 0), sdl2::rect::Point::new(x, LOGICAL_HEIGHT as i32));
}
for y in (0..=LOGICAL_HEIGHT as i32).step_by(step as usize) {
let _ = canvas.draw_line(sdl2::rect::Point::new(0, y), sdl2::rect::Point::new(LOGICAL_WIDTH as i32, y));
}
// Draw a border around the logical content area
canvas.set_draw_color(Color::RGB(200, 200, 220));
let border = Rect::new(0, 0, LOGICAL_WIDTH, LOGICAL_HEIGHT);
canvas.draw_rect(border)?;
// Draw a moving box to demonstrate dynamic content staying within aspect
let elapsed_ms = start.elapsed().as_millis() as i32;
let t = (elapsed_ms / 8) % LOGICAL_WIDTH as i32;
let box_rect = Rect::new(t - 10, (LOGICAL_HEIGHT as i32 / 2) - 10, 20, 20);
canvas.set_draw_color(Color::RGB(255, 140, 0));
canvas.fill_rect(box_rect).ok();
canvas.present();
}
Ok(())
}

91
src/bin/timing_demo.rs Normal file
View File

@@ -0,0 +1,91 @@
use circular_buffer::CircularBuffer;
use pacman::constants::CANVAS_SIZE;
use sdl2::event::Event;
use sdl2::keyboard::Keycode;
use sdl2::pixels::Color;
use std::time::{Duration, Instant};
fn main() -> Result<(), String> {
let sdl_context = sdl2::init()?;
let video_subsystem = sdl_context.video()?;
let window = video_subsystem
.window("SDL2 Timing Demo", CANVAS_SIZE.x, CANVAS_SIZE.y)
.opengl()
.position_centered()
.build()
.map_err(|e| e.to_string())?;
let mut canvas = window.into_canvas().accelerated().build().map_err(|e| e.to_string())?;
canvas
.set_logical_size(CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| e.to_string())?;
let mut event_pump = sdl_context.event_pump()?;
// Store frame timings in milliseconds
let mut frame_timings = CircularBuffer::<20_000, f64>::new();
let mut last_report_time = Instant::now();
let report_interval = Duration::from_millis(500);
'running: loop {
let frame_start_time = Instant::now();
for event in event_pump.poll_iter() {
match event {
Event::Quit { .. }
| Event::KeyDown {
keycode: Some(Keycode::Escape),
..
} => {
break 'running;
}
_ => {}
}
}
// Clear the screen
canvas.set_draw_color(Color::RGB(0, 0, 0));
canvas.clear();
canvas.present();
// Record timing
let frame_duration = frame_start_time.elapsed();
frame_timings.push_back(frame_duration.as_secs_f64());
// Report stats every `report_interval`
let elapsed = last_report_time.elapsed();
if elapsed >= report_interval {
if !frame_timings.is_empty() {
let count = frame_timings.len() as f64;
let sum: f64 = frame_timings.iter().sum();
let mean = sum / count;
let variance = frame_timings
.iter()
.map(|value| {
let diff = mean - value;
diff * diff
})
.sum::<f64>()
/ count;
let std_dev = variance.sqrt();
println!(
"Rendered {count} frames at {fps:.1} fps (last {elapsed:.2?}): mean={mean:.3?}, std_dev={std_dev:.3?}",
count = frame_timings.len(),
fps = count / elapsed.as_secs_f64(),
elapsed = elapsed,
mean = Duration::from_secs_f64(mean),
std_dev = Duration::from_secs_f64(std_dev),
);
}
// Reset for next interval
frame_timings.clear();
last_report_time = Instant::now();
}
}
Ok(())
}

View File

@@ -4,7 +4,12 @@ use std::time::Duration;
use glam::UVec2;
pub const LOOP_TIME: Duration = Duration::from_nanos((1_000_000_000.0 / 60.0) as u64);
/// Target frame duration for 60 FPS game loop timing.
///
/// Calculated as 1/60th of a second (≈16.67ms).
///
/// Uses integer arithmetic to avoid floating-point precision loss.
pub const LOOP_TIME: Duration = Duration::from_nanos(1_000_000_000 / 60);
/// The size of each cell, in pixels.
pub const CELL_SIZE: u32 = 8;
@@ -14,32 +19,81 @@ pub const BOARD_CELL_SIZE: UVec2 = UVec2::new(28, 31);
/// The scale factor for the window (integer zoom)
pub const SCALE: f32 = 2.6;
/// The offset of the game board from the top-left corner of the window, in cells.
/// Game board offset from window origin to reserve space for HUD elements.
///
/// The 3-cell vertical offset (24 pixels) provides space at the top of the
/// screen for score display, player lives, and other UI elements.
pub const BOARD_CELL_OFFSET: UVec2 = UVec2::new(0, 3);
/// The offset of the game board from the top-left corner of the window, in pixels.
/// Pixel-space equivalent of `BOARD_CELL_OFFSET` for rendering calculations.
///
/// Automatically calculated from the cell offset to maintain consistency
/// when the cell size changes. Used for positioning sprites and debug overlays.
pub const BOARD_PIXEL_OFFSET: UVec2 = UVec2::new(BOARD_CELL_OFFSET.x * CELL_SIZE, BOARD_CELL_OFFSET.y * CELL_SIZE);
/// Animation timing constants for ghost state management
pub mod animation {
/// Normal ghost movement animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_NORMAL_SPEED: u16 = 12;
/// Eaten ghost (eyes) animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_EATEN_SPEED: u16 = 6;
/// Frightened ghost animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_FRIGHTENED_SPEED: u16 = 12;
/// Time in ticks when frightened ghosts start flashing (2 seconds at 60 FPS)
pub const FRIGHTENED_FLASH_START_TICKS: u32 = 120;
}
/// The size of the canvas, in pixels.
pub const CANVAS_SIZE: UVec2 = UVec2::new(
(BOARD_CELL_SIZE.x + BOARD_CELL_OFFSET.x) * CELL_SIZE,
(BOARD_CELL_SIZE.y + BOARD_CELL_OFFSET.y) * CELL_SIZE,
);
/// An enum representing the different types of tiles on the map.
pub const LARGE_SCALE: f32 = 2.6;
pub const LARGE_CANVAS_SIZE: UVec2 = UVec2::new(
(((BOARD_CELL_SIZE.x + BOARD_CELL_OFFSET.x) * CELL_SIZE) as f32 * LARGE_SCALE) as u32,
(((BOARD_CELL_SIZE.y + BOARD_CELL_OFFSET.y) * CELL_SIZE) as f32 * LARGE_SCALE) as u32,
);
/// Collider size constants for different entity types
pub mod collider {
use super::CELL_SIZE;
/// Collider size for player and ghosts (1.375x cell size)
pub const PLAYER_GHOST_SIZE: f32 = CELL_SIZE as f32 * 1.375;
/// Collider size for pellets (0.4x cell size)
pub const PELLET_SIZE: f32 = CELL_SIZE as f32 * 0.4;
/// Collider size for power pellets/energizers (0.95x cell size)
pub const POWER_PELLET_SIZE: f32 = CELL_SIZE as f32 * 0.95;
}
/// UI and rendering constants
pub mod ui {
/// Debug font size in points
pub const DEBUG_FONT_SIZE: u16 = 12;
/// Power pellet blink rate in ticks (at 60 FPS, 12 ticks = 0.2 seconds)
pub const POWER_PELLET_BLINK_RATE: u32 = 12;
}
/// Map tile types that define gameplay behavior and collision properties.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum MapTile {
/// An empty tile.
/// Traversable space with no collectible items
Empty,
/// A wall tile.
Wall,
/// A regular pellet.
/// Small collectible. Implicitly a traversable tile.
Pellet,
/// A power pellet.
/// Large collectible. Implicitly a traversable tile.
PowerPellet,
/// A tunnel tile.
/// Special traversable tile that connects to tunnel portals.
Tunnel,
}
/// The raw layout of the game board, as a 2D array of characters.
/// ASCII art representation of the classic Pac-Man maze layout.
///
/// Uses character symbols to define the game world. This layout is parsed by `MapTileParser`
/// to generate the navigable graph and collision geometry.
pub const RAW_BOARD: [&str; BOARD_CELL_SIZE.y as usize] = [
"############################",
"#............##............#",
@@ -73,3 +127,17 @@ pub const RAW_BOARD: [&str; BOARD_CELL_SIZE.y as usize] = [
"#..........................#",
"############################",
];
/// Game initialization constants
pub mod startup {
/// Number of frames for the startup sequence (3 seconds at 60 FPS)
pub const STARTUP_FRAMES: u32 = 60 * 3;
/// Number of ticks per frame during startup
pub const STARTUP_TICKS_PER_FRAME: u32 = 60;
}
/// Game mechanics constants
pub mod mechanics {
/// Player movement speed multiplier
pub const PLAYER_SPEED: f32 = 1.15;
}

View File

@@ -1,128 +0,0 @@
// use smallvec::SmallVec;
// use std::collections::HashMap;
// use crate::entity::{graph::NodeId, traversal::Position};
// /// Trait for entities that can participate in collision detection.
// pub trait Collidable {
// /// Returns the current position of this entity.
// fn position(&self) -> Position;
// /// Checks if this entity is colliding with another entity.
// #[allow(dead_code)]
// fn is_colliding_with(&self, other: &dyn Collidable) -> bool {
// positions_overlap(&self.position(), &other.position())
// }
// }
// /// System for tracking entities by their positions for efficient collision detection.
// #[derive(Default)]
// pub struct CollisionSystem {
// /// Maps node IDs to lists of entity IDs that are at that node
// node_entities: HashMap<NodeId, Vec<EntityId>>,
// /// Maps entity IDs to their current positions
// entity_positions: HashMap<EntityId, Position>,
// /// Next available entity ID
// next_id: EntityId,
// }
// /// Unique identifier for an entity in the collision system
// pub type EntityId = u32;
// impl CollisionSystem {
// /// Registers an entity with the collision system and returns its ID
// pub fn register_entity(&mut self, position: Position) -> EntityId {
// let id = self.next_id;
// self.next_id += 1;
// self.entity_positions.insert(id, position);
// self.update_node_entities(id, position);
// id
// }
// /// Updates an entity's position
// pub fn update_position(&mut self, entity_id: EntityId, new_position: Position) {
// if let Some(old_position) = self.entity_positions.get(&entity_id) {
// // Remove from old nodes
// self.remove_from_nodes(entity_id, *old_position);
// }
// // Update position and add to new nodes
// self.entity_positions.insert(entity_id, new_position);
// self.update_node_entities(entity_id, new_position);
// }
// /// Removes an entity from the collision system
// #[allow(dead_code)]
// pub fn remove_entity(&mut self, entity_id: EntityId) {
// if let Some(position) = self.entity_positions.remove(&entity_id) {
// self.remove_from_nodes(entity_id, position);
// }
// }
// /// Gets all entity IDs at a specific node
// pub fn entities_at_node(&self, node: NodeId) -> &[EntityId] {
// self.node_entities.get(&node).map(|v| v.as_slice()).unwrap_or(&[])
// }
// /// Gets all entity IDs that could collide with an entity at the given position
// pub fn potential_collisions(&self, position: &Position) -> Vec<EntityId> {
// let mut collisions = Vec::new();
// let nodes = get_nodes(position);
// for node in nodes {
// collisions.extend(self.entities_at_node(node));
// }
// // Remove duplicates
// collisions.sort_unstable();
// collisions.dedup();
// collisions
// }
// /// Updates the node_entities map when an entity's position changes
// fn update_node_entities(&mut self, entity_id: EntityId, position: Position) {
// let nodes = get_nodes(&position);
// for node in nodes {
// self.node_entities.entry(node).or_default().push(entity_id);
// }
// }
// /// Removes an entity from all nodes it was previously at
// fn remove_from_nodes(&mut self, entity_id: EntityId, position: Position) {
// let nodes = get_nodes(&position);
// for node in nodes {
// if let Some(entities) = self.node_entities.get_mut(&node) {
// entities.retain(|&id| id != entity_id);
// if entities.is_empty() {
// self.node_entities.remove(&node);
// }
// }
// }
// }
// }
// /// Checks if two positions overlap (entities are at the same location).
// fn positions_overlap(a: &Position, b: &Position) -> bool {
// let a_nodes = get_nodes(a);
// let b_nodes = get_nodes(b);
// // Check if any nodes overlap
// a_nodes.iter().any(|a_node| b_nodes.contains(a_node))
// // TODO: More complex overlap detection, the above is a simple check, but it could become an early filter for more precise calculations later
// }
// /// Gets all nodes that an entity is currently at or between.
// fn get_nodes(pos: &Position) -> SmallVec<[NodeId; 2]> {
// let mut nodes = SmallVec::new();
// match pos {
// Position::AtNode(node) => nodes.push(*node),
// Position::BetweenNodes { from, to, .. } => {
// nodes.push(*from);
// nodes.push(*to);
// }
// }
// nodes
// }

View File

@@ -1,254 +0,0 @@
// //! Ghost entity implementation.
// //!
// //! This module contains the ghost character logic, including movement,
// //! animation, and rendering. Ghosts move through the game graph using
// //! a traverser and display directional animated textures.
// use pathfinding::prelude::dijkstra;
// use rand::prelude::*;
// use smallvec::SmallVec;
// use tracing::error;
// use crate::entity::{
// collision::Collidable,
// direction::Direction,
// graph::{Edge, EdgePermissions, Graph, NodeId},
// r#trait::Entity,
// traversal::Traverser,
// };
// use crate::texture::animated::AnimatedTexture;
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// use crate::error::{EntityError, GameError, GameResult, TextureError};
// /// Determines if a ghost can traverse a given edge.
// ///
// /// Ghosts can move through edges that allow all entities or ghost-only edges.
// fn can_ghost_traverse(edge: Edge) -> bool {
// matches!(edge.permissions, EdgePermissions::All | EdgePermissions::GhostsOnly)
// }
// /// The four classic ghost types.
// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
// pub enum GhostType {
// Blinky,
// Pinky,
// Inky,
// Clyde,
// }
// impl GhostType {
// /// Returns the ghost type name for atlas lookups.
// pub fn as_str(self) -> &'static str {
// match self {
// GhostType::Blinky => "blinky",
// GhostType::Pinky => "pinky",
// GhostType::Inky => "inky",
// GhostType::Clyde => "clyde",
// }
// }
// /// Returns the base movement speed for this ghost type.
// pub fn base_speed(self) -> f32 {
// match self {
// GhostType::Blinky => 1.0,
// GhostType::Pinky => 0.95,
// GhostType::Inky => 0.9,
// GhostType::Clyde => 0.85,
// }
// }
// }
// /// A ghost entity that roams the game world.
// ///
// /// Ghosts move through the game world using a graph-based navigation system
// /// and display directional animated sprites. They randomly choose directions
// /// at each intersection.
// pub struct Ghost {
// /// Handles movement through the game graph
// pub traverser: Traverser,
// /// The type of ghost (affects appearance and speed)
// pub ghost_type: GhostType,
// /// Manages directional animated textures for different movement states
// texture: DirectionalAnimatedTexture,
// /// Current movement speed
// speed: f32,
// }
// impl Entity for Ghost {
// fn traverser(&self) -> &Traverser {
// &self.traverser
// }
// fn traverser_mut(&mut self) -> &mut Traverser {
// &mut self.traverser
// }
// fn texture(&self) -> &DirectionalAnimatedTexture {
// &self.texture
// }
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture {
// &mut self.texture
// }
// fn speed(&self) -> f32 {
// self.speed
// }
// fn can_traverse(&self, edge: Edge) -> bool {
// can_ghost_traverse(edge)
// }
// fn tick(&mut self, dt: f32, graph: &Graph) {
// // Choose random direction when at a node
// if self.traverser.position.is_at_node() {
// self.choose_random_direction(graph);
// }
// if let Err(e) = self.traverser.advance(graph, dt * 60.0 * self.speed, &can_ghost_traverse) {
// error!("Ghost movement error: {}", e);
// }
// self.texture.tick(dt);
// }
// }
// impl Ghost {
// /// Creates a new ghost instance at the specified starting node.
// ///
// /// Sets up animated textures for all four directions with moving and stopped states.
// /// The moving animation cycles through two sprite variants.
// pub fn new(graph: &Graph, start_node: NodeId, ghost_type: GhostType, atlas: &SpriteAtlas) -> GameResult<Self> {
// let mut textures = [None, None, None, None];
// let mut stopped_textures = [None, None, None, None];
// for direction in Direction::DIRECTIONS {
// let moving_prefix = match direction {
// Direction::Up => "up",
// Direction::Down => "down",
// Direction::Left => "left",
// Direction::Right => "right",
// };
// let moving_tiles = vec![
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "a"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "a"
// )))
// })?,
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "b"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "b"
// )))
// })?,
// ];
// let stopped_tiles =
// vec![
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "a"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "a"
// )))
// })?,
// ];
// textures[direction.as_usize()] = Some(AnimatedTexture::new(moving_tiles, 0.2)?);
// stopped_textures[direction.as_usize()] = Some(AnimatedTexture::new(stopped_tiles, 0.1)?);
// }
// Ok(Self {
// traverser: Traverser::new(graph, start_node, Direction::Left, &can_ghost_traverse),
// ghost_type,
// texture: DirectionalAnimatedTexture::new(textures, stopped_textures),
// speed: ghost_type.base_speed(),
// })
// }
// /// Chooses a random available direction at the current intersection.
// fn choose_random_direction(&mut self, graph: &Graph) {
// let current_node = self.traverser.position.from_node_id();
// let intersection = &graph.adjacency_list[current_node];
// // Collect all available directions
// let mut available_directions = SmallVec::<[_; 4]>::new();
// for direction in Direction::DIRECTIONS {
// if let Some(edge) = intersection.get(direction) {
// if can_ghost_traverse(edge) {
// available_directions.push(direction);
// }
// }
// }
// // Choose a random direction (avoid reversing unless necessary)
// if !available_directions.is_empty() {
// let mut rng = SmallRng::from_os_rng();
// // Filter out the opposite direction if possible, but allow it if we have limited options
// let opposite = self.traverser.direction.opposite();
// let filtered_directions: Vec<_> = available_directions
// .iter()
// .filter(|&&dir| dir != opposite || available_directions.len() <= 2)
// .collect();
// if let Some(&random_direction) = filtered_directions.choose(&mut rng) {
// self.traverser.set_next_direction(*random_direction);
// }
// }
// }
// /// Calculates the shortest path from the ghost's current position to a target node using Dijkstra's algorithm.
// ///
// /// Returns a vector of NodeIds representing the path, or an error if pathfinding fails.
// /// The path includes the current node and the target node.
// pub fn calculate_path_to_target(&self, graph: &Graph, target: NodeId) -> GameResult<Vec<NodeId>> {
// let start_node = self.traverser.position.from_node_id();
// // Use Dijkstra's algorithm to find the shortest path
// let result = dijkstra(
// &start_node,
// |&node_id| {
// // Get all edges from the current node
// graph.adjacency_list[node_id]
// .edges()
// .filter(|edge| can_ghost_traverse(*edge))
// .map(|edge| (edge.target, (edge.distance * 100.0) as u32))
// .collect::<Vec<_>>()
// },
// |&node_id| node_id == target,
// );
// result.map(|(path, _cost)| path).ok_or_else(|| {
// GameError::Entity(EntityError::PathfindingFailed(format!(
// "No path found from node {} to target {}",
// start_node, target
// )))
// })
// }
// /// Returns the ghost's color for debug rendering.
// pub fn debug_color(&self) -> sdl2::pixels::Color {
// match self.ghost_type {
// GhostType::Blinky => sdl2::pixels::Color::RGB(255, 0, 0), // Red
// GhostType::Pinky => sdl2::pixels::Color::RGB(255, 182, 255), // Pink
// GhostType::Inky => sdl2::pixels::Color::RGB(0, 255, 255), // Cyan
// GhostType::Clyde => sdl2::pixels::Color::RGB(255, 182, 85), // Orange
// }
// }
// }
// impl Collidable for Ghost {
// fn position(&self) -> crate::entity::traversal::Position {
// self.traverser.position
// }
// }

View File

@@ -1,117 +0,0 @@
// use crate::{
// constants,
// entity::{collision::Collidable, graph::Graph},
// error::{EntityError, GameResult},
// texture::sprite::{Sprite, SpriteAtlas},
// };
// use sdl2::render::{Canvas, RenderTarget};
// use strum_macros::{EnumCount, EnumIter};
// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
// pub enum ItemType {
// Pellet,
// Energizer,
// #[allow(dead_code)]
// Fruit {
// kind: FruitKind,
// },
// }
// impl ItemType {
// pub fn get_score(self) -> u32 {
// match self {
// ItemType::Pellet => 10,
// ItemType::Energizer => 50,
// ItemType::Fruit { kind } => kind.get_score(),
// }
// }
// }
// #[derive(Debug, Clone, Copy, PartialEq, Eq, EnumIter, EnumCount)]
// #[allow(dead_code)]
// pub enum FruitKind {
// Apple,
// Strawberry,
// Orange,
// Melon,
// Bell,
// Key,
// Galaxian,
// }
// impl FruitKind {
// #[allow(dead_code)]
// pub fn index(self) -> u8 {
// match self {
// FruitKind::Apple => 0,
// FruitKind::Strawberry => 1,
// FruitKind::Orange => 2,
// FruitKind::Melon => 3,
// FruitKind::Bell => 4,
// FruitKind::Key => 5,
// FruitKind::Galaxian => 6,
// }
// }
// pub fn get_score(self) -> u32 {
// match self {
// FruitKind::Apple => 100,
// FruitKind::Strawberry => 300,
// FruitKind::Orange => 500,
// FruitKind::Melon => 700,
// FruitKind::Bell => 1000,
// FruitKind::Key => 2000,
// FruitKind::Galaxian => 3000,
// }
// }
// }
// pub struct Item {
// pub node_index: usize,
// pub item_type: ItemType,
// pub sprite: Sprite,
// pub collected: bool,
// }
// impl Item {
// pub fn new(node_index: usize, item_type: ItemType, sprite: Sprite) -> Self {
// Self {
// node_index,
// item_type,
// sprite,
// collected: false,
// }
// }
// pub fn is_collected(&self) -> bool {
// self.collected
// }
// pub fn collect(&mut self) {
// self.collected = true;
// }
// pub fn get_score(&self) -> u32 {
// self.item_type.get_score()
// }
// pub fn render<T: RenderTarget>(&self, canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, graph: &Graph) -> GameResult<()> {
// if self.collected {
// return Ok(());
// }
// let node = graph
// .get_node(self.node_index)
// .ok_or(EntityError::NodeNotFound(self.node_index))?;
// let position = node.position + constants::BOARD_PIXEL_OFFSET.as_vec2();
// self.sprite.render(canvas, atlas, position)?;
// Ok(())
// }
// }
// impl Collidable for Item {
// fn position(&self) -> crate::entity::traversal::Position {
// crate::entity::traversal::Position::AtNode(self.node_index)
// }
// }

View File

@@ -1,7 +0,0 @@
pub mod collision;
pub mod direction;
pub mod ghost;
pub mod graph;
pub mod item;
pub mod pacman;
pub mod r#trait;

View File

@@ -1,115 +0,0 @@
// //! Pac-Man entity implementation.
// //!
// //! This module contains the main player character logic, including movement,
// //! animation, and rendering. Pac-Man moves through the game graph using
// //! a traverser and displays directional animated textures.
// use crate::entity::{
// collision::Collidable,
// direction::Direction,
// graph::{Edge, EdgePermissions, Graph, NodeId},
// r#trait::Entity,
// traversal::Traverser,
// };
// use crate::texture::animated::AnimatedTexture;
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// use tracing::error;
// use crate::error::{GameError, GameResult, TextureError};
// /// Determines if Pac-Man can traverse a given edge.
// ///
// /// Pac-Man can only move through edges that allow all entities.
// fn can_pacman_traverse(edge: Edge) -> bool {
// matches!(edge.permissions, EdgePermissions::All)
// }
// /// The main player character entity.
// ///
// /// Pac-Man moves through the game world using a graph-based navigation system
// /// and displays directional animated sprites based on movement state.
// pub struct Pacman {
// /// Handles movement through the game graph
// pub traverser: Traverser,
// /// Manages directional animated textures for different movement states
// texture: DirectionalAnimatedTexture,
// }
// impl Entity for Pacman {
// fn traverser(&self) -> &Traverser {
// &self.traverser
// }
// fn traverser_mut(&mut self) -> &mut Traverser {
// &mut self.traverser
// }
// fn texture(&self) -> &DirectionalAnimatedTexture {
// &self.texture
// }
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture {
// &mut self.texture
// }
// fn speed(&self) -> f32 {
// 1.125
// }
// fn can_traverse(&self, edge: Edge) -> bool {
// can_pacman_traverse(edge)
// }
// fn tick(&mut self, dt: f32, graph: &Graph) {
// if let Err(e) = self.traverser.advance(graph, dt * 60.0 * 1.125, &can_pacman_traverse) {
// error!("Pac-Man movement error: {}", e);
// }
// self.texture.tick(dt);
// }
// }
// impl Pacman {
// /// Creates a new Pac-Man instance at the specified starting node.
// ///
// /// Sets up animated textures for all four directions with moving and stopped states.
// /// The moving animation cycles through open mouth, closed mouth, and full sprites.
// pub fn new(graph: &Graph, start_node: NodeId, atlas: &SpriteAtlas) -> GameResult<Self> {
// let mut textures = [None, None, None, None];
// let mut stopped_textures = [None, None, None, None];
// for direction in Direction::DIRECTIONS {
// let moving_prefix = match direction {
// Direction::Up => "pacman/up",
// Direction::Down => "pacman/down",
// Direction::Left => "pacman/left",
// Direction::Right => "pacman/right",
// };
// let moving_tiles = vec![
// SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_a.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_a.png"))))?,
// SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_b.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?,
// SpriteAtlas::get_tile(atlas, "pacman/full.png")
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
// ];
// let stopped_tiles = vec![SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_b.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?];
// textures[direction.as_usize()] = Some(AnimatedTexture::new(moving_tiles, 0.08)?);
// stopped_textures[direction.as_usize()] = Some(AnimatedTexture::new(stopped_tiles, 0.1)?);
// }
// Ok(Self {
// traverser: Traverser::new(graph, start_node, Direction::Left, &can_pacman_traverse),
// texture: DirectionalAnimatedTexture::new(textures, stopped_textures),
// })
// }
// }
// impl Collidable for Pacman {
// fn position(&self) -> crate::entity::traversal::Position {
// self.traverser.position
// }
// }

View File

@@ -1,114 +0,0 @@
// //! Entity trait for common movement and rendering functionality.
// //!
// //! This module defines a trait that captures the shared behavior between
// //! different game entities like Ghosts and Pac-Man, including movement,
// //! rendering, and position calculations.
// use glam::Vec2;
// use sdl2::render::{Canvas, RenderTarget};
// use crate::entity::direction::Direction;
// use crate::entity::graph::{Edge, Graph, NodeId};
// use crate::entity::traversal::{Position, Traverser};
// use crate::error::{EntityError, GameError, GameResult, TextureError};
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// /// Trait defining common functionality for game entities that move through the graph.
// ///
// /// This trait provides a unified interface for entities that:
// /// - Move through the game graph using a traverser
// /// - Render using directional animated textures
// /// - Have position calculations and movement speed
// #[allow(dead_code)]
// pub trait Entity {
// /// Returns a reference to the entity's traverser for movement control.
// fn traverser(&self) -> &Traverser;
// /// Returns a mutable reference to the entity's traverser for movement control.
// fn traverser_mut(&mut self) -> &mut Traverser;
// /// Returns a reference to the entity's directional animated texture.
// fn texture(&self) -> &DirectionalAnimatedTexture;
// /// Returns a mutable reference to the entity's directional animated texture.
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture;
// /// Returns the movement speed multiplier for this entity.
// fn speed(&self) -> f32;
// /// Determines if this entity can traverse a given edge.
// fn can_traverse(&self, edge: Edge) -> bool;
// /// Updates the entity's position and animation state.
// ///
// /// This method advances movement through the graph and updates texture animation.
// fn tick(&mut self, dt: f32, graph: &Graph);
// /// Calculates the current pixel position in the game world.
// ///
// /// Converts the graph position to screen coordinates, accounting for
// /// the board offset and centering the sprite.
// fn get_pixel_pos(&self, graph: &Graph) -> GameResult<Vec2> {
// let pos = match self.traverser().position {
// Position::AtNode(node_id) => {
// let node = graph.get_node(node_id).ok_or(EntityError::NodeNotFound(node_id))?;
// node.position
// }
// Position::BetweenNodes { from, to, traversed } => {
// let from_node = graph.get_node(from).ok_or(EntityError::NodeNotFound(from))?;
// let to_node = graph.get_node(to).ok_or(EntityError::NodeNotFound(to))?;
// let edge = graph.find_edge(from, to).ok_or(EntityError::EdgeNotFound { from, to })?;
// from_node.position + (to_node.position - from_node.position) * (traversed / edge.distance)
// }
// };
// Ok(Vec2::new(
// pos.x + crate::constants::BOARD_PIXEL_OFFSET.x as f32,
// pos.y + crate::constants::BOARD_PIXEL_OFFSET.y as f32,
// ))
// }
// /// Returns the current node ID that the entity is at or moving towards.
// ///
// /// If the entity is at a node, returns that node ID.
// /// If the entity is between nodes, returns the node it's moving towards.
// fn current_node_id(&self) -> NodeId {
// match self.traverser().position {
// Position::AtNode(node_id) => node_id,
// Position::BetweenNodes { to, .. } => to,
// }
// }
// /// Sets the next direction for the entity to take.
// ///
// /// The direction is buffered and will be applied at the next opportunity,
// /// typically when the entity reaches a new node.
// fn set_next_direction(&mut self, direction: Direction) {
// self.traverser_mut().set_next_direction(direction);
// }
// /// Renders the entity at its current position.
// ///
// /// Draws the appropriate directional sprite based on the entity's
// /// current movement state and direction.
// fn render<T: RenderTarget>(&self, canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, graph: &Graph) -> GameResult<()> {
// let pixel_pos = self.get_pixel_pos(graph)?;
// let dest = crate::helpers::centered_with_size(
// glam::IVec2::new(pixel_pos.x as i32, pixel_pos.y as i32),
// glam::UVec2::new(16, 16),
// );
// if self.traverser().position.is_stopped() {
// self.texture()
// .render_stopped(canvas, atlas, dest, self.traverser().direction)
// .map_err(|e| GameError::Texture(TextureError::RenderFailed(e.to_string())))?;
// } else {
// self.texture()
// .render(canvas, atlas, dest, self.traverser().direction)
// .map_err(|e| GameError::Texture(TextureError::RenderFailed(e.to_string())))?;
// }
// Ok(())
// }
// }

View File

@@ -31,18 +31,12 @@ pub enum GameError {
#[error("Entity error: {0}")]
Entity(#[from] EntityError),
#[error("Game state error: {0}")]
GameState(#[from] GameStateError),
#[error("SDL error: {0}")]
Sdl(String),
#[error("IO error: {0}")]
Io(#[from] io::Error),
#[error("Serialization error: {0}")]
Serialization(#[from] serde_json::Error),
#[error("Invalid state: {0}")]
InvalidState(String),
}
@@ -51,6 +45,8 @@ pub enum GameError {
pub enum AssetError {
#[error("IO error: {0}")]
Io(#[from] io::Error),
#[allow(dead_code)]
#[error("Asset not found: {0}")]
NotFound(String),
}
@@ -79,9 +75,6 @@ pub enum ParseError {
/// Errors related to texture operations.
#[derive(thiserror::Error, Debug)]
pub enum TextureError {
#[error("Animated texture error: {0}")]
Animated(#[from] AnimatedTextureError),
#[error("Failed to load texture: {0}")]
LoadFailed(String),
@@ -95,12 +88,6 @@ pub enum TextureError {
RenderFailed(String),
}
#[derive(thiserror::Error, Debug)]
pub enum AnimatedTextureError {
#[error("Frame duration must be positive, got {0}")]
InvalidFrameDuration(f32),
}
/// Errors related to entity operations.
#[derive(thiserror::Error, Debug)]
pub enum EntityError {
@@ -109,18 +96,8 @@ pub enum EntityError {
#[error("Edge not found: from {from} to {to}")]
EdgeNotFound { from: usize, to: usize },
#[error("Invalid movement: {0}")]
InvalidMovement(String),
#[error("Pathfinding failed: {0}")]
PathfindingFailed(String),
}
/// Errors related to game state operations.
#[derive(thiserror::Error, Debug)]
pub enum GameStateError {}
/// Errors related to map operations.
#[derive(thiserror::Error, Debug)]
pub enum MapError {

View File

@@ -1,18 +1,37 @@
use bevy_ecs::prelude::*;
use bevy_ecs::{entity::Entity, event::Event};
use crate::map::direction::Direction;
/// Player input commands that trigger specific game actions.
///
/// Commands are generated by the input system in response to keyboard events
/// and processed by appropriate game systems to modify state or behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum GameCommand {
/// Request immediate game shutdown
Exit,
MovePlayer(crate::entity::direction::Direction),
/// Set Pac-Man's movement direction
MovePlayer(Direction),
/// Cycle through debug visualization modes
ToggleDebug,
/// Toggle audio mute state
MuteAudio,
/// Restart the current level with fresh entity positions and items
ResetLevel,
/// Pause or resume game ticking logic
TogglePause,
}
/// Global events that flow through the ECS event system to coordinate game behavior.
///
/// Events enable loose coupling between systems - input generates commands, collision
/// detection reports overlaps, and various systems respond appropriately without
/// direct dependencies.
#[derive(Event, Clone, Copy, Debug, PartialEq, Eq)]
pub enum GameEvent {
/// Player input command to be processed by relevant game systems
Command(GameCommand),
/// Physical overlap detected between two entities requiring gameplay response
Collision(Entity, Entity),
}

160
src/formatter.rs Normal file
View File

@@ -0,0 +1,160 @@
//! Custom tracing formatter with tick counter integration
use std::fmt;
use std::sync::atomic::{AtomicU64, Ordering};
use time::macros::format_description;
use time::{format_description::FormatItem, OffsetDateTime};
use tracing::{Event, Level, Subscriber};
use tracing_subscriber::fmt::format::Writer;
use tracing_subscriber::fmt::{FmtContext, FormatEvent, FormatFields, FormattedFields};
use tracing_subscriber::registry::LookupSpan;
/// Global atomic counter for tracking game ticks
static TICK_COUNTER: AtomicU64 = AtomicU64::new(0);
/// Maximum value for tick counter display (16-bit hex)
const TICK_DISPLAY_MASK: u64 = 0xFFFF;
/// Cached format description for timestamps
/// Uses 3 subsecond digits on Emscripten, 5 otherwise for better performance
#[cfg(target_os = "emscripten")]
const TIMESTAMP_FORMAT: &[FormatItem<'static>] = format_description!("[hour]:[minute]:[second].[subsecond digits:3]");
#[cfg(not(target_os = "emscripten"))]
const TIMESTAMP_FORMAT: &[FormatItem<'static>] = format_description!("[hour]:[minute]:[second].[subsecond digits:5]");
/// A custom formatter that includes both timestamp and tick counter in hexadecimal
///
/// Re-implementation of the Full formatter to add a tick counter and timestamp.
pub struct CustomFormatter;
impl<S, N> FormatEvent<S, N> for CustomFormatter
where
S: Subscriber + for<'a> LookupSpan<'a>,
N: for<'a> FormatFields<'a> + 'static,
{
fn format_event(&self, ctx: &FmtContext<'_, S, N>, mut writer: Writer<'_>, event: &Event<'_>) -> fmt::Result {
let meta = event.metadata();
// 1) Timestamp (dimmed when ANSI)
let now = OffsetDateTime::now_utc();
let formatted_time = now.format(&TIMESTAMP_FORMAT).map_err(|e| {
eprintln!("Failed to format timestamp: {}", e);
fmt::Error
})?;
write_dimmed(&mut writer, formatted_time)?;
writer.write_char(' ')?;
// 2) Tick counter, dim when ANSI
let tick_count = get_tick_count() & TICK_DISPLAY_MASK;
if writer.has_ansi_escapes() {
write!(writer, "\x1b[2m0x{:04X}\x1b[0m ", tick_count)?;
} else {
write!(writer, "0x{:04X} ", tick_count)?;
}
// 3) Colored 5-char level like Full
write_colored_level(&mut writer, meta.level())?;
writer.write_char(' ')?;
// 4) Span scope chain (bold names, fields in braces, dimmed ':')
if let Some(scope) = ctx.event_scope() {
let mut saw_any = false;
for span in scope.from_root() {
write_bold(&mut writer, span.metadata().name())?;
saw_any = true;
let ext = span.extensions();
if let Some(fields) = &ext.get::<FormattedFields<N>>() {
if !fields.is_empty() {
write_bold(&mut writer, "{")?;
write!(writer, "{}", fields)?;
write_bold(&mut writer, "}")?;
}
}
if writer.has_ansi_escapes() {
write!(writer, "\x1b[2m:\x1b[0m")?;
} else {
writer.write_char(':')?;
}
}
if saw_any {
writer.write_char(' ')?;
}
}
// 5) Target (dimmed), then a space
if writer.has_ansi_escapes() {
write!(writer, "\x1b[2m{}\x1b[0m\x1b[2m:\x1b[0m ", meta.target())?;
} else {
write!(writer, "{}: ", meta.target())?;
}
// 6) Event fields
ctx.format_fields(writer.by_ref(), event)?;
// 7) Newline
writeln!(writer)
}
}
/// Write the verbosity level with the same coloring/alignment as the Full formatter.
fn write_colored_level(writer: &mut Writer<'_>, level: &Level) -> fmt::Result {
if writer.has_ansi_escapes() {
// Basic ANSI color sequences; reset with \x1b[0m
let (color, text) = match *level {
Level::TRACE => ("\x1b[35m", "TRACE"), // purple
Level::DEBUG => ("\x1b[34m", "DEBUG"), // blue
Level::INFO => ("\x1b[32m", " INFO"), // green, note leading space
Level::WARN => ("\x1b[33m", " WARN"), // yellow, note leading space
Level::ERROR => ("\x1b[31m", "ERROR"), // red
};
write!(writer, "{}{}\x1b[0m", color, text)
} else {
// Right-pad to width 5 like Full's non-ANSI mode
match *level {
Level::TRACE => write!(writer, "{:>5}", "TRACE"),
Level::DEBUG => write!(writer, "{:>5}", "DEBUG"),
Level::INFO => write!(writer, "{:>5}", " INFO"),
Level::WARN => write!(writer, "{:>5}", " WARN"),
Level::ERROR => write!(writer, "{:>5}", "ERROR"),
}
}
}
fn write_dimmed(writer: &mut Writer<'_>, s: impl fmt::Display) -> fmt::Result {
if writer.has_ansi_escapes() {
write!(writer, "\x1b[2m{}\x1b[0m", s)
} else {
write!(writer, "{}", s)
}
}
fn write_bold(writer: &mut Writer<'_>, s: impl fmt::Display) -> fmt::Result {
if writer.has_ansi_escapes() {
write!(writer, "\x1b[1m{}\x1b[0m", s)
} else {
write!(writer, "{}", s)
}
}
/// Increment the global tick counter by 1
///
/// This should be called once per game tick/frame from the main game loop
pub fn increment_tick() {
TICK_COUNTER.fetch_add(1, Ordering::Relaxed);
}
/// Get the current tick count
///
/// Returns the current value of the global tick counter
pub fn get_tick_count() -> u64 {
TICK_COUNTER.load(Ordering::Relaxed)
}
/// Reset the tick counter to 0
///
/// This can be used for testing or when restarting the game
#[allow(dead_code)]
pub fn reset_tick_counter() {
TICK_COUNTER.store(0, Ordering::Relaxed);
}

725
src/game.rs Normal file
View File

@@ -0,0 +1,725 @@
//! This module contains the main game logic and state.
include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
use std::collections::HashMap;
use crate::constants::{self, animation, MapTile, CANVAS_SIZE};
use crate::error::{GameError, GameResult};
use crate::events::GameEvent;
use crate::map::builder::Map;
use crate::map::direction::Direction;
use crate::systems::blinking::Blinking;
use crate::systems::components::{GhostAnimation, GhostState, LastAnimationState};
use crate::systems::movement::{BufferedDirection, Position, Velocity};
use crate::systems::profiling::{SystemId, Timing};
use crate::systems::render::touch_ui_render_system;
use crate::systems::render::RenderDirty;
use crate::systems::{
self, combined_render_system, ghost_collision_system, present_system, Hidden, LinearAnimation, MovementModifiers, NodeId,
TouchState,
};
use crate::systems::{
audio_system, blinking_system, collision_system, directional_render_system, dirty_render_system, eaten_ghost_system,
ghost_movement_system, ghost_state_system, hud_render_system, item_system, linear_render_system, profile, AudioEvent,
AudioResource, AudioState, BackbufferResource, Collider, DebugState, DebugTextureResource, DeltaTime, DirectionalAnimation,
EntityType, Frozen, Ghost, GhostAnimations, GhostBundle, GhostCollider, GlobalState, ItemBundle, ItemCollider,
MapTextureResource, PacmanCollider, PlayerBundle, PlayerControlled, Renderable, ScoreResource, StartupSequence,
SystemTimings,
};
use crate::texture::animated::{DirectionalTiles, TileSequence};
use crate::texture::sprite::AtlasTile;
use crate::texture::sprites::{FrightenedColor, GameSprite, GhostSprite, MazeSprite, PacmanSprite};
use bevy_ecs::event::EventRegistry;
use bevy_ecs::observer::Trigger;
use bevy_ecs::schedule::common_conditions::resource_changed;
use bevy_ecs::schedule::{Condition, IntoScheduleConfigs, Schedule, SystemSet};
use bevy_ecs::system::{Local, ResMut};
use bevy_ecs::world::World;
use sdl2::event::EventType;
use sdl2::image::LoadTexture;
use sdl2::render::{BlendMode, Canvas, ScaleMode, TextureCreator};
use sdl2::rwops::RWops;
use sdl2::video::{Window, WindowContext};
use sdl2::EventPump;
use crate::{
asset::{get_asset_bytes, Asset},
events::GameCommand,
map::render::MapRenderer,
systems::debug::{BatchedLinesResource, TtfAtlasResource},
systems::input::{Bindings, CursorPosition},
texture::sprite::{AtlasMapper, SpriteAtlas},
};
/// System set for all rendering systems to ensure they run after gameplay logic
#[derive(SystemSet, Debug, Hash, PartialEq, Eq, Clone)]
pub struct RenderSet;
/// Core game state manager built on the Bevy ECS architecture.
///
/// Orchestrates all game systems through a centralized `World` containing entities,
/// components, and resources, while a `Schedule` defines system execution order.
/// Handles initialization of graphics resources, entity spawning, and per-frame
/// game logic coordination. SDL2 resources are stored as `NonSend` to respect
/// thread safety requirements while integrating with the ECS.
pub struct Game {
pub world: World,
pub schedule: Schedule,
}
impl Game {
/// Initializes the complete game state including ECS world, graphics, and entity spawning.
///
/// Performs extensive setup: creates render targets and debug textures, loads and parses
/// the sprite atlas, renders the static map to a cached texture, builds the navigation
/// graph from the board layout, spawns Pac-Man with directional animations, creates
/// all four ghosts with their AI behavior, and places collectible items throughout
/// the maze. Registers event types and configures the system execution schedule.
///
/// # Arguments
///
/// * `canvas` - SDL2 rendering context with static lifetime for ECS storage
/// * `texture_creator` - SDL2 texture factory for creating render targets
/// * `event_pump` - SDL2 event polling interface for input handling
///
/// # Errors
///
/// Returns `GameError` for SDL2 failures, asset loading problems, atlas parsing
/// errors, or entity initialization issues.
pub fn new(
mut canvas: Canvas<Window>,
ttf_context: sdl2::ttf::Sdl2TtfContext,
texture_creator: TextureCreator<WindowContext>,
mut event_pump: EventPump,
) -> GameResult<Game> {
Self::disable_sdl_events(&mut event_pump);
let (backbuffer, mut map_texture, debug_texture, ttf_atlas) =
Self::setup_textures_and_fonts(&mut canvas, &texture_creator, ttf_context)?;
let audio = crate::audio::Audio::new();
let (mut atlas, map_tiles) = Self::load_atlas_and_map_tiles(&texture_creator)?;
canvas
.with_texture_canvas(&mut map_texture, |map_canvas| {
MapRenderer::render_map(map_canvas, &mut atlas, &map_tiles);
})
.map_err(|e| GameError::Sdl(e.to_string()))?;
let map = Map::new(constants::RAW_BOARD)?;
let (player_animation, player_start_sprite) = Self::create_player_animations(&atlas)?;
let player_bundle = Self::create_player_bundle(&map, player_animation, player_start_sprite);
let mut world = World::default();
let mut schedule = Schedule::default();
Self::setup_ecs(&mut world);
Self::insert_resources(
&mut world,
map,
audio,
atlas,
event_pump,
canvas,
backbuffer,
map_texture,
debug_texture,
ttf_atlas,
)?;
Self::configure_schedule(&mut schedule);
world.spawn(player_bundle).insert((Frozen, Hidden));
Self::spawn_ghosts(&mut world)?;
Self::spawn_items(&mut world)?;
Ok(Game { world, schedule })
}
fn disable_sdl_events(event_pump: &mut EventPump) {
for event_type in [
EventType::JoyAxisMotion,
EventType::JoyBallMotion,
EventType::JoyHatMotion,
EventType::JoyButtonDown,
EventType::JoyButtonUp,
EventType::JoyDeviceAdded,
EventType::JoyDeviceRemoved,
EventType::ControllerAxisMotion,
EventType::ControllerButtonDown,
EventType::ControllerButtonUp,
EventType::ControllerDeviceAdded,
EventType::ControllerDeviceRemoved,
EventType::ControllerDeviceRemapped,
EventType::ControllerTouchpadDown,
EventType::ControllerTouchpadMotion,
EventType::ControllerTouchpadUp,
EventType::DollarGesture,
EventType::DollarRecord,
EventType::MultiGesture,
EventType::ClipboardUpdate,
EventType::DropFile,
EventType::DropText,
EventType::DropBegin,
EventType::DropComplete,
EventType::AudioDeviceAdded,
EventType::AudioDeviceRemoved,
EventType::RenderTargetsReset,
EventType::RenderDeviceReset,
EventType::LocaleChanged,
EventType::TextInput,
EventType::TextEditing,
EventType::Display,
EventType::MouseWheel,
EventType::AppDidEnterBackground,
EventType::AppWillEnterForeground,
EventType::AppWillEnterBackground,
EventType::AppDidEnterForeground,
EventType::AppLowMemory,
EventType::AppTerminating,
EventType::User,
EventType::Last,
] {
event_pump.disable_event(event_type);
}
}
fn setup_textures_and_fonts(
canvas: &mut Canvas<Window>,
texture_creator: &TextureCreator<WindowContext>,
ttf_context: sdl2::ttf::Sdl2TtfContext,
) -> GameResult<(
sdl2::render::Texture,
sdl2::render::Texture,
sdl2::render::Texture,
crate::texture::ttf::TtfAtlas,
)> {
let mut backbuffer = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
backbuffer.set_scale_mode(ScaleMode::Nearest);
let mut map_texture = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
map_texture.set_scale_mode(ScaleMode::Nearest);
let output_size = constants::LARGE_CANVAS_SIZE;
let mut debug_texture = texture_creator
.create_texture_target(Some(sdl2::pixels::PixelFormatEnum::ARGB8888), output_size.x, output_size.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
debug_texture.set_blend_mode(BlendMode::Blend);
debug_texture.set_scale_mode(ScaleMode::Nearest);
let font_data: &'static [u8] = get_asset_bytes(Asset::Font)?.to_vec().leak();
let font_asset = RWops::from_bytes(font_data).map_err(|_| GameError::Sdl("Failed to load font".to_string()))?;
let debug_font = ttf_context
.load_font_from_rwops(font_asset, constants::ui::DEBUG_FONT_SIZE)
.map_err(|e| GameError::Sdl(e.to_string()))?;
let mut ttf_atlas = crate::texture::ttf::TtfAtlas::new(texture_creator, &debug_font)?;
ttf_atlas.populate_atlas(canvas, texture_creator, &debug_font)?;
Ok((backbuffer, map_texture, debug_texture, ttf_atlas))
}
fn load_atlas_and_map_tiles(texture_creator: &TextureCreator<WindowContext>) -> GameResult<(SpriteAtlas, Vec<AtlasTile>)> {
let atlas_bytes = get_asset_bytes(Asset::AtlasImage)?;
let atlas_texture = texture_creator.load_texture_bytes(&atlas_bytes).map_err(|e| {
if e.to_string().contains("format") || e.to_string().contains("unsupported") {
GameError::Texture(crate::error::TextureError::InvalidFormat(format!(
"Unsupported texture format: {e}"
)))
} else {
GameError::Texture(crate::error::TextureError::LoadFailed(e.to_string()))
}
})?;
let atlas_mapper = AtlasMapper {
frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
};
let atlas = SpriteAtlas::new(atlas_texture, atlas_mapper);
let mut map_tiles = Vec::with_capacity(35);
for i in 0..35 {
let tile_name = GameSprite::Maze(MazeSprite::Tile(i)).to_path();
let tile = atlas.get_tile(&tile_name)?;
map_tiles.push(tile);
}
Ok((atlas, map_tiles))
}
fn create_player_animations(atlas: &SpriteAtlas) -> GameResult<(DirectionalAnimation, AtlasTile)> {
let up_moving_tiles = [
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Up, 0)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Up, 1)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?,
];
let down_moving_tiles = [
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Down, 0)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Down, 1)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?,
];
let left_moving_tiles = [
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Left, 0)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Left, 1)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?,
];
let right_moving_tiles = [
SpriteAtlas::get_tile(
atlas,
&GameSprite::Pacman(PacmanSprite::Moving(Direction::Right, 0)).to_path(),
)?,
SpriteAtlas::get_tile(
atlas,
&GameSprite::Pacman(PacmanSprite::Moving(Direction::Right, 1)).to_path(),
)?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?,
];
let moving_tiles = DirectionalTiles::new(
TileSequence::new(&up_moving_tiles),
TileSequence::new(&down_moving_tiles),
TileSequence::new(&left_moving_tiles),
TileSequence::new(&right_moving_tiles),
);
let up_stopped_tile =
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Up, 1)).to_path())?;
let down_stopped_tile =
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Down, 1)).to_path())?;
let left_stopped_tile =
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Left, 1)).to_path())?;
let right_stopped_tile = SpriteAtlas::get_tile(
atlas,
&GameSprite::Pacman(PacmanSprite::Moving(Direction::Right, 1)).to_path(),
)?;
let stopped_tiles = DirectionalTiles::new(
TileSequence::new(&[up_stopped_tile]),
TileSequence::new(&[down_stopped_tile]),
TileSequence::new(&[left_stopped_tile]),
TileSequence::new(&[right_stopped_tile]),
);
let player_animation = DirectionalAnimation::new(moving_tiles, stopped_tiles, 5);
let player_start_sprite = SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?;
Ok((player_animation, player_start_sprite))
}
fn create_player_bundle(map: &Map, player_animation: DirectionalAnimation, player_start_sprite: AtlasTile) -> PlayerBundle {
PlayerBundle {
player: PlayerControlled,
position: Position::Stopped {
node: map.start_positions.pacman,
},
velocity: Velocity {
speed: constants::mechanics::PLAYER_SPEED,
direction: Direction::Left,
},
movement_modifiers: MovementModifiers::default(),
buffered_direction: BufferedDirection::None,
sprite: Renderable {
sprite: player_start_sprite,
layer: 0,
},
directional_animation: player_animation,
entity_type: EntityType::Player,
collider: Collider {
size: constants::collider::PLAYER_GHOST_SIZE,
},
pacman_collider: PacmanCollider,
}
}
fn setup_ecs(world: &mut World) {
EventRegistry::register_event::<GameError>(world);
EventRegistry::register_event::<GameEvent>(world);
EventRegistry::register_event::<AudioEvent>(world);
world.add_observer(
|event: Trigger<GameEvent>, mut state: ResMut<GlobalState>, _score: ResMut<ScoreResource>| {
if matches!(*event, GameEvent::Command(GameCommand::Exit)) {
state.exit = true;
}
},
);
}
#[allow(clippy::too_many_arguments)]
fn insert_resources(
world: &mut World,
map: Map,
audio: crate::audio::Audio,
atlas: SpriteAtlas,
event_pump: EventPump,
canvas: Canvas<Window>,
backbuffer: sdl2::render::Texture,
map_texture: sdl2::render::Texture,
debug_texture: sdl2::render::Texture,
ttf_atlas: crate::texture::ttf::TtfAtlas,
) -> GameResult<()> {
world.insert_non_send_resource(atlas);
world.insert_resource(Self::create_ghost_animations(world.non_send_resource::<SpriteAtlas>())?);
world.insert_resource(BatchedLinesResource::new(&map, constants::LARGE_SCALE));
world.insert_resource(map);
world.insert_resource(GlobalState { exit: false });
world.insert_resource(ScoreResource(0));
world.insert_resource(SystemTimings::default());
world.insert_resource(Timing::default());
world.insert_resource(Bindings::default());
world.insert_resource(DeltaTime { seconds: 0.0, ticks: 0 });
world.insert_resource(RenderDirty::default());
world.insert_resource(DebugState::default());
world.insert_resource(AudioState::default());
world.insert_resource(CursorPosition::default());
world.insert_resource(TouchState::default());
world.insert_resource(StartupSequence::new(
constants::startup::STARTUP_FRAMES,
constants::startup::STARTUP_TICKS_PER_FRAME,
));
world.insert_non_send_resource(event_pump);
world.insert_non_send_resource::<&mut Canvas<Window>>(Box::leak(Box::new(canvas)));
world.insert_non_send_resource(BackbufferResource(backbuffer));
world.insert_non_send_resource(MapTextureResource(map_texture));
world.insert_non_send_resource(DebugTextureResource(debug_texture));
world.insert_non_send_resource(TtfAtlasResource(ttf_atlas));
world.insert_non_send_resource(AudioResource(audio));
Ok(())
}
fn configure_schedule(schedule: &mut Schedule) {
let input_system = profile(SystemId::Input, systems::input::input_system);
let player_control_system = profile(SystemId::PlayerControls, systems::player_control_system);
let player_movement_system = profile(SystemId::PlayerMovement, systems::player_movement_system);
let startup_stage_system = profile(SystemId::Stage, systems::startup_stage_system);
let player_tunnel_slowdown_system = profile(SystemId::PlayerMovement, systems::player::player_tunnel_slowdown_system);
let ghost_movement_system = profile(SystemId::Ghost, ghost_movement_system);
let collision_system = profile(SystemId::Collision, collision_system);
let ghost_collision_system = profile(SystemId::GhostCollision, ghost_collision_system);
let item_system = profile(SystemId::Item, item_system);
let audio_system = profile(SystemId::Audio, audio_system);
let blinking_system = profile(SystemId::Blinking, blinking_system);
let directional_render_system = profile(SystemId::DirectionalRender, directional_render_system);
let linear_render_system = profile(SystemId::LinearRender, linear_render_system);
let dirty_render_system = profile(SystemId::DirtyRender, dirty_render_system);
let hud_render_system = profile(SystemId::HudRender, hud_render_system);
let present_system = profile(SystemId::Present, present_system);
let unified_ghost_state_system = profile(SystemId::GhostStateAnimation, ghost_state_system);
let forced_dirty_system = |mut dirty: ResMut<RenderDirty>| {
dirty.0 = true;
};
schedule.add_systems((
forced_dirty_system.run_if(resource_changed::<ScoreResource>.or(resource_changed::<StartupSequence>)),
(
input_system.run_if(|mut local: Local<u8>| {
*local = local.wrapping_add(1u8);
// run every nth frame
*local % 2 == 0
}),
player_control_system,
player_movement_system,
startup_stage_system,
)
.chain(),
player_tunnel_slowdown_system,
ghost_movement_system,
profile(SystemId::EatenGhost, eaten_ghost_system),
unified_ghost_state_system,
(collision_system, ghost_collision_system, item_system).chain(),
audio_system,
blinking_system,
(
directional_render_system,
linear_render_system,
dirty_render_system,
combined_render_system,
hud_render_system,
touch_ui_render_system,
present_system,
)
.chain(),
));
}
fn spawn_items(world: &mut World) -> GameResult<()> {
let pellet_sprite = SpriteAtlas::get_tile(
world.non_send_resource::<SpriteAtlas>(),
&GameSprite::Maze(MazeSprite::Pellet).to_path(),
)?;
let energizer_sprite = SpriteAtlas::get_tile(
world.non_send_resource::<SpriteAtlas>(),
&GameSprite::Maze(MazeSprite::Energizer).to_path(),
)?;
let nodes: Vec<(NodeId, EntityType, AtlasTile, f32)> = world
.resource::<Map>()
.iter_nodes()
.filter_map(|(id, tile)| match tile {
MapTile::Pellet => Some((*id, EntityType::Pellet, pellet_sprite, constants::collider::PELLET_SIZE)),
MapTile::PowerPellet => Some((
*id,
EntityType::PowerPellet,
energizer_sprite,
constants::collider::POWER_PELLET_SIZE,
)),
_ => None,
})
.collect();
for (id, item_type, sprite, size) in nodes {
let mut item = world.spawn(ItemBundle {
position: Position::Stopped { node: id },
sprite: Renderable { sprite, layer: 1 },
entity_type: item_type,
collider: Collider { size },
item_collider: ItemCollider,
});
if item_type == EntityType::PowerPellet {
item.insert((Frozen, Blinking::new(constants::ui::POWER_PELLET_BLINK_RATE)));
}
}
Ok(())
}
/// Creates and spawns all four ghosts with unique AI personalities and directional animations.
///
/// # Errors
///
/// Returns `GameError::Texture` if any ghost sprite cannot be found in the atlas,
/// typically indicating missing or misnamed sprite files.
fn spawn_ghosts(world: &mut World) -> GameResult<()> {
// Extract the data we need first to avoid borrow conflicts
let ghost_start_positions = {
let map = world.resource::<Map>();
[
(Ghost::Blinky, map.start_positions.blinky),
(Ghost::Pinky, map.start_positions.pinky),
(Ghost::Inky, map.start_positions.inky),
(Ghost::Clyde, map.start_positions.clyde),
]
};
for (ghost_type, start_node) in ghost_start_positions {
// Create the ghost bundle in a separate scope to manage borrows
let ghost = {
let animations = *world.resource::<GhostAnimations>().get_normal(&ghost_type).unwrap();
let atlas = world.non_send_resource::<SpriteAtlas>();
let sprite_path = GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Left, 0)).to_path();
GhostBundle {
ghost: ghost_type,
position: Position::Stopped { node: start_node },
velocity: Velocity {
speed: ghost_type.base_speed(),
direction: Direction::Left,
},
sprite: Renderable {
sprite: SpriteAtlas::get_tile(atlas, &sprite_path)?,
layer: 0,
},
directional_animation: animations,
entity_type: EntityType::Ghost,
collider: Collider {
size: constants::collider::PLAYER_GHOST_SIZE,
},
ghost_collider: GhostCollider,
ghost_state: GhostState::Normal,
last_animation_state: LastAnimationState(GhostAnimation::Normal),
}
};
world.spawn(ghost).insert((Frozen, Hidden));
}
Ok(())
}
fn create_ghost_animations(atlas: &SpriteAtlas) -> GameResult<GhostAnimations> {
// Eaten (eyes) animations - single tile per direction
let up_eye = atlas.get_tile(&GameSprite::Ghost(GhostSprite::Eyes(Direction::Up)).to_path())?;
let down_eye = atlas.get_tile(&GameSprite::Ghost(GhostSprite::Eyes(Direction::Down)).to_path())?;
let left_eye = atlas.get_tile(&GameSprite::Ghost(GhostSprite::Eyes(Direction::Left)).to_path())?;
let right_eye = atlas.get_tile(&GameSprite::Ghost(GhostSprite::Eyes(Direction::Right)).to_path())?;
let eyes_tiles = DirectionalTiles::new(
TileSequence::new(&[up_eye]),
TileSequence::new(&[down_eye]),
TileSequence::new(&[left_eye]),
TileSequence::new(&[right_eye]),
);
let eyes = DirectionalAnimation::new(eyes_tiles, eyes_tiles, animation::GHOST_EATEN_SPEED);
let mut animations = HashMap::new();
for ghost_type in [Ghost::Blinky, Ghost::Pinky, Ghost::Inky, Ghost::Clyde] {
// Normal animations - create directional tiles for each direction
let up_tiles = [
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Up, 0)).to_path())?,
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Up, 1)).to_path())?,
];
let down_tiles = [
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Down, 0)).to_path())?,
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Down, 1)).to_path())?,
];
let left_tiles = [
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Left, 0)).to_path())?,
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Left, 1)).to_path())?,
];
let right_tiles = [
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Right, 0)).to_path())?,
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Right, 1)).to_path())?,
];
let normal_moving = DirectionalTiles::new(
TileSequence::new(&up_tiles),
TileSequence::new(&down_tiles),
TileSequence::new(&left_tiles),
TileSequence::new(&right_tiles),
);
let normal = DirectionalAnimation::new(normal_moving, normal_moving, animation::GHOST_NORMAL_SPEED);
animations.insert(ghost_type, normal);
}
let (frightened, frightened_flashing) = {
// Load frightened animation tiles (same for all ghosts)
let frightened_blue_a =
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Frightened(FrightenedColor::Blue, 0)).to_path())?;
let frightened_blue_b =
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Frightened(FrightenedColor::Blue, 1)).to_path())?;
let frightened_white_a =
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Frightened(FrightenedColor::White, 0)).to_path())?;
let frightened_white_b =
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Frightened(FrightenedColor::White, 1)).to_path())?;
(
LinearAnimation::new(
TileSequence::new(&[frightened_blue_a, frightened_blue_b]),
animation::GHOST_NORMAL_SPEED,
),
LinearAnimation::new(
TileSequence::new(&[frightened_blue_a, frightened_white_a, frightened_blue_b, frightened_white_b]),
animation::GHOST_FRIGHTENED_SPEED,
),
)
};
Ok(GhostAnimations::new(animations, eyes, frightened, frightened_flashing))
}
/// Executes one frame of game logic by running all scheduled ECS systems.
///
/// Updates the world's delta time resource and runs the complete system pipeline:
/// input processing, entity movement, collision detection, item collection,
/// audio playback, animation updates, and rendering. Each system operates on
/// relevant entities and modifies world state, with the schedule ensuring
/// proper execution order and data dependencies.
///
/// # Arguments
///
/// * `dt` - Frame delta time in seconds for time-based animations and movement
///
/// # Returns
///
/// `true` if the game should terminate (exit command received), `false` to continue
pub fn tick(&mut self, dt: f32) -> bool {
self.world.insert_resource(DeltaTime { seconds: dt, ticks: 1 });
// Note: We don't need to read the current tick here since we increment it after running systems
// Measure total frame time including all systems
let start = std::time::Instant::now();
self.schedule.run(&mut self.world);
let total_duration = start.elapsed();
// Increment tick counter and record the total timing
if let (Some(timings), Some(timing)) = (
self.world.get_resource::<systems::profiling::SystemTimings>(),
self.world.get_resource::<Timing>(),
) {
let new_tick = timing.increment_tick();
timings.add_total_timing(total_duration, new_tick);
}
let state = self
.world
.get_resource::<GlobalState>()
.expect("GlobalState could not be acquired");
state.exit
}
// /// Renders pathfinding debug lines from each ghost to Pac-Man.
// ///
// /// Each ghost's path is drawn in its respective color with a small offset
// /// to prevent overlapping lines.
// fn render_pathfinding_debug<T: sdl2::render::RenderTarget>(&self, canvas: &mut Canvas<T>) -> GameResult<()> {
// let pacman_node = self.state.pacman.current_node_id();
// for ghost in self.state.ghosts.iter() {
// if let Ok(path) = ghost.calculate_path_to_target(&self.state.map.graph, pacman_node) {
// if path.len() < 2 {
// continue; // Skip if path is too short
// }
// // Set the ghost's color
// canvas.set_draw_color(ghost.debug_color());
// // Calculate offset based on ghost index to prevent overlapping lines
// // let offset = (i as f32) * 2.0 - 3.0; // Offset range: -3.0 to 3.0
// // Calculate a consistent offset direction for the entire path
// // let first_node = self.map.graph.get_node(path[0]).unwrap();
// // let last_node = self.map.graph.get_node(path[path.len() - 1]).unwrap();
// // Use the overall direction from start to end to determine the perpendicular offset
// let offset = match ghost.ghost_type {
// GhostType::Blinky => glam::Vec2::new(0.25, 0.5),
// GhostType::Pinky => glam::Vec2::new(-0.25, -0.25),
// GhostType::Inky => glam::Vec2::new(0.5, -0.5),
// GhostType::Clyde => glam::Vec2::new(-0.5, 0.25),
// } * 5.0;
// // Calculate offset positions for all nodes using the same perpendicular direction
// let mut offset_positions = Vec::new();
// for &node_id in &path {
// let node = self
// .state
// .map
// .graph
// .get_node(node_id)
// .ok_or(crate::error::EntityError::NodeNotFound(node_id))?;
// let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
// offset_positions.push(pos + offset);
// }
// // Draw lines between the offset positions
// for window in offset_positions.windows(2) {
// if let (Some(from), Some(to)) = (window.first(), window.get(1)) {
// // Skip if the distance is too far (used for preventing lines between tunnel portals)
// if from.distance_squared(*to) > (crate::constants::CELL_SIZE * 16).pow(2) as f32 {
// continue;
// }
// // Draw the line
// canvas
// .draw_line((from.x as i32, from.y as i32), (to.x as i32, to.y as i32))
// .map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
// }
// }
// }
// }
// Ok(())
// }
}

View File

@@ -1,631 +0,0 @@
//! This module contains the main game logic and state.
include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
use crate::constants::CANVAS_SIZE;
use crate::entity::direction::Direction;
use crate::error::{GameError, GameResult, TextureError};
use crate::events::GameEvent;
use crate::map::builder::Map;
use crate::systems::blinking::Blinking;
use crate::systems::movement::{Movable, MovementState, Position};
use crate::systems::{
blinking::blinking_system,
collision::collision_system,
components::{
Collider, CollisionLayer, DeltaTime, DirectionalAnimated, EntityType, GlobalState, ItemBundle, ItemCollider,
PacmanCollider, PlayerBundle, PlayerControlled, RenderDirty, Renderable, Score, ScoreResource,
},
control::player_system,
debug::{debug_render_system, DebugState, DebugTextureResource},
input::input_system,
movement::movement_system,
profiling::{profile, SystemTimings},
render::{directional_render_system, dirty_render_system, render_system, BackbufferResource, MapTextureResource},
};
use crate::texture::animated::AnimatedTexture;
use bevy_ecs::schedule::IntoScheduleConfigs;
use bevy_ecs::system::NonSendMut;
use bevy_ecs::{
event::EventRegistry,
observer::Trigger,
schedule::Schedule,
system::{Res, ResMut},
world::World,
};
use sdl2::image::LoadTexture;
use sdl2::render::{Canvas, ScaleMode, TextureCreator};
use sdl2::video::{Window, WindowContext};
use sdl2::EventPump;
use crate::{
asset::{get_asset_bytes, Asset},
constants,
events::GameCommand,
map::render::MapRenderer,
systems::input::Bindings,
texture::sprite::{AtlasMapper, SpriteAtlas},
};
pub mod state;
/// The `Game` struct is the main entry point for the game.
///
/// It contains the game's state and logic, and is responsible for
/// handling user input, updating the game state, and rendering the game.
pub struct Game {
pub world: World,
pub schedule: Schedule,
}
impl Game {
pub fn new(
canvas: &'static mut Canvas<Window>,
texture_creator: &'static mut TextureCreator<WindowContext>,
event_pump: &'static mut EventPump,
) -> GameResult<Game> {
let mut world = World::default();
let mut schedule = Schedule::default();
EventRegistry::register_event::<GameError>(&mut world);
EventRegistry::register_event::<GameEvent>(&mut world);
let mut backbuffer = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
backbuffer.set_scale_mode(ScaleMode::Nearest);
let mut map_texture = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
map_texture.set_scale_mode(ScaleMode::Nearest);
// Create debug texture at output resolution for crisp debug rendering
let output_size = canvas.output_size().unwrap();
let mut debug_texture = texture_creator
.create_texture_target(None, output_size.0, output_size.1)
.map_err(|e| GameError::Sdl(e.to_string()))?;
debug_texture.set_scale_mode(ScaleMode::Nearest);
// Load atlas and create map texture
let atlas_bytes = get_asset_bytes(Asset::Atlas)?;
let atlas_texture = texture_creator.load_texture_bytes(&atlas_bytes).map_err(|e| {
if e.to_string().contains("format") || e.to_string().contains("unsupported") {
GameError::Texture(crate::error::TextureError::InvalidFormat(format!(
"Unsupported texture format: {e}"
)))
} else {
GameError::Texture(crate::error::TextureError::LoadFailed(e.to_string()))
}
})?;
let atlas_mapper = AtlasMapper {
frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
};
let mut atlas = SpriteAtlas::new(atlas_texture, atlas_mapper);
// Create map tiles
let mut map_tiles = Vec::with_capacity(35);
for i in 0..35 {
let tile_name = format!("maze/tiles/{}.png", i);
let tile = atlas.get_tile(&tile_name).unwrap();
map_tiles.push(tile);
}
// Render map to texture
canvas
.with_texture_canvas(&mut map_texture, |map_canvas| {
MapRenderer::render_map(map_canvas, &mut atlas, &map_tiles);
})
.map_err(|e| GameError::Sdl(e.to_string()))?;
let map = Map::new(constants::RAW_BOARD)?;
let pacman_start_node = map.start_positions.pacman;
let mut textures = [None, None, None, None];
let mut stopped_textures = [None, None, None, None];
for direction in Direction::DIRECTIONS {
let moving_prefix = match direction {
Direction::Up => "pacman/up",
Direction::Down => "pacman/down",
Direction::Left => "pacman/left",
Direction::Right => "pacman/right",
};
let moving_tiles = vec![
SpriteAtlas::get_tile(&atlas, &format!("{moving_prefix}_a.png"))
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_a.png"))))?,
SpriteAtlas::get_tile(&atlas, &format!("{moving_prefix}_b.png"))
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?,
SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
];
let stopped_tiles = vec![SpriteAtlas::get_tile(&atlas, &format!("{moving_prefix}_b.png"))
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?];
textures[direction.as_usize()] = Some(AnimatedTexture::new(moving_tiles, 0.08)?);
stopped_textures[direction.as_usize()] = Some(AnimatedTexture::new(stopped_tiles, 0.1)?);
}
let player = PlayerBundle {
player: PlayerControlled,
position: Position {
node: pacman_start_node,
edge_progress: None,
},
movement_state: MovementState::Stopped,
movable: Movable {
speed: 1.15,
current_direction: Direction::Left,
requested_direction: Some(Direction::Left), // Start moving left immediately
},
sprite: Renderable {
sprite: SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
layer: 0,
visible: true,
},
directional_animated: DirectionalAnimated {
textures,
stopped_textures,
},
entity_type: EntityType::Player,
collider: Collider {
size: constants::CELL_SIZE as f32 * 1.1,
layer: CollisionLayer::PACMAN,
},
pacman_collider: PacmanCollider,
};
world.insert_non_send_resource(atlas);
world.insert_non_send_resource(event_pump);
world.insert_non_send_resource(canvas);
world.insert_non_send_resource(BackbufferResource(backbuffer));
world.insert_non_send_resource(MapTextureResource(map_texture));
world.insert_non_send_resource(DebugTextureResource(debug_texture));
world.insert_resource(map);
world.insert_resource(GlobalState { exit: false });
world.insert_resource(ScoreResource(0));
world.insert_resource(SystemTimings::default());
world.insert_resource(Bindings::default());
world.insert_resource(DeltaTime(0f32));
world.insert_resource(RenderDirty::default());
world.insert_resource(DebugState::default());
world.add_observer(
|event: Trigger<GameEvent>, mut state: ResMut<GlobalState>, _score: ResMut<ScoreResource>| match *event {
GameEvent::Command(command) => match command {
GameCommand::Exit => {
state.exit = true;
}
_ => {}
},
GameEvent::Collision(_a, _b) => {}
},
);
schedule.add_systems(
(
profile("input", input_system),
profile("player", player_system),
profile("movement", movement_system),
profile("collision", collision_system),
profile("blinking", blinking_system),
profile("directional_render", directional_render_system),
profile("dirty_render", dirty_render_system),
profile("render", render_system),
profile("debug_render", debug_render_system),
profile(
"present",
|mut canvas: NonSendMut<&mut Canvas<Window>>,
backbuffer: NonSendMut<BackbufferResource>,
debug_state: Res<DebugState>,
mut dirty: ResMut<RenderDirty>| {
if dirty.0 {
// Only copy backbuffer to main canvas if debug rendering is off
// (debug rendering draws directly to main canvas)
if *debug_state == DebugState::Off {
canvas.copy(&backbuffer.0, None, None).unwrap();
}
dirty.0 = false;
canvas.present();
}
},
),
)
.chain(),
);
// Spawn player
world.spawn(player);
// Spawn items
let pellet_sprite = SpriteAtlas::get_tile(world.non_send_resource::<SpriteAtlas>(), "maze/pellet.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("maze/pellet.png".to_string())))?;
let energizer_sprite = SpriteAtlas::get_tile(world.non_send_resource::<SpriteAtlas>(), "maze/energizer.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("maze/energizer.png".to_string())))?;
let nodes: Vec<_> = world.resource::<Map>().iter_nodes().map(|(id, tile)| (*id, *tile)).collect();
for (node_id, tile) in nodes {
let (item_type, score, sprite, size) = match tile {
crate::constants::MapTile::Pellet => (EntityType::Pellet, 10, pellet_sprite, constants::CELL_SIZE as f32 * 0.2),
crate::constants::MapTile::PowerPellet => (
EntityType::PowerPellet,
50,
energizer_sprite,
constants::CELL_SIZE as f32 * 0.9,
),
_ => continue,
};
let mut item = world.spawn(ItemBundle {
position: Position {
node: node_id,
edge_progress: None,
},
sprite: Renderable {
sprite,
layer: 1,
visible: true,
},
entity_type: item_type,
score: Score(score),
collider: Collider {
size,
layer: CollisionLayer::ITEM,
},
item_collider: ItemCollider,
});
if item_type == EntityType::PowerPellet {
item.insert(Blinking {
timer: 0.0,
interval: 0.2,
});
}
}
Ok(Game { world, schedule })
}
// fn handle_command(&mut self, command: crate::input::commands::GameCommand) {
// use crate::input::commands::GameCommand;
// match command {
// GameCommand::MovePlayer(direction) => {
// self.state.pacman.set_next_direction(direction);
// }
// GameCommand::ToggleDebug => {
// self.toggle_debug_mode();
// }
// GameCommand::MuteAudio => {
// let is_muted = self.state.audio.is_muted();
// self.state.audio.set_mute(!is_muted);
// }
// GameCommand::ResetLevel => {
// if let Err(e) = self.reset_game_state() {
// tracing::error!("Failed to reset game state: {}", e);
// }
// }
// GameCommand::TogglePause => {
// self.state.paused = !self.state.paused;
// }
// GameCommand::Exit => {}
// }
// }
// fn process_events(&mut self) {
// while let Some(event) = self.state.event_queue.pop_front() {
// match event {
// GameEvent::Command(command) => self.handle_command(command),
// }
// }
// /// Resets the game state, randomizing ghost positions and resetting Pac-Man
// fn reset_game_state(&mut self) -> GameResult<()> {
// let pacman_start_node = self.state.map.start_positions.pacman;
// self.state.pacman = Pacman::new(&self.state.map.graph, pacman_start_node, &self.state.atlas)?;
// // Reset items
// self.state.items = self.state.map.generate_items(&self.state.atlas)?;
// // Randomize ghost positions
// let ghost_types = [GhostType::Blinky, GhostType::Pinky, GhostType::Inky, GhostType::Clyde];
// let mut rng = SmallRng::from_os_rng();
// for (i, ghost) in self.state.ghosts.iter_mut().enumerate() {
// let random_node = rng.random_range(0..self.state.map.graph.node_count());
// *ghost = Ghost::new(&self.state.map.graph, random_node, ghost_types[i], &self.state.atlas)?;
// }
// // Reset collision system
// self.state.collision_system = CollisionSystem::default();
// // Re-register Pac-Man
// self.state.pacman_id = self.state.collision_system.register_entity(self.state.pacman.position());
// // Re-register items
// self.state.item_ids.clear();
// for item in &self.state.items {
// let item_id = self.state.collision_system.register_entity(item.position());
// self.state.item_ids.push(item_id);
// }
// // Re-register ghosts
// self.state.ghost_ids.clear();
// for ghost in &self.state.ghosts {
// let ghost_id = self.state.collision_system.register_entity(ghost.position());
// self.state.ghost_ids.push(ghost_id);
// }
// Ok(())
// }
/// Ticks the game state.
///
/// Returns true if the game should exit.
pub fn tick(&mut self, dt: f32) -> bool {
self.world.insert_resource(DeltaTime(dt));
// Run all systems
self.schedule.run(&mut self.world);
let state = self
.world
.get_resource::<GlobalState>()
.expect("GlobalState could not be acquired");
return state.exit;
// // Process any events that have been posted (such as unpausing)
// self.process_events();
// // If the game is paused, we don't need to do anything beyond returning
// if self.state.paused {
// return false;
// }
// self.schedule.run(&mut self.world);
// self.state.pacman.tick(dt, &self.state.map.graph);
// // Update all ghosts
// for ghost in &mut self.state.ghosts {
// ghost.tick(dt, &self.state.map.graph);
// }
// // Update collision system positions
// self.update_collision_positions();
// // Check for collisions
// self.check_collisions();
}
// /// Toggles the debug mode on and off.
// ///
// /// When debug mode is enabled, the game will render additional information
// /// that is useful for debugging, such as the collision grid and entity paths.
// pub fn toggle_debug_mode(&mut self) {
// self.state.debug_mode = !self.state.debug_mode;
// }
// fn update_collision_positions(&mut self) {
// // Update Pac-Man's position
// self.state
// .collision_system
// .update_position(self.state.pacman_id, self.state.pacman.position());
// // Update ghost positions
// for (ghost, &ghost_id) in self.state.ghosts.iter().zip(&self.state.ghost_ids) {
// self.state.collision_system.update_position(ghost_id, ghost.position());
// }
// }
// fn check_collisions(&mut self) {
// // Check Pac-Man vs Items
// let potential_collisions = self
// .state
// .collision_system
// .potential_collisions(&self.state.pacman.position());
// for entity_id in potential_collisions {
// if entity_id != self.state.pacman_id {
// // Check if this is an item collision
// if let Some(item_index) = self.find_item_by_id(entity_id) {
// let item = &mut self.state.items[item_index];
// if !item.is_collected() {
// item.collect();
// self.state.score += item.get_score();
// self.state.audio.eat();
// // Handle energizer effects
// if matches!(item.item_type, crate::entity::item::ItemType::Energizer) {
// // TODO: Make ghosts frightened
// tracing::info!("Energizer collected! Ghosts should become frightened.");
// }
// }
// }
// // Check if this is a ghost collision
// if let Some(_ghost_index) = self.find_ghost_by_id(entity_id) {
// // TODO: Handle Pac-Man being eaten by ghost
// tracing::info!("Pac-Man collided with ghost!");
// }
// }
// }
// }
// fn find_item_by_id(&self, entity_id: EntityId) -> Option<usize> {
// self.state.item_ids.iter().position(|&id| id == entity_id)
// }
// fn find_ghost_by_id(&self, entity_id: EntityId) -> Option<usize> {
// self.state.ghost_ids.iter().position(|&id| id == entity_id)
// }
// pub fn draw<T: sdl2::render::RenderTarget>(&mut self, canvas: &mut Canvas<T>, backbuffer: &mut Texture) -> GameResult<()> {
// // Only render the map texture once and cache it
// if !self.state.map_rendered {
// let mut map_texture = self
// .state
// .texture_creator
// .create_texture_target(None, constants::CANVAS_SIZE.x, constants::CANVAS_SIZE.y)
// .map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
// canvas
// .with_texture_canvas(&mut map_texture, |map_canvas| {
// let mut map_tiles = Vec::with_capacity(35);
// for i in 0..35 {
// let tile_name = format!("maze/tiles/{}.png", i);
// let tile = SpriteAtlas::get_tile(&self.state.atlas, &tile_name).unwrap();
// map_tiles.push(tile);
// }
// MapRenderer::render_map(map_canvas, &mut self.state.atlas, &mut map_tiles);
// })
// .map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
// self.state.map_texture = Some(map_texture);
// self.state.map_rendered = true;
// }
// canvas.set_draw_color(Color::BLACK);
// canvas.clear();
// if let Some(ref map_texture) = self.state.map_texture {
// canvas.copy(map_texture, None, None).unwrap();
// }
// // Render all items
// for item in &self.state.items {
// if let Err(e) = item.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
// tracing::error!("Failed to render item: {}", e);
// }
// }
// // Render all ghosts
// for ghost in &self.state.ghosts {
// if let Err(e) = ghost.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
// tracing::error!("Failed to render ghost: {}", e);
// }
// }
// if let Err(e) = self.state.pacman.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
// tracing::error!("Failed to render pacman: {}", e);
// }
// if self.state.debug_mode {
// if let Err(e) =
// self.state
// .map
// .debug_render_with_cursor(canvas, &mut self.state.text_texture, &mut self.state.atlas, cursor_pos)
// {
// tracing::error!("Failed to render debug cursor: {}", e);
// }
// self.render_pathfinding_debug(canvas)?;
// }
// self.draw_hud(canvas)?;
// canvas.present();
// Ok(())
// }
// /// Renders pathfinding debug lines from each ghost to Pac-Man.
// ///
// /// Each ghost's path is drawn in its respective color with a small offset
// /// to prevent overlapping lines.
// fn render_pathfinding_debug<T: sdl2::render::RenderTarget>(&self, canvas: &mut Canvas<T>) -> GameResult<()> {
// let pacman_node = self.state.pacman.current_node_id();
// for ghost in self.state.ghosts.iter() {
// if let Ok(path) = ghost.calculate_path_to_target(&self.state.map.graph, pacman_node) {
// if path.len() < 2 {
// continue; // Skip if path is too short
// }
// // Set the ghost's color
// canvas.set_draw_color(ghost.debug_color());
// // Calculate offset based on ghost index to prevent overlapping lines
// // let offset = (i as f32) * 2.0 - 3.0; // Offset range: -3.0 to 3.0
// // Calculate a consistent offset direction for the entire path
// // let first_node = self.map.graph.get_node(path[0]).unwrap();
// // let last_node = self.map.graph.get_node(path[path.len() - 1]).unwrap();
// // Use the overall direction from start to end to determine the perpendicular offset
// let offset = match ghost.ghost_type {
// GhostType::Blinky => glam::Vec2::new(0.25, 0.5),
// GhostType::Pinky => glam::Vec2::new(-0.25, -0.25),
// GhostType::Inky => glam::Vec2::new(0.5, -0.5),
// GhostType::Clyde => glam::Vec2::new(-0.5, 0.25),
// } * 5.0;
// // Calculate offset positions for all nodes using the same perpendicular direction
// let mut offset_positions = Vec::new();
// for &node_id in &path {
// let node = self
// .state
// .map
// .graph
// .get_node(node_id)
// .ok_or(crate::error::EntityError::NodeNotFound(node_id))?;
// let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
// offset_positions.push(pos + offset);
// }
// // Draw lines between the offset positions
// for window in offset_positions.windows(2) {
// if let (Some(from), Some(to)) = (window.first(), window.get(1)) {
// // Skip if the distance is too far (used for preventing lines between tunnel portals)
// if from.distance_squared(*to) > (crate::constants::CELL_SIZE * 16).pow(2) as f32 {
// continue;
// }
// // Draw the line
// canvas
// .draw_line((from.x as i32, from.y as i32), (to.x as i32, to.y as i32))
// .map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
// }
// }
// }
// }
// Ok(())
// }
// fn draw_hud<T: sdl2::render::RenderTarget>(&mut self, canvas: &mut Canvas<T>) -> GameResult<()> {
// let lives = 3;
// let score_text = format!("{:02}", self.state.score);
// let x_offset = 4;
// let y_offset = 2;
// let lives_offset = 3;
// let score_offset = 7 - (score_text.len() as i32);
// self.state.text_texture.set_scale(1.0);
// if let Err(e) = self.state.text_texture.render(
// canvas,
// &mut self.state.atlas,
// &format!("{lives}UP HIGH SCORE "),
// glam::UVec2::new(8 * lives_offset as u32 + x_offset, y_offset),
// ) {
// tracing::error!("Failed to render HUD text: {}", e);
// }
// if let Err(e) = self.state.text_texture.render(
// canvas,
// &mut self.state.atlas,
// &score_text,
// glam::UVec2::new(8 * score_offset as u32 + x_offset, 8 + y_offset),
// ) {
// tracing::error!("Failed to render score text: {}", e);
// }
// // Display FPS information in top-left corner
// // let fps_text = format!("FPS: {:.1} (1s) / {:.1} (10s)", self.fps_1s, self.fps_10s);
// // self.render_text_on(
// // canvas,
// // &*texture_creator,
// // &fps_text,
// // IVec2::new(10, 10),
// // Color::RGB(255, 255, 0), // Yellow color for FPS display
// // );
// Ok(())
// }
}

View File

@@ -1,153 +0,0 @@
// use std::collections::VecDeque;
// use sdl2::{
// image::LoadTexture,
// render::{Texture, TextureCreator},
// video::WindowContext,
// };
// use smallvec::SmallVec;
// use crate::{
// asset::{get_asset_bytes, Asset},
// audio::Audio,
// constants::RAW_BOARD,
// entity::{
// collision::{Collidable, CollisionSystem, EntityId},
// ghost::{Ghost, GhostType},
// item::Item,
// pacman::Pacman,
// },
// error::{GameError, GameResult, TextureError},
// game::events::GameEvent,
// map::builder::Map,
// texture::{
// sprite::{AtlasMapper, SpriteAtlas},
// text::TextTexture,
// },
// };
// include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
// /// The `GameState` struct holds all the essential data for the game.
// ///
// /// This includes the score, map, entities (Pac-Man, ghosts, items),
// /// collision system, and rendering resources. By centralizing the game's state,
// /// we can cleanly separate it from the game's logic, making it easier to manage
// /// and reason about.
// pub struct GameState {
// pub paused: bool,
// pub score: u32,
// pub map: Map,
// pub pacman: Pacman,
// pub pacman_id: EntityId,
// pub ghosts: SmallVec<[Ghost; 4]>,
// pub ghost_ids: SmallVec<[EntityId; 4]>,
// pub items: Vec<Item>,
// pub item_ids: Vec<EntityId>,
// pub debug_mode: bool,
// pub event_queue: VecDeque<GameEvent>,
// // Collision system
// pub(crate) collision_system: CollisionSystem,
// // Rendering resources
// pub(crate) atlas: SpriteAtlas,
// pub(crate) text_texture: TextTexture,
// // Audio
// pub audio: Audio,
// // Map texture pre-rendering
// pub(crate) map_texture: Option<Texture<'static>>,
// pub(crate) map_rendered: bool,
// pub(crate) texture_creator: &'static TextureCreator<WindowContext>,
// }
// impl GameState {
// /// Creates a new `GameState` by initializing all the game's data.
// ///
// /// This function sets up the map, Pac-Man, ghosts, items, collision system,
// /// and all rendering resources required to start the game. It returns a `GameResult`
// /// to handle any potential errors during initialization.
// pub fn new(texture_creator: &'static TextureCreator<WindowContext>) -> GameResult<Self> {
// let map = Map::new(RAW_BOARD)?;
// let start_node = map.start_positions.pacman;
// let atlas_bytes = get_asset_bytes(Asset::Atlas)?;
// let atlas_texture = texture_creator.load_texture_bytes(&atlas_bytes).map_err(|e| {
// if e.to_string().contains("format") || e.to_string().contains("unsupported") {
// GameError::Texture(TextureError::InvalidFormat(format!("Unsupported texture format: {e}")))
// } else {
// GameError::Texture(TextureError::LoadFailed(e.to_string()))
// }
// })?;
// let atlas_mapper = AtlasMapper {
// frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
// };
// let atlas = SpriteAtlas::new(atlas_texture, atlas_mapper);
// let text_texture = TextTexture::new(1.0);
// let audio = Audio::new();
// let pacman = Pacman::new(&map.graph, start_node, &atlas)?;
// // Generate items (pellets and energizers)
// let items = map.generate_items(&atlas)?;
// // Initialize collision system
// let mut collision_system = CollisionSystem::default();
// // Register Pac-Man
// let pacman_id = collision_system.register_entity(pacman.position());
// // Register items
// let item_ids = items
// .iter()
// .map(|item| collision_system.register_entity(item.position()))
// .collect();
// // Create and register ghosts
// let ghosts = [GhostType::Blinky, GhostType::Pinky, GhostType::Inky, GhostType::Clyde]
// .iter()
// .zip(
// [
// map.start_positions.blinky,
// map.start_positions.pinky,
// map.start_positions.inky,
// map.start_positions.clyde,
// ]
// .iter(),
// )
// .map(|(ghost_type, start_node)| Ghost::new(&map.graph, *start_node, *ghost_type, &atlas))
// .collect::<GameResult<SmallVec<[_; 4]>>>()?;
// // Register ghosts
// let ghost_ids = ghosts
// .iter()
// .map(|ghost| collision_system.register_entity(ghost.position()))
// .collect();
// Ok(Self {
// paused: false,
// map,
// atlas,
// pacman,
// pacman_id,
// ghosts,
// ghost_ids,
// items,
// item_ids,
// text_texture,
// audio,
// score: 0,
// debug_mode: false,
// collision_system,
// map_texture: None,
// map_rendered: false,
// texture_creator,
// event_queue: VecDeque::new(),
// })
// }
// }

View File

@@ -1,10 +0,0 @@
use glam::{IVec2, UVec2};
use sdl2::rect::Rect;
pub fn centered_with_size(pixel_pos: IVec2, size: UVec2) -> Rect {
// Ensure the position doesn't cause integer overflow when centering
let x = pixel_pos.x.saturating_sub(size.x as i32 / 2);
let y = pixel_pos.y.saturating_sub(size.y as i32 / 2);
Rect::new(x, y, size.x, size.y)
}

View File

@@ -4,11 +4,10 @@ pub mod app;
pub mod asset;
pub mod audio;
pub mod constants;
pub mod entity;
pub mod error;
pub mod events;
pub mod formatter;
pub mod game;
pub mod helpers;
pub mod map;
pub mod platform;
pub mod systems;

View File

@@ -1,20 +1,18 @@
// Note: This disables the console window on Windows. We manually re-attach to the parent terminal or process later on.
#![windows_subsystem = "windows"]
use crate::{app::App, constants::LOOP_TIME};
use tracing::info;
use tracing_error::ErrorLayer;
use tracing_subscriber::layer::SubscriberExt;
mod app;
mod asset;
mod audio;
mod constants;
mod entity;
mod error;
mod events;
mod formatter;
mod game;
mod helpers;
mod map;
mod platform;
mod systems;
@@ -25,18 +23,13 @@ mod texture;
/// This function initializes SDL, the window, the game state, and then enters
/// the main game loop.
pub fn main() {
// Setup tracing
let subscriber = tracing_subscriber::fmt()
.with_ansi(cfg!(not(target_os = "emscripten")))
.with_max_level(tracing::Level::DEBUG)
.finish()
.with(ErrorLayer::default());
tracing::subscriber::set_global_default(subscriber).expect("Could not set global default");
// On Windows, this connects output streams to the console dynamically
// On Emscripten, this connects the subscriber to the browser console
platform::init_console().expect("Could not initialize console");
let mut app = App::new().expect("Could not create app");
info!("Starting game loop ({:?})", LOOP_TIME);
info!(loop_time = ?LOOP_TIME, "Starting game loop");
loop {
if !app.run() {

View File

@@ -1,38 +1,47 @@
//! Map construction and building functionality.
use crate::constants::{MapTile, BOARD_CELL_SIZE, CELL_SIZE};
use crate::entity::direction::Direction;
use crate::entity::graph::{Graph, Node, TraversalFlags};
use crate::map::direction::Direction;
use crate::map::graph::{Graph, Node, TraversalFlags};
use crate::map::parser::MapTileParser;
use crate::map::render::MapRenderer;
use crate::systems::movement::NodeId;
use crate::texture::sprite::SpriteAtlas;
use bevy_ecs::resource::Resource;
use glam::{IVec2, Vec2};
use sdl2::render::{Canvas, RenderTarget};
use glam::{I8Vec2, IVec2, Vec2};
use std::collections::{HashMap, VecDeque};
use tracing::debug;
use crate::error::{GameResult, MapError};
/// The starting positions of the entities in the game.
/// Predefined spawn locations for all game entities within the navigation graph.
///
/// These positions are determined during map parsing and graph construction.
pub struct NodePositions {
/// Pac-Man's starting position in the lower section of the maze
pub pacman: NodeId,
/// Blinky starts at the ghost house entrance
pub blinky: NodeId,
/// Pinky starts in the left area of the ghost house
pub pinky: NodeId,
/// Inky starts in the right area of the ghost house
pub inky: NodeId,
/// Clyde starts in the center of the ghost house
pub clyde: NodeId,
}
/// The main map structure containing the game board and navigation graph.
/// Complete maze representation combining visual layout with navigation pathfinding.
///
/// Transforms the ASCII board layout into a fully connected navigation graph
/// while preserving tile-based collision and rendering data. The graph enables
/// smooth entity movement with proper pathfinding, while the grid mapping allows
/// efficient spatial queries and debug visualization.
#[derive(Resource)]
pub struct Map {
/// The node map for entity movement.
/// Connected graph of navigable positions.
pub graph: Graph,
/// A mapping from grid positions to node IDs.
pub grid_to_node: HashMap<IVec2, NodeId>,
/// A mapping of the starting positions of the entities.
/// Bidirectional mapping between 2D grid coordinates and graph node indices.
pub grid_to_node: HashMap<I8Vec2, NodeId>,
/// Predetermined spawn locations for all game entities
pub start_positions: NodePositions,
/// The raw tile data for the map.
/// 2D array of tile types for collision detection and rendering
tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
}
@@ -67,8 +76,8 @@ impl Map {
let mut queue = VecDeque::new();
queue.push_back(start_pos);
let pos = Vec2::new(
(start_pos.x * CELL_SIZE as i32) as f32,
(start_pos.y * CELL_SIZE as i32) as f32,
(start_pos.x as i32 * CELL_SIZE as i32) as f32,
(start_pos.y as i32 * CELL_SIZE as i32) as f32,
) + cell_offset;
let node_id = graph.add_node(Node { position: pos });
grid_to_node.insert(start_pos, node_id);
@@ -80,9 +89,9 @@ impl Map {
// Skip if the new position is out of bounds
if new_position.x < 0
|| new_position.x >= BOARD_CELL_SIZE.x as i32
|| new_position.x as i32 >= BOARD_CELL_SIZE.x as i32
|| new_position.y < 0
|| new_position.y >= BOARD_CELL_SIZE.y as i32
|| new_position.y as i32 >= BOARD_CELL_SIZE.y as i32
{
continue;
}
@@ -99,8 +108,8 @@ impl Map {
) {
// Add the new position to the graph/queue
let pos = Vec2::new(
(new_position.x * CELL_SIZE as i32) as f32,
(new_position.y * CELL_SIZE as i32) as f32,
(new_position.x as i32 * CELL_SIZE as i32) as f32,
(new_position.y as i32 * CELL_SIZE as i32) as f32,
) + cell_offset;
let new_node_id = graph.add_node(Node { position: pos });
grid_to_node.insert(new_position, new_node_id);
@@ -123,7 +132,7 @@ impl Map {
for (grid_pos, &node_id) in &grid_to_node {
for dir in Direction::DIRECTIONS {
// If the node doesn't have an edge in this direction, look for a neighbor in that direction
if graph.adjacency_list[node_id].get(dir).is_none() {
if graph.adjacency_list[node_id as usize].get(dir).is_none() {
let neighbor = grid_pos + dir.as_ivec2();
// If the neighbor exists, connect the node to it
if let Some(&neighbor_id) = grid_to_node.get(&neighbor) {
@@ -165,26 +174,34 @@ impl Map {
})
}
/// Renders a debug visualization with cursor-based highlighting.
///
/// This function provides interactive debugging by highlighting the nearest node
/// to the cursor, showing its ID, and highlighting its connections.
pub fn debug_render_with_cursor<T: RenderTarget>(
&self,
canvas: &mut Canvas<T>,
text_renderer: &mut crate::texture::text::TextTexture,
atlas: &mut SpriteAtlas,
cursor_pos: glam::Vec2,
) -> GameResult<()> {
MapRenderer::debug_render_with_cursor(&self.graph, canvas, text_renderer, atlas, cursor_pos)
/// Returns the `MapTile` at a given node id.
pub fn tile_at_node(&self, node_id: NodeId) -> Option<MapTile> {
// reverse lookup: node -> grid
for (grid_pos, id) in &self.grid_to_node {
if *id == node_id {
return Some(self.tiles[grid_pos.x as usize][grid_pos.y as usize]);
}
}
None
}
/// Builds the house structure in the graph.
/// Constructs the ghost house area with restricted access and internal navigation.
///
/// Creates a multi-level ghost house with entrance control, internal movement
/// areas, and starting positions for each ghost. The house entrance uses
/// ghost-only traversal flags to prevent Pac-Man from entering while allowing
/// ghosts to exit. Internal nodes are arranged in vertical lines to provide
/// distinct starting areas for each ghost character.
///
/// # Returns
///
/// Tuple of node IDs: (house_entrance, left_center, center_center, right_center)
/// representing the four key positions within the ghost house structure.
fn build_house(
graph: &mut Graph,
grid_to_node: &HashMap<IVec2, NodeId>,
house_door: &[Option<IVec2>; 2],
) -> GameResult<(usize, usize, usize, usize)> {
grid_to_node: &HashMap<I8Vec2, NodeId>,
house_door: &[Option<I8Vec2>; 2],
) -> GameResult<(NodeId, NodeId, NodeId, NodeId)> {
// Calculate the position of the house entrance node
let (house_entrance_node_id, house_entrance_node_position) = {
// Translate the grid positions to the actual node ids
@@ -205,10 +222,13 @@ impl Map {
// Calculate the position of the house node
let (node_id, node_position) = {
let left_pos = graph.get_node(*left_node).ok_or(MapError::NodeNotFound(*left_node))?.position;
let left_pos = graph
.get_node(*left_node)
.ok_or(MapError::NodeNotFound(*left_node as usize))?
.position;
let right_pos = graph
.get_node(*right_node)
.ok_or(MapError::NodeNotFound(*right_node))?
.ok_or(MapError::NodeNotFound(*right_node as usize))?
.position;
let house_node = graph.add_node(Node {
position: left_pos.lerp(right_pos, 0.5),
@@ -232,10 +252,10 @@ impl Map {
// Place the nodes at, above, and below the center position
let center_node_id = graph.add_node(Node { position: center_pos });
let top_node_id = graph.add_node(Node {
position: center_pos + (Direction::Up.as_ivec2() * (CELL_SIZE as i32 / 2)).as_vec2(),
position: center_pos + IVec2::from(Direction::Up.as_ivec2()).as_vec2() * (CELL_SIZE as f32 / 2.0),
});
let bottom_node_id = graph.add_node(Node {
position: center_pos + (Direction::Down.as_ivec2() * (CELL_SIZE as i32 / 2)).as_vec2(),
position: center_pos + IVec2::from(Direction::Down.as_ivec2()).as_vec2() * (CELL_SIZE as f32 / 2.0),
});
// Connect the center node to the top and bottom nodes
@@ -251,7 +271,7 @@ impl Map {
// Calculate the position of the center line's center node
let center_line_center_position =
house_entrance_node_position + (Direction::Down.as_ivec2() * (3 * CELL_SIZE as i32)).as_vec2();
house_entrance_node_position + IVec2::from(Direction::Down.as_ivec2()).as_vec2() * (3.0 * CELL_SIZE as f32);
// Create the center line
let (center_center_node_id, center_top_node_id) = create_house_line(graph, center_line_center_position)?;
@@ -283,13 +303,13 @@ impl Map {
// Create the left line
let (left_center_node_id, _) = create_house_line(
graph,
center_line_center_position + (Direction::Left.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
center_line_center_position + IVec2::from(Direction::Left.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
)?;
// Create the right line
let (right_center_node_id, _) = create_house_line(
graph,
center_line_center_position + (Direction::Right.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
center_line_center_position + IVec2::from(Direction::Right.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
)?;
debug!("Left center node id: {left_center_node_id}");
@@ -313,11 +333,14 @@ impl Map {
))
}
/// Builds the tunnel connections in the graph.
/// Creates horizontal tunnel portals for instant teleportation across the maze.
///
/// Establishes the tunnel system that allows entities to instantly travel from the left edge of the maze to the right edge.
/// Creates hidden intermediate nodes beyond the visible tunnel entrances and connects them with zero-distance edges for instantaneous traversal.
fn build_tunnels(
graph: &mut Graph,
grid_to_node: &HashMap<IVec2, NodeId>,
tunnel_ends: &[Option<IVec2>; 2],
grid_to_node: &HashMap<I8Vec2, NodeId>,
tunnel_ends: &[Option<I8Vec2>; 2],
) -> GameResult<()> {
// Create the hidden tunnel nodes
let left_tunnel_hidden_node_id = {
@@ -333,15 +356,10 @@ impl Map {
Direction::Left,
Node {
position: left_tunnel_entrance_node.position
+ (Direction::Left.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
+ IVec2::from(Direction::Left.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
},
)
.map_err(|e| {
MapError::InvalidConfig(format!(
"Failed to connect left tunnel entrance to left tunnel hidden node: {}",
e
))
})?
.expect("Failed to connect left tunnel entrance to left tunnel hidden node")
};
// Create the right tunnel nodes
@@ -358,15 +376,10 @@ impl Map {
Direction::Right,
Node {
position: right_tunnel_entrance_node.position
+ (Direction::Right.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
+ IVec2::from(Direction::Right.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
},
)
.map_err(|e| {
MapError::InvalidConfig(format!(
"Failed to connect right tunnel entrance to right tunnel hidden node: {}",
e
))
})?
.expect("Failed to connect right tunnel entrance to right tunnel hidden node")
};
// Connect the left tunnel hidden node to the right tunnel hidden node
@@ -378,12 +391,7 @@ impl Map {
Some(0.0),
Direction::Left,
)
.map_err(|e| {
MapError::InvalidConfig(format!(
"Failed to connect left tunnel hidden node to right tunnel hidden node: {}",
e
))
})?;
.expect("Failed to connect left tunnel hidden node to right tunnel hidden node");
Ok(())
}

View File

@@ -1,8 +1,10 @@
use glam::IVec2;
use glam::I8Vec2;
use strum_macros::AsRefStr;
/// The four cardinal directions.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default, AsRefStr)]
#[repr(usize)]
#[strum(serialize_all = "lowercase")]
pub enum Direction {
Up,
Down,
@@ -26,8 +28,8 @@ impl Direction {
}
}
/// Returns the direction as an IVec2.
pub fn as_ivec2(self) -> IVec2 {
/// Returns the direction as an I8Vec2.
pub fn as_ivec2(self) -> I8Vec2 {
self.into()
}
@@ -43,13 +45,13 @@ impl Direction {
}
}
impl From<Direction> for IVec2 {
impl From<Direction> for I8Vec2 {
fn from(dir: Direction) -> Self {
match dir {
Direction::Up => -IVec2::Y,
Direction::Down => IVec2::Y,
Direction::Left => -IVec2::X,
Direction::Right => IVec2::X,
Direction::Up => -I8Vec2::Y,
Direction::Down => I8Vec2::Y,
Direction::Left => -I8Vec2::X,
Direction::Right => I8Vec2::X,
}
}
}

View File

@@ -107,7 +107,7 @@ impl Graph {
/// Adds a new node with the given data to the graph and returns its ID.
pub fn add_node(&mut self, data: Node) -> NodeId {
let id = self.nodes.len();
let id = self.nodes.len() as NodeId;
self.nodes.push(data);
self.adjacency_list.push(Intersection::default());
id
@@ -129,10 +129,10 @@ impl Graph {
distance: Option<f32>,
direction: Direction,
) -> Result<(), &'static str> {
if from >= self.adjacency_list.len() {
if from as usize >= self.adjacency_list.len() {
return Err("From node does not exist.");
}
if to >= self.adjacency_list.len() {
if to as usize >= self.adjacency_list.len() {
return Err("To node does not exist.");
}
@@ -178,8 +178,8 @@ impl Graph {
}
None => {
// If no distance is provided, calculate it based on the positions of the nodes
let from_pos = self.nodes[from].position;
let to_pos = self.nodes[to].position;
let from_pos = self.nodes[from as usize].position;
let to_pos = self.nodes[to as usize].position;
from_pos.distance(to_pos)
}
},
@@ -187,11 +187,11 @@ impl Graph {
traversal_flags,
};
if from >= self.adjacency_list.len() {
if from as usize >= self.adjacency_list.len() {
return Err("From node does not exist.");
}
let adjacency_list = &mut self.adjacency_list[from];
let adjacency_list = &mut self.adjacency_list[from as usize];
// Check if the edge already exists in this direction or to the same target
if let Some(err) = adjacency_list.edges().find_map(|e| {
@@ -215,12 +215,7 @@ impl Graph {
/// Retrieves an immutable reference to a node's data.
pub fn get_node(&self, id: NodeId) -> Option<&Node> {
self.nodes.get(id)
}
/// Returns the total number of nodes in the graph.
pub fn node_count(&self) -> usize {
self.nodes.len()
self.nodes.get(id as usize)
}
/// Returns an iterator over all nodes in the graph.
@@ -233,17 +228,17 @@ impl Graph {
self.adjacency_list
.iter()
.enumerate()
.flat_map(|(node_id, intersection)| intersection.edges().map(move |edge| (node_id, edge)))
.flat_map(|(node_id, intersection)| intersection.edges().map(move |edge| (node_id as NodeId, edge)))
}
/// Finds a specific edge from a source node to a target node.
pub fn find_edge(&self, from: NodeId, to: NodeId) -> Option<Edge> {
self.adjacency_list.get(from)?.edges().find(|edge| edge.target == to)
self.adjacency_list.get(from as usize)?.edges().find(|edge| edge.target == to)
}
/// Finds an edge originating from a given node that follows a specific direction.
pub fn find_edge_in_direction(&self, from: NodeId, direction: Direction) -> Option<Edge> {
self.adjacency_list.get(from)?.get(direction)
self.adjacency_list.get(from as usize)?.get(direction)
}
}

View File

@@ -1,6 +1,8 @@
//! This module defines the game map and provides functions for interacting with it.
pub mod builder;
pub mod direction;
pub mod graph;
pub mod layout;
pub mod parser;
pub mod render;

View File

@@ -2,34 +2,42 @@
use crate::constants::{MapTile, BOARD_CELL_SIZE};
use crate::error::ParseError;
use glam::IVec2;
use glam::I8Vec2;
/// Represents the parsed data from a raw board layout.
/// Structured representation of parsed ASCII board layout with extracted special positions.
///
/// Contains the complete board state after character-to-tile conversion, along with
/// the locations of special gameplay elements that require additional processing
/// during graph construction. Special positions are extracted during parsing to
/// enable proper map builder initialization.
#[derive(Debug)]
pub struct ParsedMap {
/// The parsed tile layout.
/// 2D array of tiles converted from ASCII characters
pub tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
/// The positions of the house door tiles.
pub house_door: [Option<IVec2>; 2],
/// The positions of the tunnel end tiles.
pub tunnel_ends: [Option<IVec2>; 2],
/// Pac-Man's starting position.
pub pacman_start: Option<IVec2>,
/// Two positions marking the ghost house entrance (represented by '=' characters)
pub house_door: [Option<I8Vec2>; 2],
/// Two positions marking tunnel portals for wraparound teleportation ('T' characters)
pub tunnel_ends: [Option<I8Vec2>; 2],
/// Starting position for Pac-Man (marked by 'X' character in the layout)
pub pacman_start: Option<I8Vec2>,
}
/// Parser for converting raw board layouts into structured map data.
pub struct MapTileParser;
impl MapTileParser {
/// Parses a single character into a map tile.
/// Converts ASCII characters from the board layout into corresponding tile types.
///
/// # Arguments
/// Interprets the character-based maze representation: walls (`#`), collectible
/// pellets (`.` and `o`), traversable spaces (` `), tunnel entrances (`T`),
/// ghost house doors (`=`), and entity spawn markers (`X`). Special characters
/// that don't represent tiles in the final map (like spawn markers) are
/// converted to `Empty` tiles while their positions are tracked separately.
///
/// * `c` - The character to parse
/// # Errors
///
/// # Returns
///
/// The parsed map tile, or an error if the character is unknown.
/// Returns `ParseError::UnknownCharacter` for any character not defined
/// in the game's ASCII art vocabulary.
pub fn parse_character(c: char) -> Result<MapTile, ParseError> {
match c {
'#' => Ok(MapTile::Wall),
@@ -80,7 +88,7 @@ impl MapTileParser {
let mut tiles = [[MapTile::Empty; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize];
let mut house_door = [None; 2];
let mut tunnel_ends = [None; 2];
let mut pacman_start: Option<IVec2> = None;
let mut pacman_start: Option<I8Vec2> = None;
for (y, line) in raw_board.iter().enumerate().take(BOARD_CELL_SIZE.y as usize) {
for (x, character) in line.chars().enumerate().take(BOARD_CELL_SIZE.x as usize) {
@@ -90,16 +98,16 @@ impl MapTileParser {
match tile {
MapTile::Tunnel => {
if tunnel_ends[0].is_none() {
tunnel_ends[0] = Some(IVec2::new(x as i32, y as i32));
tunnel_ends[0] = Some(I8Vec2::new(x as i8, y as i8));
} else {
tunnel_ends[1] = Some(IVec2::new(x as i32, y as i32));
tunnel_ends[1] = Some(I8Vec2::new(x as i8, y as i8));
}
}
MapTile::Wall if character == '=' => {
if house_door[0].is_none() {
house_door[0] = Some(IVec2::new(x as i32, y as i32));
house_door[0] = Some(I8Vec2::new(x as i8, y as i8));
} else {
house_door[1] = Some(IVec2::new(x as i32, y as i32));
house_door[1] = Some(I8Vec2::new(x as i8, y as i8));
}
}
_ => {}
@@ -107,7 +115,7 @@ impl MapTileParser {
// Track Pac-Man's starting position
if character == 'X' {
pacman_start = Some(IVec2::new(x as i32, y as i32));
pacman_start = Some(I8Vec2::new(x as i8, y as i8));
}
tiles[x][y] = tile;

View File

@@ -3,14 +3,10 @@
use crate::constants::{BOARD_CELL_OFFSET, CELL_SIZE};
use crate::map::layout::TILE_MAP;
use crate::texture::sprite::{AtlasTile, SpriteAtlas};
use crate::texture::text::TextTexture;
use glam::Vec2;
use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect};
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget};
use crate::error::{EntityError, GameError, GameResult};
/// Handles rendering operations for the map.
pub struct MapRenderer;
@@ -37,111 +33,4 @@ impl MapRenderer {
}
}
}
/// Renders a debug visualization with cursor-based highlighting.
///
/// This function provides interactive debugging by highlighting the nearest node
/// to the cursor, showing its ID, and highlighting its connections.
pub fn debug_render_with_cursor<T: RenderTarget>(
graph: &crate::entity::graph::Graph,
canvas: &mut Canvas<T>,
text_renderer: &mut TextTexture,
atlas: &mut SpriteAtlas,
cursor_pos: Vec2,
) -> GameResult<()> {
// Find the nearest node to the cursor
let nearest_node = Self::find_nearest_node(graph, cursor_pos);
// Draw all connections in blue
canvas.set_draw_color(Color::RGB(0, 0, 128)); // Dark blue for regular connections
for i in 0..graph.node_count() {
let node = graph.get_node(i).ok_or(GameError::Entity(EntityError::NodeNotFound(i)))?;
let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
for edge in graph.adjacency_list[i].edges() {
let end_pos = graph
.get_node(edge.target)
.ok_or(GameError::Entity(EntityError::NodeNotFound(edge.target)))?
.position
+ crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
canvas
.draw_line((pos.x as i32, pos.y as i32), (end_pos.x as i32, end_pos.y as i32))
.map_err(|e| GameError::Sdl(e.to_string()))?;
}
}
// Draw all nodes in green
canvas.set_draw_color(Color::RGB(0, 128, 0)); // Dark green for regular nodes
for i in 0..graph.node_count() {
let node = graph.get_node(i).ok_or(GameError::Entity(EntityError::NodeNotFound(i)))?;
let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
canvas
.fill_rect(Rect::new(0, 0, 3, 3).centered_on(Point::new(pos.x as i32, pos.y as i32)))
.map_err(|e| GameError::Sdl(e.to_string()))?;
}
// Highlight connections from the nearest node in bright blue
if let Some(nearest_id) = nearest_node {
let nearest_pos = graph
.get_node(nearest_id)
.ok_or(GameError::Entity(EntityError::NodeNotFound(nearest_id)))?
.position
+ crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
canvas.set_draw_color(Color::RGB(0, 255, 255)); // Bright cyan for highlighted connections
for edge in graph.adjacency_list[nearest_id].edges() {
let end_pos = graph
.get_node(edge.target)
.ok_or(GameError::Entity(EntityError::NodeNotFound(edge.target)))?
.position
+ crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
canvas
.draw_line(
(nearest_pos.x as i32, nearest_pos.y as i32),
(end_pos.x as i32, end_pos.y as i32),
)
.map_err(|e| GameError::Sdl(e.to_string()))?;
}
// Highlight the nearest node in bright green
canvas.set_draw_color(Color::RGB(0, 255, 0)); // Bright green for highlighted node
canvas
.fill_rect(Rect::new(0, 0, 5, 5).centered_on(Point::new(nearest_pos.x as i32, nearest_pos.y as i32)))
.map_err(|e| GameError::Sdl(e.to_string()))?;
// Draw node ID text (small, offset to top right)
text_renderer.set_scale(0.5); // Small text
let id_text = format!("#{nearest_id}");
let text_pos = glam::UVec2::new(
(nearest_pos.x + 4.0) as u32, // Offset to the right
(nearest_pos.y - 6.0) as u32, // Offset to the top
);
if let Err(e) = text_renderer.render(canvas, atlas, &id_text, text_pos) {
tracing::error!("Failed to render node ID text: {}", e);
}
}
Ok(())
}
/// Finds the nearest node to the given cursor position.
pub fn find_nearest_node(graph: &crate::entity::graph::Graph, cursor_pos: Vec2) -> Option<usize> {
let mut nearest_id = None;
let mut nearest_distance = f32::INFINITY;
for i in 0..graph.node_count() {
if let Some(node) = graph.get_node(i) {
let node_pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
let distance = cursor_pos.distance(node_pos);
if distance < nearest_distance {
nearest_distance = distance;
nearest_id = Some(i);
}
}
}
nearest_id
}
}

View File

@@ -3,79 +3,175 @@
use std::borrow::Cow;
use std::time::Duration;
use rand::rngs::ThreadRng;
use crate::asset::Asset;
use crate::error::{AssetError, PlatformError};
use crate::platform::Platform;
/// Desktop platform implementation.
pub struct DesktopPlatform;
impl Platform for DesktopPlatform {
fn sleep(&self, duration: Duration, focused: bool) {
if focused {
spin_sleep::sleep(duration);
} else {
std::thread::sleep(duration);
}
}
fn get_time(&self) -> f64 {
std::time::Instant::now().elapsed().as_secs_f64()
}
fn init_console(&self) -> Result<(), PlatformError> {
#[cfg(windows)]
{
unsafe {
use winapi::{
shared::ntdef::NULL,
um::{
fileapi::{CreateFileA, OPEN_EXISTING},
handleapi::INVALID_HANDLE_VALUE,
processenv::SetStdHandle,
winbase::{STD_ERROR_HANDLE, STD_OUTPUT_HANDLE},
wincon::{AttachConsole, GetConsoleWindow},
winnt::{FILE_SHARE_READ, FILE_SHARE_WRITE, GENERIC_READ, GENERIC_WRITE},
},
};
if !std::ptr::eq(GetConsoleWindow(), std::ptr::null_mut()) {
return Ok(());
}
if AttachConsole(winapi::um::wincon::ATTACH_PARENT_PROCESS) != 0 {
let handle = CreateFileA(
c"CONOUT$".as_ptr(),
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
std::ptr::null_mut(),
OPEN_EXISTING,
0,
NULL,
);
if handle != INVALID_HANDLE_VALUE {
SetStdHandle(STD_OUTPUT_HANDLE, handle);
SetStdHandle(STD_ERROR_HANDLE, handle);
}
}
}
}
Ok(())
}
fn get_canvas_size(&self) -> Option<(u32, u32)> {
None // Desktop doesn't need this
}
fn get_asset_bytes(&self, asset: Asset) -> Result<Cow<'static, [u8]>, AssetError> {
match asset {
Asset::Wav1 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/1.ogg"))),
Asset::Wav2 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/2.ogg"))),
Asset::Wav3 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/3.ogg"))),
Asset::Wav4 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/4.ogg"))),
Asset::Atlas => Ok(Cow::Borrowed(include_bytes!("../../assets/game/atlas.png"))),
}
pub fn sleep(duration: Duration, focused: bool) {
if focused {
spin_sleep::sleep(duration);
} else {
std::thread::sleep(duration);
}
}
pub fn init_console() -> Result<(), PlatformError> {
#[cfg(windows)]
{
use crate::platform::tracing_buffer::setup_switchable_subscriber;
use tracing::{debug, info};
use windows::Win32::System::Console::GetConsoleWindow;
// Setup buffered tracing subscriber that will buffer logs until console is ready
let switchable_writer = setup_switchable_subscriber();
// Check if we already have a console window
if unsafe { !GetConsoleWindow().0.is_null() } {
debug!("Already have a console window");
return Ok(());
} else {
debug!("No existing console window found");
}
if let Some(file_type) = is_output_setup()? {
debug!(r#type = file_type, "Existing output detected");
} else {
debug!("No existing output detected");
// Try to attach to parent console for direct cargo run
attach_to_parent_console()?;
info!("Successfully attached to parent console");
}
// Now that console is initialized, flush buffered logs and switch to direct output
debug!("Switching to direct logging mode and flushing buffer...");
if let Err(error) = switchable_writer.switch_to_direct_mode() {
use tracing::warn;
warn!("Failed to flush buffered logs to console: {error:?}");
}
}
Ok(())
}
pub fn get_asset_bytes(asset: Asset) -> Result<Cow<'static, [u8]>, AssetError> {
match asset {
Asset::Wav1 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/1.ogg"))),
Asset::Wav2 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/2.ogg"))),
Asset::Wav3 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/3.ogg"))),
Asset::Wav4 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/4.ogg"))),
Asset::AtlasImage => Ok(Cow::Borrowed(include_bytes!("../../assets/game/atlas.png"))),
Asset::Font => Ok(Cow::Borrowed(include_bytes!("../../assets/game/TerminalVector.ttf"))),
}
}
pub fn rng() -> ThreadRng {
rand::rng()
}
/* Internal functions */
/// Check if the output stream has been setup by a parent process
/// Windows-only
#[cfg(windows)]
fn is_output_setup() -> Result<Option<&'static str>, PlatformError> {
use tracing::{debug, warn};
use windows::Win32::Storage::FileSystem::{
GetFileType, FILE_TYPE_CHAR, FILE_TYPE_DISK, FILE_TYPE_PIPE, FILE_TYPE_REMOTE, FILE_TYPE_UNKNOWN,
};
use windows_sys::Win32::{
Foundation::INVALID_HANDLE_VALUE,
System::Console::{GetStdHandle, STD_OUTPUT_HANDLE},
};
// Get the process's standard output handle, check if it's invalid
let handle = match unsafe { GetStdHandle(STD_OUTPUT_HANDLE) } {
INVALID_HANDLE_VALUE => {
return Err(PlatformError::ConsoleInit("Invalid handle".to_string()));
}
handle => handle,
};
// Identify the file type of the handle and whether it's 'well known' (i.e. we trust it to be a reasonable output destination)
let (well_known, file_type) = match unsafe {
use windows::Win32::Foundation::HANDLE;
GetFileType(HANDLE(handle))
} {
FILE_TYPE_PIPE => (true, "pipe"),
FILE_TYPE_CHAR => (true, "char"),
FILE_TYPE_DISK => (true, "disk"),
FILE_TYPE_UNKNOWN => (false, "unknown"),
FILE_TYPE_REMOTE => (false, "remote"),
unexpected => {
warn!("Unexpected file type: {unexpected:?}");
(false, "unknown")
}
};
debug!("File type: {file_type:?}, well known: {well_known}");
// If it's anything recognizable and valid, assume that a parent process has setup an output stream
Ok(well_known.then_some(file_type))
}
/// Try to attach to parent console
/// Windows-only
#[cfg(windows)]
fn attach_to_parent_console() -> Result<(), PlatformError> {
use windows::{
core::PCSTR,
Win32::{
Foundation::{GENERIC_READ, GENERIC_WRITE},
Storage::FileSystem::{CreateFileA, FILE_FLAGS_AND_ATTRIBUTES, FILE_SHARE_READ, FILE_SHARE_WRITE, OPEN_EXISTING},
System::Console::{
AttachConsole, FreeConsole, SetStdHandle, ATTACH_PARENT_PROCESS, STD_ERROR_HANDLE, STD_OUTPUT_HANDLE,
},
},
};
// Attach the process to the parent's console
unsafe { AttachConsole(ATTACH_PARENT_PROCESS) }
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to attach to parent console: {:?}", e)))?;
let handle = unsafe {
let pcstr = PCSTR::from_raw(c"CONOUT$".as_ptr() as *const u8);
CreateFileA::<PCSTR>(
pcstr,
(GENERIC_READ | GENERIC_WRITE).0,
FILE_SHARE_READ | FILE_SHARE_WRITE,
None,
OPEN_EXISTING,
FILE_FLAGS_AND_ATTRIBUTES(0),
None,
)
}
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to create console handle: {:?}", e)))?;
// Set the console's output and then error handles
if let Some(handle_error) = unsafe { SetStdHandle(STD_OUTPUT_HANDLE, handle) }
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to set console output handle: {:?}", e)))
.and_then(|_| {
unsafe { SetStdHandle(STD_ERROR_HANDLE, handle) }
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to set console error handle: {:?}", e)))
})
.err()
{
// If either set handle call fails, free the console
unsafe { FreeConsole() }
// Free the console if the SetStdHandle calls fail
.map_err(|free_error| {
PlatformError::ConsoleInit(format!(
"Failed to free console after SetStdHandle failed: {free_error:?} ({handle_error:?})"
))
})
// And then return the original error if the FreeConsole call succeeds
.and(Err(handle_error))?;
}
Ok(())
}

View File

@@ -1,62 +1,96 @@
//! Emscripten platform implementation.
use std::borrow::Cow;
use std::time::Duration;
use crate::asset::Asset;
use crate::error::{AssetError, PlatformError};
use crate::platform::Platform;
/// Emscripten platform implementation.
pub struct EmscriptenPlatform;
impl Platform for EmscriptenPlatform {
fn sleep(&self, duration: Duration, _focused: bool) {
unsafe {
emscripten_sleep(duration.as_millis() as u32);
}
}
fn get_time(&self) -> f64 {
unsafe { emscripten_get_now() }
}
fn init_console(&self) -> Result<(), PlatformError> {
Ok(()) // No-op for Emscripten
}
fn get_canvas_size(&self) -> Option<(u32, u32)> {
Some(unsafe { get_canvas_size() })
}
fn get_asset_bytes(&self, asset: Asset) -> Result<Cow<'static, [u8]>, AssetError> {
use sdl2::rwops::RWops;
use std::io::Read;
let path = format!("assets/game/{}", asset.path());
let mut rwops = RWops::from_file(&path, "rb").map_err(|_| AssetError::NotFound(asset.path().to_string()))?;
let len = rwops.len().ok_or_else(|| AssetError::NotFound(asset.path().to_string()))?;
let mut buf = vec![0u8; len];
rwops
.read_exact(&mut buf)
.map_err(|e| AssetError::Io(std::io::Error::other(e)))?;
Ok(Cow::Owned(buf))
}
}
use crate::formatter::CustomFormatter;
use rand::{rngs::SmallRng, SeedableRng};
use sdl2::rwops::RWops;
use std::borrow::Cow;
use std::ffi::CString;
use std::io::{self, Read, Write};
use std::time::Duration;
// Emscripten FFI functions
#[allow(dead_code)]
extern "C" {
fn emscripten_get_now() -> f64;
fn emscripten_sleep(ms: u32);
fn emscripten_get_element_css_size(target: *const u8, width: *mut f64, height: *mut f64) -> i32;
// Standard C functions that Emscripten redirects to console
fn printf(format: *const u8, ...) -> i32;
}
unsafe fn get_canvas_size() -> (u32, u32) {
pub fn sleep(duration: Duration, _focused: bool) {
unsafe {
emscripten_sleep(duration.as_millis() as u32);
}
}
pub fn init_console() -> Result<(), PlatformError> {
use tracing_subscriber::{fmt, layer::SubscriberExt, EnvFilter};
// Set up a custom tracing subscriber that writes directly to emscripten console
let subscriber = tracing_subscriber::registry()
.with(
fmt::layer()
.with_writer(|| EmscriptenConsoleWriter)
.with_ansi(false)
.event_format(CustomFormatter),
)
.with(EnvFilter::try_from_default_env().unwrap_or_else(|_| EnvFilter::new("debug")));
tracing::subscriber::set_global_default(subscriber)
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to set tracing subscriber: {}", e)))?;
Ok(())
}
/// A writer that outputs to the browser console via printf (redirected by emscripten)
struct EmscriptenConsoleWriter;
impl Write for EmscriptenConsoleWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
if let Ok(s) = std::str::from_utf8(buf) {
if let Ok(cstr) = CString::new(s.trim_end_matches('\n')) {
let format_str = CString::new("%s\n").unwrap();
unsafe {
printf(format_str.as_ptr().cast(), cstr.as_ptr());
}
}
}
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[allow(dead_code)]
pub fn get_canvas_size() -> Option<(u32, u32)> {
let mut width = 0.0;
let mut height = 0.0;
emscripten_get_element_css_size(c"canvas".as_ptr().cast(), &mut width, &mut height);
(width as u32, height as u32)
unsafe {
emscripten_get_element_css_size(c"canvas".as_ptr().cast(), &mut width, &mut height);
if width == 0.0 || height == 0.0 {
return None;
}
}
Some((width as u32, height as u32))
}
pub fn get_asset_bytes(asset: Asset) -> Result<Cow<'static, [u8]>, AssetError> {
let path = format!("assets/game/{}", asset.path());
let mut rwops = RWops::from_file(&path, "rb").map_err(|_| AssetError::NotFound(asset.path().to_string()))?;
let len = rwops.len().ok_or_else(|| AssetError::NotFound(asset.path().to_string()))?;
let mut buf = vec![0u8; len];
rwops.read_exact(&mut buf).map_err(|e| AssetError::Io(io::Error::other(e)))?;
Ok(Cow::Owned(buf))
}
pub fn rng() -> SmallRng {
SmallRng::from_os_rng()
}

View File

@@ -1,48 +1,13 @@
//! Platform abstraction layer for cross-platform functionality.
use crate::asset::Asset;
use crate::error::{AssetError, PlatformError};
use std::borrow::Cow;
use std::time::Duration;
#[cfg(not(target_os = "emscripten"))]
mod desktop;
#[cfg(not(target_os = "emscripten"))]
pub mod tracing_buffer;
#[cfg(not(target_os = "emscripten"))]
pub use desktop::*;
pub mod desktop;
pub mod emscripten;
/// Platform abstraction trait that defines cross-platform functionality.
pub trait Platform {
/// Sleep for the specified duration using platform-appropriate method.
fn sleep(&self, duration: Duration, focused: bool);
/// Get the current time in seconds since some reference point.
/// This is available for future use in timing and performance monitoring.
#[allow(dead_code)]
fn get_time(&self) -> f64;
/// Initialize platform-specific console functionality.
fn init_console(&self) -> Result<(), PlatformError>;
/// Get canvas size for platforms that need it (e.g., Emscripten).
/// This is available for future use in responsive design.
#[allow(dead_code)]
fn get_canvas_size(&self) -> Option<(u32, u32)>;
/// Load asset bytes using platform-appropriate method.
fn get_asset_bytes(&self, asset: Asset) -> Result<Cow<'static, [u8]>, AssetError>;
}
/// Get the current platform implementation.
#[allow(dead_code)]
pub fn get_platform() -> &'static dyn Platform {
static DESKTOP: desktop::DesktopPlatform = desktop::DesktopPlatform;
static EMSCRIPTEN: emscripten::EmscriptenPlatform = emscripten::EmscriptenPlatform;
#[cfg(not(target_os = "emscripten"))]
{
&DESKTOP
}
#[cfg(target_os = "emscripten")]
{
&EMSCRIPTEN
}
}
#[cfg(target_os = "emscripten")]
pub use emscripten::*;
#[cfg(target_os = "emscripten")]
mod emscripten;

View File

@@ -0,0 +1,153 @@
#![allow(dead_code)]
//! Buffered tracing setup for handling logs before console attachment.
use crate::formatter::CustomFormatter;
use parking_lot::Mutex;
use std::io;
use std::io::Write;
use std::sync::Arc;
use tracing::{debug, Level};
use tracing_error::ErrorLayer;
use tracing_subscriber::fmt::MakeWriter;
use tracing_subscriber::layer::SubscriberExt;
/// A thread-safe buffered writer that stores logs in memory until flushed.
#[derive(Clone)]
pub struct BufferedWriter {
buffer: Arc<Mutex<Vec<u8>>>,
}
impl BufferedWriter {
/// Creates a new buffered writer.
pub fn new() -> Self {
Self {
buffer: Arc::new(Mutex::new(Vec::new())),
}
}
/// Flushes all buffered content to the provided writer and clears the buffer.
pub fn flush_to<W: Write>(&self, mut writer: W) -> io::Result<()> {
let mut buffer = self.buffer.lock();
if !buffer.is_empty() {
writer.write_all(&buffer)?;
writer.flush()?;
buffer.clear();
}
Ok(())
}
/// Returns the current buffer size in bytes.
pub fn buffer_size(&self) -> usize {
self.buffer.lock().len()
}
}
impl Write for BufferedWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let mut buffer = self.buffer.lock();
buffer.extend_from_slice(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
// For buffered writer, flush is a no-op since we're storing in memory
Ok(())
}
}
impl Default for BufferedWriter {
fn default() -> Self {
Self::new()
}
}
/// A writer that can switch between buffering and direct output.
#[derive(Clone, Default)]
pub struct SwitchableWriter {
buffered_writer: BufferedWriter,
direct_mode: std::sync::Arc<parking_lot::Mutex<bool>>,
}
impl SwitchableWriter {
pub fn switch_to_direct_mode(&self) -> io::Result<()> {
let buffer_size = {
// Acquire the lock
let mut mode = self.direct_mode.lock();
// Get buffer size before flushing for debug logging
let buffer_size = self.buffered_writer.buffer_size();
// Flush any buffered content
self.buffered_writer.flush_to(io::stdout())?;
// Switch to direct mode (and drop the lock)
*mode = true;
buffer_size
};
// Log how much was buffered (this will now go directly to stdout)
debug!("Flushed {buffer_size:?} bytes of buffered logs to console");
Ok(())
}
}
impl io::Write for SwitchableWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
if *self.direct_mode.lock() {
io::stdout().write(buf)
} else {
self.buffered_writer.clone().write(buf)
}
}
fn flush(&mut self) -> io::Result<()> {
if *self.direct_mode.lock() {
io::stdout().flush()
} else {
// For buffered mode, flush is a no-op
Ok(())
}
}
}
/// A make writer that uses the switchable writer.
#[derive(Clone)]
pub struct SwitchableMakeWriter {
writer: SwitchableWriter,
}
impl SwitchableMakeWriter {
pub fn new(writer: SwitchableWriter) -> Self {
Self { writer }
}
}
impl<'a> MakeWriter<'a> for SwitchableMakeWriter {
type Writer = SwitchableWriter;
fn make_writer(&'a self) -> Self::Writer {
self.writer.clone()
}
}
/// Sets up a switchable tracing subscriber that can transition from buffered to direct output.
///
/// Returns the switchable writer that can be used to control the behavior.
pub fn setup_switchable_subscriber() -> SwitchableWriter {
let switchable_writer = SwitchableWriter::default();
let make_writer = SwitchableMakeWriter::new(switchable_writer.clone());
let _subscriber = tracing_subscriber::fmt()
.with_ansi(cfg!(not(target_os = "emscripten")))
.with_max_level(Level::DEBUG)
.event_format(CustomFormatter)
.with_writer(make_writer)
.finish()
.with(ErrorLayer::default());
tracing::subscriber::set_global_default(_subscriber).expect("Could not set global default switchable subscriber");
switchable_writer
}

64
src/systems/audio.rs Normal file
View File

@@ -0,0 +1,64 @@
//! Audio system for handling sound playback in the Pac-Man game.
//!
//! This module provides an ECS-based audio system that integrates with SDL2_mixer
//! for playing sound effects. The system uses NonSendMut resources to handle SDL2's
//! main-thread requirements while maintaining Bevy ECS compatibility.
use bevy_ecs::{
event::{Event, EventReader, EventWriter},
resource::Resource,
system::{NonSendMut, ResMut},
};
use crate::{audio::Audio, error::GameError};
/// Resource for tracking audio state
#[derive(Resource, Debug, Clone, Default)]
pub struct AudioState {
/// Whether audio is currently muted
pub muted: bool,
/// Current sound index for cycling through eat sounds
pub sound_index: usize,
}
/// Events for triggering audio playback
#[derive(Event, Debug, Clone, Copy, PartialEq, Eq)]
pub enum AudioEvent {
/// Play the "eat" sound when Pac-Man consumes a pellet
PlayEat,
}
/// Non-send resource wrapper for SDL2 audio system
///
/// This wrapper is needed because SDL2 audio components are not Send,
/// but Bevy ECS requires Send for regular resources. Using NonSendMut
/// allows us to use SDL2 audio on the main thread while integrating
/// with the ECS system.
pub struct AudioResource(pub Audio);
/// System that processes audio events and plays sounds
pub fn audio_system(
mut audio: NonSendMut<AudioResource>,
mut audio_state: ResMut<AudioState>,
mut audio_events: EventReader<AudioEvent>,
_errors: EventWriter<GameError>,
) {
// Set mute state if it has changed
if audio.0.is_muted() != audio_state.muted {
audio.0.set_mute(audio_state.muted);
}
// Process audio events
for event in audio_events.read() {
match event {
AudioEvent::PlayEat => {
if !audio.0.is_disabled() && !audio_state.muted {
audio.0.eat();
// Update the sound index for cycling through sounds
audio_state.sound_index = (audio_state.sound_index + 1) % 4;
// 4 eat sounds available
}
}
}
}
}

View File

@@ -1,27 +1,85 @@
use bevy_ecs::{
component::Component,
system::{Query, Res},
entity::Entity,
query::{Has, With},
system::{Commands, Query, Res},
};
use crate::systems::components::{DeltaTime, Renderable};
use crate::systems::{
components::{DeltaTime, Renderable},
Frozen, Hidden,
};
#[derive(Component)]
#[derive(Component, Debug)]
pub struct Blinking {
pub timer: f32,
pub interval: f32,
pub tick_timer: u32,
pub interval_ticks: u32,
}
impl Blinking {
pub fn new(interval_ticks: u32) -> Self {
Self {
tick_timer: 0,
interval_ticks,
}
}
}
/// Updates blinking entities by toggling their visibility at regular intervals.
///
/// This system manages entities that have both `Blinking` and `Renderable` components,
/// accumulating time and toggling visibility when the specified interval is reached.
pub fn blinking_system(time: Res<DeltaTime>, mut query: Query<(&mut Blinking, &mut Renderable)>) {
for (mut blinking, mut renderable) in query.iter_mut() {
blinking.timer += time.0;
/// accumulating ticks and toggling visibility when the specified interval is reached.
/// Uses integer arithmetic for deterministic behavior.
#[allow(clippy::type_complexity)]
pub fn blinking_system(
mut commands: Commands,
time: Res<DeltaTime>,
mut query: Query<(Entity, &mut Blinking, Has<Hidden>, Has<Frozen>), With<Renderable>>,
) {
for (entity, mut blinking, hidden, frozen) in query.iter_mut() {
// If the entity is frozen, blinking is disabled and the entity is unhidden (if it was hidden)
if frozen {
if hidden {
commands.entity(entity).remove::<Hidden>();
}
if blinking.timer >= blinking.interval {
blinking.timer = 0.0;
renderable.visible = !renderable.visible;
continue;
}
// Increase the timer by the delta ticks
blinking.tick_timer += time.ticks;
// Handle zero interval case (immediate toggling)
if blinking.interval_ticks == 0 {
if time.ticks > 0 {
if hidden {
commands.entity(entity).remove::<Hidden>();
} else {
commands.entity(entity).insert(Hidden);
}
}
continue;
}
// Calculate how many complete intervals have passed
let complete_intervals = blinking.tick_timer / blinking.interval_ticks;
// If no complete intervals have passed, there's nothing to do yet
if complete_intervals == 0 {
continue;
}
// Update the timer to the remainder after complete intervals
blinking.tick_timer %= blinking.interval_ticks;
// Toggle the Hidden component for each complete interval
// Since toggling twice is a no-op, we only need to toggle if the count is odd
if complete_intervals % 2 == 1 {
if hidden {
commands.entity(entity).remove::<Hidden>();
} else {
commands.entity(entity).insert(Hidden);
}
}
}
}

View File

@@ -1,45 +1,147 @@
use bevy_ecs::component::Component;
use bevy_ecs::entity::Entity;
use bevy_ecs::event::EventWriter;
use bevy_ecs::event::{EventReader, EventWriter};
use bevy_ecs::query::With;
use bevy_ecs::system::{Query, Res};
use bevy_ecs::system::{Query, Res, ResMut};
use crate::error::GameError;
use crate::events::GameEvent;
use crate::map::builder::Map;
use crate::systems::components::{Collider, ItemCollider, PacmanCollider};
use crate::systems::movement::Position;
use crate::systems::{AudioEvent, Ghost, GhostState, PlayerControlled, ScoreResource};
#[derive(Component)]
pub struct Collider {
pub size: f32,
}
impl Collider {
/// Checks if this collider collides with another collider at the given distance.
pub fn collides_with(&self, other_size: f32, distance: f32) -> bool {
let collision_distance = (self.size + other_size) / 2.0;
distance < collision_distance
}
}
/// Marker components for collision filtering optimization
#[derive(Component)]
pub struct PacmanCollider;
#[derive(Component)]
pub struct GhostCollider;
#[derive(Component)]
pub struct ItemCollider;
/// Helper function to check collision between two entities with colliders.
pub fn check_collision(
pos1: &Position,
collider1: &Collider,
pos2: &Position,
collider2: &Collider,
map: &Map,
) -> Result<bool, GameError> {
let pixel1 = pos1
.get_pixel_position(&map.graph)
.map_err(|e| GameError::InvalidState(format!("Failed to get pixel position for entity 1: {}", e)))?;
let pixel2 = pos2
.get_pixel_position(&map.graph)
.map_err(|e| GameError::InvalidState(format!("Failed to get pixel position for entity 2: {}", e)))?;
let distance = pixel1.distance(pixel2);
Ok(collider1.collides_with(collider2.size, distance))
}
/// Detects overlapping entities and generates collision events for gameplay systems.
///
/// Performs distance-based collision detection between Pac-Man and collectible items
/// using each entity's position and collision radius. When entities overlap, emits
/// a `GameEvent::Collision` for the item system to handle scoring and removal.
/// Collision detection accounts for both entities being in motion and supports
/// circular collision boundaries for accurate gameplay feel.
///
/// Also detects collisions between Pac-Man and ghosts for gameplay mechanics like
/// power pellet effects, ghost eating, and player death.
pub fn collision_system(
map: Res<Map>,
pacman_query: Query<(Entity, &Position, &Collider), With<PacmanCollider>>,
item_query: Query<(Entity, &Position, &Collider), With<ItemCollider>>,
ghost_query: Query<(Entity, &Position, &Collider), With<GhostCollider>>,
mut events: EventWriter<GameEvent>,
mut errors: EventWriter<GameError>,
) {
// Check PACMAN × ITEM collisions
for (pacman_entity, pacman_pos, pacman_collider) in pacman_query.iter() {
for (item_entity, item_pos, item_collider) in item_query.iter() {
match (pacman_pos.get_pixel_pos(&map.graph), item_pos.get_pixel_pos(&map.graph)) {
(Ok(pacman_pixel), Ok(item_pixel)) => {
// Calculate the distance between the two entities's precise pixel positions
let distance = pacman_pixel.distance(item_pixel);
// Calculate the distance at which the two entities will collide
let collision_distance = (pacman_collider.size + item_collider.size) / 2.0;
// If the distance between the two entities is less than the collision distance, then the two entities are colliding
if distance < collision_distance {
match check_collision(pacman_pos, pacman_collider, item_pos, item_collider, &map) {
Ok(colliding) => {
if colliding {
events.write(GameEvent::Collision(pacman_entity, item_entity));
}
}
// Either or both of the pixel positions failed to get, so we need to report the error
(result_a, result_b) => {
for result in [result_a, result_b] {
if let Err(e) = result {
errors.write(GameError::InvalidState(format!(
"Collision system failed to get pixel positions for entities {:?} and {:?}: {}",
pacman_entity, item_entity, e
)));
}
Err(e) => {
errors.write(GameError::InvalidState(format!(
"Collision system failed to check collision between entities {:?} and {:?}: {}",
pacman_entity, item_entity, e
)));
}
}
}
// Check PACMAN × GHOST collisions
for (ghost_entity, ghost_pos, ghost_collider) in ghost_query.iter() {
match check_collision(pacman_pos, pacman_collider, ghost_pos, ghost_collider, &map) {
Ok(colliding) => {
if colliding {
events.write(GameEvent::Collision(pacman_entity, ghost_entity));
}
}
Err(e) => {
errors.write(GameError::InvalidState(format!(
"Collision system failed to check collision between entities {:?} and {:?}: {}",
pacman_entity, ghost_entity, e
)));
}
}
}
}
}
pub fn ghost_collision_system(
mut collision_events: EventReader<GameEvent>,
mut score: ResMut<ScoreResource>,
pacman_query: Query<(), With<PlayerControlled>>,
ghost_query: Query<(Entity, &Ghost), With<GhostCollider>>,
mut ghost_state_query: Query<&mut GhostState>,
mut events: EventWriter<AudioEvent>,
) {
for event in collision_events.read() {
if let GameEvent::Collision(entity1, entity2) = event {
// Check if one is Pacman and the other is a ghost
let (_pacman_entity, ghost_entity) = if pacman_query.get(*entity1).is_ok() && ghost_query.get(*entity2).is_ok() {
(*entity1, *entity2)
} else if pacman_query.get(*entity2).is_ok() && ghost_query.get(*entity1).is_ok() {
(*entity2, *entity1)
} else {
continue;
};
// Check if the ghost is frightened
if let Ok((ghost_ent, _ghost_type)) = ghost_query.get(ghost_entity) {
if let Ok(mut ghost_state) = ghost_state_query.get_mut(ghost_ent) {
// Check if ghost is in frightened state
if matches!(*ghost_state, GhostState::Frightened { .. }) {
// Pac-Man eats the ghost
// Add score (200 points per ghost eaten)
score.0 += 200;
// Set ghost state to Eyes
*ghost_state = GhostState::Eyes;
// Play eat sound
events.write(AudioEvent::PlayEat);
} else {
// Pac-Man dies (this would need a death system)
}
}
}

View File

@@ -1,16 +1,65 @@
use std::collections::HashMap;
use bevy_ecs::{bundle::Bundle, component::Component, resource::Resource};
use bitflags::bitflags;
use crate::{
entity::graph::TraversalFlags,
systems::movement::{Movable, MovementState, Position},
texture::{animated::AnimatedTexture, sprite::AtlasTile},
map::graph::TraversalFlags,
systems::{
movement::{BufferedDirection, Position, Velocity},
Collider, GhostCollider, ItemCollider, PacmanCollider,
},
texture::{
animated::{DirectionalTiles, TileSequence},
sprite::AtlasTile,
},
};
/// A tag component for entities that are controlled by the player.
#[derive(Default, Component)]
pub struct PlayerControlled;
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Ghost {
Blinky,
Pinky,
Inky,
Clyde,
}
impl Ghost {
/// Returns the ghost type name for atlas lookups.
pub fn as_str(self) -> &'static str {
match self {
Ghost::Blinky => "blinky",
Ghost::Pinky => "pinky",
Ghost::Inky => "inky",
Ghost::Clyde => "clyde",
}
}
/// Returns the base movement speed for this ghost type.
pub fn base_speed(self) -> f32 {
match self {
Ghost::Blinky => 1.0,
Ghost::Pinky => 0.95,
Ghost::Inky => 0.9,
Ghost::Clyde => 0.85,
}
}
/// Returns the ghost's color for debug rendering.
#[allow(dead_code)]
pub fn debug_color(&self) -> sdl2::pixels::Color {
match self {
Ghost::Blinky => sdl2::pixels::Color::RGB(255, 0, 0), // Red
Ghost::Pinky => sdl2::pixels::Color::RGB(255, 182, 255), // Pink
Ghost::Inky => sdl2::pixels::Color::RGB(0, 255, 255), // Cyan
Ghost::Clyde => sdl2::pixels::Color::RGB(255, 182, 85), // Orange
}
}
}
/// A tag component denoting the type of entity.
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum EntityType {
@@ -29,6 +78,17 @@ impl EntityType {
_ => TraversalFlags::empty(), // Static entities don't traverse
}
}
pub fn score_value(&self) -> Option<u32> {
match self {
EntityType::Pellet => Some(10),
EntityType::PowerPellet => Some(50),
_ => None,
}
}
pub fn is_collectible(&self) -> bool {
matches!(self, EntityType::Pellet | EntityType::PowerPellet)
}
}
/// A component for entities that have a sprite, with a layer for ordering.
@@ -38,14 +98,50 @@ impl EntityType {
pub struct Renderable {
pub sprite: AtlasTile,
pub layer: u8,
pub visible: bool,
}
/// A component for entities that have a directional animated texture.
#[derive(Component)]
pub struct DirectionalAnimated {
pub textures: [Option<AnimatedTexture>; 4],
pub stopped_textures: [Option<AnimatedTexture>; 4],
/// Directional animation component with shared timing across all directions
#[derive(Component, Clone, Copy)]
pub struct DirectionalAnimation {
pub moving_tiles: DirectionalTiles,
pub stopped_tiles: DirectionalTiles,
pub current_frame: usize,
pub time_bank: u16,
pub frame_duration: u16,
}
impl DirectionalAnimation {
/// Creates a new directional animation with the given tiles and frame duration
pub fn new(moving_tiles: DirectionalTiles, stopped_tiles: DirectionalTiles, frame_duration: u16) -> Self {
Self {
moving_tiles,
stopped_tiles,
current_frame: 0,
time_bank: 0,
frame_duration,
}
}
}
/// Linear animation component for non-directional animations (frightened ghosts)
#[derive(Component, Clone, Copy)]
pub struct LinearAnimation {
pub tiles: TileSequence,
pub current_frame: usize,
pub time_bank: u16,
pub frame_duration: u16,
}
impl LinearAnimation {
/// Creates a new linear animation with the given tiles and frame duration
pub fn new(tiles: TileSequence, frame_duration: u16) -> Self {
Self {
tiles,
current_frame: 0,
time_bank: 0,
frame_duration,
}
}
}
bitflags! {
@@ -57,48 +153,6 @@ bitflags! {
}
}
#[derive(Component)]
pub struct Collider {
pub size: f32,
pub layer: CollisionLayer,
}
/// Marker components for collision filtering optimization
#[derive(Component)]
pub struct PacmanCollider;
#[derive(Component)]
pub struct GhostCollider;
#[derive(Component)]
pub struct ItemCollider;
#[derive(Component)]
pub struct Score(pub u32);
#[derive(Bundle)]
pub struct PlayerBundle {
pub player: PlayerControlled,
pub position: Position,
pub movement_state: MovementState,
pub movable: Movable,
pub sprite: Renderable,
pub directional_animated: DirectionalAnimated,
pub entity_type: EntityType,
pub collider: Collider,
pub pacman_collider: PacmanCollider,
}
#[derive(Bundle)]
pub struct ItemBundle {
pub position: Position,
pub sprite: Renderable,
pub entity_type: EntityType,
pub score: Score,
pub collider: Collider,
pub item_collider: ItemCollider,
}
#[derive(Resource)]
pub struct GlobalState {
pub exit: bool,
@@ -108,7 +162,231 @@ pub struct GlobalState {
pub struct ScoreResource(pub u32);
#[derive(Resource)]
pub struct DeltaTime(pub f32);
pub struct DeltaTime {
/// Floating-point delta time in seconds
pub seconds: f32,
/// Integer tick delta (usually 1, but can be different for testing)
pub ticks: u32,
}
#[derive(Resource, Default)]
pub struct RenderDirty(pub bool);
#[allow(dead_code)]
impl DeltaTime {
/// Creates a new DeltaTime from a floating-point delta time in seconds
///
/// While this method exists as a helper, it does not mean that seconds and ticks are interchangeable.
pub fn from_seconds(seconds: f32) -> Self {
Self {
seconds,
ticks: (seconds * 60.0).round() as u32,
}
}
/// Creates a new DeltaTime from an integer tick delta
///
/// While this method exists as a helper, it does not mean that seconds and ticks are interchangeable.
pub fn from_ticks(ticks: u32) -> Self {
Self {
seconds: ticks as f32 / 60.0,
ticks,
}
}
}
/// Movement modifiers that can affect Pac-Man's speed or handling.
#[derive(Component, Debug, Clone, Copy)]
pub struct MovementModifiers {
/// Multiplier applied to base speed (e.g., tunnels)
pub speed_multiplier: f32,
/// True when currently in a tunnel slowdown region
pub tunnel_slowdown_active: bool,
}
impl Default for MovementModifiers {
fn default() -> Self {
Self {
speed_multiplier: 1.0,
tunnel_slowdown_active: false,
}
}
}
/// Tag component for entities that should be frozen during startup
#[derive(Component, Debug, Clone, Copy)]
pub struct Frozen;
/// Tag component for eaten ghosts
#[derive(Component, Debug, Clone, Copy)]
pub struct Eaten;
#[derive(Component, Debug, Clone, Copy)]
pub enum GhostState {
/// Normal ghost behavior - chasing Pac-Man
Normal,
/// Frightened state after power pellet - ghost can be eaten
Frightened {
remaining_ticks: u32,
flash: bool,
remaining_flash_ticks: u32,
},
/// Eyes state - ghost has been eaten and is returning to ghost house
Eyes,
}
/// Component to track the last animation state for efficient change detection
#[derive(Component, Debug, Clone, Copy, PartialEq)]
pub struct LastAnimationState(pub GhostAnimation);
impl GhostState {
/// Creates a new frightened state with the specified duration
pub fn new_frightened(total_ticks: u32, flash_start_ticks: u32) -> Self {
Self::Frightened {
remaining_ticks: total_ticks,
flash: false,
remaining_flash_ticks: flash_start_ticks, // Time until flashing starts
}
}
/// Ticks the ghost state, returning true if the state changed.
pub fn tick(&mut self) -> bool {
if let GhostState::Frightened {
remaining_ticks,
flash,
remaining_flash_ticks,
} = self
{
// Transition out of frightened state
if *remaining_ticks == 0 {
*self = GhostState::Normal;
return true;
}
*remaining_ticks -= 1;
if *remaining_flash_ticks > 0 {
*remaining_flash_ticks = remaining_flash_ticks.saturating_sub(1);
if *remaining_flash_ticks == 0 {
*flash = true;
true
} else {
false
}
} else {
false
}
} else {
false
}
}
/// Returns the appropriate animation state for this ghost state
pub fn animation_state(&self) -> GhostAnimation {
match self {
GhostState::Normal => GhostAnimation::Normal,
GhostState::Eyes => GhostAnimation::Eyes,
GhostState::Frightened { flash: false, .. } => GhostAnimation::Frightened { flash: false },
GhostState::Frightened { flash: true, .. } => GhostAnimation::Frightened { flash: true },
}
}
}
/// Enumeration of different ghost animation states.
/// Note that this is used in micromap which has a fixed size based on the number of variants,
/// so extending this should be done with caution, and will require updating the micromap's capacity.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GhostAnimation {
/// Normal ghost appearance with directional movement animations
Normal,
/// Blue ghost appearance when vulnerable (power pellet active)
Frightened { flash: bool },
/// Eyes-only animation when ghost has been consumed by Pac-Man (Eaten state)
Eyes,
}
/// Global resource containing pre-loaded animation sets for all ghost types.
///
/// This resource is initialized once during game startup and provides O(1) access
/// to animation sets for each ghost type. The animation system uses this resource
/// to efficiently switch between different ghost states without runtime asset loading.
///
/// The HashMap is keyed by `Ghost` enum variants (Blinky, Pinky, Inky, Clyde) and
/// contains the normal directional animation for each ghost type.
#[derive(Resource)]
pub struct GhostAnimations {
pub normal: HashMap<Ghost, DirectionalAnimation>,
pub eyes: DirectionalAnimation,
pub frightened: LinearAnimation,
pub frightened_flashing: LinearAnimation,
}
impl GhostAnimations {
/// Creates a new GhostAnimations resource with the provided data.
pub fn new(
normal: HashMap<Ghost, DirectionalAnimation>,
eyes: DirectionalAnimation,
frightened: LinearAnimation,
frightened_flashing: LinearAnimation,
) -> Self {
Self {
normal,
eyes,
frightened,
frightened_flashing,
}
}
/// Gets the normal directional animation for the specified ghost type.
pub fn get_normal(&self, ghost_type: &Ghost) -> Option<&DirectionalAnimation> {
self.normal.get(ghost_type)
}
/// Gets the eyes animation (shared across all ghosts).
pub fn eyes(&self) -> &DirectionalAnimation {
&self.eyes
}
/// Gets the frightened animations (shared across all ghosts).
pub fn frightened(&self, flash: bool) -> &LinearAnimation {
if flash {
&self.frightened_flashing
} else {
&self.frightened
}
}
}
#[derive(Bundle)]
pub struct PlayerBundle {
pub player: PlayerControlled,
pub position: Position,
pub velocity: Velocity,
pub buffered_direction: BufferedDirection,
pub sprite: Renderable,
pub directional_animation: DirectionalAnimation,
pub entity_type: EntityType,
pub collider: Collider,
pub movement_modifiers: MovementModifiers,
pub pacman_collider: PacmanCollider,
}
#[derive(Bundle)]
pub struct ItemBundle {
pub position: Position,
pub sprite: Renderable,
pub entity_type: EntityType,
pub collider: Collider,
pub item_collider: ItemCollider,
}
#[derive(Bundle)]
pub struct GhostBundle {
pub ghost: Ghost,
pub position: Position,
pub velocity: Velocity,
pub sprite: Renderable,
pub directional_animation: DirectionalAnimation,
pub entity_type: EntityType,
pub collider: Collider,
pub ghost_collider: GhostCollider,
pub ghost_state: GhostState,
pub last_animation_state: LastAnimationState,
}

View File

@@ -1,50 +0,0 @@
use bevy_ecs::{
event::{EventReader, EventWriter},
prelude::ResMut,
query::With,
system::Query,
};
use crate::{
error::GameError,
events::{GameCommand, GameEvent},
systems::components::{GlobalState, PlayerControlled},
systems::debug::DebugState,
systems::movement::Movable,
};
// Handles player input and control
pub fn player_system(
mut events: EventReader<GameEvent>,
mut state: ResMut<GlobalState>,
mut debug_state: ResMut<DebugState>,
mut players: Query<&mut Movable, With<PlayerControlled>>,
mut errors: EventWriter<GameError>,
) {
// Get the player's movable component (ensuring there is only one player)
let mut movable = match players.single_mut() {
Ok(movable) => movable,
Err(e) => {
errors.write(GameError::InvalidState(format!("No/multiple entities queried for player system: {}", e)).into());
return;
}
};
// Handle events
for event in events.read() {
if let GameEvent::Command(command) = event {
match command {
GameCommand::MovePlayer(direction) => {
movable.requested_direction = Some(*direction);
}
GameCommand::Exit => {
state.exit = true;
}
GameCommand::ToggleDebug => {
*debug_state = debug_state.next();
}
_ => {}
}
}
}
}

View File

@@ -1,143 +1,338 @@
//! Debug rendering system
use crate::constants::BOARD_PIXEL_OFFSET;
use std::cmp::Ordering;
use crate::constants::{self, BOARD_PIXEL_OFFSET};
use crate::map::builder::Map;
use crate::systems::components::Collider;
use crate::systems::movement::Position;
use crate::systems::render::BackbufferResource;
use bevy_ecs::prelude::*;
use crate::systems::{Collider, CursorPosition, NodeId, Position, SystemTimings};
use crate::texture::ttf::{TtfAtlas, TtfRenderer};
use bevy_ecs::resource::Resource;
use bevy_ecs::system::{Query, Res};
use glam::{IVec2, Vec2};
use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::rect::{Point, Rect};
use sdl2::render::{Canvas, Texture};
use sdl2::video::Window;
use smallvec::SmallVec;
use std::collections::{HashMap, HashSet};
use tracing::warn;
#[derive(Resource, Default, Debug, Copy, Clone, PartialEq)]
pub enum DebugState {
#[default]
Off,
Graph,
Collision,
#[derive(Resource, Default, Debug, Copy, Clone)]
pub struct DebugState {
pub enabled: bool,
}
impl DebugState {
pub fn next(&self) -> Self {
match self {
DebugState::Off => DebugState::Graph,
DebugState::Graph => DebugState::Collision,
DebugState::Collision => DebugState::Off,
fn f32_to_u8(value: f32) -> u8 {
(value * 255.0) as u8
}
/// Resource to hold the debug texture for persistent rendering
pub struct DebugTextureResource(pub Texture);
/// Resource to hold the TTF text atlas
pub struct TtfAtlasResource(pub TtfAtlas);
/// Resource to hold pre-computed batched line segments
#[derive(Resource, Default, Debug, Clone)]
pub struct BatchedLinesResource {
horizontal_lines: Vec<(i32, i32, i32)>, // (y, x_start, x_end)
vertical_lines: Vec<(i32, i32, i32)>, // (x, y_start, y_end)
}
impl BatchedLinesResource {
/// Computes and caches batched line segments for the map graph
pub fn new(map: &Map, scale: f32) -> Self {
let mut horizontal_segments: HashMap<i32, Vec<(i32, i32)>> = HashMap::new();
let mut vertical_segments: HashMap<i32, Vec<(i32, i32)>> = HashMap::new();
let mut processed_edges: HashSet<(u16, u16)> = HashSet::new();
// Process all edges and group them by axis
for (start_node_id, edge) in map.graph.edges() {
// Acquire a stable key for the edge (from < to)
let edge_key = (start_node_id.min(edge.target), start_node_id.max(edge.target));
// Skip if we've already processed this edge in the reverse direction
if processed_edges.contains(&edge_key) {
continue;
}
processed_edges.insert(edge_key);
let start_pos = map.graph.get_node(start_node_id).unwrap().position;
let end_pos = map.graph.get_node(edge.target).unwrap().position;
let start = transform_position_with_offset(start_pos, scale);
let end = transform_position_with_offset(end_pos, scale);
// Determine if this is a horizontal or vertical line
if (start.y - end.y).abs() < 2 {
// Horizontal line (allowing for slight vertical variance)
let y = start.y;
let x_min = start.x.min(end.x);
let x_max = start.x.max(end.x);
horizontal_segments.entry(y).or_default().push((x_min, x_max));
} else if (start.x - end.x).abs() < 2 {
// Vertical line (allowing for slight horizontal variance)
let x = start.x;
let y_min = start.y.min(end.y);
let y_max = start.y.max(end.y);
vertical_segments.entry(x).or_default().push((y_min, y_max));
}
}
/// Merges overlapping or adjacent segments into continuous lines
fn merge_segments(segments: Vec<(i32, i32)>) -> Vec<(i32, i32)> {
if segments.is_empty() {
return Vec::new();
}
let mut merged = Vec::new();
let mut current_start = segments[0].0;
let mut current_end = segments[0].1;
for &(start, end) in segments.iter().skip(1) {
if start <= current_end + 1 {
// Adjacent or overlapping
current_end = current_end.max(end);
} else {
merged.push((current_start, current_end));
current_start = start;
current_end = end;
}
}
merged.push((current_start, current_end));
merged
}
// Convert to flat vectors for fast iteration during rendering
let horizontal_lines = horizontal_segments
.into_iter()
.flat_map(|(y, mut segments)| {
segments.sort_unstable_by_key(|(start, _)| *start);
let merged = merge_segments(segments);
merged.into_iter().map(move |(x_start, x_end)| (y, x_start, x_end))
})
.collect::<Vec<_>>();
let vertical_lines = vertical_segments
.into_iter()
.flat_map(|(x, mut segments)| {
segments.sort_unstable_by_key(|(start, _)| *start);
let merged = merge_segments(segments);
merged.into_iter().map(move |(y_start, y_end)| (x, y_start, y_end))
})
.collect::<Vec<_>>();
Self {
horizontal_lines,
vertical_lines,
}
}
pub fn render(&self, canvas: &mut Canvas<Window>) {
// Render horizontal lines
for &(y, x_start, x_end) in &self.horizontal_lines {
let points = [Point::new(x_start, y), Point::new(x_end, y)];
let _ = canvas.draw_lines(&points[..]);
}
// Render vertical lines
for &(x, y_start, y_end) in &self.vertical_lines {
let points = [Point::new(x, y_start), Point::new(x, y_end)];
let _ = canvas.draw_lines(&points[..]);
}
}
}
/// Resource to hold the debug texture for persistent rendering
pub struct DebugTextureResource(pub Texture<'static>);
/// Transforms a position from logical canvas coordinates to output canvas coordinates
fn transform_position(pos: (f32, f32), output_size: (u32, u32), logical_size: (u32, u32)) -> (i32, i32) {
let scale_x = output_size.0 as f32 / logical_size.0 as f32;
let scale_y = output_size.1 as f32 / logical_size.1 as f32;
let scale = scale_x.min(scale_y); // Use the smaller scale to maintain aspect ratio
let x = (pos.0 * scale) as i32;
let y = (pos.1 * scale) as i32;
(x, y)
}
/// Transforms a position from logical canvas coordinates to output canvas coordinates (with board offset)
fn transform_position_with_offset(pos: (f32, f32), output_size: (u32, u32), logical_size: (u32, u32)) -> (i32, i32) {
let scale_x = output_size.0 as f32 / logical_size.0 as f32;
let scale_y = output_size.1 as f32 / logical_size.1 as f32;
let scale = scale_x.min(scale_y); // Use the smaller scale to maintain aspect ratio
let x = ((pos.0 + BOARD_PIXEL_OFFSET.x as f32) * scale) as i32;
let y = ((pos.1 + BOARD_PIXEL_OFFSET.y as f32) * scale) as i32;
(x, y)
fn transform_position_with_offset(pos: Vec2, scale: f32) -> IVec2 {
((pos + BOARD_PIXEL_OFFSET.as_vec2()) * scale).as_ivec2()
}
/// Transforms a size from logical canvas coordinates to output canvas coordinates
fn transform_size(size: f32, output_size: (u32, u32), logical_size: (u32, u32)) -> u32 {
let scale_x = output_size.0 as f32 / logical_size.0 as f32;
let scale_y = output_size.1 as f32 / logical_size.1 as f32;
let scale = scale_x.min(scale_y); // Use the smaller scale to maintain aspect ratio
(size * scale) as u32
}
pub fn debug_render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
backbuffer: NonSendMut<BackbufferResource>,
mut debug_texture: NonSendMut<DebugTextureResource>,
debug_state: Res<DebugState>,
map: Res<Map>,
colliders: Query<(&Collider, &Position)>,
/// Renders timing information in the top-left corner of the screen using the debug text atlas
fn render_timing_display(
canvas: &mut Canvas<Window>,
timings: &SystemTimings,
current_tick: u64,
text_renderer: &TtfRenderer,
atlas: &mut TtfAtlas,
) {
if *debug_state == DebugState::Off {
return;
// Format timing information using the formatting module
let lines = timings.format_timing_display(current_tick);
let line_height = text_renderer.text_height(atlas) as i32 + 2; // Add 2px line spacing
let padding = 10;
// Calculate background dimensions
let max_width = lines
.iter()
.filter(|l| !l.is_empty()) // Don't consider empty lines for width
.map(|line| text_renderer.text_width(atlas, line))
.max()
.unwrap_or(0);
// Only draw background if there is text to display
let total_height = (lines.len() as u32) * line_height as u32;
if max_width > 0 && total_height > 0 {
let bg_padding = 5;
// Draw background
let bg_rect = Rect::new(
padding - bg_padding,
padding - bg_padding,
max_width + (bg_padding * 2) as u32,
total_height + bg_padding as u32,
);
canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
canvas.set_draw_color(Color::RGBA(40, 40, 40, 180));
canvas.fill_rect(bg_rect).unwrap();
}
// Get canvas sizes for coordinate transformation
let output_size = canvas.output_size().unwrap();
let logical_size = canvas.logical_size();
for (i, line) in lines.iter().enumerate() {
if line.is_empty() {
continue;
}
// Copy the current backbuffer to the debug texture
canvas
.with_texture_canvas(&mut debug_texture.0, |debug_canvas| {
// Clear the debug canvas
debug_canvas.set_draw_color(Color::BLACK);
debug_canvas.clear();
// Position each line below the previous one
let y_pos = padding + (i as i32 * line_height);
let position = Vec2::new(padding as f32, y_pos as f32);
// Copy the backbuffer to the debug canvas
debug_canvas.copy(&backbuffer.0, None, None).unwrap();
})
.unwrap();
// Draw debug info on the high-resolution debug texture
canvas
.with_texture_canvas(&mut debug_texture.0, |debug_canvas| match *debug_state {
DebugState::Graph => {
debug_canvas.set_draw_color(Color::RED);
for (start_node, end_node) in map.graph.edges() {
let start_node = map.graph.get_node(start_node).unwrap().position;
let end_node = map.graph.get_node(end_node.target).unwrap().position;
// Transform positions using common method
let (start_x, start_y) =
transform_position_with_offset((start_node.x, start_node.y), output_size, logical_size);
let (end_x, end_y) = transform_position_with_offset((end_node.x, end_node.y), output_size, logical_size);
debug_canvas.draw_line((start_x, start_y), (end_x, end_y)).unwrap();
}
debug_canvas.set_draw_color(Color::BLUE);
for node in map.graph.nodes() {
let pos = node.position;
// Transform position using common method
let (x, y) = transform_position_with_offset((pos.x, pos.y), output_size, logical_size);
let size = transform_size(4.0, output_size, logical_size);
debug_canvas
.fill_rect(Rect::new(x - (size as i32 / 2), y - (size as i32 / 2), size, size))
.unwrap();
}
}
DebugState::Collision => {
debug_canvas.set_draw_color(Color::GREEN);
for (collider, position) in colliders.iter() {
let pos = position.get_pixel_pos(&map.graph).unwrap();
// Transform position and size using common methods
let (x, y) = transform_position((pos.x, pos.y), output_size, logical_size);
let size = transform_size(collider.size, output_size, logical_size);
// Center the collision box on the entity
let rect = Rect::new(x - (size as i32 / 2), y - (size as i32 / 2), size, size);
debug_canvas.draw_rect(rect).unwrap();
}
}
_ => {}
})
.unwrap();
// Draw the debug texture directly onto the main canvas at full resolution
canvas.copy(&debug_texture.0, None, None).unwrap();
// Render the line using the debug text renderer
text_renderer
.render_text(canvas, atlas, line, position, Color::RGBA(255, 255, 255, 200))
.unwrap();
}
}
#[allow(clippy::too_many_arguments)]
pub fn debug_render_system(
canvas: &mut Canvas<Window>,
ttf_atlas: &mut TtfAtlasResource,
batched_lines: &Res<BatchedLinesResource>,
debug_state: &Res<DebugState>,
timings: &Res<SystemTimings>,
timing: &Res<crate::systems::profiling::Timing>,
map: &Res<Map>,
colliders: &Query<(&Collider, &Position)>,
cursor: &Res<CursorPosition>,
) {
if !debug_state.enabled {
return;
}
// Create debug text renderer
let text_renderer = TtfRenderer::new(1.0);
let cursor_world_pos = match &**cursor {
CursorPosition::None => None,
CursorPosition::Some { position, .. } => Some(position - BOARD_PIXEL_OFFSET.as_vec2()),
};
// Clear the debug canvas
canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
canvas.clear();
// Find the closest node to the cursor
let closest_node = if let Some(cursor_world_pos) = cursor_world_pos {
map.graph
.nodes()
.map(|node| node.position.distance(cursor_world_pos))
.enumerate()
.min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Less))
.map(|(id, _)| id)
} else {
None
};
canvas.set_draw_color(Color::GREEN);
{
let rects = colliders
.iter()
.map(|(collider, position)| {
let pos = position.get_pixel_position(&map.graph).unwrap();
// Transform position and size using common methods
let pos = (pos * constants::LARGE_SCALE).as_ivec2();
let size = (collider.size * constants::LARGE_SCALE) as u32;
Rect::from_center(Point::from((pos.x, pos.y)), size, size)
})
.collect::<SmallVec<[Rect; 100]>>();
if rects.len() > rects.capacity() {
warn!(
capacity = rects.capacity(),
count = rects.len(),
"Collider rects capacity exceeded"
);
}
canvas.draw_rects(&rects).unwrap();
}
canvas.set_draw_color(Color {
a: f32_to_u8(0.65),
..Color::RED
});
canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
// Use cached batched line segments
batched_lines.render(canvas);
{
let rects: Vec<_> = map
.graph
.nodes()
.enumerate()
.filter_map(|(id, node)| {
let pos = transform_position_with_offset(node.position, constants::LARGE_SCALE);
let size = (2.0 * constants::LARGE_SCALE) as u32;
let rect = Rect::new(pos.x - (size as i32 / 2), pos.y - (size as i32 / 2), size, size);
// If the node is the one closest to the cursor, draw it immediately
if closest_node == Some(id) {
canvas.set_draw_color(Color::YELLOW);
canvas.fill_rect(rect).unwrap();
return None;
}
Some(rect)
})
.collect();
if rects.len() > rects.capacity() {
warn!(
capacity = rects.capacity(),
count = rects.len(),
"Node rects capacity exceeded"
);
}
// Draw the non-closest nodes all at once in blue
canvas.set_draw_color(Color::BLUE);
canvas.fill_rects(&rects).unwrap();
}
// Render node ID if a node is highlighted
if let Some(closest_node_id) = closest_node {
let node = map.graph.get_node(closest_node_id as NodeId).unwrap();
let pos = transform_position_with_offset(node.position, constants::LARGE_SCALE);
let node_id_text = closest_node_id.to_string();
let text_pos = Vec2::new((pos.x + 10) as f32, (pos.y - 5) as f32);
text_renderer
.render_text(
canvas,
&mut ttf_atlas.0,
&node_id_text,
text_pos,
Color {
a: f32_to_u8(0.9),
..Color::WHITE
},
)
.unwrap();
}
// Render timing information in the top-left corner
// Use previous tick since current tick is incomplete (frame is still running)
let current_tick = timing.get_current_tick();
let previous_tick = current_tick.saturating_sub(1);
render_timing_display(canvas, timings, previous_tick, &text_renderer, &mut ttf_atlas.0);
}

218
src/systems/ghost.rs Normal file
View File

@@ -0,0 +1,218 @@
use crate::platform;
use crate::systems::components::{DirectionalAnimation, Frozen, GhostAnimation, GhostState, LastAnimationState, LinearAnimation};
use crate::{
map::{
builder::Map,
direction::Direction,
graph::{Edge, TraversalFlags},
},
systems::{
components::{DeltaTime, Ghost},
movement::{Position, Velocity},
},
};
use crate::systems::GhostAnimations;
use bevy_ecs::query::Without;
use bevy_ecs::system::{Commands, Query, Res};
use rand::seq::IndexedRandom;
use smallvec::SmallVec;
/// Autonomous ghost AI system implementing randomized movement with backtracking avoidance.
pub fn ghost_movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut ghosts: Query<(&Ghost, &mut Velocity, &mut Position), Without<Frozen>>,
) {
for (_ghost, mut velocity, mut position) in ghosts.iter_mut() {
let mut distance = velocity.speed * 60.0 * delta_time.seconds;
loop {
match *position {
Position::Stopped { node: current_node } => {
let intersection = &map.graph.adjacency_list[current_node as usize];
let opposite = velocity.direction.opposite();
let mut non_opposite_options: SmallVec<[Edge; 3]> = SmallVec::new();
// Collect all available directions that ghosts can traverse
for edge in Direction::DIRECTIONS.iter().flat_map(|d| intersection.get(*d)) {
if edge.traversal_flags.contains(TraversalFlags::GHOST) && edge.direction != opposite {
non_opposite_options.push(edge);
}
}
let new_edge: Edge = if non_opposite_options.is_empty() {
if let Some(edge) = intersection.get(opposite) {
edge
} else {
break;
}
} else {
*non_opposite_options.choose(&mut platform::rng()).unwrap()
};
velocity.direction = new_edge.direction;
*position = Position::Moving {
from: current_node,
to: new_edge.target,
remaining_distance: new_edge.distance,
};
}
Position::Moving { .. } => {
if let Some(overflow) = position.tick(distance) {
distance = overflow;
} else {
break;
}
}
}
}
}
}
/// System that handles eaten ghost behavior and respawn logic.
///
/// When a ghost is eaten by Pac-Man, it enters an "eaten" state where:
/// 1. It displays eyes-only animation
/// 2. It moves directly back to the ghost house at increased speed
/// 3. Once it reaches the ghost house center, it respawns as a normal ghost
///
/// This system runs after the main movement system to override eaten ghost movement.
pub fn eaten_ghost_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut eaten_ghosts: Query<(&Ghost, &mut Position, &mut Velocity, &mut GhostState)>,
) {
for (ghost_type, mut position, mut velocity, mut ghost_state) in eaten_ghosts.iter_mut() {
// Only process ghosts that are in Eyes state
if !matches!(*ghost_state, GhostState::Eyes) {
continue;
}
// Set higher speed for eaten ghosts returning to ghost house
let original_speed = velocity.speed;
velocity.speed = ghost_type.base_speed() * 2.0; // Move twice as fast when eaten
// Calculate direction towards ghost house center (using Clyde's start position)
let ghost_house_center = map.start_positions.clyde;
match *position {
Position::Stopped { node: current_node } => {
// Find path to ghost house center and start moving
if let Some(direction) = find_direction_to_target(&map, current_node, ghost_house_center) {
velocity.direction = direction;
*position = Position::Moving {
from: current_node,
to: map.graph.adjacency_list[current_node as usize].get(direction).unwrap().target,
remaining_distance: map.graph.adjacency_list[current_node as usize]
.get(direction)
.unwrap()
.distance,
};
}
}
Position::Moving { to, .. } => {
let distance = velocity.speed * 60.0 * delta_time.seconds;
if let Some(_overflow) = position.tick(distance) {
// Reached target node, check if we're at ghost house center
if to == ghost_house_center {
// Respawn the ghost - set state back to normal
*ghost_state = GhostState::Normal;
// Reset to stopped at ghost house center
*position = Position::Stopped {
node: ghost_house_center,
};
} else {
// Continue pathfinding to ghost house
if let Some(next_direction) = find_direction_to_target(&map, to, ghost_house_center) {
velocity.direction = next_direction;
*position = Position::Moving {
from: to,
to: map.graph.adjacency_list[to as usize].get(next_direction).unwrap().target,
remaining_distance: map.graph.adjacency_list[to as usize].get(next_direction).unwrap().distance,
};
}
}
}
}
}
// Restore original speed
velocity.speed = original_speed;
}
}
/// Helper function to find the direction from a node towards a target node.
/// Uses simple greedy pathfinding - prefers straight lines when possible.
fn find_direction_to_target(
map: &Map,
from_node: crate::systems::movement::NodeId,
target_node: crate::systems::movement::NodeId,
) -> Option<Direction> {
let from_pos = map.graph.get_node(from_node).unwrap().position;
let target_pos = map.graph.get_node(target_node).unwrap().position;
let dx = target_pos.x as i32 - from_pos.x as i32;
let dy = target_pos.y as i32 - from_pos.y as i32;
// Prefer horizontal movement first, then vertical
let preferred_dirs = if dx.abs() > dy.abs() {
if dx > 0 {
[Direction::Right, Direction::Up, Direction::Down, Direction::Left]
} else {
[Direction::Left, Direction::Up, Direction::Down, Direction::Right]
}
} else if dy > 0 {
[Direction::Down, Direction::Left, Direction::Right, Direction::Up]
} else {
[Direction::Up, Direction::Left, Direction::Right, Direction::Down]
};
// Return first available direction towards target
for direction in preferred_dirs {
if let Some(edge) = map.graph.adjacency_list[from_node as usize].get(direction) {
if edge.traversal_flags.contains(TraversalFlags::GHOST) {
return Some(direction);
}
}
}
None
}
/// Unified system that manages ghost state transitions and animations with component swapping
pub fn ghost_state_system(
mut commands: Commands,
animations: Res<GhostAnimations>,
mut ghosts: Query<(bevy_ecs::entity::Entity, &Ghost, &mut GhostState, &mut LastAnimationState)>,
) {
for (entity, ghost_type, mut ghost_state, mut last_animation_state) in ghosts.iter_mut() {
// Tick the ghost state to handle internal transitions (like flashing)
let _ = ghost_state.tick();
// Only update animation if the animation state actually changed
let current_animation_state = ghost_state.animation_state();
if last_animation_state.0 != current_animation_state {
match current_animation_state {
GhostAnimation::Frightened { flash } => {
// Remove DirectionalAnimation, add LinearAnimation
commands
.entity(entity)
.remove::<DirectionalAnimation>()
.insert(*animations.frightened(flash));
}
GhostAnimation::Normal => {
// Remove LinearAnimation, add DirectionalAnimation
commands
.entity(entity)
.remove::<LinearAnimation>()
.insert(*animations.get_normal(ghost_type).unwrap());
}
GhostAnimation::Eyes => {
// Remove LinearAnimation, add DirectionalAnimation (eyes animation)
commands.entity(entity).remove::<LinearAnimation>().insert(*animations.eyes());
}
}
last_animation_state.0 = current_animation_state;
}
}
}

View File

@@ -1,16 +1,69 @@
use std::collections::HashMap;
use std::collections::{HashMap, HashSet};
use bevy_ecs::{event::EventWriter, prelude::Res, resource::Resource, system::NonSendMut};
use sdl2::{event::Event, keyboard::Keycode, EventPump};
use bevy_ecs::{
event::EventWriter,
resource::Resource,
system::{NonSendMut, Res, ResMut},
};
use glam::Vec2;
use sdl2::{
event::{Event, WindowEvent},
keyboard::Keycode,
EventPump,
};
use smallvec::{smallvec, SmallVec};
use crate::systems::components::DeltaTime;
use crate::{
entity::direction::Direction,
events::{GameCommand, GameEvent},
map::direction::Direction,
};
#[derive(Debug, Clone, Resource)]
// Touch input constants
pub const TOUCH_DIRECTION_THRESHOLD: f32 = 10.0;
pub const TOUCH_EASING_DISTANCE_THRESHOLD: f32 = 1.0;
pub const MAX_TOUCH_MOVEMENT_SPEED: f32 = 100.0;
pub const TOUCH_EASING_FACTOR: f32 = 1.5;
#[derive(Resource, Default, Debug, Copy, Clone)]
pub enum CursorPosition {
#[default]
None,
Some {
position: Vec2,
remaining_time: f32,
},
}
#[derive(Resource, Default, Debug, Clone)]
pub struct TouchState {
pub active_touch: Option<TouchData>,
}
#[derive(Debug, Clone)]
pub struct TouchData {
pub finger_id: i64,
pub start_pos: Vec2,
pub current_pos: Vec2,
pub current_direction: Option<Direction>,
}
impl TouchData {
pub fn new(finger_id: i64, start_pos: Vec2) -> Self {
Self {
finger_id,
start_pos,
current_pos: start_pos,
current_direction: None,
}
}
}
#[derive(Resource, Debug, Clone)]
pub struct Bindings {
key_bindings: HashMap<Keycode, GameCommand>,
movement_keys: HashSet<Keycode>,
pressed_movement_keys: Vec<Keycode>,
}
impl Default for Bindings {
@@ -35,23 +88,247 @@ impl Default for Bindings {
key_bindings.insert(Keycode::Escape, GameCommand::Exit);
key_bindings.insert(Keycode::Q, GameCommand::Exit);
Self { key_bindings }
}
}
let movement_keys = HashSet::from([
Keycode::W,
Keycode::A,
Keycode::S,
Keycode::D,
Keycode::Up,
Keycode::Down,
Keycode::Left,
Keycode::Right,
]);
pub fn input_system(bindings: Res<Bindings>, mut writer: EventWriter<GameEvent>, mut pump: NonSendMut<&'static mut EventPump>) {
for event in pump.poll_iter() {
match event {
Event::Quit { .. } => {
writer.write(GameEvent::Command(GameCommand::Exit));
}
Event::KeyDown { keycode: Some(key), .. } => {
let command = bindings.key_bindings.get(&key).copied();
if let Some(command) = command {
writer.write(GameEvent::Command(command));
}
}
_ => {}
Self {
key_bindings,
movement_keys,
pressed_movement_keys: Vec::new(),
}
}
}
/// A simplified input event used for deterministic testing and logic reuse
/// without depending on SDL's event pump.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum SimpleKeyEvent {
KeyDown(Keycode),
KeyUp(Keycode),
}
/// Processes a frame's worth of simplified key events and returns the resulting
/// `GameEvent`s that would be emitted by the input system for that frame.
///
/// This mirrors the behavior of `input_system` for keyboard-related logic:
/// - KeyDown emits the bound command immediately (movement or otherwise)
/// - Tracks pressed movement keys in order to continue movement on subsequent frames
/// - KeyUp removes movement keys; if another movement key remains, it resumes
pub fn process_simple_key_events(bindings: &mut Bindings, frame_events: &[SimpleKeyEvent]) -> Vec<GameEvent> {
let mut emitted_events = Vec::new();
let mut movement_key_pressed = false;
for event in frame_events {
match *event {
SimpleKeyEvent::KeyDown(key) => {
if let Some(command) = bindings.key_bindings.get(&key).copied() {
emitted_events.push(GameEvent::Command(command));
}
if bindings.movement_keys.contains(&key) {
movement_key_pressed = true;
if !bindings.pressed_movement_keys.contains(&key) {
bindings.pressed_movement_keys.push(key);
}
}
}
SimpleKeyEvent::KeyUp(key) => {
if bindings.movement_keys.contains(&key) {
bindings.pressed_movement_keys.retain(|&k| k != key);
}
}
}
}
if !movement_key_pressed {
if let Some(&last_movement_key) = bindings.pressed_movement_keys.last() {
if let Some(command) = bindings.key_bindings.get(&last_movement_key).copied() {
emitted_events.push(GameEvent::Command(command));
}
}
}
emitted_events
}
/// Calculates the primary direction from a 2D vector delta
pub fn calculate_direction_from_delta(delta: Vec2) -> Direction {
if delta.x.abs() > delta.y.abs() {
if delta.x > 0.0 {
Direction::Right
} else {
Direction::Left
}
} else if delta.y > 0.0 {
Direction::Down
} else {
Direction::Up
}
}
/// Updates the touch reference position with easing
///
/// This slowly moves the start_pos towards the current_pos, with the speed
/// decreasing as the distance gets smaller. The maximum movement speed is capped.
/// Returns the delta vector and its length for reuse by the caller.
pub fn update_touch_reference_position(touch_data: &mut TouchData, delta_time: f32) -> (Vec2, f32) {
// Calculate the vector from start to current position
let delta = touch_data.current_pos - touch_data.start_pos;
let distance = delta.length();
// If there's no significant distance, nothing to do
if distance < TOUCH_EASING_DISTANCE_THRESHOLD {
return (delta, distance);
}
// Calculate speed based on distance (slower as it gets closer)
// The easing function creates a curve where movement slows down as it approaches the target
let speed = (distance / TOUCH_EASING_FACTOR).min(MAX_TOUCH_MOVEMENT_SPEED);
// Calculate movement distance for this frame
let movement_amount = speed * delta_time;
// If the movement would overshoot, just set to target
if movement_amount >= distance {
touch_data.start_pos = touch_data.current_pos;
} else {
// Use direct vector scaling instead of normalization
let scale_factor = movement_amount / distance;
touch_data.start_pos += delta * scale_factor;
}
(delta, distance)
}
pub fn input_system(
delta_time: Res<DeltaTime>,
mut bindings: ResMut<Bindings>,
mut writer: EventWriter<GameEvent>,
mut pump: NonSendMut<EventPump>,
mut cursor: ResMut<CursorPosition>,
mut touch_state: ResMut<TouchState>,
) {
let mut cursor_seen = false;
// Collect all events for this frame.
let frame_events: SmallVec<[Event; 3]> = pump.poll_iter().collect();
// Handle non-keyboard events inline and build a simplified keyboard event stream.
let mut simple_key_events: SmallVec<[SimpleKeyEvent; 3]> = smallvec![];
for event in &frame_events {
match *event {
Event::Quit { .. } => {
writer.write(GameEvent::Command(GameCommand::Exit));
}
Event::MouseMotion { x, y, .. } => {
*cursor = CursorPosition::Some {
position: Vec2::new(x as f32, y as f32),
remaining_time: 0.20,
};
cursor_seen = true;
// Handle mouse motion as touch motion for desktop testing
if let Some(ref mut touch_data) = touch_state.active_touch {
touch_data.current_pos = Vec2::new(x as f32, y as f32);
}
}
// Handle mouse events as touch for desktop testing
Event::MouseButtonDown { x, y, .. } => {
let pos = Vec2::new(x as f32, y as f32);
touch_state.active_touch = Some(TouchData::new(0, pos)); // Use ID 0 for mouse
}
Event::MouseButtonUp { .. } => {
touch_state.active_touch = None;
}
// Handle actual touch events for mobile
Event::FingerDown { finger_id, x, y, .. } => {
// Convert normalized coordinates (0.0-1.0) to screen coordinates
let screen_x = x * crate::constants::CANVAS_SIZE.x as f32;
let screen_y = y * crate::constants::CANVAS_SIZE.y as f32;
let pos = Vec2::new(screen_x, screen_y);
touch_state.active_touch = Some(TouchData::new(finger_id, pos));
}
Event::FingerMotion { finger_id, x, y, .. } => {
if let Some(ref mut touch_data) = touch_state.active_touch {
if touch_data.finger_id == finger_id {
let screen_x = x * crate::constants::CANVAS_SIZE.x as f32;
let screen_y = y * crate::constants::CANVAS_SIZE.y as f32;
touch_data.current_pos = Vec2::new(screen_x, screen_y);
}
}
}
Event::FingerUp { finger_id, .. } => {
if let Some(ref touch_data) = touch_state.active_touch {
if touch_data.finger_id == finger_id {
touch_state.active_touch = None;
}
}
}
Event::KeyDown { keycode, repeat, .. } => {
if let Some(key) = keycode {
if repeat {
continue;
}
simple_key_events.push(SimpleKeyEvent::KeyDown(key));
}
}
Event::KeyUp { keycode, repeat, .. } => {
if let Some(key) = keycode {
if repeat {
continue;
}
simple_key_events.push(SimpleKeyEvent::KeyUp(key));
}
}
Event::Window { win_event, .. } => {
if let WindowEvent::Resized(w, h) = win_event {
tracing::info!(width = w, height = h, event = ?win_event, "Window Resized");
}
}
// Despite disabling this event, it's still received, so we ignore it explicitly.
Event::RenderTargetsReset { .. } => {}
_ => {
tracing::warn!(event = ?event, "Unhandled Event");
}
}
}
// Delegate keyboard handling to shared logic used by tests and production.
let emitted = process_simple_key_events(&mut bindings, &simple_key_events);
for event in emitted {
writer.write(event);
}
// Update touch reference position with easing
if let Some(ref mut touch_data) = touch_state.active_touch {
// Apply easing to the reference position and get the delta for direction calculation
let (delta, distance) = update_touch_reference_position(touch_data, delta_time.seconds);
// Check for direction based on updated reference position
if distance >= TOUCH_DIRECTION_THRESHOLD {
let direction = calculate_direction_from_delta(delta);
// Only send command if direction has changed
if touch_data.current_direction != Some(direction) {
touch_data.current_direction = Some(direction);
writer.write(GameEvent::Command(GameCommand::MovePlayer(direction)));
}
} else if touch_data.current_direction.is_some() {
touch_data.current_direction = None;
}
}
if let (false, CursorPosition::Some { remaining_time, .. }) = (cursor_seen, &mut *cursor) {
*remaining_time -= delta_time.seconds;
if *remaining_time <= 0.0 {
*cursor = CursorPosition::None;
}
}
}

74
src/systems/item.rs Normal file
View File

@@ -0,0 +1,74 @@
use bevy_ecs::{
entity::Entity,
event::{EventReader, EventWriter},
query::With,
system::{Commands, Query, ResMut},
};
use crate::{
constants::animation::FRIGHTENED_FLASH_START_TICKS,
events::GameEvent,
systems::{AudioEvent, EntityType, GhostCollider, GhostState, ItemCollider, PacmanCollider, ScoreResource},
};
/// Determines if a collision between two entity types should be handled by the item system.
///
/// Returns `true` if one entity is a player and the other is a collectible item.
#[allow(dead_code)]
pub fn is_valid_item_collision(entity1: EntityType, entity2: EntityType) -> bool {
match (entity1, entity2) {
(EntityType::Player, entity) | (entity, EntityType::Player) => entity.is_collectible(),
_ => false,
}
}
pub fn item_system(
mut commands: Commands,
mut collision_events: EventReader<GameEvent>,
mut score: ResMut<ScoreResource>,
pacman_query: Query<Entity, With<PacmanCollider>>,
item_query: Query<(Entity, &EntityType), With<ItemCollider>>,
mut ghost_query: Query<&mut GhostState, With<GhostCollider>>,
mut events: EventWriter<AudioEvent>,
) {
for event in collision_events.read() {
if let GameEvent::Collision(entity1, entity2) = event {
// Check if one is Pacman and the other is an item
let (_pacman_entity, item_entity) = if pacman_query.get(*entity1).is_ok() && item_query.get(*entity2).is_ok() {
(*entity1, *entity2)
} else if pacman_query.get(*entity2).is_ok() && item_query.get(*entity1).is_ok() {
(*entity2, *entity1)
} else {
continue;
};
// Get the item type and update score
if let Ok((item_ent, entity_type)) = item_query.get(item_entity) {
if let Some(score_value) = entity_type.score_value() {
score.0 += score_value;
// Remove the collected item
commands.entity(item_ent).despawn();
// Trigger audio if appropriate
if entity_type.is_collectible() {
events.write(AudioEvent::PlayEat);
}
// Make ghosts frightened when power pellet is collected
if *entity_type == EntityType::PowerPellet {
// Convert seconds to frames (assumes 60 FPS)
let total_ticks = 60 * 5; // 5 seconds total
// Set all ghosts to frightened state, except those in Eyes state
for mut ghost_state in ghost_query.iter_mut() {
if !matches!(*ghost_state, GhostState::Eyes) {
*ghost_state = GhostState::new_frightened(total_ticks, FRIGHTENED_FLASH_START_TICKS);
}
}
}
}
}
}
}
}

View File

@@ -3,12 +3,30 @@
//! This module contains all the ECS-related logic, including components, systems,
//! and resources.
pub mod audio;
pub mod blinking;
pub mod collision;
pub mod components;
pub mod control;
pub mod debug;
pub mod ghost;
pub mod input;
pub mod item;
pub mod movement;
pub mod player;
pub mod profiling;
pub mod render;
pub mod stage;
pub use self::audio::*;
pub use self::blinking::*;
pub use self::collision::*;
pub use self::components::*;
pub use self::debug::*;
pub use self::ghost::*;
pub use self::input::*;
pub use self::item::*;
pub use self::movement::*;
pub use self::player::*;
pub use self::profiling::*;
pub use self::render::*;
pub use self::stage::*;

View File

@@ -1,46 +1,47 @@
use crate::entity::graph::Graph;
use crate::entity::{direction::Direction, graph::Edge};
use crate::error::{EntityError, GameError, GameResult};
use crate::map::builder::Map;
use crate::systems::components::{DeltaTime, EntityType};
use crate::error::{EntityError, GameResult};
use crate::map::direction::Direction;
use crate::map::graph::Graph;
use bevy_ecs::component::Component;
use bevy_ecs::event::EventWriter;
use bevy_ecs::system::{Query, Res};
use glam::Vec2;
/// A unique identifier for a node, represented by its index in the graph's storage.
pub type NodeId = usize;
/// Zero-based index identifying a specific node in the navigation graph.
///
/// Nodes represent discrete movement targets in the maze. The index directly corresponds to the node's position in the
/// graph's internal storage arrays.
pub type NodeId = u16;
/// Progress along an edge between two nodes.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct EdgeProgress {
pub target_node: NodeId,
/// Progress from 0.0 (at source node) to 1.0 (at target node)
pub progress: f32,
}
/// Pure spatial position component - works for both static and dynamic entities.
/// A component that represents the speed and cardinal direction of an entity.
/// Speed is static, only applied when the entity has an edge to traverse.
/// Direction is dynamic, but is controlled externally.
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub struct Position {
/// The current/primary node this entity is at or traveling from
pub node: NodeId,
/// If Some, entity is traveling between nodes. If None, entity is stationary at node.
pub edge_progress: Option<EdgeProgress>,
}
/// Explicit movement state - only for entities that can move.
#[derive(Component, Debug, Clone, Copy, PartialEq)]
pub enum MovementState {
Stopped,
Moving { direction: Direction },
}
/// Movement capability and parameters - only for entities that can move.
#[derive(Component, Debug, Clone, Copy)]
pub struct Movable {
pub struct Velocity {
pub speed: f32,
pub current_direction: Direction,
pub requested_direction: Option<Direction>,
pub direction: Direction,
}
/// A component that represents a direction change that is only remembered for a period of time.
/// This is used to allow entities to change direction before they reach their current target node (which consumes their buffered direction).
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub enum BufferedDirection {
None,
Some { direction: Direction, remaining_time: f32 },
}
/// Entity position state that handles both stationary entities and moving entities.
///
/// Supports precise positioning during movement between discrete navigation nodes.
/// When moving, entities smoothly interpolate along edges while tracking exact distance remaining to the target node.
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub enum Position {
/// Entity is stationary at a specific graph node.
Stopped { node: NodeId },
/// Entity is traveling between two nodes.
Moving {
from: NodeId,
to: NodeId,
/// Distance remaining to reach the target node.
remaining_distance: f32,
},
}
impl Position {
@@ -52,26 +53,33 @@ impl Position {
/// # Errors
///
/// Returns an `EntityError` if the node or edge is not found.
pub fn get_pixel_pos(&self, graph: &Graph) -> GameResult<Vec2> {
let pos = match &self.edge_progress {
None => {
pub fn get_pixel_position(&self, graph: &Graph) -> GameResult<Vec2> {
let pos = match &self {
Position::Stopped { node } => {
// Entity is stationary at a node
let node = graph.get_node(self.node).ok_or(EntityError::NodeNotFound(self.node))?;
let node = graph.get_node(*node).ok_or(EntityError::NodeNotFound(*node as usize))?;
node.position
}
Some(edge_progress) => {
Position::Moving {
from,
to,
remaining_distance,
} => {
// Entity is traveling between nodes
let from_node = graph.get_node(self.node).ok_or(EntityError::NodeNotFound(self.node))?;
let to_node = graph
.get_node(edge_progress.target_node)
.ok_or(EntityError::NodeNotFound(edge_progress.target_node))?;
let from_node = graph.get_node(*from).ok_or(EntityError::NodeNotFound(*from as usize))?;
let to_node = graph.get_node(*to).ok_or(EntityError::NodeNotFound(*to as usize))?;
let edge = graph.find_edge(*from, *to).ok_or(EntityError::EdgeNotFound {
from: *from as usize,
to: *to as usize,
})?;
// For zero-distance edges (tunnels), progress >= 1.0 means we're at the target
if edge_progress.progress >= 1.0 {
if edge.distance == 0.0 {
to_node.position
} else {
// Interpolate position based on progress
from_node.position + (to_node.position - from_node.position) * edge_progress.progress
let progress = 1.0 - (*remaining_distance / edge.distance);
from_node.position.lerp(to_node.position, progress)
}
}
};
@@ -81,192 +89,61 @@ impl Position {
pos.y + crate::constants::BOARD_PIXEL_OFFSET.y as f32,
))
}
}
impl Default for Position {
fn default() -> Self {
Position {
node: 0,
edge_progress: None,
/// Advances movement progress by the specified distance with overflow handling.
///
/// For moving entities, decreases the remaining distance to the target node.
/// If the distance would overshoot the target, the entity transitions to
/// `Stopped` state and returns the excess distance for chaining movement
/// to the next edge in the same frame.
///
/// # Arguments
///
/// * `distance` - Distance to travel this frame (typically speed × delta_time)
///
/// # Returns
///
/// `Some(overflow)` if the target was reached with distance remaining,
/// `None` if still moving or already stopped.
pub fn tick(&mut self, distance: f32) -> Option<f32> {
if distance <= 0.0 || self.is_at_node() {
return None;
}
match self {
Position::Moving {
to, remaining_distance, ..
} => {
// If the remaining distance is less than or equal the distance, we'll reach the target
if *remaining_distance <= distance {
let overflow: Option<f32> = if *remaining_distance != distance {
Some(distance - *remaining_distance)
} else {
None
};
*self = Position::Stopped { node: *to };
return overflow;
}
*remaining_distance -= distance;
None
}
_ => unreachable!(),
}
}
}
#[allow(dead_code)]
impl Position {
/// Returns `true` if the position is exactly at a node (not traveling).
pub fn is_at_node(&self) -> bool {
self.edge_progress.is_none()
matches!(self, Position::Stopped { .. })
}
/// Returns the `NodeId` of the current node (source of travel if moving).
pub fn current_node(&self) -> NodeId {
self.node
}
/// Returns the `NodeId` of the destination node, if currently traveling.
pub fn target_node(&self) -> Option<NodeId> {
self.edge_progress.as_ref().map(|ep| ep.target_node)
}
/// Returns `true` if the entity is traveling between nodes.
pub fn is_moving(&self) -> bool {
self.edge_progress.is_some()
}
}
fn can_traverse(entity_type: EntityType, edge: Edge) -> bool {
let entity_flags = entity_type.traversal_flags();
edge.traversal_flags.contains(entity_flags)
}
pub fn movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut entities: Query<(&mut MovementState, &mut Movable, &mut Position, &EntityType)>,
mut errors: EventWriter<GameError>,
) {
for (mut movement_state, mut movable, mut position, entity_type) in entities.iter_mut() {
let distance = movable.speed * 60.0 * delta_time.0;
match *movement_state {
MovementState::Stopped => {
// Check if we have a requested direction to start moving
if let Some(requested_direction) = movable.requested_direction {
if let Some(edge) = map.graph.find_edge_in_direction(position.node, requested_direction) {
if can_traverse(*entity_type, edge) {
// Start moving in the requested direction
let progress = if edge.distance > 0.0 {
distance / edge.distance
} else {
// Zero-distance edge (tunnels) - immediately teleport
tracing::debug!("Entity entering tunnel from node {} to node {}", position.node, edge.target);
1.0
};
position.edge_progress = Some(EdgeProgress {
target_node: edge.target,
progress,
});
movable.current_direction = requested_direction;
movable.requested_direction = None;
*movement_state = MovementState::Moving {
direction: requested_direction,
};
}
} else {
errors.write(
EntityError::InvalidMovement(format!(
"No edge found in direction {:?} from node {}",
requested_direction, position.node
))
.into(),
);
}
}
}
MovementState::Moving { direction } => {
// Continue moving or handle node transitions
let current_node = position.node;
if let Some(edge_progress) = &mut position.edge_progress {
// Extract target node before mutable operations
let target_node = edge_progress.target_node;
// Get the current edge for distance calculation
let edge = map.graph.find_edge(current_node, target_node);
if let Some(edge) = edge {
// Update progress along the edge
if edge.distance > 0.0 {
edge_progress.progress += distance / edge.distance;
} else {
// Zero-distance edge (tunnels) - immediately complete
edge_progress.progress = 1.0;
}
if edge_progress.progress >= 1.0 {
// Reached the target node
let overflow = if edge.distance > 0.0 {
(edge_progress.progress - 1.0) * edge.distance
} else {
// Zero-distance edge - use remaining distance for overflow
distance
};
position.node = target_node;
position.edge_progress = None;
let mut continued_moving = false;
// Try to use requested direction first
if let Some(requested_direction) = movable.requested_direction {
if let Some(next_edge) = map.graph.find_edge_in_direction(position.node, requested_direction) {
if can_traverse(*entity_type, next_edge) {
let next_progress = if next_edge.distance > 0.0 {
overflow / next_edge.distance
} else {
// Zero-distance edge - immediately complete
1.0
};
position.edge_progress = Some(EdgeProgress {
target_node: next_edge.target,
progress: next_progress,
});
movable.current_direction = requested_direction;
movable.requested_direction = None;
*movement_state = MovementState::Moving {
direction: requested_direction,
};
continued_moving = true;
}
}
}
// If no requested direction or it failed, try to continue in current direction
if !continued_moving {
if let Some(next_edge) = map.graph.find_edge_in_direction(position.node, direction) {
if can_traverse(*entity_type, next_edge) {
let next_progress = if next_edge.distance > 0.0 {
overflow / next_edge.distance
} else {
// Zero-distance edge - immediately complete
1.0
};
position.edge_progress = Some(EdgeProgress {
target_node: next_edge.target,
progress: next_progress,
});
// Keep current direction and movement state
continued_moving = true;
}
}
}
// If we couldn't continue moving, stop
if !continued_moving {
*movement_state = MovementState::Stopped;
movable.requested_direction = None;
}
}
} else {
// Edge not found - this is an inconsistent state
errors.write(
EntityError::InvalidMovement(format!(
"Inconsistent state: Moving on non-existent edge from {} to {}",
current_node, target_node
))
.into(),
);
*movement_state = MovementState::Stopped;
position.edge_progress = None;
}
} else {
// Movement state says moving but no edge progress - this shouldn't happen
errors.write(EntityError::InvalidMovement("Entity in Moving state but no edge progress".to_string()).into());
*movement_state = MovementState::Stopped;
}
}
match self {
Position::Stopped { node } => *node,
Position::Moving { from, .. } => *from,
}
}
}

168
src/systems/player.rs Normal file
View File

@@ -0,0 +1,168 @@
use bevy_ecs::{
event::{EventReader, EventWriter},
query::{With, Without},
system::{Query, Res, ResMut},
};
use crate::{
error::GameError,
events::{GameCommand, GameEvent},
map::{builder::Map, graph::Edge},
systems::{
components::{DeltaTime, EntityType, Frozen, GlobalState, MovementModifiers, PlayerControlled},
debug::DebugState,
movement::{BufferedDirection, Position, Velocity},
AudioState,
},
};
pub fn can_traverse(entity_type: EntityType, edge: Edge) -> bool {
let entity_flags = entity_type.traversal_flags();
edge.traversal_flags.contains(entity_flags)
}
/// Processes player input commands and updates game state accordingly.
///
/// Handles keyboard-driven commands like movement direction changes, debug mode
/// toggling, audio muting, and game exit requests. Movement commands are buffered
/// to allow direction changes before reaching intersections, improving gameplay
/// responsiveness. Non-movement commands immediately modify global game state.
pub fn player_control_system(
mut events: EventReader<GameEvent>,
mut state: ResMut<GlobalState>,
mut debug_state: ResMut<DebugState>,
mut audio_state: ResMut<AudioState>,
mut players: Query<&mut BufferedDirection, (With<PlayerControlled>, Without<Frozen>)>,
mut errors: EventWriter<GameError>,
) {
// Handle events
for event in events.read() {
if let GameEvent::Command(command) = event {
match command {
GameCommand::MovePlayer(direction) => {
// Get the player's movable component (ensuring there is only one player)
let mut buffered_direction = match players.single_mut() {
Ok(tuple) => tuple,
Err(e) => {
errors.write(GameError::InvalidState(format!(
"No/multiple entities queried for player system: {}",
e
)));
return;
}
};
*buffered_direction = BufferedDirection::Some {
direction: *direction,
remaining_time: 0.25,
};
}
GameCommand::Exit => {
state.exit = true;
}
GameCommand::ToggleDebug => {
debug_state.enabled = !debug_state.enabled;
}
GameCommand::MuteAudio => {
audio_state.muted = !audio_state.muted;
tracing::info!("Audio {}", if audio_state.muted { "muted" } else { "unmuted" });
}
_ => {}
}
}
}
}
/// Executes frame-by-frame movement for Pac-Man.
///
/// Handles movement logic including buffered direction changes, edge traversal validation, and continuous movement between nodes.
/// When stopped, prioritizes buffered directions for responsive controls, falling back to current direction.
/// Supports movement chaining within a single frame when traveling at high speeds.
#[allow(clippy::type_complexity)]
pub fn player_movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut entities: Query<
(&MovementModifiers, &mut Position, &mut Velocity, &mut BufferedDirection),
(With<PlayerControlled>, Without<Frozen>),
>,
) {
for (modifiers, mut position, mut velocity, mut buffered_direction) in entities.iter_mut() {
// Decrement the buffered direction remaining time
if let BufferedDirection::Some {
direction,
remaining_time,
} = *buffered_direction
{
if remaining_time <= 0.0 {
*buffered_direction = BufferedDirection::None;
} else {
*buffered_direction = BufferedDirection::Some {
direction,
remaining_time: remaining_time - delta_time.seconds,
};
}
}
let mut distance = velocity.speed * modifiers.speed_multiplier * 60.0 * delta_time.seconds;
loop {
match *position {
Position::Stopped { .. } => {
// If there is a buffered direction, travel it's edge first if available.
if let BufferedDirection::Some { direction, .. } = *buffered_direction {
// If there's no edge in that direction, ignore the buffered direction.
if let Some(edge) = map.graph.find_edge_in_direction(position.current_node(), direction) {
// If there is an edge in that direction (and it's traversable), start moving towards it and consume the buffered direction.
if can_traverse(EntityType::Player, edge) {
velocity.direction = edge.direction;
*position = Position::Moving {
from: position.current_node(),
to: edge.target,
remaining_distance: edge.distance,
};
*buffered_direction = BufferedDirection::None;
}
}
}
// If there is no buffered direction (or it's not yet valid), continue in the current direction.
if let Some(edge) = map.graph.find_edge_in_direction(position.current_node(), velocity.direction) {
if can_traverse(EntityType::Player, edge) {
velocity.direction = edge.direction;
*position = Position::Moving {
from: position.current_node(),
to: edge.target,
remaining_distance: edge.distance,
};
}
} else {
// No edge in our current direction either, erase the buffered direction and stop.
*buffered_direction = BufferedDirection::None;
break;
}
}
Position::Moving { .. } => {
if let Some(overflow) = position.tick(distance) {
distance = overflow;
} else {
break;
}
}
}
}
}
}
/// Applies tunnel slowdown based on the current node tile
pub fn player_tunnel_slowdown_system(map: Res<Map>, mut q: Query<(&Position, &mut MovementModifiers), With<PlayerControlled>>) {
if let Ok((position, mut modifiers)) = q.single_mut() {
let node = position.current_node();
let in_tunnel = map
.tile_at_node(node)
.map(|t| t == crate::constants::MapTile::Tunnel)
.unwrap_or(false);
modifiers.tunnel_slowdown_active = in_tunnel;
modifiers.speed_multiplier = if in_tunnel { 0.6 } else { 1.0 };
}
}

View File

@@ -1,85 +1,255 @@
use bevy_ecs::prelude::Resource;
use bevy_ecs::system::{IntoSystem, System};
use micromap::Map;
use bevy_ecs::system::IntoSystem;
use bevy_ecs::{resource::Resource, system::System};
use circular_buffer::CircularBuffer;
use num_width::NumberWidth;
use parking_lot::Mutex;
use std::collections::VecDeque;
use smallvec::SmallVec;
use std::fmt::Display;
use std::sync::atomic::{AtomicU64, Ordering};
use std::time::Duration;
use strum::{EnumCount, IntoEnumIterator};
use strum_macros::{EnumCount, EnumIter, IntoStaticStr};
use thousands::Separable;
const TIMING_WINDOW_SIZE: usize = 90; // 1.5 seconds at 60 FPS
/// The maximum number of systems that can be profiled. Must not be exceeded, or it will panic.
const MAX_SYSTEMS: usize = SystemId::COUNT;
/// The number of durations to keep in the circular buffer.
const TIMING_WINDOW_SIZE: usize = 30;
#[derive(Resource, Default, Debug)]
pub struct SystemTimings {
pub timings: Mutex<Map<&'static str, VecDeque<Duration>, 15>>,
/// A timing buffer that tracks durations and automatically inserts zero durations for skipped ticks.
#[derive(Debug, Default)]
pub struct TimingBuffer {
/// Circular buffer storing timing durations
buffer: CircularBuffer<TIMING_WINDOW_SIZE, Duration>,
/// The last tick when this buffer was updated
last_tick: u64,
}
impl SystemTimings {
pub fn add_timing(&self, name: &'static str, duration: Duration) {
let mut timings = self.timings.lock();
let queue = timings.entry(name).or_insert_with(VecDeque::new);
impl TimingBuffer {
/// Adds a timing duration for the current tick.
///
/// # Panics
///
/// Panics if `current_tick` is less than `last_tick`, indicating time went backwards.
pub fn add_timing(&mut self, duration: Duration, current_tick: u64) {
if current_tick < self.last_tick {
panic!(
"Time went backwards: current_tick ({}) < last_tick ({})",
current_tick, self.last_tick
);
}
queue.push_back(duration);
if queue.len() > TIMING_WINDOW_SIZE {
queue.pop_front();
// Insert zero durations for any skipped ticks (but not the current tick)
if current_tick > self.last_tick {
let skipped_ticks = current_tick - self.last_tick - 1;
for _ in 0..skipped_ticks {
self.buffer.push_back(Duration::ZERO);
}
}
// Add the actual timing
self.buffer.push_back(duration);
self.last_tick = current_tick;
}
/// Gets statistics for this timing buffer.
///
/// # Panics
///
/// Panics if `current_tick` is less than `last_tick`, indicating time went backwards.
pub fn get_stats(&mut self, current_tick: u64) -> (Duration, Duration) {
// Insert zero durations for any skipped ticks since last update (but not the current tick)
if current_tick > self.last_tick {
let skipped_ticks = current_tick - self.last_tick - 1;
for _ in 0..skipped_ticks {
self.buffer.push_back(Duration::ZERO);
}
self.last_tick = current_tick;
}
// Calculate statistics using Welford's algorithm
let mut sample_count = 0u16;
let mut running_mean = 0.0;
let mut sum_squared_diff = 0.0;
let skip = self.last_tick.saturating_sub(current_tick);
for duration in self.buffer.iter().skip(skip as usize) {
let duration_secs = duration.as_secs_f32();
sample_count += 1;
let diff_from_mean = duration_secs - running_mean;
running_mean += diff_from_mean / sample_count as f32;
let diff_from_new_mean = duration_secs - running_mean;
sum_squared_diff += diff_from_mean * diff_from_new_mean;
}
if sample_count > 0 {
let variance = if sample_count > 1 {
sum_squared_diff / (sample_count - 1) as f32
} else {
0.0
};
(
Duration::from_secs_f32(running_mean),
Duration::from_secs_f32(variance.sqrt()),
)
} else {
(Duration::ZERO, Duration::ZERO)
}
}
}
/// A resource that tracks the current game tick using an atomic counter.
/// This ensures thread-safe access to the tick counter across systems.
#[derive(Resource, Debug)]
pub struct Timing {
/// Atomic counter for the current game tick
current_tick: AtomicU64,
}
impl Timing {
/// Creates a new Timing resource starting at tick 0
pub fn new() -> Self {
Self {
current_tick: AtomicU64::new(0),
}
}
pub fn get_stats(&self) -> Map<&'static str, (Duration, Duration), 10> {
let timings = self.timings.lock();
let mut stats = Map::new();
/// Gets the current tick value
pub fn get_current_tick(&self) -> u64 {
self.current_tick.load(Ordering::Relaxed)
}
for (name, queue) in timings.iter() {
if queue.is_empty() {
continue;
}
/// Increments the tick counter and returns the new value
pub fn increment_tick(&self) -> u64 {
self.current_tick.fetch_add(1, Ordering::Relaxed) + 1
}
}
let durations: Vec<f64> = queue.iter().map(|d| d.as_secs_f64() * 1000.0).collect();
let count = durations.len() as f64;
impl Default for Timing {
fn default() -> Self {
Self::new()
}
}
let sum: f64 = durations.iter().sum();
let mean = sum / count;
#[derive(EnumCount, EnumIter, IntoStaticStr, Debug, PartialEq, Eq, Hash, Copy, Clone)]
pub enum SystemId {
Total,
Input,
PlayerControls,
Ghost,
Movement,
Audio,
Blinking,
DirectionalRender,
LinearRender,
DirtyRender,
HudRender,
Render,
DebugRender,
Present,
Collision,
Item,
PlayerMovement,
GhostCollision,
Stage,
GhostStateAnimation,
EatenGhost,
}
let variance = durations.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / count;
let std_dev = variance.sqrt();
impl Display for SystemId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Use strum_macros::IntoStaticStr to get the static string
write!(f, "{}", Into::<&'static str>::into(self).to_ascii_lowercase())
}
}
stats.insert(
*name,
(
Duration::from_secs_f64(mean / 1000.0),
Duration::from_secs_f64(std_dev / 1000.0),
),
);
#[derive(Resource, Debug)]
pub struct SystemTimings {
/// Statically sized map of system names to timing buffers.
pub timings: micromap::Map<SystemId, Mutex<TimingBuffer>, MAX_SYSTEMS>,
}
impl Default for SystemTimings {
fn default() -> Self {
let mut timings = micromap::Map::new();
// Pre-populate with all SystemId variants to avoid runtime allocations
for id in SystemId::iter() {
timings.insert(id, Mutex::new(TimingBuffer::default()));
}
Self { timings }
}
}
impl SystemTimings {
pub fn add_timing(&self, id: SystemId, duration: Duration, current_tick: u64) {
// Since all SystemId variants are pre-populated, we can use a simple read lock
let buffer = self
.timings
.get(&id)
.expect("SystemId not found in pre-populated map - this is a bug");
buffer.lock().add_timing(duration, current_tick);
}
/// Add timing for the Total system (total frame time including scheduler.run)
pub fn add_total_timing(&self, duration: Duration, current_tick: u64) {
self.add_timing(SystemId::Total, duration, current_tick);
}
pub fn get_stats(&self, current_tick: u64) -> micromap::Map<SystemId, (Duration, Duration), MAX_SYSTEMS> {
let mut stats = micromap::Map::new();
// Iterate over all SystemId variants to ensure every system has an entry
for id in SystemId::iter() {
let buffer = self
.timings
.get(&id)
.expect("SystemId not found in pre-populated map - this is a bug");
let (average, standard_deviation) = buffer.lock().get_stats(current_tick);
stats.insert(id, (average, standard_deviation));
}
stats
}
pub fn get_total_stats(&self) -> (Duration, Duration) {
let timings = self.timings.lock();
let mut all_durations = Vec::new();
pub fn format_timing_display(&self, current_tick: u64) -> SmallVec<[String; SystemId::COUNT]> {
let stats = self.get_stats(current_tick);
for queue in timings.values() {
all_durations.extend(queue.iter().map(|d| d.as_secs_f64() * 1000.0));
// Get the Total system metrics instead of averaging all systems
let (total_avg, total_std) = stats
.get(&SystemId::Total)
.copied()
.unwrap_or((Duration::ZERO, Duration::ZERO));
let effective_fps = match 1.0 / total_avg.as_secs_f64() {
f if f > 100.0 => format!("{:>5} FPS", (f as u32).separate_with_commas()),
f if f < 10.0 => format!("{:.1} FPS", f),
f => format!("{:5.0} FPS", f),
};
// Collect timing data for formatting
let mut timing_data = vec![(effective_fps, total_avg, total_std)];
// Sort the stats by average duration, excluding the Total system
let mut sorted_stats: Vec<_> = stats.iter().filter(|(id, _)| **id != SystemId::Total).collect();
sorted_stats.sort_by(|a, b| b.1 .0.cmp(&a.1 .0));
// Add the top 7 most expensive systems (excluding Total)
for (name, (avg, std_dev)) in sorted_stats.iter().take(9) {
timing_data.push((name.to_string(), *avg, *std_dev));
}
if all_durations.is_empty() {
return (Duration::ZERO, Duration::ZERO);
}
let count = all_durations.len() as f64;
let sum: f64 = all_durations.iter().sum();
let mean = sum / count;
let variance = all_durations.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / count;
let std_dev = variance.sqrt();
(
Duration::from_secs_f64(mean / 1000.0),
Duration::from_secs_f64(std_dev / 1000.0),
)
// Use the formatting module to format the data
format_timing_display(timing_data)
}
}
pub fn profile<S, M>(name: &'static str, system: S) -> impl FnMut(&mut bevy_ecs::world::World)
pub fn profile<S, M>(id: SystemId, system: S) -> impl FnMut(&mut bevy_ecs::world::World)
where
S: IntoSystem<(), (), M> + 'static,
{
@@ -95,8 +265,115 @@ where
system.run((), world);
let duration = start.elapsed();
if let Some(timings) = world.get_resource::<SystemTimings>() {
timings.add_timing(name, duration);
if let (Some(timings), Some(timing)) = (world.get_resource::<SystemTimings>(), world.get_resource::<Timing>()) {
let current_tick = timing.get_current_tick();
timings.add_timing(id, duration, current_tick);
}
}
}
// Helper to split a duration into a integer, decimal, and unit
fn get_value(duration: &Duration) -> (u64, u32, &'static str) {
let (int, decimal, unit) = match duration {
// if greater than 1 second, return as seconds
n if n >= &Duration::from_secs(1) => {
let secs = n.as_secs();
let decimal = n.as_millis() as u64 % 1000;
(secs, decimal as u32, "s")
}
// if greater than 1 millisecond, return as milliseconds
n if n >= &Duration::from_millis(1) => {
let ms = n.as_millis() as u64;
let decimal = n.as_micros() as u64 % 1000;
(ms, decimal as u32, "ms")
}
// if greater than 1 microsecond, return as microseconds
n if n >= &Duration::from_micros(1) => {
let us = n.as_micros() as u64;
let decimal = n.as_nanos() as u64 % 1000;
(us, decimal as u32, "µs")
}
// otherwise, return as nanoseconds
n => {
let ns = n.as_nanos() as u64;
(ns, 0, "ns")
}
};
(int, decimal, unit)
}
/// Formats timing data into a vector of strings with proper alignment
pub fn format_timing_display(
timing_data: impl IntoIterator<Item = (String, Duration, Duration)>,
) -> SmallVec<[String; SystemId::COUNT]> {
let mut iter = timing_data.into_iter().peekable();
if iter.peek().is_none() {
return SmallVec::new();
}
struct Entry {
name: String,
avg_int: u64,
avg_decimal: u32,
avg_unit: &'static str,
std_int: u64,
std_decimal: u32,
std_unit: &'static str,
}
let entries = iter
.map(|(name, avg, std_dev)| {
let (avg_int, avg_decimal, avg_unit) = get_value(&avg);
let (std_int, std_decimal, std_unit) = get_value(&std_dev);
Entry {
name: name.clone(),
avg_int,
avg_decimal,
avg_unit,
std_int,
std_decimal,
std_unit,
}
})
.collect::<SmallVec<[Entry; 12]>>();
let (max_avg_int_width, max_avg_decimal_width, max_std_int_width, max_std_decimal_width) =
entries
.iter()
.fold((0, 3, 0, 3), |(avg_int_w, avg_dec_w, std_int_w, std_dec_w), e| {
(
avg_int_w.max(e.avg_int.width() as usize),
avg_dec_w.max(e.avg_decimal.width() as usize),
std_int_w.max(e.std_int.width() as usize),
std_dec_w.max(e.std_decimal.width() as usize),
)
});
let max_name_width = SystemId::iter()
.map(|id| id.to_string().len())
.max()
.expect("SystemId::iter() returned an empty iterator");
entries.iter().map(|e| {
format!(
"{name:max_name_width$} : {avg_int:max_avg_int_width$}.{avg_decimal:<max_avg_decimal_width$}{avg_unit} ± {std_int:max_std_int_width$}.{std_decimal:<max_std_decimal_width$}{std_unit}",
// Content
name = e.name,
avg_int = e.avg_int,
avg_decimal = e.avg_decimal,
std_int = e.std_int,
std_decimal = e.std_decimal,
// Units
avg_unit = e.avg_unit,
std_unit = e.std_unit,
// Padding
max_name_width = max_name_width,
max_avg_int_width = max_avg_int_width,
max_avg_decimal_width = max_avg_decimal_width,
max_std_int_width = max_std_int_width,
max_std_decimal_width = max_std_decimal_width
)
}).collect::<SmallVec<[String; SystemId::COUNT]>>()
}

View File

@@ -1,115 +1,416 @@
use crate::constants::CANVAS_SIZE;
use crate::error::{GameError, TextureError};
use crate::map::builder::Map;
use crate::systems::components::{DeltaTime, DirectionalAnimated, RenderDirty, Renderable};
use crate::systems::movement::{Movable, MovementState, Position};
use crate::systems::input::TouchState;
use crate::systems::{
debug_render_system, BatchedLinesResource, Collider, CursorPosition, DebugState, DebugTextureResource, DeltaTime,
DirectionalAnimation, LinearAnimation, Position, Renderable, ScoreResource, StartupSequence, SystemId, SystemTimings,
TtfAtlasResource, Velocity,
};
use crate::texture::sprite::SpriteAtlas;
use crate::texture::text::TextTexture;
use bevy_ecs::component::Component;
use bevy_ecs::entity::Entity;
use bevy_ecs::event::EventWriter;
use bevy_ecs::prelude::{Changed, Or, RemovedComponents};
use bevy_ecs::query::{Changed, Or, Without};
use bevy_ecs::removal_detection::RemovedComponents;
use bevy_ecs::resource::Resource;
use bevy_ecs::system::{NonSendMut, Query, Res, ResMut};
use sdl2::render::{Canvas, Texture};
use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect};
use sdl2::render::{BlendMode, Canvas, Texture};
use sdl2::video::Window;
use std::time::Instant;
#[derive(Resource, Default)]
pub struct RenderDirty(pub bool);
#[derive(Component)]
pub struct Hidden;
/// Enum to identify which texture is being rendered to in the combined render system
#[derive(Debug, Clone, Copy)]
enum RenderTarget {
Backbuffer,
Debug,
}
#[allow(clippy::type_complexity)]
pub fn dirty_render_system(
mut dirty: ResMut<RenderDirty>,
changed_renderables: Query<(), Or<(Changed<Renderable>, Changed<Position>)>>,
changed: Query<(), Or<(Changed<Renderable>, Changed<Position>)>>,
removed_hidden: RemovedComponents<Hidden>,
removed_renderables: RemovedComponents<Renderable>,
) {
if !changed_renderables.is_empty() || !removed_renderables.is_empty() {
if !changed.is_empty() || !removed_hidden.is_empty() || !removed_renderables.is_empty() {
dirty.0 = true;
}
}
/// Updates the directional animated texture of an entity.
/// Updates directional animated entities with synchronized timing across directions.
///
/// This runs before the render system so it can update the sprite based on the current direction of travel, as well as whether the entity is moving.
/// This runs before the render system to update sprites based on current direction and movement state.
/// All directions share the same frame timing to ensure perfect synchronization.
pub fn directional_render_system(
dt: Res<DeltaTime>,
mut renderables: Query<(&MovementState, &Movable, &mut DirectionalAnimated, &mut Renderable)>,
mut errors: EventWriter<GameError>,
mut query: Query<(&Position, &Velocity, &mut DirectionalAnimation, &mut Renderable)>,
) {
for (movement_state, movable, mut texture, mut renderable) in renderables.iter_mut() {
let stopped = matches!(movement_state, MovementState::Stopped);
let current_direction = movable.current_direction;
let ticks = (dt.seconds * 60.0).round() as u16; // Convert from seconds to ticks at 60 ticks/sec
let texture = if stopped {
texture.stopped_textures[current_direction.as_usize()].as_mut()
for (position, velocity, mut anim, mut renderable) in query.iter_mut() {
let stopped = matches!(position, Position::Stopped { .. });
// Only tick animation when moving to preserve stopped frame
if !stopped {
// Tick shared animation state
anim.time_bank += ticks;
while anim.time_bank >= anim.frame_duration {
anim.time_bank -= anim.frame_duration;
anim.current_frame += 1;
}
}
// Get tiles for current direction and movement state
let tiles = if stopped {
anim.stopped_tiles.get(velocity.direction)
} else {
texture.textures[current_direction.as_usize()].as_mut()
anim.moving_tiles.get(velocity.direction)
};
if let Some(texture) = texture {
if !stopped {
texture.tick(dt.0);
}
let new_tile = *texture.current_tile();
if !tiles.is_empty() {
let new_tile = tiles.get_tile(anim.current_frame);
if renderable.sprite != new_tile {
renderable.sprite = new_tile;
}
}
}
}
/// Updates linear animated entities (used for non-directional animations like frightened ghosts).
///
/// This system handles entities that use LinearAnimation component for simple frame cycling.
pub fn linear_render_system(dt: Res<DeltaTime>, mut query: Query<(&mut LinearAnimation, &mut Renderable)>) {
let ticks = (dt.seconds * 60.0).round() as u16; // Convert from seconds to ticks at 60 ticks/sec
for (mut anim, mut renderable) in query.iter_mut() {
// Tick animation
anim.time_bank += ticks;
while anim.time_bank >= anim.frame_duration {
anim.time_bank -= anim.frame_duration;
anim.current_frame += 1;
}
if !anim.tiles.is_empty() {
let new_tile = anim.tiles.get_tile(anim.current_frame);
if renderable.sprite != new_tile {
renderable.sprite = new_tile;
}
} else {
errors.write(TextureError::RenderFailed(format!("Entity has no texture")).into());
continue;
}
}
}
/// A non-send resource for the map texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource.
pub struct MapTextureResource(pub Texture<'static>);
pub struct MapTextureResource(pub Texture);
/// A non-send resource for the backbuffer texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource.
pub struct BackbufferResource(pub Texture<'static>);
pub struct BackbufferResource(pub Texture);
/// Renders touch UI overlay for mobile/testing.
pub fn touch_ui_render_system(
mut backbuffer: NonSendMut<BackbufferResource>,
mut canvas: NonSendMut<&mut Canvas<Window>>,
touch_state: Res<TouchState>,
mut errors: EventWriter<GameError>,
) {
if let Some(ref touch_data) = touch_state.active_touch {
let _ = canvas.with_texture_canvas(&mut backbuffer.0, |canvas| {
// Set blend mode for transparency
canvas.set_blend_mode(BlendMode::Blend);
// Draw semi-transparent circle at touch start position
canvas.set_draw_color(Color::RGBA(255, 255, 255, 100));
let center = Point::new(touch_data.start_pos.x as i32, touch_data.start_pos.y as i32);
// Draw a simple circle by drawing filled rectangles (basic approach)
let radius = 30;
for dy in -radius..=radius {
for dx in -radius..=radius {
if dx * dx + dy * dy <= radius * radius {
let point = Point::new(center.x + dx, center.y + dy);
if let Err(e) = canvas.draw_point(point) {
errors.write(TextureError::RenderFailed(format!("Touch UI render error: {}", e)).into());
return;
}
}
}
}
// Draw direction indicator if we have a direction
if let Some(direction) = touch_data.current_direction {
canvas.set_draw_color(Color::RGBA(0, 255, 0, 150));
// Draw arrow indicating direction
let arrow_length = 40;
let (dx, dy) = match direction {
crate::map::direction::Direction::Up => (0, -arrow_length),
crate::map::direction::Direction::Down => (0, arrow_length),
crate::map::direction::Direction::Left => (-arrow_length, 0),
crate::map::direction::Direction::Right => (arrow_length, 0),
};
let end_point = Point::new(center.x + dx, center.y + dy);
if let Err(e) = canvas.draw_line(center, end_point) {
errors.write(TextureError::RenderFailed(format!("Touch arrow render error: {}", e)).into());
}
// Draw arrowhead (simple approach)
let arrow_size = 8;
match direction {
crate::map::direction::Direction::Up => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y + arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y + arrow_size));
}
crate::map::direction::Direction::Down => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y - arrow_size));
}
crate::map::direction::Direction::Left => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y + arrow_size));
}
crate::map::direction::Direction::Right => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y + arrow_size));
}
}
}
});
}
}
/// Renders the HUD (score, lives, etc.) on top of the game.
pub fn hud_render_system(
mut backbuffer: NonSendMut<BackbufferResource>,
mut canvas: NonSendMut<&mut Canvas<Window>>,
mut atlas: NonSendMut<SpriteAtlas>,
score: Res<ScoreResource>,
startup: Res<StartupSequence>,
mut errors: EventWriter<GameError>,
) {
let _ = canvas.with_texture_canvas(&mut backbuffer.0, |canvas| {
let mut text_renderer = TextTexture::new(1.0);
// Render lives and high score text in white
let lives = 3; // TODO: Get from actual lives resource
let lives_text = format!("{lives}UP HIGH SCORE ");
let lives_position = glam::UVec2::new(4 + 8 * 3, 2); // x_offset + lives_offset * 8, y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, &lives_text, lives_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render lives text: {}", e)).into());
}
// Render score text
let score_text = format!("{:02}", score.0);
let score_offset = 7 - (score_text.len() as i32);
let score_position = glam::UVec2::new(4 + 8 * score_offset as u32, 10); // x_offset + score_offset * 8, 8 + y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, &score_text, score_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render score text: {}", e)).into());
}
// Render high score text
let high_score_text = format!("{:02}", score.0);
let high_score_offset = 17 - (high_score_text.len() as i32);
let high_score_position = glam::UVec2::new(4 + 8 * high_score_offset as u32, 10); // x_offset + score_offset * 8, 8 + y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, &high_score_text, high_score_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render high score text: {}", e)).into());
}
// Render text based on StartupSequence stage
if matches!(
*startup,
StartupSequence::TextOnly { .. } | StartupSequence::CharactersVisible { .. }
) {
let ready_text = "READY!";
let ready_width = text_renderer.text_width(ready_text);
let ready_position = glam::UVec2::new((CANVAS_SIZE.x - ready_width) / 2, 160);
if let Err(e) = text_renderer.render_with_color(canvas, &mut atlas, ready_text, ready_position, Color::YELLOW) {
errors.write(TextureError::RenderFailed(format!("Failed to render READY text: {}", e)).into());
}
if matches!(*startup, StartupSequence::TextOnly { .. }) {
let player_one_text = "PLAYER ONE";
let player_one_width = text_renderer.text_width(player_one_text);
let player_one_position = glam::UVec2::new((CANVAS_SIZE.x - player_one_width) / 2, 113);
if let Err(e) =
text_renderer.render_with_color(canvas, &mut atlas, player_one_text, player_one_position, Color::CYAN)
{
errors.write(TextureError::RenderFailed(format!("Failed to render PLAYER ONE text: {}", e)).into());
}
}
}
});
}
#[allow(clippy::too_many_arguments)]
pub fn render_system(
canvas: &mut Canvas<Window>,
map_texture: &NonSendMut<MapTextureResource>,
atlas: &mut SpriteAtlas,
map: &Res<Map>,
dirty: &Res<RenderDirty>,
renderables: &Query<(Entity, &Renderable, &Position), Without<Hidden>>,
errors: &mut EventWriter<GameError>,
) {
if !dirty.0 {
return;
}
// Clear the backbuffer
canvas.set_draw_color(sdl2::pixels::Color::BLACK);
canvas.clear();
// Copy the pre-rendered map texture to the backbuffer
if let Err(e) = canvas.copy(&map_texture.0, None, None) {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Render all entities to the backbuffer
for (_, renderable, position) in renderables
.iter()
.sort_by_key::<(Entity, &Renderable, &Position), _>(|(_, renderable, _)| renderable.layer)
.rev()
{
let pos = position.get_pixel_position(&map.graph);
match pos {
Ok(pos) => {
let dest = Rect::from_center(
Point::from((pos.x as i32, pos.y as i32)),
renderable.sprite.size.x as u32,
renderable.sprite.size.y as u32,
);
renderable
.sprite
.render(canvas, atlas, dest)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
}
Err(e) => {
errors.write(e);
}
}
}
}
/// Combined render system that renders to both backbuffer and debug textures in a single
/// with_multiple_texture_canvas call for reduced overhead
#[allow(clippy::too_many_arguments)]
pub fn combined_render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
map_texture: NonSendMut<MapTextureResource>,
mut backbuffer: NonSendMut<BackbufferResource>,
mut debug_texture: NonSendMut<DebugTextureResource>,
mut atlas: NonSendMut<SpriteAtlas>,
mut ttf_atlas: NonSendMut<TtfAtlasResource>,
batched_lines: Res<BatchedLinesResource>,
debug_state: Res<DebugState>,
timings: Res<SystemTimings>,
timing: Res<crate::systems::profiling::Timing>,
map: Res<Map>,
dirty: Res<RenderDirty>,
renderables: Query<(Entity, &Renderable, &Position)>,
renderables: Query<(Entity, &Renderable, &Position), Without<Hidden>>,
colliders: Query<(&Collider, &Position)>,
cursor: Res<CursorPosition>,
mut errors: EventWriter<GameError>,
) {
if !dirty.0 {
return;
}
// Render to backbuffer
canvas
.with_texture_canvas(&mut backbuffer.0, |backbuffer_canvas| {
// Clear the backbuffer
backbuffer_canvas.set_draw_color(sdl2::pixels::Color::BLACK);
backbuffer_canvas.clear();
// Copy the pre-rendered map texture to the backbuffer
if let Err(e) = backbuffer_canvas.copy(&map_texture.0, None, None) {
errors.write(TextureError::RenderFailed(e.to_string()).into());
// Prepare textures and render targets
let textures = [
(&mut backbuffer.0, RenderTarget::Backbuffer),
(&mut debug_texture.0, RenderTarget::Debug),
];
// Record timing for each system independently
let mut render_duration = None;
let mut debug_render_duration = None;
let result = canvas.with_multiple_texture_canvas(textures.iter(), |texture_canvas, render_target| match render_target {
RenderTarget::Backbuffer => {
let start_time = Instant::now();
render_system(
texture_canvas,
&map_texture,
&mut atlas,
&map,
&dirty,
&renderables,
&mut errors,
);
render_duration = Some(start_time.elapsed());
}
RenderTarget::Debug => {
if !debug_state.enabled {
return;
}
// Render all entities to the backbuffer
for (_, renderable, position) in renderables.iter() {
if !renderable.visible {
continue;
}
let start_time = Instant::now();
let pos = position.get_pixel_pos(&map.graph);
match pos {
Ok(pos) => {
let dest = crate::helpers::centered_with_size(
glam::IVec2::new(pos.x as i32, pos.y as i32),
glam::UVec2::new(renderable.sprite.size.x as u32, renderable.sprite.size.y as u32),
);
debug_render_system(
texture_canvas,
&mut ttf_atlas,
&batched_lines,
&debug_state,
&timings,
&timing,
&map,
&colliders,
&cursor,
);
renderable
.sprite
.render(backbuffer_canvas, &mut atlas, dest)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
}
Err(e) => {
errors.write(e.into());
}
}
}
})
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
debug_render_duration = Some(start_time.elapsed());
}
});
if let Err(e) = result {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Record timings for each system independently
let current_tick = timing.get_current_tick();
if let Some(duration) = render_duration {
timings.add_timing(SystemId::Render, duration, current_tick);
}
if let Some(duration) = debug_render_duration {
timings.add_timing(SystemId::DebugRender, duration, current_tick);
}
}
pub fn present_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
mut dirty: ResMut<RenderDirty>,
backbuffer: NonSendMut<BackbufferResource>,
debug_texture: NonSendMut<DebugTextureResource>,
debug_state: Res<DebugState>,
) {
if dirty.0 {
// Copy the backbuffer to the main canvas
canvas.copy(&backbuffer.0, None, None).unwrap();
// Copy the debug texture to the canvas
if debug_state.enabled {
canvas.set_blend_mode(BlendMode::Blend);
canvas.copy(&debug_texture.0, None, None).unwrap();
}
canvas.present();
dirty.0 = false;
}
}

101
src/systems/stage.rs Normal file
View File

@@ -0,0 +1,101 @@
use bevy_ecs::{
entity::Entity,
query::With,
resource::Resource,
system::{Commands, Query, ResMut},
};
use tracing::debug;
use crate::systems::{Blinking, Frozen, GhostCollider, Hidden, PlayerControlled};
#[derive(Resource, Debug, Clone, Copy)]
pub enum StartupSequence {
/// Stage 1: Text-only stage
/// - Player & ghosts are hidden
/// - READY! and PLAYER ONE text are shown
/// - Energizers do not blink
TextOnly {
/// Remaining ticks in this stage
remaining_ticks: u32,
},
/// Stage 2: Characters visible stage
/// - PLAYER ONE text is hidden, READY! text remains
/// - Ghosts and Pac-Man are now shown
CharactersVisible {
/// Remaining ticks in this stage
remaining_ticks: u32,
},
/// Stage 3: Game begins
/// - Final state, game is fully active
GameActive,
}
impl StartupSequence {
/// Creates a new StartupSequence with the specified duration in ticks
pub fn new(text_only_ticks: u32, _characters_visible_ticks: u32) -> Self {
Self::TextOnly {
remaining_ticks: text_only_ticks,
}
}
/// Ticks the timer by one frame, returning transition information if state changes
pub fn tick(&mut self) -> Option<(StartupSequence, StartupSequence)> {
match self {
StartupSequence::TextOnly { remaining_ticks } => {
if *remaining_ticks > 0 {
*remaining_ticks -= 1;
None
} else {
let from = *self;
*self = StartupSequence::CharactersVisible {
remaining_ticks: 60, // 1 second at 60 FPS
};
Some((from, *self))
}
}
StartupSequence::CharactersVisible { remaining_ticks } => {
if *remaining_ticks > 0 {
*remaining_ticks -= 1;
None
} else {
let from = *self;
*self = StartupSequence::GameActive;
Some((from, *self))
}
}
StartupSequence::GameActive => None,
}
}
}
/// Handles startup sequence transitions and component management
pub fn startup_stage_system(
mut startup: ResMut<StartupSequence>,
mut commands: Commands,
mut blinking_query: Query<Entity, With<Blinking>>,
mut player_query: Query<Entity, With<PlayerControlled>>,
mut ghost_query: Query<Entity, With<GhostCollider>>,
) {
if let Some((from, to)) = startup.tick() {
debug!("StartupSequence transition from {from:?} to {to:?}");
match (from, to) {
(StartupSequence::TextOnly { .. }, StartupSequence::CharactersVisible { .. }) => {
// Unhide the player & ghosts
for entity in player_query.iter_mut().chain(ghost_query.iter_mut()) {
commands.entity(entity).remove::<Hidden>();
}
}
(StartupSequence::CharactersVisible { .. }, StartupSequence::GameActive) => {
// Unfreeze the player & ghosts & pellet blinking
for entity in player_query
.iter_mut()
.chain(ghost_query.iter_mut())
.chain(blinking_query.iter_mut())
{
commands.entity(entity).remove::<Frozen>();
}
}
_ => {}
}
}
}

View File

@@ -1,63 +1,73 @@
use crate::error::{AnimatedTextureError, GameError, GameResult, TextureError};
use crate::map::direction::Direction;
use crate::texture::sprite::AtlasTile;
#[derive(Debug, Clone)]
pub struct AnimatedTexture {
tiles: Vec<AtlasTile>,
frame_duration: f32,
current_frame: usize,
time_bank: f32,
/// Fixed-size tile sequence that avoids heap allocation
#[derive(Clone, Copy, Debug)]
pub struct TileSequence {
tiles: [AtlasTile; 4], // Fixed array, max 4 frames
count: usize, // Actual number of frames used
}
impl AnimatedTexture {
pub fn new(tiles: Vec<AtlasTile>, frame_duration: f32) -> GameResult<Self> {
if frame_duration <= 0.0 {
return Err(GameError::Texture(TextureError::Animated(
AnimatedTextureError::InvalidFrameDuration(frame_duration),
)));
}
impl TileSequence {
/// Creates a new tile sequence from a slice of tiles
pub fn new(tiles: &[AtlasTile]) -> Self {
let mut tile_array = [AtlasTile {
pos: glam::U16Vec2::ZERO,
size: glam::U16Vec2::ZERO,
color: None,
}; 4];
Ok(Self {
tiles,
frame_duration,
current_frame: 0,
time_bank: 0.0,
})
}
let count = tiles.len().min(4);
tile_array[..count].copy_from_slice(&tiles[..count]);
pub fn tick(&mut self, dt: f32) {
self.time_bank += dt;
while self.time_bank >= self.frame_duration {
self.time_bank -= self.frame_duration;
self.current_frame = (self.current_frame + 1) % self.tiles.len();
Self {
tiles: tile_array,
count,
}
}
pub fn current_tile(&self) -> &AtlasTile {
&self.tiles[self.current_frame]
/// Returns the tile at the given frame index, wrapping if necessary
pub fn get_tile(&self, frame: usize) -> AtlasTile {
if self.count == 0 {
// Return a default empty tile if no tiles
AtlasTile {
pos: glam::U16Vec2::ZERO,
size: glam::U16Vec2::ZERO,
color: None,
}
} else {
self.tiles[frame % self.count]
}
}
/// Returns the current frame index.
#[allow(dead_code)]
pub fn current_frame(&self) -> usize {
self.current_frame
}
/// Returns the time bank.
#[allow(dead_code)]
pub fn time_bank(&self) -> f32 {
self.time_bank
}
/// Returns the frame duration.
#[allow(dead_code)]
pub fn frame_duration(&self) -> f32 {
self.frame_duration
}
/// Returns the number of tiles in the animation.
#[allow(dead_code)]
pub fn tiles_len(&self) -> usize {
self.tiles.len()
/// Returns true if this sequence has no tiles
pub fn is_empty(&self) -> bool {
self.count == 0
}
}
/// Type-safe directional tile storage with named fields
#[derive(Clone, Copy, Debug)]
pub struct DirectionalTiles {
pub up: TileSequence,
pub down: TileSequence,
pub left: TileSequence,
pub right: TileSequence,
}
impl DirectionalTiles {
/// Creates a new DirectionalTiles with different sequences per direction
pub fn new(up: TileSequence, down: TileSequence, left: TileSequence, right: TileSequence) -> Self {
Self { up, down, left, right }
}
/// Gets the tile sequence for the given direction
pub fn get(&self, direction: Direction) -> &TileSequence {
match direction {
Direction::Up => &self.up,
Direction::Down => &self.down,
Direction::Left => &self.left,
Direction::Right => &self.right,
}
}
}

View File

@@ -1,46 +0,0 @@
#![allow(dead_code)]
use crate::texture::sprite::AtlasTile;
#[derive(Clone)]
pub struct BlinkingTexture {
tile: AtlasTile,
blink_duration: f32,
time_bank: f32,
is_on: bool,
}
impl BlinkingTexture {
pub fn new(tile: AtlasTile, blink_duration: f32) -> Self {
Self {
tile,
blink_duration,
time_bank: 0.0,
is_on: true,
}
}
pub fn tick(&mut self, dt: f32) {
self.time_bank += dt;
if self.time_bank >= self.blink_duration {
self.time_bank -= self.blink_duration;
self.is_on = !self.is_on;
}
}
pub fn is_on(&self) -> bool {
self.is_on
}
pub fn tile(&self) -> &AtlasTile {
&self.tile
}
// Helper methods for testing
pub fn time_bank(&self) -> f32 {
self.time_bank
}
pub fn blink_duration(&self) -> f32 {
self.blink_duration
}
}

View File

@@ -1,4 +1,5 @@
pub mod animated;
pub mod blinking;
pub mod sprite;
pub mod sprites;
pub mod text;
pub mod ttf;

View File

@@ -3,25 +3,25 @@ use glam::U16Vec2;
use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget, Texture};
use serde::Deserialize;
use std::collections::HashMap;
use crate::error::TextureError;
#[derive(Clone, Debug, Deserialize)]
/// Atlas frame mapping data loaded from JSON metadata files.
#[derive(Clone, Debug)]
pub struct AtlasMapper {
/// Mapping from sprite name to frame bounds within the atlas texture
pub frames: HashMap<String, MapperFrame>,
}
#[derive(Copy, Clone, Debug, Deserialize)]
#[derive(Copy, Clone, Debug)]
pub struct MapperFrame {
pub x: u16,
pub y: u16,
pub width: u16,
pub height: u16,
pub pos: U16Vec2,
pub size: U16Vec2,
}
#[derive(Copy, Clone, Debug, PartialEq)]
/// A single tile within a sprite atlas, defined by its position and size.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
pub struct AtlasTile {
pub pos: U16Vec2,
pub size: U16Vec2,
@@ -72,28 +72,49 @@ impl AtlasTile {
}
}
/// High-performance sprite atlas providing fast texture region lookups and rendering.
///
/// Combines a single large texture with metadata mapping to enable efficient
/// sprite rendering without texture switching. Caches color modulation state
/// to minimize redundant SDL2 calls and supports both named sprite lookups
/// and optional default color modulation configuration.
pub struct SpriteAtlas {
texture: Texture<'static>,
/// The combined texture containing all sprite frames
texture: Texture,
/// Mapping from sprite names to their pixel coordinates within the texture
tiles: HashMap<String, MapperFrame>,
default_color: Option<Color>,
/// Cached color modulation state to avoid redundant SDL2 calls
last_modulation: Option<Color>,
}
impl SpriteAtlas {
pub fn new(texture: Texture<'static>, mapper: AtlasMapper) -> Self {
pub fn new(texture: Texture, mapper: AtlasMapper) -> Self {
let tiles = mapper.frames.into_iter().collect();
Self {
texture,
tiles: mapper.frames,
tiles,
default_color: None,
last_modulation: None,
}
}
pub fn get_tile(&self, name: &str) -> Option<AtlasTile> {
self.tiles.get(name).map(|frame| AtlasTile {
pos: U16Vec2::new(frame.x, frame.y),
size: U16Vec2::new(frame.width, frame.height),
color: None,
/// Retrieves a sprite tile by name from the atlas with fast HashMap lookup.
///
/// Returns an `AtlasTile` containing the texture coordinates and dimensions
/// for the named sprite, or `None` if the sprite name is not found in the
/// atlas. The returned tile can be used for immediate rendering or stored
/// for repeated use in animations and entity sprites.
pub fn get_tile(&self, name: &str) -> Result<AtlasTile, TextureError> {
let frame = self
.tiles
.get(name)
.ok_or_else(|| TextureError::AtlasTileNotFound(name.to_string()))?;
Ok(AtlasTile {
pos: frame.pos,
size: frame.size,
color: self.default_color,
})
}
@@ -103,7 +124,7 @@ impl SpriteAtlas {
}
#[allow(dead_code)]
pub fn texture(&self) -> &Texture<'static> {
pub fn texture(&self) -> &Texture {
&self.texture
}

104
src/texture/sprites.rs Normal file
View File

@@ -0,0 +1,104 @@
//! A structured representation of all sprite assets in the game.
//!
//! This module provides a set of enums to represent every sprite, allowing for
//! type-safe access to asset paths and avoiding the use of raw strings.
//! The `GameSprite` enum is the main entry point, and its `to_path` method
//! generates the correct path for a given sprite in the texture atlas.
use crate::map::direction::Direction;
use crate::systems::components::Ghost;
/// Represents the different sprites for Pac-Man.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum PacmanSprite {
/// A moving Pac-Man sprite for a given direction and animation frame.
Moving(Direction, u8),
/// The full, closed-mouth Pac-Man sprite.
Full,
}
/// Represents the color of a frightened ghost.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum FrightenedColor {
Blue,
White,
}
/// Represents the different sprites for ghosts.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GhostSprite {
/// The normal appearance of a ghost for a given type, direction, and animation frame.
Normal(Ghost, Direction, u8),
/// The frightened appearance of a ghost, with a specific color and animation frame.
Frightened(FrightenedColor, u8),
/// The "eyes only" appearance of a ghost after being eaten.
Eyes(Direction),
}
/// Represents the different sprites for the maze and collectibles.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum MazeSprite {
/// A specific tile of the maze.
Tile(u8),
/// A standard pellet.
Pellet,
/// An energizer/power pellet.
Energizer,
}
/// A top-level enum that encompasses all game sprites.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GameSprite {
Pacman(PacmanSprite),
Ghost(GhostSprite),
Maze(MazeSprite),
}
impl GameSprite {
/// Generates the asset path for the sprite.
///
/// This path corresponds to the filename in the texture atlas JSON file.
pub fn to_path(self) -> String {
match self {
GameSprite::Pacman(sprite) => match sprite {
PacmanSprite::Moving(dir, frame) => {
let frame_char = match frame {
0 => 'a',
1 => 'b',
_ => panic!("Invalid animation frame"),
};
format!("pacman/{}_{}.png", dir.as_ref().to_lowercase(), frame_char)
}
PacmanSprite::Full => "pacman/full.png".to_string(),
},
GameSprite::Ghost(sprite) => match sprite {
GhostSprite::Normal(ghost, dir, frame) => {
let frame_char = match frame {
0 => 'a',
1 => 'b',
_ => panic!("Invalid animation frame"),
};
format!("ghost/{}/{}_{}.png", ghost.as_str(), dir.as_ref().to_lowercase(), frame_char)
}
GhostSprite::Frightened(color, frame) => {
let frame_char = match frame {
0 => 'a',
1 => 'b',
_ => panic!("Invalid animation frame"),
};
let color_str = match color {
FrightenedColor::Blue => "blue",
FrightenedColor::White => "white",
};
format!("ghost/frightened/{}_{}.png", color_str, frame_char)
}
GhostSprite::Eyes(dir) => format!("ghost/eyes/{}.png", dir.as_ref().to_lowercase()),
},
GameSprite::Maze(sprite) => match sprite {
MazeSprite::Tile(index) => format!("maze/tiles/{}.png", index),
MazeSprite::Pellet => "maze/pellet.png".to_string(),
MazeSprite::Energizer => "maze/energizer.png".to_string(),
},
}
}
}

View File

@@ -10,10 +10,20 @@
//!
//! ```rust
//! use pacman::texture::text::TextTexture;
//! use sdl2::pixels::Color;
//!
//! // Create a text texture with 1.0 scale (8x8 pixels per character)
//! let mut text_renderer = TextTexture::new(1.0);
//!
//! // Set default color for all text
//! text_renderer.set_color(Color::WHITE);
//!
//! // Render text with default color
//! text_renderer.render(&mut canvas, &mut atlas, "Hello", position)?;
//!
//! // Render text with specific color
//! text_renderer.render_with_color(&mut canvas, &mut atlas, "World", position, Color::YELLOW)?;
//!
//! // Set scale for larger text
//! text_renderer.set_scale(2.0);
//!
@@ -46,13 +56,11 @@
use anyhow::Result;
use glam::UVec2;
use sdl2::pixels::Color;
use sdl2::render::{Canvas, RenderTarget};
use std::collections::HashMap;
use crate::{
error::{GameError, TextureError},
texture::sprite::{AtlasTile, SpriteAtlas},
};
use crate::texture::sprite::{AtlasTile, SpriteAtlas};
/// Converts a character to its tile name in the atlas.
fn char_to_tile_name(c: char) -> Option<String> {
@@ -79,6 +87,7 @@ fn char_to_tile_name(c: char) -> Option<String> {
pub struct TextTexture {
char_map: HashMap<char, AtlasTile>,
scale: f32,
default_color: Option<Color>,
}
impl Default for TextTexture {
@@ -86,6 +95,7 @@ impl Default for TextTexture {
Self {
scale: 1.0,
char_map: Default::default(),
default_color: None,
}
}
}
@@ -109,9 +119,7 @@ impl TextTexture {
}
if let Some(tile_name) = char_to_tile_name(c) {
let tile = atlas
.get_tile(&tile_name)
.ok_or(GameError::Texture(TextureError::AtlasTileNotFound(tile_name)))?;
let tile = atlas.get_tile(&tile_name)?;
self.char_map.insert(c, tile);
Ok(self.char_map.get(&c))
} else {
@@ -119,13 +127,26 @@ impl TextTexture {
}
}
/// Renders a string of text at the given position.
/// Renders a string of text at the given position using the default color.
pub fn render<C: RenderTarget>(
&mut self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
text: &str,
position: UVec2,
) -> Result<()> {
let color = self.default_color.unwrap_or(Color::WHITE);
self.render_with_color(canvas, atlas, text, position, color)
}
/// Renders a string of text at the given position with a specific color.
pub fn render_with_color<C: RenderTarget>(
&mut self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
text: &str,
position: UVec2,
color: Color,
) -> Result<()> {
let mut x_offset = 0;
let char_width = (8.0 * self.scale) as u32;
@@ -134,9 +155,9 @@ impl TextTexture {
for c in text.chars() {
// Get the tile from the char_map, or insert it if it doesn't exist
if let Some(tile) = self.get_tile(c, atlas)? {
// Render the tile if it exists
// Render the tile with the specified color
let dest = sdl2::rect::Rect::new((position.x + x_offset) as i32, position.y as i32, char_width, char_height);
tile.render(canvas, atlas, dest)?;
tile.render_with_color(canvas, atlas, dest, color)?;
}
// Always advance x_offset for all characters (including spaces)
@@ -146,6 +167,16 @@ impl TextTexture {
Ok(())
}
/// Sets the default color for text rendering.
pub fn set_color(&mut self, color: Color) {
self.default_color = Some(color);
}
/// Gets the current default color.
pub fn color(&self) -> Option<Color> {
self.default_color
}
/// Sets the scale for text rendering.
pub fn set_scale(&mut self, scale: f32) {
self.scale = scale;

272
src/texture/ttf.rs Normal file
View File

@@ -0,0 +1,272 @@
//! TTF font rendering using pre-rendered character atlas.
//!
//! This module provides efficient TTF font rendering by pre-rendering all needed
//! characters into a texture atlas at startup, avoiding expensive SDL2 font
//! surface-to-texture conversions every frame.
use glam::{UVec2, Vec2};
use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget, Texture, TextureCreator};
use sdl2::ttf::Font;
use sdl2::video::WindowContext;
use std::collections::HashMap;
use crate::error::{GameError, TextureError};
/// Character atlas tile representing a single rendered character
#[derive(Clone, Copy, Debug)]
pub struct TtfCharTile {
pub pos: UVec2,
pub size: UVec2,
pub advance: u32, // Character advance width for proportional fonts
}
/// TTF text atlas containing pre-rendered characters for efficient rendering
pub struct TtfAtlas {
/// The texture containing all rendered characters
texture: Texture,
/// Mapping from character to its position and size in the atlas
char_tiles: HashMap<char, TtfCharTile>,
/// Cached color modulation state to avoid redundant SDL2 calls
last_modulation: Option<Color>,
}
const TTF_CHARS: &str = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.,:-/()ms μµ%± ";
impl TtfAtlas {
/// Creates a new TTF text atlas by pre-rendering all needed characters.
///
/// This should be called once at startup. It renders all characters that might
/// be used in text rendering into a single texture atlas for efficient GPU rendering.
pub fn new(texture_creator: &TextureCreator<WindowContext>, font: &Font) -> Result<Self, GameError> {
// Calculate character dimensions and advance widths for proportional fonts
let mut char_tiles = HashMap::new();
let mut max_height = 0u32;
let mut total_width = 0u32;
let mut char_metrics = Vec::new();
// First pass: measure all characters
for c in TTF_CHARS.chars() {
if c == ' ' {
// Handle space character specially - measure a non-space character for height
let space_height = font.size_of("0").map_err(|e| GameError::Sdl(e.to_string()))?.1;
let space_advance = font.size_of(" ").map_err(|e| GameError::Sdl(e.to_string()))?.0;
char_tiles.insert(
c,
TtfCharTile {
pos: UVec2::ZERO, // Will be set during population
size: UVec2::new(0, space_height), // Space has no visual content
advance: space_advance,
},
);
max_height = max_height.max(space_height);
char_metrics.push((c, 0, space_height, space_advance));
} else {
let (advance, height) = font.size_of(&c.to_string()).map_err(|e| GameError::Sdl(e.to_string()))?;
char_tiles.insert(
c,
TtfCharTile {
pos: UVec2::ZERO, // Will be set during population
size: UVec2::new(advance, height),
advance,
},
);
max_height = max_height.max(height);
total_width += advance;
char_metrics.push((c, advance, height, advance));
}
}
// Calculate atlas dimensions (pack characters horizontally for better space utilization)
let atlas_size = UVec2::new(total_width, max_height);
// Create atlas texture as a render target
let mut atlas_texture = texture_creator
.create_texture_target(None, atlas_size.x, atlas_size.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
atlas_texture.set_blend_mode(sdl2::render::BlendMode::Blend);
// Second pass: calculate positions
let mut current_x = 0u32;
for (c, width, _height, _advance) in char_metrics {
if let Some(tile) = char_tiles.get_mut(&c) {
tile.pos = UVec2::new(current_x, 0);
current_x += width;
}
}
Ok(Self {
texture: atlas_texture,
char_tiles,
last_modulation: None,
})
}
/// Renders all characters to the atlas texture using a canvas.
/// This must be called after creation to populate the atlas.
pub fn populate_atlas<C: RenderTarget>(
&mut self,
canvas: &mut Canvas<C>,
texture_creator: &TextureCreator<WindowContext>,
font: &Font,
) -> Result<(), GameError> {
let mut render_error: Option<GameError> = None;
let result = canvas.with_texture_canvas(&mut self.texture, |atlas_canvas| {
// Clear with transparent background
atlas_canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
atlas_canvas.clear();
for c in TTF_CHARS.chars() {
if c == ' ' {
// Skip rendering space character - it has no visual content
continue;
}
// Render character to surface
let surface = match font.render(&c.to_string()).blended(Color::WHITE) {
Ok(s) => s,
Err(e) => {
render_error = Some(GameError::Sdl(e.to_string()));
return;
}
};
// Create texture from surface
let char_texture = match texture_creator.create_texture_from_surface(&surface) {
Ok(t) => t,
Err(e) => {
render_error = Some(GameError::Sdl(e.to_string()));
return;
}
};
// Get character tile info
let tile = match self.char_tiles.get(&c) {
Some(t) => t,
None => {
render_error = Some(GameError::Sdl(format!("Character '{}' not found in atlas tiles", c)));
return;
}
};
// Copy character to atlas
let dest = Rect::new(tile.pos.x as i32, tile.pos.y as i32, tile.size.x, tile.size.y);
if let Err(e) = atlas_canvas.copy(&char_texture, None, dest) {
render_error = Some(GameError::Sdl(e.to_string()));
return;
}
}
});
// Check the result of with_texture_canvas and any render error
if let Err(e) = result {
return Err(GameError::Sdl(e.to_string()));
}
if let Some(error) = render_error {
return Err(error);
}
Ok(())
}
/// Gets a character tile from the atlas
pub fn get_char_tile(&self, c: char) -> Option<&TtfCharTile> {
self.char_tiles.get(&c)
}
}
/// TTF text renderer that uses the pre-rendered character atlas
pub struct TtfRenderer {
scale: f32,
}
impl TtfRenderer {
pub fn new(scale: f32) -> Self {
Self { scale }
}
/// Renders a string of text at the given position with the specified color
pub fn render_text<C: RenderTarget>(
&self,
canvas: &mut Canvas<C>,
atlas: &mut TtfAtlas,
text: &str,
position: Vec2,
color: Color,
) -> Result<(), TextureError> {
let mut x_offset = 0.0;
// Apply color modulation once at the beginning if needed
if atlas.last_modulation != Some(color) {
atlas.texture.set_color_mod(color.r, color.g, color.b);
atlas.texture.set_alpha_mod(color.a);
atlas.last_modulation = Some(color);
}
for c in text.chars() {
// Get character tile info first to avoid borrowing conflicts
let char_tile = atlas.get_char_tile(c);
if let Some(char_tile) = char_tile {
if char_tile.size.x > 0 && char_tile.size.y > 0 {
// Only render non-space characters
let dest = Rect::new(
(position.x + x_offset) as i32,
position.y as i32,
(char_tile.size.x as f32 * self.scale) as u32,
(char_tile.size.y as f32 * self.scale) as u32,
);
// Render the character directly
let src = Rect::new(
char_tile.pos.x as i32,
char_tile.pos.y as i32,
char_tile.size.x,
char_tile.size.y,
);
canvas.copy(&atlas.texture, src, dest).map_err(TextureError::RenderFailed)?;
}
// Advance by character advance width (proportional spacing)
x_offset += char_tile.advance as f32 * self.scale;
} else {
// Fallback for unsupported characters - use a reasonable default
x_offset += 8.0 * self.scale;
}
}
Ok(())
}
/// Calculate the width of a text string in pixels
pub fn text_width(&self, atlas: &TtfAtlas, text: &str) -> u32 {
let mut total_width = 0u32;
for c in text.chars() {
if let Some(char_tile) = atlas.get_char_tile(c) {
total_width += (char_tile.advance as f32 * self.scale) as u32;
} else {
// Fallback for unsupported characters
total_width += (8.0 * self.scale) as u32;
}
}
total_width
}
/// Calculate the height of text in pixels
pub fn text_height(&self, atlas: &TtfAtlas) -> u32 {
// Find the maximum height among all characters
atlas
.char_tiles
.values()
.map(|tile| tile.size.y)
.max()
.unwrap_or(0)
.saturating_mul(self.scale as u32)
}
}

View File

@@ -1,62 +0,0 @@
use glam::U16Vec2;
use pacman::error::{AnimatedTextureError, GameError, TextureError};
use pacman::texture::animated::AnimatedTexture;
use pacman::texture::sprite::AtlasTile;
use sdl2::pixels::Color;
fn mock_atlas_tile(id: u32) -> AtlasTile {
AtlasTile {
pos: U16Vec2::new(0, 0),
size: U16Vec2::new(16, 16),
color: Some(Color::RGB(id as u8, 0, 0)),
}
}
#[test]
fn test_animated_texture_creation_errors() {
let tiles = vec![mock_atlas_tile(1), mock_atlas_tile(2)];
assert!(matches!(
AnimatedTexture::new(tiles.clone(), 0.0).unwrap_err(),
GameError::Texture(TextureError::Animated(AnimatedTextureError::InvalidFrameDuration(0.0)))
));
assert!(matches!(
AnimatedTexture::new(tiles, -0.1).unwrap_err(),
GameError::Texture(TextureError::Animated(AnimatedTextureError::InvalidFrameDuration(-0.1)))
));
}
#[test]
fn test_animated_texture_advancement() {
let tiles = vec![mock_atlas_tile(1), mock_atlas_tile(2), mock_atlas_tile(3)];
let mut texture = AnimatedTexture::new(tiles, 0.1).unwrap();
assert_eq!(texture.current_frame(), 0);
texture.tick(0.25);
assert_eq!(texture.current_frame(), 2);
assert!((texture.time_bank() - 0.05).abs() < 0.001);
}
#[test]
fn test_animated_texture_wrap_around() {
let tiles = vec![mock_atlas_tile(1), mock_atlas_tile(2)];
let mut texture = AnimatedTexture::new(tiles, 0.1).unwrap();
texture.tick(0.1);
assert_eq!(texture.current_frame(), 1);
texture.tick(0.1);
assert_eq!(texture.current_frame(), 0);
}
#[test]
fn test_animated_texture_single_frame() {
let tiles = vec![mock_atlas_tile(1)];
let mut texture = AnimatedTexture::new(tiles, 0.1).unwrap();
texture.tick(0.1);
assert_eq!(texture.current_frame(), 0);
assert_eq!(texture.current_tile().color.unwrap().r, 1);
}

View File

@@ -1,14 +1,17 @@
use pacman::asset::Asset;
use std::path::Path;
use speculoos::prelude::*;
use strum::IntoEnumIterator;
#[test]
fn test_asset_paths_valid() {
let base_path = Path::new("assets/game/");
fn all_asset_paths_exist() {
for asset in Asset::iter() {
let path = base_path.join(asset.path());
assert!(path.exists(), "Asset path does not exist: {:?}", path);
assert!(path.is_file(), "Asset path is not a file: {:?}", path);
let path = asset.path();
let full_path = format!("assets/game/{}", path);
let metadata = std::fs::metadata(&full_path)
.map_err(|e| format!("Error getting metadata for {}: {}", full_path, e))
.unwrap();
assert_that(&metadata.is_file()).is_true();
assert_that(&metadata.len()).is_greater_than(1024);
}
}

View File

@@ -1,49 +1,316 @@
use glam::U16Vec2;
use pacman::texture::blinking::BlinkingTexture;
use pacman::texture::sprite::AtlasTile;
use sdl2::pixels::Color;
use bevy_ecs::{entity::Entity, system::RunSystemOnce, world::World};
use pacman::systems::{
blinking::{blinking_system, Blinking},
components::{DeltaTime, Renderable},
Frozen, Hidden,
};
use speculoos::prelude::*;
fn mock_atlas_tile(id: u32) -> AtlasTile {
AtlasTile {
pos: U16Vec2::new(0, 0),
size: U16Vec2::new(16, 16),
color: Some(Color::RGB(id as u8, 0, 0)),
}
mod common;
/// Creates a test world with blinking system resources
fn create_blinking_test_world() -> World {
let mut world = World::new();
world.insert_resource(DeltaTime::from_ticks(1));
world
}
/// Spawns a test entity with blinking and renderable components
fn spawn_blinking_entity(world: &mut World, interval_ticks: u32) -> Entity {
world
.spawn((
Blinking::new(interval_ticks),
Renderable {
sprite: common::mock_atlas_tile(1),
layer: 0,
},
))
.id()
}
/// Spawns a test entity with blinking, renderable, and hidden components
fn spawn_hidden_blinking_entity(world: &mut World, interval_ticks: u32) -> Entity {
world
.spawn((
Blinking::new(interval_ticks),
Renderable {
sprite: common::mock_atlas_tile(1),
layer: 0,
},
Hidden,
))
.id()
}
/// Spawns a test entity with blinking, renderable, and frozen components
fn spawn_frozen_blinking_entity(world: &mut World, interval_ticks: u32) -> Entity {
world
.spawn((
Blinking::new(interval_ticks),
Renderable {
sprite: common::mock_atlas_tile(1),
layer: 0,
},
Frozen,
))
.id()
}
/// Spawns a test entity with blinking, renderable, hidden, and frozen components
fn spawn_frozen_hidden_blinking_entity(world: &mut World, interval_ticks: u32) -> Entity {
world
.spawn((
Blinking::new(interval_ticks),
Renderable {
sprite: common::mock_atlas_tile(1),
layer: 0,
},
Hidden,
Frozen,
))
.id()
}
/// Runs the blinking system with the given delta time
fn run_blinking_system(world: &mut World, delta_ticks: u32) {
world.resource_mut::<DeltaTime>().ticks = delta_ticks;
world.run_system_once(blinking_system).unwrap();
}
/// Checks if an entity has the Hidden component
fn has_hidden_component(world: &World, entity: Entity) -> bool {
world.entity(entity).contains::<Hidden>()
}
/// Checks if an entity has the Frozen component
fn has_frozen_component(world: &World, entity: Entity) -> bool {
world.entity(entity).contains::<Frozen>()
}
#[test]
fn test_blinking_texture() {
let tile = mock_atlas_tile(1);
let mut texture = BlinkingTexture::new(tile, 0.5);
fn test_blinking_component_creation() {
let blinking = Blinking::new(10);
assert!(texture.is_on());
texture.tick(0.5);
assert!(!texture.is_on());
texture.tick(0.5);
assert!(texture.is_on());
texture.tick(0.5);
assert!(!texture.is_on());
assert_that(&blinking.tick_timer).is_equal_to(0);
assert_that(&blinking.interval_ticks).is_equal_to(10);
}
#[test]
fn test_blinking_texture_partial_duration() {
let tile = mock_atlas_tile(1);
let mut texture = BlinkingTexture::new(tile, 0.5);
fn test_blinking_system_normal_interval_no_toggle() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 5);
texture.tick(0.625);
assert!(!texture.is_on());
assert_eq!(texture.time_bank(), 0.125);
// Run system with 3 ticks (less than interval)
run_blinking_system(&mut world, 3);
// Entity should not be hidden yet
assert_that(&has_hidden_component(&world, entity)).is_false();
// Check that timer was updated
let blinking = world.entity(entity).get::<Blinking>().unwrap();
assert_that(&blinking.tick_timer).is_equal_to(3);
}
#[test]
fn test_blinking_texture_negative_time() {
let tile = mock_atlas_tile(1);
let mut texture = BlinkingTexture::new(tile, 0.5);
fn test_blinking_system_normal_interval_first_toggle() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 5);
texture.tick(-0.1);
assert!(texture.is_on());
assert_eq!(texture.time_bank(), -0.1);
// Run system with 5 ticks (exactly one interval)
run_blinking_system(&mut world, 5);
// Entity should now be hidden
assert_that(&has_hidden_component(&world, entity)).is_true();
// Check that timer was reset
let blinking = world.entity(entity).get::<Blinking>().unwrap();
assert_that(&blinking.tick_timer).is_equal_to(0);
}
#[test]
fn test_blinking_system_normal_interval_second_toggle() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 5);
// First toggle: 5 ticks
run_blinking_system(&mut world, 5);
assert_that(&has_hidden_component(&world, entity)).is_true();
// Second toggle: another 5 ticks
run_blinking_system(&mut world, 5);
assert_that(&has_hidden_component(&world, entity)).is_false();
}
#[test]
fn test_blinking_system_normal_interval_multiple_intervals() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 3);
// Run system with 7 ticks (2 complete intervals + 1 remainder)
run_blinking_system(&mut world, 7);
// Should toggle twice (even number), so back to original state (not hidden)
assert_that(&has_hidden_component(&world, entity)).is_false();
// Check that timer was updated to remainder
let blinking = world.entity(entity).get::<Blinking>().unwrap();
assert_that(&blinking.tick_timer).is_equal_to(1);
}
#[test]
fn test_blinking_system_normal_interval_odd_intervals() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 2);
// Run system with 5 ticks (2 complete intervals + 1 remainder)
run_blinking_system(&mut world, 5);
// Should toggle twice (even number), so back to original state (not hidden)
assert_that(&has_hidden_component(&world, entity)).is_false();
// Check that timer was updated to remainder
let blinking = world.entity(entity).get::<Blinking>().unwrap();
assert_that(&blinking.tick_timer).is_equal_to(1);
}
#[test]
fn test_blinking_system_zero_interval_with_ticks() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 0);
// Run system with any positive ticks
run_blinking_system(&mut world, 1);
// Entity should be hidden immediately
assert_that(&has_hidden_component(&world, entity)).is_true();
}
#[test]
fn test_blinking_system_zero_interval_no_ticks() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 0);
// Run system with 0 ticks
run_blinking_system(&mut world, 0);
// Entity should not be hidden (no time passed)
assert_that(&has_hidden_component(&world, entity)).is_false();
}
#[test]
fn test_blinking_system_zero_interval_toggle_back() {
let mut world = create_blinking_test_world();
let entity = spawn_hidden_blinking_entity(&mut world, 0);
// Run system with any positive ticks
run_blinking_system(&mut world, 1);
// Entity should be unhidden
assert_that(&has_hidden_component(&world, entity)).is_false();
}
#[test]
fn test_blinking_system_frozen_entity_unhidden() {
let mut world = create_blinking_test_world();
let entity = spawn_frozen_hidden_blinking_entity(&mut world, 5);
// Run system with ticks
run_blinking_system(&mut world, 10);
// Frozen entity should be unhidden and stay unhidden
assert_that(&has_hidden_component(&world, entity)).is_false();
assert_that(&has_frozen_component(&world, entity)).is_true();
}
#[test]
fn test_blinking_system_frozen_entity_no_blinking() {
let mut world = create_blinking_test_world();
let entity = spawn_frozen_blinking_entity(&mut world, 5);
// Run system with ticks
run_blinking_system(&mut world, 10);
// Frozen entity should not be hidden (blinking disabled)
assert_that(&has_hidden_component(&world, entity)).is_false();
assert_that(&has_frozen_component(&world, entity)).is_true();
}
#[test]
fn test_blinking_system_frozen_entity_timer_not_updated() {
let mut world = create_blinking_test_world();
let entity = spawn_frozen_blinking_entity(&mut world, 5);
// Run system with ticks
run_blinking_system(&mut world, 10);
// Timer should not be updated for frozen entities
let blinking = world.entity(entity).get::<Blinking>().unwrap();
assert_that(&blinking.tick_timer).is_equal_to(0);
}
#[test]
fn test_blinking_system_entity_without_renderable_ignored() {
let mut world = create_blinking_test_world();
// Spawn entity with only Blinking component (no Renderable)
let entity = world.spawn(Blinking::new(5)).id();
// Run system
run_blinking_system(&mut world, 10);
// Entity should not be affected (not in query)
assert_that(&has_hidden_component(&world, entity)).is_false();
}
#[test]
fn test_blinking_system_entity_without_blinking_ignored() {
let mut world = create_blinking_test_world();
// Spawn entity with only Renderable component (no Blinking)
let entity = world
.spawn(Renderable {
sprite: common::mock_atlas_tile(1),
layer: 0,
})
.id();
// Run system
run_blinking_system(&mut world, 10);
// Entity should not be affected (not in query)
assert_that(&has_hidden_component(&world, entity)).is_false();
}
#[test]
fn test_blinking_system_large_interval() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 1000);
// Run system with 500 ticks (less than interval)
run_blinking_system(&mut world, 500);
// Entity should not be hidden yet
assert_that(&has_hidden_component(&world, entity)).is_false();
// Check that timer was updated
let blinking = world.entity(entity).get::<Blinking>().unwrap();
assert_that(&blinking.tick_timer).is_equal_to(500);
}
#[test]
fn test_blinking_system_very_small_interval() {
let mut world = create_blinking_test_world();
let entity = spawn_blinking_entity(&mut world, 1);
// Run system with 1 tick
run_blinking_system(&mut world, 1);
// Entity should be hidden
assert_that(&has_hidden_component(&world, entity)).is_true();
// Run system with another 1 tick
run_blinking_system(&mut world, 1);
// Entity should be unhidden
assert_that(&has_hidden_component(&world, entity)).is_false();
}

84
tests/collision.rs Normal file
View File

@@ -0,0 +1,84 @@
use bevy_ecs::system::RunSystemOnce;
use pacman::systems::{check_collision, collision_system, Collider, EntityType, GhostState, Position};
use speculoos::prelude::*;
mod common;
#[test]
fn test_collider_collision_detection() {
let collider1 = Collider { size: 10.0 };
let collider2 = Collider { size: 8.0 };
// Test collision detection
assert_that(&collider1.collides_with(collider2.size, 5.0)).is_true(); // Should collide (distance < 9.0)
assert_that(&collider1.collides_with(collider2.size, 15.0)).is_false(); // Should not collide (distance > 9.0)
}
#[test]
fn test_check_collision_helper() {
let map = common::create_test_map();
let pos1 = Position::Stopped { node: 0 };
let pos2 = Position::Stopped { node: 0 }; // Same position
let collider1 = Collider { size: 10.0 };
let collider2 = Collider { size: 8.0 };
// Test collision at same position
let result = check_collision(&pos1, &collider1, &pos2, &collider2, &map);
assert_that(&result.is_ok()).is_true();
assert_that(&result.unwrap()).is_true(); // Should collide at same position
// Test collision at different positions
let pos3 = Position::Stopped { node: 1 }; // Different position
let result = check_collision(&pos1, &collider1, &pos3, &collider2, &map);
assert_that(&result.is_ok()).is_true();
// May or may not collide depending on actual node positions
}
#[test]
fn test_collision_system_pacman_item() {
let mut world = common::create_test_world();
let _pacman = common::spawn_test_pacman(&mut world, 0);
let _item = common::spawn_test_item(&mut world, 0, EntityType::Pellet);
// Run collision system - should not panic
world
.run_system_once(collision_system)
.expect("System should run successfully");
}
#[test]
fn test_collision_system_pacman_ghost() {
let mut world = common::create_test_world();
let _pacman = common::spawn_test_pacman(&mut world, 0);
let _ghost = common::spawn_test_ghost(&mut world, 0, GhostState::Normal);
// Run collision system - should not panic
world
.run_system_once(collision_system)
.expect("System should run successfully");
}
#[test]
fn test_collision_system_no_collision() {
let mut world = common::create_test_world();
let _pacman = common::spawn_test_pacman(&mut world, 0);
let _ghost = common::spawn_test_ghost(&mut world, 1, GhostState::Normal); // Different node
// Run collision system - should not panic
world
.run_system_once(collision_system)
.expect("System should run successfully");
}
#[test]
fn test_collision_system_multiple_entities() {
let mut world = common::create_test_world();
let _pacman = common::spawn_test_pacman(&mut world, 0);
let _item = common::spawn_test_item(&mut world, 0, EntityType::Pellet);
let _ghost = common::spawn_test_ghost(&mut world, 0, GhostState::Normal);
// Run collision system - should not panic
world
.run_system_once(collision_system)
.expect("System should run successfully");
}

View File

@@ -1,13 +1,27 @@
#![allow(dead_code)]
use bevy_ecs::{entity::Entity, event::Events, world::World};
use glam::{U16Vec2, Vec2};
use pacman::{
asset::{get_asset_bytes, Asset},
constants::RAW_BOARD,
events::GameEvent,
game::ATLAS_FRAMES,
texture::sprite::{AtlasMapper, SpriteAtlas},
map::{
builder::Map,
direction::Direction,
graph::{Graph, Node},
},
systems::{
AudioEvent, AudioState, BufferedDirection, Collider, DebugState, DeltaTime, EntityType, Ghost, GhostCollider, GhostState,
GlobalState, ItemCollider, MovementModifiers, PacmanCollider, PlayerControlled, Position, ScoreResource, Velocity,
},
texture::sprite::{AtlasMapper, AtlasTile, SpriteAtlas},
};
use sdl2::{
image::LoadTexture,
render::{Canvas, Texture, TextureCreator},
pixels::Color,
render::{Canvas, TextureCreator},
video::{Window, WindowContext},
Sdl,
};
@@ -28,10 +42,9 @@ pub fn setup_sdl() -> Result<(Canvas<Window>, TextureCreator<WindowContext>, Sdl
pub fn create_atlas(canvas: &mut sdl2::render::Canvas<sdl2::video::Window>) -> SpriteAtlas {
let texture_creator = canvas.texture_creator();
let atlas_bytes = get_asset_bytes(Asset::Atlas).unwrap();
let atlas_bytes = get_asset_bytes(Asset::AtlasImage).unwrap();
let texture = texture_creator.load_texture_bytes(&atlas_bytes).unwrap();
let texture: Texture<'static> = unsafe { std::mem::transmute(texture) };
let atlas_mapper = AtlasMapper {
frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
@@ -39,3 +52,125 @@ pub fn create_atlas(canvas: &mut sdl2::render::Canvas<sdl2::video::Window>) -> S
SpriteAtlas::new(texture, atlas_mapper)
}
/// Creates a simple test graph with 3 connected nodes for testing
pub fn create_test_graph() -> Graph {
let mut graph = Graph::new();
let node0 = graph.add_node(Node {
position: Vec2::new(0.0, 0.0),
});
let node1 = graph.add_node(Node {
position: Vec2::new(16.0, 0.0),
});
let node2 = graph.add_node(Node {
position: Vec2::new(0.0, 16.0),
});
graph.connect(node0, node1, false, None, Direction::Right).unwrap();
graph.connect(node0, node2, false, None, Direction::Down).unwrap();
graph
}
/// Creates a basic test world with required resources for ECS systems
pub fn create_test_world() -> World {
let mut world = World::new();
// Add required resources
world.insert_resource(Events::<GameEvent>::default());
world.insert_resource(Events::<pacman::error::GameError>::default());
world.insert_resource(Events::<AudioEvent>::default());
world.insert_resource(ScoreResource(0));
world.insert_resource(AudioState::default());
world.insert_resource(GlobalState { exit: false });
world.insert_resource(DebugState::default());
world.insert_resource(DeltaTime {
seconds: 1.0 / 60.0,
ticks: 1,
}); // 60 FPS
world.insert_resource(create_test_map());
world
}
/// Creates a test map using the default RAW_BOARD
pub fn create_test_map() -> Map {
Map::new(RAW_BOARD).expect("Failed to create test map")
}
/// Spawns a test Pac-Man entity at the specified node
pub fn spawn_test_pacman(world: &mut World, node: usize) -> Entity {
world
.spawn((
Position::Stopped { node: node as u16 },
Collider { size: 10.0 },
PacmanCollider,
EntityType::Player,
))
.id()
}
/// Spawns a controllable test player entity
pub fn spawn_test_player(world: &mut World, node: usize) -> Entity {
world
.spawn((
PlayerControlled,
Position::Stopped { node: node as u16 },
Velocity {
speed: 1.0,
direction: Direction::Right,
},
BufferedDirection::None,
EntityType::Player,
MovementModifiers::default(),
))
.id()
}
/// Spawns a test item entity at the specified node
pub fn spawn_test_item(world: &mut World, node: usize, item_type: EntityType) -> Entity {
world
.spawn((
Position::Stopped { node: node as u16 },
Collider { size: 8.0 },
ItemCollider,
item_type,
))
.id()
}
/// Spawns a test ghost entity at the specified node
pub fn spawn_test_ghost(world: &mut World, node: usize, ghost_state: GhostState) -> Entity {
world
.spawn((
Position::Stopped { node: node as u16 },
Collider { size: 12.0 },
GhostCollider,
Ghost::Blinky,
EntityType::Ghost,
ghost_state,
))
.id()
}
/// Sends a game event to the world
pub fn send_game_event(world: &mut World, event: GameEvent) {
let mut events = world.resource_mut::<Events<GameEvent>>();
events.send(event);
}
/// Sends a collision event between two entities
pub fn send_collision_event(world: &mut World, entity1: Entity, entity2: Entity) {
let mut events = world.resource_mut::<Events<GameEvent>>();
events.send(GameEvent::Collision(entity1, entity2));
}
/// Creates a mock atlas tile for testing
pub fn mock_atlas_tile(id: u32) -> AtlasTile {
AtlasTile {
pos: U16Vec2::new(0, 0),
size: U16Vec2::new(16, 16),
color: Some(Color::RGB(id as u8, 0, 0)),
}
}

View File

@@ -1,28 +0,0 @@
use pacman::constants::*;
#[test]
fn test_raw_board_structure() {
assert_eq!(RAW_BOARD.len(), BOARD_CELL_SIZE.y as usize);
for row in RAW_BOARD.iter() {
assert_eq!(row.len(), BOARD_CELL_SIZE.x as usize);
}
// Test boundaries
assert!(RAW_BOARD[0].chars().all(|c| c == '#'));
assert!(RAW_BOARD[RAW_BOARD.len() - 1].chars().all(|c| c == '#'));
// Test tunnel row
let tunnel_row = RAW_BOARD[14];
assert_eq!(tunnel_row.chars().next().unwrap(), 'T');
assert_eq!(tunnel_row.chars().last().unwrap(), 'T');
}
#[test]
fn test_raw_board_content() {
let power_pellet_count = RAW_BOARD.iter().flat_map(|row| row.chars()).filter(|&c| c == 'o').count();
assert_eq!(power_pellet_count, 4);
assert!(RAW_BOARD.iter().any(|row| row.contains('X')));
assert!(RAW_BOARD.iter().any(|row| row.contains("==")));
}

View File

@@ -1,34 +0,0 @@
use glam::Vec2;
use pacman::entity::graph::{Graph, Node};
use pacman::map::render::MapRenderer;
#[test]
fn test_find_nearest_node() {
let mut graph = Graph::new();
// Add some test nodes
let node1 = graph.add_node(Node {
position: Vec2::new(10.0, 10.0),
});
let node2 = graph.add_node(Node {
position: Vec2::new(50.0, 50.0),
});
let node3 = graph.add_node(Node {
position: Vec2::new(100.0, 100.0),
});
// Test cursor near node1
let cursor_pos = Vec2::new(12.0, 8.0);
let nearest = MapRenderer::find_nearest_node(&graph, cursor_pos);
assert_eq!(nearest, Some(node1));
// Test cursor near node2
let cursor_pos = Vec2::new(45.0, 55.0);
let nearest = MapRenderer::find_nearest_node(&graph, cursor_pos);
assert_eq!(nearest, Some(node2));
// Test cursor near node3
let cursor_pos = Vec2::new(98.0, 102.0);
let nearest = MapRenderer::find_nearest_node(&graph, cursor_pos);
assert_eq!(nearest, Some(node3));
}

View File

@@ -1,5 +1,5 @@
use glam::IVec2;
use pacman::entity::direction::*;
use pacman::map::direction::*;
use speculoos::prelude::*;
#[test]
fn test_direction_opposite() {
@@ -11,21 +11,47 @@ fn test_direction_opposite() {
];
for (dir, expected) in test_cases {
assert_eq!(dir.opposite(), expected);
assert_that(&dir.opposite()).is_equal_to(expected);
}
}
#[test]
fn test_direction_as_ivec2() {
let test_cases = [
(Direction::Up, -IVec2::Y),
(Direction::Down, IVec2::Y),
(Direction::Left, -IVec2::X),
(Direction::Right, IVec2::X),
];
for (dir, expected) in test_cases {
assert_eq!(dir.as_ivec2(), expected);
assert_eq!(IVec2::from(dir), expected);
fn test_direction_opposite_symmetry() {
// Test that opposite() is symmetric: opposite(opposite(d)) == d
for &dir in &Direction::DIRECTIONS {
assert_that(&dir.opposite().opposite()).is_equal_to(dir);
}
}
#[test]
fn test_direction_opposite_exhaustive() {
// Test that every direction has a unique opposite
let mut opposites = std::collections::HashSet::new();
for &dir in &Direction::DIRECTIONS {
let opposite = dir.opposite();
assert_that(&opposites.insert(opposite)).is_true();
}
assert_that(&opposites).has_length(4);
}
#[test]
fn test_direction_as_usize_exhaustive() {
// Test that as_usize() returns unique values for all directions
let mut usizes = std::collections::HashSet::new();
for &dir in &Direction::DIRECTIONS {
let usize_val = dir.as_usize();
assert_that(&usizes.insert(usize_val)).is_true();
}
assert_that(&usizes).has_length(4);
}
#[test]
fn test_direction_as_ivec2_exhaustive() {
// Test that as_ivec2() returns unique values for all directions
let mut ivec2s = std::collections::HashSet::new();
for &dir in &Direction::DIRECTIONS {
let ivec2_val = dir.as_ivec2();
assert_that(&ivec2s.insert(ivec2_val)).is_true();
}
assert_that(&ivec2s).has_length(4);
}

66
tests/error.rs Normal file
View File

@@ -0,0 +1,66 @@
use pacman::error::{GameError, GameResult, IntoGameError, OptionExt, ResultExt};
use speculoos::prelude::*;
use std::io;
#[test]
fn test_into_game_error_trait() {
let result: Result<i32, io::Error> = Err(io::Error::new(io::ErrorKind::Other, "test error"));
let game_result: GameResult<i32> = result.into_game_error();
assert_that(&game_result.is_err()).is_true();
if let Err(GameError::InvalidState(msg)) = game_result {
assert_that(&msg.contains("test error")).is_true();
} else {
panic!("Expected InvalidState error");
}
}
#[test]
fn test_into_game_error_trait_success() {
let result: Result<i32, io::Error> = Ok(42);
let game_result: GameResult<i32> = result.into_game_error();
assert_that(&game_result.unwrap()).is_equal_to(42);
}
#[test]
fn test_option_ext_some() {
let option: Option<i32> = Some(42);
let result: GameResult<i32> = option.ok_or_game_error(|| GameError::InvalidState("Not found".to_string()));
assert_that(&result.unwrap()).is_equal_to(42);
}
#[test]
fn test_option_ext_none() {
let option: Option<i32> = None;
let result: GameResult<i32> = option.ok_or_game_error(|| GameError::InvalidState("Not found".to_string()));
assert_that(&result.is_err()).is_true();
if let Err(GameError::InvalidState(msg)) = result {
assert_that(&msg).is_equal_to("Not found".to_string());
} else {
panic!("Expected InvalidState error");
}
}
#[test]
fn test_result_ext_success() {
let result: Result<i32, io::Error> = Ok(42);
let game_result: GameResult<i32> = result.with_context(|_| GameError::InvalidState("Context".to_string()));
assert_that(&game_result.unwrap()).is_equal_to(42);
}
#[test]
fn test_result_ext_error() {
let result: Result<i32, io::Error> = Err(io::Error::new(io::ErrorKind::Other, "original error"));
let game_result: GameResult<i32> = result.with_context(|_| GameError::InvalidState("Context error".to_string()));
assert_that(&game_result.is_err()).is_true();
if let Err(GameError::InvalidState(msg)) = game_result {
assert_that(&msg).is_equal_to("Context error".to_string());
} else {
panic!("Expected InvalidState error");
}
}

141
tests/formatting.rs Normal file
View File

@@ -0,0 +1,141 @@
use pacman::systems::profiling::format_timing_display;
use speculoos::prelude::*;
use std::time::Duration;
fn get_timing_data() -> Vec<(String, Duration, Duration)> {
vec![
("total".to_string(), Duration::from_micros(1234), Duration::from_micros(570)),
("input".to_string(), Duration::from_micros(120), Duration::from_micros(45)),
("player".to_string(), Duration::from_micros(456), Duration::from_micros(123)),
("movement".to_string(), Duration::from_micros(789), Duration::from_micros(234)),
("render".to_string(), Duration::from_micros(12), Duration::from_micros(3)),
("debug".to_string(), Duration::from_nanos(460), Duration::from_nanos(557)),
]
}
fn get_formatted_output() -> impl IntoIterator<Item = String> {
format_timing_display(get_timing_data())
}
#[test]
fn test_complex_formatting_alignment() {
let mut colon_positions = vec![];
let mut first_decimal_positions = vec![];
let mut second_decimal_positions = vec![];
let mut first_unit_positions = vec![];
let mut second_unit_positions = vec![];
get_formatted_output().into_iter().for_each(|line| {
let (mut got_decimal, mut got_unit) = (false, false);
for (i, char) in line.chars().enumerate() {
match char {
':' => colon_positions.push(i),
'.' => {
if got_decimal {
second_decimal_positions.push(i);
} else {
first_decimal_positions.push(i);
}
got_decimal = true;
}
's' => {
if got_unit {
first_unit_positions.push(i);
} else {
second_unit_positions.push(i);
got_unit = true;
}
}
_ => {}
}
}
});
// Assert that all positions were found
assert_that(
&[
&colon_positions,
&first_decimal_positions,
&second_decimal_positions,
&first_unit_positions,
&second_unit_positions,
]
.iter()
.all(|p| p.len() == 6),
)
.is_true();
// Assert that all positions are the same
assert_that(&colon_positions.iter().all(|&p| p == colon_positions[0])).is_true();
assert_that(&first_decimal_positions.iter().all(|&p| p == first_decimal_positions[0])).is_true();
assert_that(&second_decimal_positions.iter().all(|&p| p == second_decimal_positions[0])).is_true();
assert_that(&first_unit_positions.iter().all(|&p| p == first_unit_positions[0])).is_true();
assert_that(&second_unit_positions.iter().all(|&p| p == second_unit_positions[0])).is_true();
}
#[test]
fn test_format_timing_display_basic() {
let timing_data = vec![
("render".to_string(), Duration::from_micros(1500), Duration::from_micros(200)),
("input".to_string(), Duration::from_micros(300), Duration::from_micros(50)),
("physics".to_string(), Duration::from_nanos(750), Duration::from_nanos(100)),
];
let formatted = format_timing_display(timing_data);
// Should have 3 lines (one for each system)
assert_that(&formatted.len()).is_equal_to(3);
// Each line should contain the system name
assert_that(&formatted.iter().any(|line| line.contains("render"))).is_true();
assert_that(&formatted.iter().any(|line| line.contains("input"))).is_true();
assert_that(&formatted.iter().any(|line| line.contains("physics"))).is_true();
// Each line should contain timing information with proper units
for line in formatted.iter() {
assert_that(&line.contains(":")).is_true();
assert_that(&line.contains("±")).is_true();
}
}
#[test]
fn test_format_timing_display_units() {
let timing_data = vec![
("seconds".to_string(), Duration::from_secs(2), Duration::from_millis(100)),
("millis".to_string(), Duration::from_millis(15), Duration::from_micros(200)),
("micros".to_string(), Duration::from_micros(500), Duration::from_nanos(50)),
("nanos".to_string(), Duration::from_nanos(250), Duration::from_nanos(25)),
];
let formatted = format_timing_display(timing_data);
// Check that appropriate units are used
let all_lines = formatted.join(" ");
assert_that(&all_lines.contains("s")).is_true();
assert_that(&all_lines.contains("ms")).is_true();
assert_that(&all_lines.contains("µs")).is_true();
assert_that(&all_lines.contains("ns")).is_true();
}
#[test]
fn test_format_timing_display_alignment() {
let timing_data = vec![
("short".to_string(), Duration::from_micros(100), Duration::from_micros(10)),
(
"very_long_name".to_string(),
Duration::from_micros(200),
Duration::from_micros(20),
),
];
let formatted = format_timing_display(timing_data);
// Find colon positions - they should be aligned
let colon_positions: Vec<usize> = formatted.iter().map(|line| line.find(':').unwrap_or(0)).collect();
// All colons should be at the same position (aligned)
if colon_positions.len() > 1 {
let first_pos = colon_positions[0];
assert_that(&colon_positions.iter().all(|&pos| pos == first_pos)).is_true();
}
}

View File

@@ -1,12 +1,79 @@
use pacman::constants::RAW_BOARD;
use pacman::map::builder::Map;
use pacman::error::{GameError, GameResult};
use pacman::game::Game;
use speculoos::prelude::*;
mod item;
mod common;
use common::setup_sdl;
#[test]
fn test_game_map_creation() {
let map = Map::new(RAW_BOARD).unwrap();
fn test_game_30_seconds_60fps() -> GameResult<()> {
let (canvas, texture_creator, _sdl_context) = setup_sdl().map_err(GameError::Sdl)?;
let ttf_context = sdl2::ttf::init().map_err(GameError::Sdl)?;
let event_pump = _sdl_context
.event_pump()
.map_err(|e| pacman::error::GameError::Sdl(e.to_string()))?;
assert!(map.graph.node_count() > 0);
assert!(!map.grid_to_node.is_empty());
let mut game = Game::new(canvas, ttf_context, texture_creator, event_pump)?;
// Run for 30 seconds at 60 FPS = 1800 frames
let frame_time = 1.0 / 60.0;
let total_frames = 1800;
let mut frame_count = 0;
for _ in 0..total_frames {
let should_exit = game.tick(frame_time);
if should_exit {
break;
}
frame_count += 1;
}
assert_eq!(
frame_count, total_frames,
"Should have processed exactly {} frames",
total_frames
);
Ok(())
}
/// Test that runs the game for 30 seconds with variable frame timing
#[test]
fn test_game_30_seconds_variable_timing() -> GameResult<()> {
let (canvas, texture_creator, _sdl_context) = setup_sdl().map_err(GameError::Sdl)?;
let ttf_context = sdl2::ttf::init().map_err(|e| GameError::Sdl(e.to_string()))?;
let event_pump = _sdl_context
.event_pump()
.map_err(|e| pacman::error::GameError::Sdl(e.to_string()))?;
let mut game = Game::new(canvas, ttf_context, texture_creator, event_pump)?;
// Simulate 30 seconds with variable frame timing
let mut total_time = 0.0;
let target_time = 30.0;
let mut frame_count = 0;
while total_time < target_time {
// Alternate between different frame rates to simulate real gameplay
let frame_time = match frame_count % 4 {
0 => 1.0 / 60.0, // 60 FPS
1 => 1.0 / 30.0, // 30 FPS (lag spike)
2 => 1.0 / 120.0, // 120 FPS (very fast)
_ => 1.0 / 60.0, // 60 FPS
};
let should_exit = game.tick(frame_time);
if should_exit {
break;
}
total_time += frame_time;
frame_count += 1;
}
assert_that(&total_time).is_greater_than_or_equal_to(target_time);
Ok(())
}

View File

@@ -1,23 +1,8 @@
use pacman::entity::direction::Direction;
use pacman::entity::graph::{Graph, Node, TraversalFlags};
use pacman::map::direction::Direction;
use pacman::map::graph::{Graph, Node, TraversalFlags};
use speculoos::prelude::*;
fn create_test_graph() -> Graph {
let mut graph = Graph::new();
let node1 = graph.add_node(Node {
position: glam::Vec2::new(0.0, 0.0),
});
let node2 = graph.add_node(Node {
position: glam::Vec2::new(16.0, 0.0),
});
let node3 = graph.add_node(Node {
position: glam::Vec2::new(0.0, 16.0),
});
graph.connect(node1, node2, false, None, Direction::Right).unwrap();
graph.connect(node1, node3, false, None, Direction::Down).unwrap();
graph
}
mod common;
#[test]
fn test_graph_basic_operations() {
@@ -29,10 +14,10 @@ fn test_graph_basic_operations() {
position: glam::Vec2::new(16.0, 0.0),
});
assert_eq!(graph.node_count(), 2);
assert!(graph.get_node(node1).is_some());
assert!(graph.get_node(node2).is_some());
assert!(graph.get_node(999).is_none());
assert_that(&graph.nodes().count()).is_equal_to(2);
assert_that(&graph.get_node(node1).is_some()).is_true();
assert_that(&graph.get_node(node2).is_some()).is_true();
assert_that(&graph.get_node(999).is_none()).is_true();
}
#[test]
@@ -45,15 +30,15 @@ fn test_graph_connect() {
position: glam::Vec2::new(16.0, 0.0),
});
assert!(graph.connect(node1, node2, false, None, Direction::Right).is_ok());
assert_that(&graph.connect(node1, node2, false, None, Direction::Right).is_ok()).is_true();
let edge1 = graph.find_edge_in_direction(node1, Direction::Right);
let edge2 = graph.find_edge_in_direction(node2, Direction::Left);
assert!(edge1.is_some());
assert!(edge2.is_some());
assert_eq!(edge1.unwrap().target, node2);
assert_eq!(edge2.unwrap().target, node1);
assert_that(&edge1.is_some()).is_true();
assert_that(&edge2.is_some()).is_true();
assert_that(&edge1.unwrap().target).is_equal_to(node2);
assert_that(&edge2.unwrap().target).is_equal_to(node1);
}
#[test]
@@ -63,8 +48,8 @@ fn test_graph_connect_errors() {
position: glam::Vec2::new(0.0, 0.0),
});
assert!(graph.connect(node1, 999, false, None, Direction::Right).is_err());
assert!(graph.connect(999, node1, false, None, Direction::Right).is_err());
assert_that(&graph.connect(node1, 999, false, None, Direction::Right).is_err()).is_true();
assert_that(&graph.connect(999, node1, false, None, Direction::Right).is_err()).is_true();
}
#[test]
@@ -82,7 +67,7 @@ fn test_graph_edge_permissions() {
.unwrap();
let edge = graph.find_edge_in_direction(node1, Direction::Right).unwrap();
assert_eq!(edge.traversal_flags, TraversalFlags::GHOST);
assert_that(&edge.traversal_flags).is_equal_to(TraversalFlags::GHOST);
}
#[test]
@@ -102,10 +87,10 @@ fn should_add_connected_node() {
)
.unwrap();
assert_eq!(graph.node_count(), 2);
assert_that(&graph.nodes().count()).is_equal_to(2);
let edge = graph.find_edge(node1, node2);
assert!(edge.is_some());
assert_eq!(edge.unwrap().direction, Direction::Right);
assert_that(&edge.is_some()).is_true();
assert_that(&edge.unwrap().direction).is_equal_to(Direction::Right);
}
#[test]
@@ -119,33 +104,33 @@ fn should_error_on_negative_edge_distance() {
});
let result = graph.add_edge(node1, node2, false, Some(-1.0), Direction::Right, TraversalFlags::ALL);
assert!(result.is_err());
assert_that(&result.is_err()).is_true();
}
#[test]
fn should_error_on_duplicate_edge_without_replace() {
let mut graph = create_test_graph();
let mut graph = common::create_test_graph();
let result = graph.add_edge(0, 1, false, None, Direction::Right, TraversalFlags::ALL);
assert!(result.is_err());
assert_that(&result.is_err()).is_true();
}
#[test]
fn should_allow_replacing_an_edge() {
let mut graph = create_test_graph();
let mut graph = common::create_test_graph();
let result = graph.add_edge(0, 1, true, Some(42.0), Direction::Right, TraversalFlags::ALL);
assert!(result.is_ok());
assert_that(&result.is_ok()).is_true();
let edge = graph.find_edge(0, 1).unwrap();
assert_eq!(edge.distance, 42.0);
assert_that(&edge.distance).is_equal_to(42.0);
}
#[test]
fn should_find_edge_between_nodes() {
let graph = create_test_graph();
let graph = common::create_test_graph();
let edge = graph.find_edge(0, 1);
assert!(edge.is_some());
assert_eq!(edge.unwrap().target, 1);
assert_that(&edge.is_some()).is_true();
assert_that(&edge.unwrap().target).is_equal_to(1);
let non_existent_edge = graph.find_edge(0, 99);
assert!(non_existent_edge.is_none());
assert_that(&non_existent_edge.is_none()).is_true();
}

View File

@@ -1,19 +0,0 @@
use glam::{IVec2, UVec2};
use pacman::helpers::centered_with_size;
#[test]
fn test_centered_with_size() {
let test_cases = [
((100, 100), (50, 30), (75, 85)),
((50, 50), (51, 31), (25, 35)),
((0, 0), (100, 100), (-50, -50)),
((-100, -50), (80, 40), (-140, -70)),
((1000, 1000), (1000, 1000), (500, 500)),
];
for ((pos_x, pos_y), (size_x, size_y), (expected_x, expected_y)) in test_cases {
let rect = centered_with_size(IVec2::new(pos_x, pos_y), UVec2::new(size_x, size_y));
assert_eq!(rect.origin(), (expected_x, expected_y));
assert_eq!(rect.size(), (size_x, size_y));
}
}

321
tests/input.rs Normal file
View File

@@ -0,0 +1,321 @@
use glam::Vec2;
use pacman::events::{GameCommand, GameEvent};
use pacman::map::direction::Direction;
use pacman::systems::input::{
calculate_direction_from_delta, process_simple_key_events, update_touch_reference_position, Bindings, CursorPosition,
SimpleKeyEvent, TouchData, TouchState, TOUCH_DIRECTION_THRESHOLD, TOUCH_EASING_DISTANCE_THRESHOLD,
};
use sdl2::keyboard::Keycode;
use speculoos::prelude::*;
// Test modules for better organization
mod keyboard_tests {
use super::*;
#[test]
fn key_down_emits_bound_command() {
let mut bindings = Bindings::default();
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::W)]);
assert_that(&events).contains(GameEvent::Command(GameCommand::MovePlayer(Direction::Up)));
}
#[test]
fn key_down_emits_non_movement_commands() {
let mut bindings = Bindings::default();
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::P)]);
assert_that(&events).contains(GameEvent::Command(GameCommand::TogglePause));
}
#[test]
fn unbound_key_emits_nothing() {
let mut bindings = Bindings::default();
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::Z)]);
assert_that(&events).is_empty();
}
#[test]
fn movement_key_held_continues_across_frames() {
let mut bindings = Bindings::default();
process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::Left)]);
let events = process_simple_key_events(&mut bindings, &[]);
assert_that(&events).contains(GameEvent::Command(GameCommand::MovePlayer(Direction::Left)));
}
#[test]
fn releasing_movement_key_stops_continuation() {
let mut bindings = Bindings::default();
process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::Up)]);
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyUp(Keycode::Up)]);
assert_that(&events).is_empty();
}
#[test]
fn multiple_movement_keys_resumes_previous_when_current_released() {
let mut bindings = Bindings::default();
process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::W)]);
process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::D)]);
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyUp(Keycode::D)]);
assert_that(&events).contains(GameEvent::Command(GameCommand::MovePlayer(Direction::Up)));
}
}
mod direction_calculation_tests {
use super::*;
#[test]
fn prioritizes_horizontal_movement() {
let test_cases = vec![
(Vec2::new(6.0, 5.0), Direction::Right),
(Vec2::new(-6.0, 5.0), Direction::Left),
];
for (delta, expected) in test_cases {
assert_that(&calculate_direction_from_delta(delta)).is_equal_to(expected);
}
}
#[test]
fn uses_vertical_when_dominant() {
let test_cases = vec![
(Vec2::new(3.0, 10.0), Direction::Down),
(Vec2::new(3.0, -10.0), Direction::Up),
];
for (delta, expected) in test_cases {
assert_that(&calculate_direction_from_delta(delta)).is_equal_to(expected);
}
}
#[test]
fn handles_zero_delta() {
let delta = Vec2::ZERO;
// Should default to Up when both components are zero
assert_that(&calculate_direction_from_delta(delta)).is_equal_to(Direction::Up);
}
#[test]
fn handles_equal_magnitudes() {
// When x and y have equal absolute values, should prioritize vertical
let delta = Vec2::new(5.0, 5.0);
assert_that(&calculate_direction_from_delta(delta)).is_equal_to(Direction::Down);
let delta = Vec2::new(-5.0, 5.0);
assert_that(&calculate_direction_from_delta(delta)).is_equal_to(Direction::Down);
}
}
mod touch_easing_tests {
use super::*;
#[test]
fn easing_within_threshold_does_nothing() {
let mut touch_data = TouchData::new(0, Vec2::new(100.0, 100.0));
touch_data.current_pos = Vec2::new(100.0 + TOUCH_EASING_DISTANCE_THRESHOLD - 0.1, 100.0);
let (_delta, distance) = update_touch_reference_position(&mut touch_data, 0.016);
assert_that(&distance).is_less_than(TOUCH_EASING_DISTANCE_THRESHOLD);
assert_that(&touch_data.start_pos).is_equal_to(Vec2::new(100.0, 100.0));
}
#[test]
fn easing_beyond_threshold_moves_towards_target() {
let mut touch_data = TouchData::new(0, Vec2::new(100.0, 100.0));
touch_data.current_pos = Vec2::new(150.0, 100.0);
let original_start_pos = touch_data.start_pos;
let (_delta, distance) = update_touch_reference_position(&mut touch_data, 0.016);
assert_that(&distance).is_greater_than(TOUCH_EASING_DISTANCE_THRESHOLD);
assert_that(&touch_data.start_pos.x).is_greater_than(original_start_pos.x);
assert_that(&touch_data.start_pos.x).is_less_than(touch_data.current_pos.x);
}
#[test]
fn easing_overshoot_sets_to_target() {
let mut touch_data = TouchData::new(0, Vec2::new(100.0, 100.0));
touch_data.current_pos = Vec2::new(101.0, 100.0);
let (_delta, _distance) = update_touch_reference_position(&mut touch_data, 10.0);
assert_that(&touch_data.start_pos).is_equal_to(touch_data.current_pos);
}
#[test]
fn easing_returns_correct_delta() {
let mut touch_data = TouchData::new(0, Vec2::new(100.0, 100.0));
touch_data.current_pos = Vec2::new(120.0, 110.0);
let (delta, distance) = update_touch_reference_position(&mut touch_data, 0.016);
let expected_delta = Vec2::new(20.0, 10.0);
let expected_distance = expected_delta.length();
assert_that(&delta).is_equal_to(expected_delta);
assert_that(&distance).is_equal_to(expected_distance);
}
}
// Integration tests for the full input system
mod integration_tests {
use super::*;
fn mouse_motion_event(x: i32, y: i32) -> sdl2::event::Event {
sdl2::event::Event::MouseMotion {
x,
y,
xrel: 0,
yrel: 0,
mousestate: sdl2::mouse::MouseState::from_sdl_state(0),
which: 0,
window_id: 0,
timestamp: 0,
}
}
fn mouse_button_down_event(x: i32, y: i32) -> sdl2::event::Event {
sdl2::event::Event::MouseButtonDown {
x,
y,
mouse_btn: sdl2::mouse::MouseButton::Left,
clicks: 1,
which: 0,
window_id: 0,
timestamp: 0,
}
}
fn mouse_button_up_event(x: i32, y: i32) -> sdl2::event::Event {
sdl2::event::Event::MouseButtonUp {
x,
y,
mouse_btn: sdl2::mouse::MouseButton::Left,
clicks: 1,
which: 0,
window_id: 0,
timestamp: 0,
}
}
// Simplified helper for testing SDL integration
fn run_input_system_with_events(events: Vec<sdl2::event::Event>, delta_time: f32) -> (CursorPosition, TouchState) {
use bevy_ecs::{event::Events, system::RunSystemOnce, world::World};
use pacman::systems::components::DeltaTime;
use pacman::systems::input::input_system;
let sdl_context = sdl2::init().expect("Failed to initialize SDL");
let event_subsystem = sdl_context.event().expect("Failed to get event subsystem");
let event_pump = sdl_context.event_pump().expect("Failed to create event pump");
let mut world = World::new();
world.insert_resource(Events::<GameEvent>::default());
world.insert_resource(DeltaTime {
seconds: delta_time,
ticks: 1,
});
world.insert_resource(Bindings::default());
world.insert_resource(CursorPosition::None);
world.insert_resource(TouchState::default());
world.insert_non_send_resource(event_pump);
// Inject events into SDL's event queue
for event in events {
event_subsystem.push_event(event).expect("Failed to push event");
}
// Run the real input system
world
.run_system_once(input_system)
.expect("Input system should run successfully");
let cursor = *world.resource::<CursorPosition>();
let touch_state = world.resource::<TouchState>().clone();
(cursor, touch_state)
}
#[test]
fn mouse_motion_updates_cursor_position() {
let events = vec![mouse_motion_event(100, 200)];
let (cursor, _touch_state) = run_input_system_with_events(events, 0.016);
match cursor {
CursorPosition::Some {
position,
remaining_time,
} => {
assert_that(&position).is_equal_to(Vec2::new(100.0, 200.0));
assert_that(&remaining_time).is_equal_to(0.20);
}
CursorPosition::None => panic!("Expected cursor position to be set"),
}
}
#[test]
fn mouse_button_down_starts_touch() {
let events = vec![mouse_button_down_event(150, 250)];
let (_cursor, touch_state) = run_input_system_with_events(events, 0.016);
assert_that(&touch_state.active_touch).is_some();
if let Some(touch_data) = &touch_state.active_touch {
assert_that(&touch_data.finger_id).is_equal_to(0);
assert_that(&touch_data.start_pos).is_equal_to(Vec2::new(150.0, 250.0));
}
}
#[test]
fn mouse_button_up_ends_touch() {
let events = vec![mouse_button_down_event(150, 250), mouse_button_up_event(150, 250)];
let (_cursor, touch_state) = run_input_system_with_events(events, 0.016);
assert_that(&touch_state.active_touch).is_none();
}
}
// Touch direction tests
mod touch_direction_tests {
use super::*;
#[test]
fn movement_above_threshold_emits_direction() {
let mut touch_data = TouchData::new(1, Vec2::new(100.0, 100.0));
touch_data.current_pos = Vec2::new(100.0 + TOUCH_DIRECTION_THRESHOLD + 5.0, 100.0);
let (delta, distance) = update_touch_reference_position(&mut touch_data, 0.016);
assert_that(&distance).is_greater_than_or_equal_to(TOUCH_DIRECTION_THRESHOLD);
let direction = calculate_direction_from_delta(delta);
assert_that(&direction).is_equal_to(Direction::Right);
}
#[test]
fn movement_below_threshold_no_direction() {
let mut touch_data = TouchData::new(1, Vec2::new(100.0, 100.0));
touch_data.current_pos = Vec2::new(100.0 + TOUCH_DIRECTION_THRESHOLD - 1.0, 100.0);
let (_delta, distance) = update_touch_reference_position(&mut touch_data, 0.016);
assert_that(&distance).is_less_than(TOUCH_DIRECTION_THRESHOLD);
}
#[test]
fn all_directions_work_correctly() {
let test_cases = vec![
(Vec2::new(TOUCH_DIRECTION_THRESHOLD + 5.0, 0.0), Direction::Right),
(Vec2::new(-TOUCH_DIRECTION_THRESHOLD - 5.0, 0.0), Direction::Left),
(Vec2::new(0.0, TOUCH_DIRECTION_THRESHOLD + 5.0), Direction::Down),
(Vec2::new(0.0, -TOUCH_DIRECTION_THRESHOLD - 5.0), Direction::Up),
];
for (offset, expected_direction) in test_cases {
let mut touch_data = TouchData::new(1, Vec2::new(100.0, 100.0));
touch_data.current_pos = Vec2::new(100.0, 100.0) + offset;
let (delta, distance) = update_touch_reference_position(&mut touch_data, 0.016);
assert_that(&distance).is_greater_than_or_equal_to(TOUCH_DIRECTION_THRESHOLD);
let direction = calculate_direction_from_delta(delta);
assert_that(&direction).is_equal_to(expected_direction);
}
}
}

View File

@@ -1,46 +1,249 @@
// use glam::U16Vec2;
// use pacman::texture::sprite::{AtlasTile, Sprite};
use bevy_ecs::{entity::Entity, system::RunSystemOnce};
use pacman::systems::{is_valid_item_collision, item_system, EntityType, GhostState, Position, ScoreResource};
use speculoos::prelude::*;
// #[test]
// fn test_item_type_get_score() {
// assert_eq!(ItemType::Pellet.get_score(), 10);
// assert_eq!(ItemType::Energizer.get_score(), 50);
mod common;
// let fruit = ItemType::Fruit { kind: FruitKind::Apple };
// assert_eq!(fruit.get_score(), 100);
// }
#[test]
fn test_calculate_score_for_item() {
assert_that(&(EntityType::Pellet.score_value() < EntityType::PowerPellet.score_value())).is_true();
assert_that(&EntityType::Pellet.score_value().is_some()).is_true();
assert_that(&EntityType::PowerPellet.score_value().is_some()).is_true();
assert_that(&EntityType::Player.score_value().is_none()).is_true();
assert_that(&EntityType::Ghost.score_value().is_none()).is_true();
}
// #[test]
// fn test_fruit_kind_increasing_score() {
// // Build a list of fruit kinds, sorted by their index
// let mut kinds = FruitKind::iter()
// .map(|kind| (kind.index(), kind.get_score()))
// .collect::<Vec<_>>();
// kinds.sort_unstable_by_key(|(index, _)| *index);
#[test]
fn test_is_collectible_item() {
// Collectible
assert_that(&EntityType::Pellet.is_collectible()).is_true();
assert_that(&EntityType::PowerPellet.is_collectible()).is_true();
// assert_eq!(kinds.len(), FruitKind::COUNT);
// Non-collectible
assert_that(&EntityType::Player.is_collectible()).is_false();
assert_that(&EntityType::Ghost.is_collectible()).is_false();
}
// // Check that the score increases as expected
// for window in kinds.windows(2) {
// let ((_, prev), (_, next)) = (window[0], window[1]);
// assert!(prev < next, "Fruits should have increasing scores, but {prev:?} < {next:?}");
// }
// }
#[test]
fn test_is_valid_item_collision() {
// Player-item collisions should be valid
assert_that(&is_valid_item_collision(EntityType::Player, EntityType::Pellet)).is_true();
assert_that(&is_valid_item_collision(EntityType::Player, EntityType::PowerPellet)).is_true();
assert_that(&is_valid_item_collision(EntityType::Pellet, EntityType::Player)).is_true();
assert_that(&is_valid_item_collision(EntityType::PowerPellet, EntityType::Player)).is_true();
// #[test]
// fn test_item_creation_and_collection() {
// let atlas_tile = AtlasTile {
// pos: U16Vec2::new(0, 0),
// size: U16Vec2::new(16, 16),
// color: None,
// };
// let sprite = Sprite::new(atlas_tile);
// let mut item = Item::new(0, ItemType::Pellet, sprite);
// Non-player-item collisions should be invalid
assert_that(&is_valid_item_collision(EntityType::Player, EntityType::Ghost)).is_false();
assert_that(&is_valid_item_collision(EntityType::Ghost, EntityType::Pellet)).is_false();
assert_that(&is_valid_item_collision(EntityType::Pellet, EntityType::PowerPellet)).is_false();
assert_that(&is_valid_item_collision(EntityType::Player, EntityType::Player)).is_false();
}
// assert!(!item.is_collected());
// assert_eq!(item.get_score(), 10);
// assert_eq!(item.position().from_node_id(), 0);
#[test]
fn test_item_system_pellet_collection() {
let mut world = common::create_test_world();
let pacman = common::spawn_test_pacman(&mut world, 0);
let pellet = common::spawn_test_item(&mut world, 1, EntityType::Pellet);
// item.collect();
// assert!(item.is_collected());
// }
// Send collision event
common::send_collision_event(&mut world, pacman, pellet);
// Run the item system
world.run_system_once(item_system).expect("System should run successfully");
// Check that score was updated
let score = world.resource::<ScoreResource>();
assert_that(&score.0).is_equal_to(10);
// Check that the pellet was despawned (query should return empty)
let item_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::Pellet))
.count();
assert_that(&item_count).is_equal_to(0);
}
#[test]
fn test_item_system_power_pellet_collection() {
let mut world = common::create_test_world();
let pacman = common::spawn_test_pacman(&mut world, 0);
let power_pellet = common::spawn_test_item(&mut world, 1, EntityType::PowerPellet);
common::send_collision_event(&mut world, pacman, power_pellet);
world.run_system_once(item_system).expect("System should run successfully");
// Check that score was updated with power pellet value
let score = world.resource::<ScoreResource>();
assert_that(&score.0).is_equal_to(50);
// Check that the power pellet was despawned (query should return empty)
let item_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::PowerPellet))
.count();
assert_that(&item_count).is_equal_to(0);
}
#[test]
fn test_item_system_multiple_collections() {
let mut world = common::create_test_world();
let pacman = common::spawn_test_pacman(&mut world, 0);
let pellet1 = common::spawn_test_item(&mut world, 1, EntityType::Pellet);
let pellet2 = common::spawn_test_item(&mut world, 2, EntityType::Pellet);
let power_pellet = common::spawn_test_item(&mut world, 3, EntityType::PowerPellet);
// Send multiple collision events
common::send_collision_event(&mut world, pacman, pellet1);
common::send_collision_event(&mut world, pacman, pellet2);
common::send_collision_event(&mut world, pacman, power_pellet);
world.run_system_once(item_system).expect("System should run successfully");
// Check final score: 2 pellets (20) + 1 power pellet (50) = 70
let score = world.resource::<ScoreResource>();
assert_that(&score.0).is_equal_to(70);
// Check that all items were despawned
let pellet_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::Pellet))
.count();
let power_pellet_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::PowerPellet))
.count();
assert_that(&pellet_count).is_equal_to(0);
assert_that(&power_pellet_count).is_equal_to(0);
}
#[test]
fn test_item_system_ignores_non_item_collisions() {
let mut world = common::create_test_world();
let pacman = common::spawn_test_pacman(&mut world, 0);
// Create a ghost entity (not an item)
let ghost = world.spawn((Position::Stopped { node: 2 }, EntityType::Ghost)).id();
// Initial score
let initial_score = world.resource::<ScoreResource>().0;
// Send collision event between pacman and ghost
common::send_collision_event(&mut world, pacman, ghost);
world.run_system_once(item_system).expect("System should run successfully");
// Score should remain unchanged
let score = world.resource::<ScoreResource>();
assert_that(&score.0).is_equal_to(initial_score);
// Ghost should still exist (not despawned)
let ghost_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::Ghost))
.count();
assert_that(&ghost_count).is_equal_to(1);
}
#[test]
fn test_item_system_no_collision_events() {
let mut world = common::create_test_world();
let _pacman = common::spawn_test_pacman(&mut world, 0);
let _pellet = common::spawn_test_item(&mut world, 1, EntityType::Pellet);
let initial_score = world.resource::<ScoreResource>().0;
// Run system without any collision events
world.run_system_once(item_system).expect("System should run successfully");
// Nothing should change
let score = world.resource::<ScoreResource>();
assert_that(&score.0).is_equal_to(initial_score);
let pellet_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::Pellet))
.count();
assert_that(&pellet_count).is_equal_to(1);
}
#[test]
fn test_item_system_collision_with_missing_entity() {
let mut world = common::create_test_world();
let pacman = common::spawn_test_pacman(&mut world, 0);
// Create a fake entity ID that doesn't exist
let fake_entity = Entity::from_raw(999);
common::send_collision_event(&mut world, pacman, fake_entity);
// System should handle gracefully and not crash
world
.run_system_once(item_system)
.expect("System should handle missing entities gracefully");
// Score should remain unchanged
let score = world.resource::<ScoreResource>();
assert_that(&score.0).is_equal_to(0);
}
#[test]
fn test_item_system_preserves_existing_score() {
let mut world = common::create_test_world();
// Set initial score
world.insert_resource(ScoreResource(100));
let pacman = common::spawn_test_pacman(&mut world, 0);
let pellet = common::spawn_test_item(&mut world, 1, EntityType::Pellet);
common::send_collision_event(&mut world, pacman, pellet);
world.run_system_once(item_system).expect("System should run successfully");
// Score should be initial + pellet value
let score = world.resource::<ScoreResource>();
assert_that(&score.0).is_equal_to(110);
}
#[test]
fn test_power_pellet_does_not_affect_ghosts_in_eyes_state() {
let mut world = common::create_test_world();
let pacman = common::spawn_test_pacman(&mut world, 0);
let power_pellet = common::spawn_test_item(&mut world, 1, EntityType::PowerPellet);
// Spawn a ghost in Eyes state (returning to ghost house)
let eyes_ghost = common::spawn_test_ghost(&mut world, 2, GhostState::Eyes);
// Spawn a ghost in Normal state
let normal_ghost = common::spawn_test_ghost(&mut world, 3, GhostState::Normal);
common::send_collision_event(&mut world, pacman, power_pellet);
world.run_system_once(item_system).expect("System should run successfully");
// Check that the power pellet was collected and score updated
let score = world.resource::<ScoreResource>();
assert_that(&score.0).is_equal_to(50);
// Check that the power pellet was despawned
let power_pellet_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::PowerPellet))
.count();
assert_that(&power_pellet_count).is_equal_to(0);
// Check that the Eyes ghost state was not changed
let eyes_ghost_state = world.entity(eyes_ghost).get::<GhostState>().unwrap();
assert_that(&matches!(*eyes_ghost_state, GhostState::Eyes)).is_true();
// Check that the Normal ghost state was changed to Frightened
let normal_ghost_state = world.entity(normal_ghost).get::<GhostState>().unwrap();
assert_that(&matches!(*normal_ghost_state, GhostState::Frightened { .. })).is_true();
}

View File

@@ -1,13 +1,15 @@
use glam::Vec2;
use pacman::constants::{CELL_SIZE, RAW_BOARD};
use pacman::map::builder::Map;
use pacman::map::graph::TraversalFlags;
use speculoos::prelude::*;
#[test]
fn test_map_creation() {
fn test_map_creation_success() {
let map = Map::new(RAW_BOARD).unwrap();
assert!(map.graph.node_count() > 0);
assert!(!map.grid_to_node.is_empty());
assert_that(&map.graph.nodes().count()).is_greater_than(0);
assert_that(&map.grid_to_node.is_empty()).is_false();
// Check that some connections were made
let mut has_connections = false;
@@ -17,76 +19,71 @@ fn test_map_creation() {
break;
}
}
assert!(has_connections);
assert_that(&has_connections).is_true();
}
#[test]
fn test_map_node_positions() {
fn test_map_node_positions_accuracy() {
let map = Map::new(RAW_BOARD).unwrap();
for (grid_pos, &node_id) in &map.grid_to_node {
let node = map.graph.get_node(node_id).unwrap();
let expected_pos = Vec2::new((grid_pos.x * CELL_SIZE as i32) as f32, (grid_pos.y * CELL_SIZE as i32) as f32)
+ Vec2::splat(CELL_SIZE as f32 / 2.0);
let expected_pos = Vec2::new(
(grid_pos.x as i32 * CELL_SIZE as i32) as f32,
(grid_pos.y as i32 * CELL_SIZE as i32) as f32,
) + Vec2::splat(CELL_SIZE as f32 / 2.0);
assert_eq!(node.position, expected_pos);
assert_that(&node.position).is_equal_to(expected_pos);
}
}
// #[test]
// fn test_generate_items() {
// use pacman::texture::sprite::{AtlasMapper, MapperFrame, SpriteAtlas};
// use std::collections::HashMap;
#[test]
fn test_start_positions_are_valid() {
let map = Map::new(RAW_BOARD).unwrap();
let positions = &map.start_positions;
// let map = Map::new(RAW_BOARD).unwrap();
// All start positions should exist in the graph
assert_that(&map.graph.get_node(positions.pacman)).is_some();
assert_that(&map.graph.get_node(positions.blinky)).is_some();
assert_that(&map.graph.get_node(positions.pinky)).is_some();
assert_that(&map.graph.get_node(positions.inky)).is_some();
assert_that(&map.graph.get_node(positions.clyde)).is_some();
}
// // Create a minimal atlas for testing
// let mut frames = HashMap::new();
// frames.insert(
// "maze/pellet.png".to_string(),
// MapperFrame {
// x: 0,
// y: 0,
// width: 8,
// height: 8,
// },
// );
// frames.insert(
// "maze/energizer.png".to_string(),
// MapperFrame {
// x: 8,
// y: 0,
// width: 8,
// height: 8,
// },
// );
#[test]
fn test_ghost_house_has_ghost_only_entrance() {
let map = Map::new(RAW_BOARD).unwrap();
// let mapper = AtlasMapper { frames };
// let texture = unsafe { std::mem::transmute::<usize, Texture<'static>>(0usize) };
// let atlas = SpriteAtlas::new(texture, mapper);
// Find the house entrance node
let house_entrance = map.start_positions.blinky;
// let items = map.generate_items(&atlas).unwrap();
// Check that there's a ghost-only connection from the house entrance
let mut has_ghost_only_connection = false;
for edge in map.graph.adjacency_list[house_entrance as usize].edges() {
if edge.traversal_flags == TraversalFlags::GHOST {
has_ghost_only_connection = true;
break;
}
}
assert_that(&has_ghost_only_connection).is_true();
}
// // Verify we have items
// assert!(!items.is_empty());
#[test]
fn test_tunnel_connections_exist() {
let map = Map::new(RAW_BOARD).unwrap();
// // Count different types
// let pellet_count = items
// .iter()
// .filter(|item| matches!(item.item_type, pacman::entity::item::ItemType::Pellet))
// .count();
// let energizer_count = items
// .iter()
// .filter(|item| matches!(item.item_type, pacman::entity::item::ItemType::Energizer))
// .count();
// // Should have both types
// assert_eq!(pellet_count, 240);
// assert_eq!(energizer_count, 4);
// // All items should be uncollected initially
// assert!(items.iter().all(|item| !item.is_collected()));
// // All items should have valid node indices
// assert!(items.iter().all(|item| item.node_index < map.graph.node_count()));
// }
// Find tunnel nodes by looking for nodes with zero-distance connections
let mut has_tunnel_connection = false;
for intersection in &map.graph.adjacency_list {
for edge in intersection.edges() {
if edge.distance == 0.0f32 {
has_tunnel_connection = true;
break;
}
}
if has_tunnel_connection {
break;
}
}
assert_that(&has_tunnel_connection).is_true();
}

170
tests/movement.rs Normal file
View File

@@ -0,0 +1,170 @@
use glam::Vec2;
use pacman::map::direction::Direction;
use pacman::systems::movement::{BufferedDirection, Position, Velocity};
use speculoos::prelude::*;
mod common;
#[test]
fn test_position_is_at_node() {
let stopped_pos = Position::Stopped { node: 0 };
let moving_pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 8.0,
};
assert_that(&stopped_pos.is_at_node()).is_true();
assert_that(&moving_pos.is_at_node()).is_false();
}
#[test]
fn test_position_current_node() {
let stopped_pos = Position::Stopped { node: 5 };
let moving_pos = Position::Moving {
from: 3,
to: 7,
remaining_distance: 12.0,
};
assert_that(&stopped_pos.current_node()).is_equal_to(5);
assert_that(&moving_pos.current_node()).is_equal_to(3);
}
#[test]
fn test_position_tick_no_movement_when_stopped() {
let mut pos = Position::Stopped { node: 0 };
let result = pos.tick(5.0);
assert_that(&result.is_none()).is_true();
assert_that(&pos).is_equal_to(Position::Stopped { node: 0 });
}
#[test]
fn test_position_tick_no_movement_when_zero_distance() {
let mut pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 10.0,
};
let result = pos.tick(0.0);
assert_that(&result.is_none()).is_true();
assert_that(&pos).is_equal_to(Position::Moving {
from: 0,
to: 1,
remaining_distance: 10.0,
});
}
#[test]
fn test_position_tick_partial_movement() {
let mut pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 10.0,
};
let result = pos.tick(3.0);
assert_that(&result.is_none()).is_true();
assert_that(&pos).is_equal_to(Position::Moving {
from: 0,
to: 1,
remaining_distance: 7.0,
});
}
#[test]
fn test_position_tick_exact_arrival() {
let mut pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 5.0,
};
let result = pos.tick(5.0);
assert_that(&result.is_none()).is_true();
assert_that(&pos).is_equal_to(Position::Stopped { node: 1 });
}
#[test]
fn test_position_tick_overshoot_with_overflow() {
let mut pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 3.0,
};
let result = pos.tick(8.0);
assert_that(&result).is_equal_to(Some(5.0));
assert_that(&pos).is_equal_to(Position::Stopped { node: 1 });
}
#[test]
fn test_position_get_pixel_position_stopped() {
let graph = common::create_test_graph();
let pos = Position::Stopped { node: 0 };
let pixel_pos = pos.get_pixel_position(&graph).unwrap();
let expected = Vec2::new(
0.0 + pacman::constants::BOARD_PIXEL_OFFSET.x as f32,
0.0 + pacman::constants::BOARD_PIXEL_OFFSET.y as f32,
);
assert_that(&pixel_pos).is_equal_to(expected);
}
#[test]
fn test_position_get_pixel_position_moving() {
let graph = common::create_test_graph();
let pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 8.0, // Halfway through a 16-unit edge
};
let pixel_pos = pos.get_pixel_position(&graph).unwrap();
// Should be halfway between (0,0) and (16,0), so at (8,0) plus offset
let expected = Vec2::new(
8.0 + pacman::constants::BOARD_PIXEL_OFFSET.x as f32,
0.0 + pacman::constants::BOARD_PIXEL_OFFSET.y as f32,
);
assert_that(&pixel_pos).is_equal_to(expected);
}
#[test]
fn test_velocity_basic_properties() {
let velocity = Velocity {
speed: 2.5,
direction: Direction::Up,
};
assert_that(&velocity.speed).is_equal_to(2.5);
assert_that(&velocity.direction).is_equal_to(Direction::Up);
}
#[test]
fn test_buffered_direction_none() {
let buffered = BufferedDirection::None;
assert_that(&buffered).is_equal_to(BufferedDirection::None);
}
#[test]
fn test_buffered_direction_some() {
let buffered = BufferedDirection::Some {
direction: Direction::Left,
remaining_time: 0.5,
};
if let BufferedDirection::Some {
direction,
remaining_time,
} = buffered
{
assert_that(&direction).is_equal_to(Direction::Left);
assert_that(&remaining_time).is_equal_to(0.5);
} else {
panic!("Expected BufferedDirection::Some");
}
}

View File

@@ -1,6 +1,7 @@
use pacman::constants::{BOARD_CELL_SIZE, RAW_BOARD};
use pacman::error::ParseError;
use pacman::map::parser::MapTileParser;
use speculoos::prelude::*;
#[test]
fn test_parse_character() {
@@ -15,25 +16,25 @@ fn test_parse_character() {
];
for (char, _expected) in test_cases {
assert!(matches!(MapTileParser::parse_character(char).unwrap(), _expected));
assert_that(&matches!(MapTileParser::parse_character(char).unwrap(), _expected)).is_true();
}
assert!(MapTileParser::parse_character('Z').is_err());
assert_that(&MapTileParser::parse_character('Z').is_err()).is_true();
}
#[test]
fn test_parse_board() {
let result = MapTileParser::parse_board(RAW_BOARD);
assert!(result.is_ok());
assert_that(&result.is_ok()).is_true();
let parsed = result.unwrap();
assert_eq!(parsed.tiles.len(), BOARD_CELL_SIZE.x as usize);
assert_eq!(parsed.tiles[0].len(), BOARD_CELL_SIZE.y as usize);
assert!(parsed.house_door[0].is_some());
assert!(parsed.house_door[1].is_some());
assert!(parsed.tunnel_ends[0].is_some());
assert!(parsed.tunnel_ends[1].is_some());
assert!(parsed.pacman_start.is_some());
assert_that(&parsed.tiles.len()).is_equal_to(BOARD_CELL_SIZE.x as usize);
assert_that(&parsed.tiles[0].len()).is_equal_to(BOARD_CELL_SIZE.y as usize);
assert_that(&parsed.house_door[0].is_some()).is_true();
assert_that(&parsed.house_door[1].is_some()).is_true();
assert_that(&parsed.tunnel_ends[0].is_some()).is_true();
assert_that(&parsed.tunnel_ends[1].is_some()).is_true();
assert_that(&parsed.pacman_start.is_some()).is_true();
}
#[test]
@@ -42,6 +43,6 @@ fn test_parse_board_invalid_character() {
invalid_board[0] = "###########################Z".to_string();
let result = MapTileParser::parse_board(invalid_board.each_ref().map(|s| s.as_str()));
assert!(result.is_err());
assert!(matches!(result.unwrap_err(), ParseError::UnknownCharacter('Z')));
assert_that(&result.is_err()).is_true();
assert_that(&matches!(result.unwrap_err(), ParseError::UnknownCharacter('Z'))).is_true();
}

519
tests/player.rs Normal file
View File

@@ -0,0 +1,519 @@
use bevy_ecs::{event::Events, system::RunSystemOnce};
use pacman::{
events::{GameCommand, GameEvent},
map::{
direction::Direction,
graph::{Edge, TraversalFlags},
},
systems::{
can_traverse, player_control_system, player_movement_system, AudioState, BufferedDirection, DebugState, DeltaTime,
EntityType, GlobalState, Position, Velocity,
},
};
use speculoos::prelude::*;
mod common;
#[test]
fn test_can_traverse_player_on_all_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Up,
traversal_flags: TraversalFlags::ALL,
};
assert_that(&can_traverse(EntityType::Player, edge)).is_true();
}
#[test]
fn test_can_traverse_player_on_pacman_only_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Right,
traversal_flags: TraversalFlags::PACMAN,
};
assert_that(&can_traverse(EntityType::Player, edge)).is_true();
}
#[test]
fn test_can_traverse_player_blocked_on_ghost_only_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Left,
traversal_flags: TraversalFlags::GHOST,
};
assert_that(&can_traverse(EntityType::Player, edge)).is_false();
}
#[test]
fn test_can_traverse_ghost_on_all_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Down,
traversal_flags: TraversalFlags::ALL,
};
assert_that(&can_traverse(EntityType::Ghost, edge)).is_true();
}
#[test]
fn test_can_traverse_ghost_on_ghost_only_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Up,
traversal_flags: TraversalFlags::GHOST,
};
assert_that(&can_traverse(EntityType::Ghost, edge)).is_true();
}
#[test]
fn test_can_traverse_ghost_blocked_on_pacman_only_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Right,
traversal_flags: TraversalFlags::PACMAN,
};
assert_that(&can_traverse(EntityType::Ghost, edge)).is_false();
}
#[test]
fn test_can_traverse_static_entities_flags() {
let edge = Edge {
target: 3,
distance: 8.0,
direction: Direction::Left,
traversal_flags: TraversalFlags::ALL,
};
// Static entities have empty traversal flags but can still "traverse"
// in the sense that empty flags are contained in any flag set
// This is the expected behavior since empty ⊆ any set
assert_that(&can_traverse(EntityType::Pellet, edge)).is_true();
assert_that(&can_traverse(EntityType::PowerPellet, edge)).is_true();
}
#[test]
fn test_entity_type_traversal_flags() {
assert_that(&EntityType::Player.traversal_flags()).is_equal_to(TraversalFlags::PACMAN);
assert_that(&EntityType::Ghost.traversal_flags()).is_equal_to(TraversalFlags::GHOST);
assert_that(&EntityType::Pellet.traversal_flags()).is_equal_to(TraversalFlags::empty());
assert_that(&EntityType::PowerPellet.traversal_flags()).is_equal_to(TraversalFlags::empty());
}
#[test]
fn test_player_control_system_move_command() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Send move command
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MovePlayer(Direction::Up)));
// Run the system
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that buffered direction was updated
let mut query = world.query::<&BufferedDirection>();
let buffered_direction = query.single(&world).expect("Player should exist");
match *buffered_direction {
BufferedDirection::Some {
direction,
remaining_time,
} => {
assert_that(&direction).is_equal_to(Direction::Up);
assert_that(&remaining_time).is_equal_to(0.25);
}
BufferedDirection::None => panic!("Expected buffered direction to be set"),
}
}
#[test]
fn test_player_control_system_exit_command() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Send exit command
common::send_game_event(&mut world, GameEvent::Command(GameCommand::Exit));
// Run the system
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that exit flag was set
let state = world.resource::<GlobalState>();
assert_that(&state.exit).is_true();
}
#[test]
fn test_player_control_system_toggle_debug() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Send toggle debug command
common::send_game_event(&mut world, GameEvent::Command(GameCommand::ToggleDebug));
// Run the system
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that debug state changed
let debug_state = world.resource::<DebugState>();
assert_that(&debug_state.enabled).is_true();
}
#[test]
fn test_player_control_system_mute_audio() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Send mute audio command
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MuteAudio));
// Run the system
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that audio was muted
let audio_state = world.resource::<AudioState>();
assert_that(&audio_state.muted).is_true();
// Send mute audio command again to unmute - need fresh events
world.resource_mut::<Events<GameEvent>>().clear(); // Clear previous events
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MuteAudio));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that audio was unmuted
let audio_state = world.resource::<AudioState>();
assert_that(&audio_state.muted).is_false();
}
#[test]
fn test_player_control_system_no_player_entity() {
let mut world = common::create_test_world();
// Don't spawn a player entity
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MovePlayer(Direction::Up)));
// Run the system - should write an error
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that an error was written (we can't easily check Events without manual management,
// so for this test we just verify the system ran without panicking)
// In a real implementation, you might expose error checking through the ECS world
}
#[test]
fn test_player_movement_system_buffered_direction_expires() {
let mut world = common::create_test_world();
let player = common::spawn_test_player(&mut world, 0);
// Set a buffered direction with short time
world.entity_mut(player).insert(BufferedDirection::Some {
direction: Direction::Up,
remaining_time: 0.01, // Very short time
});
// Set delta time to expire the buffered direction
world.insert_resource(DeltaTime::from_seconds(0.02));
// Run the system
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that buffered direction expired or remaining time decreased significantly
let mut query = world.query::<&BufferedDirection>();
let buffered_direction = query.single(&world).expect("Player should exist");
match *buffered_direction {
BufferedDirection::None => {} // Expected - fully expired
BufferedDirection::Some { remaining_time, .. } => {
assert_that(&(remaining_time <= 0.0)).is_true();
}
}
}
#[test]
fn test_player_movement_system_start_moving_from_stopped() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Player starts at node 0, facing right (towards node 1)
// Should start moving when system runs
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that player started moving
let mut query = world.query::<&Position>();
let position = query.single(&world).expect("Player should exist");
match *position {
Position::Moving { from, .. } => {
assert_that(&from).is_equal_to(0);
// Don't assert exact target node since the real map has different connectivity
}
Position::Stopped { .. } => {} // May stay stopped if no valid edge in current direction
}
}
#[test]
fn test_player_movement_system_buffered_direction_change() {
let mut world = common::create_test_world();
let player = common::spawn_test_player(&mut world, 0);
// Set a buffered direction to go down (towards node 2)
world.entity_mut(player).insert(BufferedDirection::Some {
direction: Direction::Down,
remaining_time: 1.0,
});
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that player started moving down instead of right
let mut query = world.query::<(&Position, &Velocity, &BufferedDirection)>();
let (position, _velocity, _buffered_direction) = query.single(&world).expect("Player should exist");
match *position {
Position::Moving { from, to, .. } => {
assert_that(&from).is_equal_to(0);
assert_that(&to).is_equal_to(2); // Should be moving to node 2 (down)
}
Position::Stopped { .. } => panic!("Player should have started moving"),
}
// Check if the movement actually happened based on the real map connectivity
// The buffered direction might not be consumed if there's no valid edge in that direction
}
#[test]
fn test_player_movement_system_no_valid_edge() {
let mut world = common::create_test_world();
let player = common::spawn_test_player(&mut world, 0);
// Set velocity to direction with no edge
world.entity_mut(player).insert(Velocity {
speed: 1.0,
direction: Direction::Up, // No edge up from node 0
});
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Player should remain stopped
let mut query = world.query::<&Position>();
let position = query.single(&world).expect("Player should exist");
match *position {
Position::Stopped { node } => assert_that(&node).is_equal_to(0),
Position::Moving { .. } => panic!("Player shouldn't be able to move without valid edge"),
}
}
#[test]
fn test_player_movement_system_continue_moving() {
let mut world = common::create_test_world();
let player = common::spawn_test_player(&mut world, 0);
// Set player to already be moving
world.entity_mut(player).insert(Position::Moving {
from: 0,
to: 1,
remaining_distance: 50.0,
});
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that player continued moving and distance decreased
let mut query = world.query::<&Position>();
let position = query.single(&world).expect("Player should exist");
match *position {
Position::Moving { remaining_distance, .. } => {
assert_that(&(remaining_distance < 50.0)).is_true(); // Should have moved
}
Position::Stopped { .. } => {
// If player reached destination, that's also valid
}
}
}
#[test]
fn test_full_player_input_to_movement_flow() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Send move command
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MovePlayer(Direction::Down)));
// Run control system to process input
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Run movement system to execute movement
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check final state - player should be moving down
let mut query = world.query::<(&Position, &Velocity, &BufferedDirection)>();
let (position, _velocity, _buffered_direction) = query.single(&world).expect("Player should exist");
match *position {
Position::Moving { from, to, .. } => {
assert_that(&from).is_equal_to(0);
assert_that(&to).is_equal_to(2); // Moving to node 2 (down)
}
Position::Stopped { .. } => panic!("Player should be moving"),
}
// Check that player moved in the buffered direction if possible
// In the real map, the buffered direction may not be consumable if there's no valid edge
}
#[test]
fn test_buffered_direction_timing() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Send move command
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MovePlayer(Direction::Up)));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Run movement system multiple times with small delta times
world.insert_resource(DeltaTime::from_seconds(0.1)); // 0.1 seconds
// First run - buffered direction should still be active
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
let mut query = world.query::<&BufferedDirection>();
let buffered_direction = query.single(&world).expect("Player should exist");
match *buffered_direction {
BufferedDirection::Some { remaining_time, .. } => {
assert_that(&(remaining_time > 0.0)).is_true();
assert_that(&(remaining_time < 0.25)).is_true();
}
BufferedDirection::None => panic!("Buffered direction should still be active"),
}
// Run again to fully expire the buffered direction
world.insert_resource(DeltaTime::from_seconds(0.2)); // Total 0.3 seconds, should expire
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
let buffered_direction = query.single(&world).expect("Player should exist");
assert_that(buffered_direction).is_equal_to(BufferedDirection::None);
}
#[test]
fn test_multiple_rapid_direction_changes() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Send multiple rapid direction changes
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MovePlayer(Direction::Up)));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MovePlayer(Direction::Down)));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MovePlayer(Direction::Left)));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Only the last direction should be buffered
let mut query = world.query::<&BufferedDirection>();
let buffered_direction = query.single(&world).expect("Player should exist");
match *buffered_direction {
BufferedDirection::Some { direction, .. } => {
assert_that(&direction).is_equal_to(Direction::Left);
}
BufferedDirection::None => panic!("Expected buffered direction"),
}
}
#[test]
fn test_player_state_persistence_across_systems() {
let mut world = common::create_test_world();
let _player = common::spawn_test_player(&mut world, 0);
// Test that multiple commands can be processed - but need to handle events properly
// Clear any existing events first
world.resource_mut::<Events<GameEvent>>().clear();
// Toggle debug mode
common::send_game_event(&mut world, GameEvent::Command(GameCommand::ToggleDebug));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
let debug_state_after_toggle = *world.resource::<DebugState>();
// Clear events and mute audio
world.resource_mut::<Events<GameEvent>>().clear();
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MuteAudio));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
let audio_muted_after_toggle = world.resource::<AudioState>().muted;
// Clear events and move player
world.resource_mut::<Events<GameEvent>>().clear();
common::send_game_event(&mut world, GameEvent::Command(GameCommand::MovePlayer(Direction::Down)));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that all state changes persisted
// Variables already captured above during individual tests
let mut query = world.query::<&Position>();
let position = *query.single(&world).expect("Player should exist");
// Check that the state changes persisted individually
assert_that(&debug_state_after_toggle.enabled).is_true();
assert_that(&audio_muted_after_toggle).is_true();
// Player position depends on actual map connectivity
match position {
Position::Moving { .. } => {} // Good - player is moving
Position::Stopped { .. } => {} // Also ok - might not have valid edge in that direction
}
}

View File

@@ -1,40 +1,92 @@
use pacman::systems::profiling::SystemTimings;
use pacman::systems::profiling::{SystemId, SystemTimings};
use speculoos::prelude::*;
use std::time::Duration;
use strum::IntoEnumIterator;
macro_rules! assert_close {
($actual:expr, $expected:expr, $concern:expr) => {
let tolerance = Duration::from_micros(500);
let diff = $actual.abs_diff($expected);
assert_that(&(diff < tolerance)).is_true();
};
}
#[test]
fn test_timing_statistics() {
let timings = SystemTimings::default();
// Add some test data
timings.add_timing("test_system", Duration::from_millis(10));
timings.add_timing("test_system", Duration::from_millis(12));
timings.add_timing("test_system", Duration::from_millis(8));
// Add consecutive timing measurements (no skipped ticks to avoid zero padding)
timings.add_timing(SystemId::PlayerControls, Duration::from_millis(10), 1);
timings.add_timing(SystemId::PlayerControls, Duration::from_millis(12), 2);
timings.add_timing(SystemId::PlayerControls, Duration::from_millis(8), 3);
let stats = timings.get_stats();
let (avg, std_dev) = stats.get("test_system").unwrap();
// Add consecutive timing measurements for another system
timings.add_timing(SystemId::Blinking, Duration::from_millis(3), 1);
timings.add_timing(SystemId::Blinking, Duration::from_millis(2), 2);
timings.add_timing(SystemId::Blinking, Duration::from_millis(1), 3);
// Average should be 10ms, standard deviation should be small
assert!((avg.as_millis() as f64 - 10.0).abs() < 1.0);
assert!(std_dev.as_millis() > 0);
{
let stats = timings.get_stats(3);
let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap();
let (total_avg, total_std) = timings.get_total_stats();
assert!((total_avg.as_millis() as f64 - 10.0).abs() < 1.0);
assert!(total_std.as_millis() > 0);
assert_close!(*avg, Duration::from_millis(10), "PlayerControls average timing");
assert_close!(*std_dev, Duration::from_millis(2), "PlayerControls standard deviation timing");
}
// Note: get_total_stats() was removed as we now use the Total system directly
// This test now focuses on individual system statistics
}
#[test]
fn test_window_size_limit() {
fn test_default_zero_timing_for_unused_systems() {
let timings = SystemTimings::default();
// Add more than 90 timings to test window size limit
for i in 0..100 {
timings.add_timing("test_system", Duration::from_millis(i));
// Add timing data for only one system
timings.add_timing(SystemId::PlayerControls, Duration::from_millis(5), 1);
let stats = timings.get_stats(1);
// Verify all SystemId variants are present in the stats
let expected_count = SystemId::iter().count();
assert_that(&stats.len()).is_equal_to(expected_count);
// Verify that the system with data has non-zero timing
let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap();
assert_close!(*avg, Duration::from_millis(5), "System with data should have correct timing");
assert_close!(*std_dev, Duration::ZERO, "Single measurement should have zero std dev");
// Verify that all other systems have zero timing (excluding Total which is special)
for id in SystemId::iter() {
if id != SystemId::PlayerControls && id != SystemId::Total {
let (avg, std_dev) = stats.get(&id).unwrap();
assert_close!(
*avg,
Duration::ZERO,
format!("Unused system {:?} should have zero avg timing", id)
);
assert_close!(
*std_dev,
Duration::ZERO,
format!("Unused system {:?} should have zero std dev", id)
);
}
}
let stats = timings.get_stats();
let (avg, _) = stats.get("test_system").unwrap();
// Should only keep the last 90 values, so average should be around 55ms
// (average of 10-99)
assert!((avg.as_millis() as f64 - 55.0).abs() < 5.0);
}
#[test]
fn test_total_system_timing() {
let timings = SystemTimings::default();
// Add some timing data to the Total system
timings.add_total_timing(Duration::from_millis(16), 1);
timings.add_total_timing(Duration::from_millis(18), 2);
timings.add_total_timing(Duration::from_millis(14), 3);
let stats = timings.get_stats(3);
let (avg, std_dev) = stats.get(&SystemId::Total).unwrap();
// Should have 16ms average (16+18+14)/3 = 16ms
assert_close!(*avg, Duration::from_millis(16), "Total system average timing");
// Should have some standard deviation
assert_that(&(*std_dev > Duration::ZERO)).is_true();
}

View File

@@ -1,81 +1,57 @@
use glam::U16Vec2;
use pacman::texture::sprite::{AtlasMapper, AtlasTile, MapperFrame, SpriteAtlas};
use pacman::texture::sprite::{AtlasMapper, AtlasTile, MapperFrame};
use sdl2::pixels::Color;
use speculoos::prelude::*;
use std::collections::HashMap;
fn mock_texture() -> sdl2::render::Texture<'static> {
unsafe { std::mem::transmute(0usize) }
}
mod common;
#[test]
fn test_sprite_atlas_basic() {
fn test_atlas_mapper_frame_lookup() {
let mut frames = HashMap::new();
frames.insert(
"test".to_string(),
MapperFrame {
x: 10,
y: 20,
width: 32,
height: 64,
pos: U16Vec2::new(10, 20),
size: U16Vec2::new(32, 64),
},
);
let mapper = AtlasMapper { frames };
let texture = mock_texture();
let atlas = SpriteAtlas::new(texture, mapper);
let tile = atlas.get_tile("test");
assert!(tile.is_some());
let tile = tile.unwrap();
assert_eq!(tile.pos, glam::U16Vec2::new(10, 20));
assert_eq!(tile.size, glam::U16Vec2::new(32, 64));
assert_eq!(tile.color, None);
// Test direct frame lookup
let frame = mapper.frames.get("test");
assert_that(&frame.is_some()).is_true();
let frame = frame.unwrap();
assert_that(&frame.pos).is_equal_to(U16Vec2::new(10, 20));
assert_that(&frame.size).is_equal_to(U16Vec2::new(32, 64));
}
#[test]
fn test_sprite_atlas_multiple_tiles() {
fn test_atlas_mapper_multiple_frames() {
let mut frames = HashMap::new();
frames.insert(
"tile1".to_string(),
MapperFrame {
x: 0,
y: 0,
width: 32,
height: 32,
pos: U16Vec2::new(0, 0),
size: U16Vec2::new(32, 32),
},
);
frames.insert(
"tile2".to_string(),
MapperFrame {
x: 32,
y: 0,
width: 64,
height: 64,
pos: U16Vec2::new(32, 0),
size: U16Vec2::new(64, 64),
},
);
let mapper = AtlasMapper { frames };
let texture = mock_texture();
let atlas = SpriteAtlas::new(texture, mapper);
assert_eq!(atlas.tiles_count(), 2);
assert!(atlas.has_tile("tile1"));
assert!(atlas.has_tile("tile2"));
assert!(!atlas.has_tile("tile3"));
assert!(atlas.get_tile("nonexistent").is_none());
}
#[test]
fn test_sprite_atlas_color() {
let mapper = AtlasMapper { frames: HashMap::new() };
let texture = mock_texture();
let mut atlas = SpriteAtlas::new(texture, mapper);
assert_eq!(atlas.default_color(), None);
let color = Color::RGB(255, 0, 0);
atlas.set_color(color);
assert_eq!(atlas.default_color(), Some(color));
assert_that(&mapper.frames.len()).is_equal_to(2);
assert_that(&mapper.frames.contains_key("tile1")).is_true();
assert_that(&mapper.frames.contains_key("tile2")).is_true();
assert_that(&mapper.frames.contains_key("tile3")).is_false();
assert_that(&mapper.frames.contains_key("nonexistent")).is_false();
}
#[test]
@@ -85,10 +61,10 @@ fn test_atlas_tile_new_and_with_color() {
let color = Color::RGB(100, 150, 200);
let tile = AtlasTile::new(pos, size, None);
assert_eq!(tile.pos, pos);
assert_eq!(tile.size, size);
assert_eq!(tile.color, None);
assert_that(&tile.pos).is_equal_to(pos);
assert_that(&tile.size).is_equal_to(size);
assert_that(&tile.color).is_equal_to(None);
let tile_with_color = tile.with_color(color);
assert_eq!(tile_with_color.color, Some(color));
assert_that(&tile_with_color.color).is_equal_to(Some(color));
}

View File

@@ -1,9 +1,10 @@
use pacman::texture::{sprite::SpriteAtlas, text::TextTexture};
use crate::common::create_atlas;
use speculoos::prelude::*;
mod common;
use common::create_atlas;
/// Helper function to get all characters that should be in the atlas
fn get_all_chars() -> String {
let mut chars = Vec::new();
@@ -16,22 +17,16 @@ fn get_all_chars() -> String {
/// Helper function to check if a character is in the atlas and char_map
fn check_char(text_texture: &mut TextTexture, atlas: &mut SpriteAtlas, c: char) {
// Check that the character is not in the char_map yet
assert!(
!text_texture.get_char_map().contains_key(&c),
"Character {c} should not yet be in char_map"
);
assert_that(&text_texture.get_char_map().contains_key(&c)).is_false();
// Get the tile from the atlas, which caches the tile in the char_map
let tile = text_texture.get_tile(c, atlas);
assert!(tile.is_ok(), "Failed to get tile for character {c}");
assert!(tile.unwrap().is_some(), "Tile for character {c} not found in atlas");
assert_that(&tile.is_ok()).is_true();
assert_that(&tile.unwrap().is_some()).is_true();
// Check that the tile is now cached in the char_map
assert!(
text_texture.get_char_map().contains_key(&c),
"Tile for character {c} was not cached in char_map"
);
assert_that(&text_texture.get_char_map().contains_key(&c)).is_true();
}
#[test]
@@ -74,8 +69,8 @@ fn test_text_width() -> Result<(), String> {
let width = text_texture.text_width(&string);
let height = text_texture.text_height();
assert!(width > 0, "Width for string {string} should be greater than 0");
assert!(height > 0, "Height for string {string} should be greater than 0");
assert_that(&(width > 0)).is_true();
assert_that(&(height > 0)).is_true();
}
Ok(())
@@ -88,22 +83,42 @@ fn test_text_scale() -> Result<(), String> {
let mut text_texture = TextTexture::new(0.5);
assert_eq!(text_texture.scale(), 0.5);
assert_eq!(text_texture.text_height(), 4);
assert_eq!(text_texture.text_width(""), 0);
assert_eq!(text_texture.text_width(string), base_width / 2);
assert_that(&text_texture.scale()).is_equal_to(0.5);
assert_that(&text_texture.text_height()).is_equal_to(4);
assert_that(&text_texture.text_width("")).is_equal_to(0);
assert_that(&text_texture.text_width(string)).is_equal_to(base_width / 2);
text_texture.set_scale(2.0);
assert_eq!(text_texture.scale(), 2.0);
assert_eq!(text_texture.text_height(), 16);
assert_eq!(text_texture.text_width(string), base_width * 2);
assert_eq!(text_texture.text_width(""), 0);
assert_that(&text_texture.scale()).is_equal_to(2.0);
assert_that(&text_texture.text_height()).is_equal_to(16);
assert_that(&text_texture.text_width(string)).is_equal_to(base_width * 2);
assert_that(&text_texture.text_width("")).is_equal_to(0);
text_texture.set_scale(1.0);
assert_eq!(text_texture.scale(), 1.0);
assert_eq!(text_texture.text_height(), 8);
assert_eq!(text_texture.text_width(string), base_width);
assert_eq!(text_texture.text_width(""), 0);
assert_that(&text_texture.scale()).is_equal_to(1.0);
assert_that(&text_texture.text_height()).is_equal_to(8);
assert_that(&text_texture.text_width(string)).is_equal_to(base_width);
assert_that(&text_texture.text_width("")).is_equal_to(0);
Ok(())
}
#[test]
fn test_text_color() -> Result<(), String> {
let mut text_texture = TextTexture::new(1.0);
// Test default color (should be None initially)
assert_that(&text_texture.color()).is_equal_to(None);
// Test setting color
let test_color = sdl2::pixels::Color::YELLOW;
text_texture.set_color(test_color);
assert_that(&text_texture.color()).is_equal_to(Some(test_color));
// Test changing color
let new_color = sdl2::pixels::Color::RED;
text_texture.set_color(new_color);
assert_that(&text_texture.color()).is_equal_to(Some(new_color));
Ok(())
}

115
tests/ttf.rs Normal file
View File

@@ -0,0 +1,115 @@
use pacman::texture::ttf::{TtfAtlas, TtfRenderer};
use sdl2::pixels::Color;
mod common;
#[test]
fn text_width_calculates_correctly_for_empty_string() {
let (mut canvas, texture_creator, _sdl) = common::setup_sdl().unwrap();
let _ttf_context = sdl2::ttf::init().unwrap();
let font = _ttf_context.load_font("assets/game/TerminalVector.ttf", 16).unwrap();
let mut atlas = TtfAtlas::new(&texture_creator, &font).unwrap();
atlas.populate_atlas(&mut canvas, &texture_creator, &font).unwrap();
let renderer = TtfRenderer::new(1.0);
let width = renderer.text_width(&atlas, "");
assert_eq!(width, 0);
}
#[test]
fn text_width_calculates_correctly_for_single_character() {
let (mut canvas, texture_creator, _sdl) = common::setup_sdl().unwrap();
let _ttf_context = sdl2::ttf::init().unwrap();
let font = _ttf_context.load_font("assets/game/TerminalVector.ttf", 16).unwrap();
let mut atlas = TtfAtlas::new(&texture_creator, &font).unwrap();
atlas.populate_atlas(&mut canvas, &texture_creator, &font).unwrap();
let renderer = TtfRenderer::new(1.0);
let width = renderer.text_width(&atlas, "A");
assert!(width > 0);
}
#[test]
fn text_width_scales_correctly() {
let (mut canvas, texture_creator, _sdl) = common::setup_sdl().unwrap();
let _ttf_context = sdl2::ttf::init().unwrap();
let font = _ttf_context.load_font("assets/game/TerminalVector.ttf", 16).unwrap();
let mut atlas = TtfAtlas::new(&texture_creator, &font).unwrap();
atlas.populate_atlas(&mut canvas, &texture_creator, &font).unwrap();
let renderer1 = TtfRenderer::new(1.0);
let renderer2 = TtfRenderer::new(2.0);
let width1 = renderer1.text_width(&atlas, "Test");
let width2 = renderer2.text_width(&atlas, "Test");
assert_eq!(width2, width1 * 2);
}
#[test]
fn text_height_returns_non_zero_for_valid_atlas() {
let (mut canvas, texture_creator, _sdl) = common::setup_sdl().unwrap();
let _ttf_context = sdl2::ttf::init().unwrap();
let font = _ttf_context.load_font("assets/game/TerminalVector.ttf", 16).unwrap();
let mut atlas = TtfAtlas::new(&texture_creator, &font).unwrap();
atlas.populate_atlas(&mut canvas, &texture_creator, &font).unwrap();
let renderer = TtfRenderer::new(1.0);
let height = renderer.text_height(&atlas);
assert!(height > 0);
}
#[test]
fn text_height_scales_correctly() {
let (mut canvas, texture_creator, _sdl) = common::setup_sdl().unwrap();
let _ttf_context = sdl2::ttf::init().unwrap();
let font = _ttf_context.load_font("assets/game/TerminalVector.ttf", 16).unwrap();
let mut atlas = TtfAtlas::new(&texture_creator, &font).unwrap();
atlas.populate_atlas(&mut canvas, &texture_creator, &font).unwrap();
let renderer1 = TtfRenderer::new(1.0);
let renderer2 = TtfRenderer::new(2.0);
let height1 = renderer1.text_height(&atlas);
let height2 = renderer2.text_height(&atlas);
assert_eq!(height2, height1 * 2);
}
#[test]
fn render_text_handles_empty_string() {
let (mut canvas, texture_creator, _sdl) = common::setup_sdl().unwrap();
let _ttf_context = sdl2::ttf::init().unwrap();
let font = _ttf_context.load_font("assets/game/TerminalVector.ttf", 16).unwrap();
let mut atlas = TtfAtlas::new(&texture_creator, &font).unwrap();
atlas.populate_atlas(&mut canvas, &texture_creator, &font).unwrap();
let renderer = TtfRenderer::new(1.0);
let result = renderer.render_text(&mut canvas, &mut atlas, "", glam::Vec2::new(0.0, 0.0), Color::WHITE);
assert!(result.is_ok());
}
#[test]
fn render_text_handles_single_character() {
let (mut canvas, texture_creator, _sdl) = common::setup_sdl().unwrap();
let _ttf_context = sdl2::ttf::init().unwrap();
let font = _ttf_context.load_font("assets/game/TerminalVector.ttf", 16).unwrap();
let mut atlas = TtfAtlas::new(&texture_creator, &font).unwrap();
atlas.populate_atlas(&mut canvas, &texture_creator, &font).unwrap();
let renderer = TtfRenderer::new(1.0);
let result = renderer.render_text(&mut canvas, &mut atlas, "A", glam::Vec2::new(10.0, 10.0), Color::RED);
assert!(result.is_ok());
}

View File

@@ -1,7 +1,7 @@
import { $ } from "bun";
import { existsSync, promises as fs } from "fs";
import { platform } from "os";
import { dirname, join, relative, resolve } from "path";
import { basename, dirname, join, relative, resolve } from "path";
import { match, P } from "ts-pattern";
import { configure, getConsoleSink, getLogger } from "@logtape/logtape";
@@ -79,16 +79,19 @@ async function build(release: boolean, env: Record<string, string> | null) {
// The files to copy into 'dist'
const files = [
...["index.html", "favicon.ico", "build.css", "TerminalVector.ttf"].map(
(file) => ({
src: join(siteFolder, file),
dest: join(dist, file),
optional: false,
})
),
...[
"index.html",
"favicon.ico",
"build.css",
"../game/TerminalVector.ttf",
].map((file) => ({
src: resolve(join(siteFolder, file)),
dest: join(dist, basename(file)),
optional: false,
})),
...["pacman.wasm", "pacman.js", "deps/pacman.data"].map((file) => ({
src: join(outputFolder, file),
dest: join(dist, file.split("/").pop() || file),
dest: join(dist, basename(file)),
optional: false,
})),
{
@@ -498,7 +501,6 @@ async function activateEmsdk(
return { vars };
}
async function main() {
// Print the OS detected
logger.debug(
@@ -512,7 +514,19 @@ async function main() {
.exhaustive()
);
const release = process.env.RELEASE !== "0";
// Parse command line args for build mode
const args = process.argv.slice(2);
let release = true; // Default to release mode
for (let i = 0; i < args.length; i++) {
const arg = args[i];
if (arg === "-d" || arg === "--debug") {
release = false;
} else if (arg === "-r" || arg === "--release") {
release = true;
}
}
const emsdkDir = resolve("./emsdk");
// Activate the Emscripten SDK (returns null if already activated)