Compare commits

...

87 Commits

Author SHA1 Message Date
Ryan Walters
c79ba0d824 feat: buffer tracing logs before console init 2025-09-01 17:22:22 -05:00
Ryan Walters
b1b03b0e9c refactor: move magic numbers & constants 2025-09-01 15:47:41 -05:00
Ryan Walters
a62ae8dfe7 fix: energizers don't change dead (eyes) ghosts 2025-09-01 15:39:17 -05:00
Ryan Walters
a21459f337 feat: revamp with better separate directional/linear animations, direction independent ticking 2025-09-01 15:28:57 -05:00
Ryan Walters
b53db3788d refactor: unify ghost state management and animation handling, use integers for texture animation 2025-09-01 14:27:48 -05:00
Ryan Walters
e1a2e6ab62 fix: avoid switching ghost back to normal during eyes animation 2025-09-01 13:14:16 -05:00
Ryan Walters
2bdb039aa9 fix: correct broken timing format tests 2025-09-01 12:57:48 -05:00
Ryan Walters
6dd0152938 chore: remove unused dependencies 2025-09-01 12:46:39 -05:00
Ryan Walters
4881e33c6f refactor: use U16Vec2 for sprites, remove unnecessary Deserialize trait 2025-09-01 12:44:13 -05:00
Ryan Walters
0cbd6f1aac refactor: switch NodeId to u16, use I8Vec2 for grid coordinates 2025-09-01 12:37:44 -05:00
Ryan Walters
1206cf9ad1 feat: implement high score text rendering 2025-09-01 12:13:18 -05:00
Ryan Walters
bed913d016 fix: profiling system calculates mean of sums, not mean of means 2025-09-01 12:01:39 -05:00
Ryan Walters
98196f3e07 feat: ghost animation states, frightened/eaten behaviors, smallvec animation arrays 2025-09-01 11:46:18 -05:00
Ryan Walters
8f504d6c77 fix: correctly unhide in second pre-freeze stage 2025-09-01 10:28:08 -05:00
Ryan Walters
66499b6285 fix: remove broken console stream re-attach on Windows 2025-08-29 10:56:26 -05:00
Ryan Walters
a8e62aec56 fix: force dirty render using resource_change conditions, hide ghosts & player on initial spawn 2025-08-28 20:20:38 -05:00
Ryan Walters
cde1ea5394 feat: allow freezing of blinking entities, lightly refactor game.rs structure 2025-08-28 20:02:27 -05:00
Ryan Walters
d0628ef70b feat: use backbuffer fully, proper 'present' system, debug texture draws with transparency 2025-08-28 19:40:31 -05:00
Ryan Walters
9bfe4a9ce7 fix: add expected MovementModifiers to spawn_test_player to fix movement tests 2025-08-28 18:35:47 -05:00
Ryan Walters
2da8a312f3 chore: remove PlayerLifecycle, move MovementModifiers directly into PlayerBundle 2025-08-28 18:32:19 -05:00
Ryan Walters
2bdd4f0d04 feat: re-implement visbility via 'Hidden' tag component, move stage visibility logic into stage system 2025-08-28 18:24:47 -05:00
Ryan Walters
5cc9b1a6ee fix: avoid acquiring filtered player query until movement command received 2025-08-28 14:17:46 -05:00
Ryan Walters
5d4adb7743 refactor: merge 'formatting' submodule into 'profiling' 2025-08-28 14:12:23 -05:00
Ryan Walters
633d467f2c chore: remove LevelTiming resource 2025-08-28 13:21:21 -05:00
Ryan Walters
d3e83262db feat: better 'Vulnerable' tag for ghosts, fix movement issues 2025-08-28 13:18:47 -05:00
Ryan Walters
f31b4952e4 chore: remove wildcard/prelude imports, remove unused functions 2025-08-28 13:14:40 -05:00
Ryan Walters
ad3f896f82 chore: reorganize component definitions into relevant system files 2025-08-28 12:54:52 -05:00
Ryan Walters
80ebf08dd3 feat: stage sequence, ghost collisions & energizer logic, text color method, scheduler ordering 2025-08-28 12:40:02 -05:00
Ryan Walters
f14b3d38a4 feat: create hud rendering system 2025-08-27 22:55:26 -05:00
Ryan Walters
bf65c34b28 chore: remove unused code 2025-08-27 22:43:21 -05:00
Ryan Walters
89b0790f19 chore: fix clippy lints 2025-08-27 22:28:14 -05:00
Ryan Walters
9624bcf359 feat: collision helper, ghost/pacman collision events, collision tests
minor format updates from copilot's commit
2025-08-27 22:26:49 -05:00
Copilot
67a5c4a1ed Remove 9 redundant and non-valuable tests to improve test suite quality (#4)
* Initial plan

* Remove 9 redundant and non-valuable tests across events, formatting, and item modules

Co-authored-by: Xevion <44609630+Xevion@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: Xevion <44609630+Xevion@users.noreply.github.com>
2025-08-19 13:07:14 -05:00
Ryan Walters
8b5e66f514 refactor: update debug state management and rendering systems 2025-08-19 11:31:31 -05:00
Ryan
5109457fcd test: add input tests 2025-08-19 09:40:59 -05:00
Ryan
5497e4b0b9 feat: improve input system to handle multiple keypress & release states 2025-08-19 09:35:55 -05:00
d72b6eec06 test: add item testing 2025-08-18 09:32:35 -05:00
ae42f6ead0 chore: solve clippy warnings 2025-08-18 00:06:47 -05:00
471b118efd test: add tests for item systems & movement types 2025-08-18 00:04:07 -05:00
13a9c165f7 test: add player control & movement system testing 2025-08-18 00:03:29 -05:00
da3c8e8284 test: add player traversal flag tests, remove old disabled movement_system, public can_traverse 2025-08-17 23:52:03 -05:00
9c0711a54c test: add more formatting tests 2025-08-17 23:47:47 -05:00
4598dc07e2 test: add tests for errors & events data structs 2025-08-17 23:46:23 -05:00
9c9dc5f423 test: remove asset.rs tests, revamp constants tests 2025-08-17 23:45:42 -05:00
12ee16faab docs: document many major functions, types, enums for important functionality 2025-08-17 23:29:43 -05:00
398d041d96 Merge pull request #3 from Xevion/ecs
ECS Refactor
2025-08-16 15:25:34 -05:00
7a02d6b0b5 chore: add cargo checks to pre-commit 2025-08-16 15:14:16 -05:00
d47d70ff5b refactor: remove dead code, move direction & graph into 'map' module 2025-08-16 15:14:16 -05:00
313ca4f3e6 fix: proper font loading, cross platform assets, better platform independent trait implementation, conditional modules 2025-08-16 14:17:28 -05:00
f940f01d9b refactor: optimize debug system, remove redundant code & tests 2025-08-16 13:41:15 -05:00
90adaf9e84 feat: add cursor-based node highlighting for debug 2025-08-16 12:26:24 -05:00
2140fbec1b fix: allow key holddown 2025-08-16 12:00:58 -05:00
78300bdf9c feat: rewrite movement systems separately for player/ghosts 2025-08-16 11:44:10 -05:00
514a447162 refactor: use strum::EnumCount for const compile time system mapping 2025-08-16 11:43:46 -05:00
3d0bc66e40 feat: ghosts system 2025-08-15 20:38:18 -05:00
e0a15c1ca8 feat: implement audio muting functionality 2025-08-15 20:30:41 -05:00
fa12611c69 feat: ecs audio system 2025-08-15 20:28:47 -05:00
342f378860 fix: use renderable layer properly, sorting entities before presenting 2025-08-15 20:10:16 -05:00
e8944598cc chore: fix clippy warnings 2025-08-15 20:10:16 -05:00
6af25af5f3 test: better formatting tests, alignment-based 2025-08-15 19:39:59 -05:00
f1935ad016 refactor: use smallvec instead of collect string, explicit formatting, accumulator fold 2025-08-15 19:15:06 -05:00
4d397bba5f feat: item collection system, score mutations 2025-08-15 18:41:08 -05:00
80930ddd35 fix: use const MAX_SYSTEMS to ensure micromap maps are aligned in size 2025-08-15 18:40:24 -05:00
0133dd5329 feat: add background for text contrast to debug window 2025-08-15 18:39:39 -05:00
635418a4da refactor: use stack allocated circular buffer, use RwLock+Mutex for concurrent system timing access 2025-08-15 18:06:25 -05:00
31193160a9 feat: debug text rendering of statistics, formatting with tests 2025-08-15 17:52:16 -05:00
3086453c7b chore: adjust collider sizes 2025-08-15 16:25:42 -05:00
a8b83b8e2b feat: high resolution debug rendering 2025-08-15 16:20:24 -05:00
8ce2af89c8 fix: add visibility check to rendering implementation 2025-08-15 15:10:09 -05:00
5f0ee87dd9 feat: better profiling statistics, less spammy 2025-08-15 15:06:53 -05:00
b88895e82f feat: separate dirty rendering with flag resource 2025-08-15 14:19:39 -05:00
2f0c734d13 feat: only present/render canvas when renderables change 2025-08-15 14:15:18 -05:00
e96b3159d7 fix: disable vsync 2025-08-15 13:46:57 -05:00
8c95ecc547 feat: add profiling 2025-08-15 13:46:39 -05:00
02a98c9f32 chore: remove unnecessary log, simplify match to if let 2025-08-15 13:05:55 -05:00
7f95c0233e refactor: move position/movement related components into systems/movement 2025-08-15 13:05:03 -05:00
a531228b95 chore: update thiserror & phf crates 2025-08-15 13:04:39 -05:00
de86f383bf refactor: improve representation of movement system 2025-08-15 12:50:07 -05:00
bd811ee783 fix: initial next direction for pacman (mitigation) 2025-08-15 12:30:29 -05:00
57d7f75940 feat: implement generic optimized collision system 2025-08-15 12:21:29 -05:00
c5d6ea28e1 fix: discard PlayerControlled tag component 2025-08-15 11:28:08 -05:00
730daed20a feat: entity type for proper edge permission calculations 2025-08-15 10:06:09 -05:00
b9bae99a4c refactor: reorganize systems properly, move events to events.rs 2025-08-15 09:48:16 -05:00
2c65048fb0 refactor: rename 'ecs' submodule to 'systems' 2025-08-15 09:27:28 -05:00
3388d77ec5 refactor: remove all unused/broken tests, remove many now unused types/functions 2025-08-15 09:24:42 -05:00
242da2e263 refactor: reorganize ecs components 2025-08-15 09:17:43 -05:00
70fb2b9503 fix: working movement again with ecs 2025-08-14 18:35:23 -05:00
88 changed files with 5578 additions and 3492 deletions

View File

@@ -20,3 +20,15 @@ repos:
language: system
types: [rust]
pass_filenames: false
- id: cargo-check
name: cargo check
entry: cargo check --all-targets
language: system
types_or: [rust, cargo, cargo-lock]
pass_filenames: false
- id: cargo-check-wasm
name: cargo check for wasm32-unknown-emscripten
entry: cargo check --all-targets --target=wasm32-unknown-emscripten
language: system
types_or: [rust, cargo, cargo-lock]
pass_filenames: false

101
Cargo.lock generated
View File

@@ -252,6 +252,12 @@ version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "circular-buffer"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23bdce1da528cadbac4654b5632bfcd8c6c63e25b1d42cea919a95958790b51d"
[[package]]
name = "concurrent-queue"
version = "2.5.0"
@@ -316,6 +322,12 @@ dependencies = [
"unicode-xid",
]
[[package]]
name = "diff"
version = "0.1.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56254986775e3233ffa9c4d7d3faaf6d36a2c09d30b20687e9f88bc8bafc16c8"
[[package]]
name = "disqualified"
version = "1.0.0"
@@ -528,6 +540,12 @@ version = "2.7.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "32a282da65faaf38286cf3be983213fcf1d2e2a58700e808f83f4ea9a4804bc0"
[[package]]
name = "micromap"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "18c087666f377f857b49564f8791b481260c67825d6b337e1e38ddf54a985a88"
[[package]]
name = "nonmax"
version = "0.5.5"
@@ -553,6 +571,12 @@ dependencies = [
"autocfg",
]
[[package]]
name = "num-width"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "faede9396d7883a8c9c989e0b53c984bf770defb5cb8ed6c345b4c0566cf32b9"
[[package]]
name = "once_cell"
version = "1.21.3"
@@ -571,13 +595,17 @@ version = "0.2.0"
dependencies = [
"anyhow",
"bevy_ecs",
"bitflags 2.9.1",
"circular-buffer",
"glam 0.30.5",
"lazy_static",
"libc",
"once_cell",
"micromap",
"num-width",
"parking_lot",
"pathfinding",
"phf",
"rand 0.9.2",
"pretty_assertions",
"rand",
"sdl2",
"serde",
"serde_json",
@@ -586,6 +614,7 @@ dependencies = [
"strum",
"strum_macros",
"thiserror",
"thousands",
"tracing",
"tracing-error",
"tracing-subscriber",
@@ -637,29 +666,30 @@ dependencies = [
[[package]]
name = "phf"
version = "0.11.3"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1fd6780a80ae0c52cc120a26a1a42c1ae51b247a253e4e06113d23d2c2edd078"
checksum = "913273894cec178f401a31ec4b656318d95473527be05c0752cc41cdc32be8b7"
dependencies = [
"phf_macros",
"phf_shared",
"serde",
]
[[package]]
name = "phf_generator"
version = "0.11.3"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3c80231409c20246a13fddb31776fb942c38553c51e871f8cbd687a4cfb5843d"
checksum = "2cbb1126afed61dd6368748dae63b1ee7dc480191c6262a3b4ff1e29d86a6c5b"
dependencies = [
"fastrand",
"phf_shared",
"rand 0.8.5",
]
[[package]]
name = "phf_macros"
version = "0.11.3"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f84ac04429c13a7ff43785d75ad27569f2951ce0ffd30a3321230db2fc727216"
checksum = "d713258393a82f091ead52047ca779d37e5766226d009de21696c4e667044368"
dependencies = [
"phf_generator",
"phf_shared",
@@ -670,9 +700,9 @@ dependencies = [
[[package]]
name = "phf_shared"
version = "0.11.3"
version = "0.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "67eabc2ef2a60eb7faa00097bd1ffdb5bd28e62bf39990626a582201b7a754e5"
checksum = "06005508882fb681fd97892ecff4b7fd0fee13ef1aa569f8695dae7ab9099981"
dependencies = [
"siphasher",
]
@@ -698,6 +728,16 @@ dependencies = [
"portable-atomic",
]
[[package]]
name = "pretty_assertions"
version = "1.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3ae130e2f271fbc2ac3a40fb1d07180839cdbbe443c7a27e1e3c13c5cac0116d"
dependencies = [
"diff",
"yansi",
]
[[package]]
name = "proc-macro2"
version = "1.0.95"
@@ -722,30 +762,15 @@ version = "5.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "69cdb34c158ceb288df11e18b4bd39de994f6657d83847bdffdbd7f346754b0f"
[[package]]
name = "rand"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "34af8d1a0e25924bc5b7c43c079c942339d8f0a8b57c39049bef581b46327404"
dependencies = [
"rand_core 0.6.4",
]
[[package]]
name = "rand"
version = "0.9.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6db2770f06117d490610c7488547d543617b21bfa07796d7a12f6f1bd53850d1"
dependencies = [
"rand_core 0.9.3",
"rand_core",
]
[[package]]
name = "rand_core"
version = "0.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec0be4795e2f6a28069bec0b5ff3e2ac9bafc99e6a9a7dc3547996c5c816922c"
[[package]]
name = "rand_core"
version = "0.9.3"
@@ -986,24 +1011,30 @@ dependencies = [
[[package]]
name = "thiserror"
version = "2.0.12"
version = "2.0.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "567b8a2dae586314f7be2a752ec7474332959c6460e02bde30d702a66d488708"
checksum = "0b0949c3a6c842cbde3f1686d6eea5a010516deb7085f79db747562d4102f41e"
dependencies = [
"thiserror-impl",
]
[[package]]
name = "thiserror-impl"
version = "2.0.12"
version = "2.0.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7f7cf42b4507d8ea322120659672cf1b9dbb93f8f2d4ecfd6e51350ff5b17a1d"
checksum = "cc5b44b4ab9c2fdd0e0512e6bece8388e214c0749f5862b114cc5b7a25daf227"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "thousands"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3bf63baf9f5039dadc247375c29eb13706706cfde997d0330d05aa63a77d8820"
[[package]]
name = "thread_local"
version = "1.1.7"
@@ -1427,3 +1458,9 @@ checksum = "6f42320e61fe2cfd34354ecb597f86f413484a798ba44a8ca1165c58d42da6c1"
dependencies = [
"bitflags 2.9.1",
]
[[package]]
name = "yansi"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cfe53a6657fd280eaa890a3bc59152892ffa3e30101319d168b781ed6529b049"

View File

@@ -6,25 +6,29 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
tracing = { version = "0.1.40", features = ["max_level_debug", "release_max_level_debug"]}
tracing = { version = "0.1.41", features = ["max_level_debug", "release_max_level_debug"]}
tracing-error = "0.2.0"
tracing-subscriber = {version = "0.3.17", features = ["env-filter"]}
lazy_static = "1.5.0"
sdl2 = { version = "0.38.0", features = ["image", "ttf"] }
spin_sleep = "1.3.2"
rand = { version = "0.9.2", default-features = false, features = ["small_rng", "os_rng"] }
pathfinding = "4.14"
once_cell = "1.21.3"
thiserror = "2.0"
thiserror = "2.0.14"
anyhow = "1.0"
glam = { version = "0.30.5", features = [] }
serde = { version = "1.0.219", features = ["derive"] }
glam = "0.30.5"
serde_json = "1.0.142"
smallvec = "1.15.1"
strum = "0.27.2"
strum_macros = "0.27.2"
phf = { version = "0.11", features = ["macros"] }
phf = { version = "0.12.1", features = ["macros"] }
bevy_ecs = "0.16.1"
bitflags = "2.9.1"
parking_lot = "0.12.3"
micromap = "0.1.0"
thousands = "0.2.0"
pretty_assertions = "1.4.1"
num-width = "0.1.0"
circular-buffer = "1.1.0"
[profile.release]
lto = true
@@ -63,4 +67,7 @@ libc = "0.2.175"
[build-dependencies]
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
phf = { version = "0.11", features = ["macros"] }
phf = { version = "0.12.1", features = ["macros"] }
[package.metadata.cargo-machete]
ignored = ["phf"]

View File

@@ -19,6 +19,15 @@ struct MapperFrame {
height: u16,
}
impl MapperFrame {
fn to_u16vec2_format(self) -> String {
format!(
"MapperFrame {{ pos: glam::U16Vec2::new({}, {}), size: glam::U16Vec2::new({}, {}) }}",
self.x, self.y, self.width, self.height
)
}
}
fn main() {
let path = Path::new(&env::var("OUT_DIR").unwrap()).join("atlas_data.rs");
let mut file = BufWriter::new(File::create(&path).unwrap());
@@ -37,12 +46,7 @@ fn main() {
.unwrap();
for (name, frame) in atlas_mapper.frames {
writeln!(
&mut file,
" \"{}\" => MapperFrame {{ x: {}, y: {}, width: {}, height: {} }},",
name, frame.x, frame.y, frame.width, frame.height
)
.unwrap();
writeln!(&mut file, " \"{}\" => {},", name, frame.to_u16vec2_format()).unwrap();
}
writeln!(&mut file, "}};").unwrap();

View File

@@ -1,11 +1,9 @@
use std::time::{Duration, Instant};
use glam::Vec2;
use sdl2::render::{Canvas, ScaleMode, Texture, TextureCreator};
use sdl2::render::TextureCreator;
use sdl2::ttf::Sdl2TtfContext;
use sdl2::video::{Window, WindowContext};
use sdl2::video::WindowContext;
use sdl2::{AudioSubsystem, EventPump, Sdl, VideoSubsystem};
use tracing::{error, warn};
use crate::error::{GameError, GameResult};
@@ -13,14 +11,28 @@ use crate::constants::{CANVAS_SIZE, LOOP_TIME, SCALE};
use crate::game::Game;
use crate::platform::get_platform;
/// Main application wrapper that manages SDL initialization, window lifecycle, and the game loop.
///
/// Handles platform-specific setup, maintains consistent frame timing, and delegates
/// game logic to the contained `Game` instance. The app manages focus state to
/// optimize CPU usage when the window loses focus.
pub struct App {
pub game: Game,
last_tick: Instant,
focused: bool,
cursor_pos: Vec2,
}
impl App {
/// Initializes SDL subsystems, creates the game window, and sets up the game state.
///
/// Performs comprehensive initialization including video/audio subsystems,
/// window creation with proper scaling, and canvas configuration. All SDL
/// resources are leaked to maintain 'static lifetimes required by the game architecture.
///
/// # Errors
///
/// Returns `GameError::Sdl` if any SDL initialization step fails, or propagates
/// errors from `Game::new()` during game state setup.
pub fn new() -> GameResult<Self> {
let sdl_context: &'static Sdl = Box::leak(Box::new(sdl2::init().map_err(|e| GameError::Sdl(e.to_string()))?));
let video_subsystem: &'static VideoSubsystem =
@@ -32,9 +44,6 @@ impl App {
let event_pump: &'static mut EventPump =
Box::leak(Box::new(sdl_context.event_pump().map_err(|e| GameError::Sdl(e.to_string()))?));
// Initialize platform-specific console
get_platform().init_console()?;
let window = video_subsystem
.window(
"Pac-Man",
@@ -46,11 +55,10 @@ impl App {
.build()
.map_err(|e| GameError::Sdl(e.to_string()))?;
let mut canvas = Box::leak(Box::new(
let canvas = Box::leak(Box::new(
window
.into_canvas()
.accelerated()
.present_vsync()
.build()
.map_err(|e| GameError::Sdl(e.to_string()))?,
));
@@ -64,20 +72,23 @@ impl App {
let game = Game::new(canvas, texture_creator, event_pump)?;
// game.audio.set_mute(cfg!(debug_assertions));
// Initial draw
// game.draw(&mut canvas, &mut backbuffer)
// .map_err(|e| GameError::Sdl(e.to_string()))?;
// game.present_backbuffer(&mut canvas, &backbuffer, glam::Vec2::ZERO)
// .map_err(|e| GameError::Sdl(e.to_string()))?;
Ok(App {
game,
focused: true,
last_tick: Instant::now(),
cursor_pos: Vec2::ZERO,
})
}
/// Executes a single frame of the game loop with consistent timing and optional sleep.
///
/// Calculates delta time since the last frame, runs game logic via `game.tick()`,
/// and implements frame rate limiting by sleeping for remaining time if the frame
/// completed faster than the target `LOOP_TIME`. Sleep behavior varies based on
/// window focus to conserve CPU when the game is not active.
///
/// # Returns
///
/// `true` if the game should continue running, `false` if the game requested exit.
pub fn run(&mut self) -> bool {
{
let start = Instant::now();
@@ -116,17 +127,12 @@ impl App {
return false;
}
// if let Err(e) = self.game.draw(&mut self.canvas, &mut self.backbuffer) {
// error!("Failed to draw game: {}", e);
// }
// Sleep if we still have time left
if start.elapsed() < LOOP_TIME {
let time = LOOP_TIME.saturating_sub(start.elapsed());
if time != Duration::ZERO {
get_platform().sleep(time, self.focused);
}
} else {
warn!("Game loop behind schedule by: {:?}", start.elapsed() - LOOP_TIME);
}
true

View File

@@ -5,16 +5,28 @@
use std::borrow::Cow;
use strum_macros::EnumIter;
/// Enumeration of all game assets with cross-platform loading support.
///
/// Each variant corresponds to a specific file that can be loaded either from
/// binary-embedded data or embedded filesystem (Emscripten).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, EnumIter)]
pub enum Asset {
Wav1,
Wav2,
Wav3,
Wav4,
Atlas,
/// Main sprite atlas containing all game graphics (atlas.png)
AtlasImage,
/// Terminal Vector font for text rendering (TerminalVector.ttf)
Font,
}
impl Asset {
/// Returns the relative file path for this asset within the game's asset directory.
///
/// Paths are consistent across platforms and used by the Emscripten backend
/// for filesystem loading. Desktop builds embed assets directly and don't
/// use these paths at runtime.
#[allow(dead_code)]
pub fn path(&self) -> &str {
use Asset::*;
@@ -23,7 +35,8 @@ impl Asset {
Wav2 => "sound/waka/2.ogg",
Wav3 => "sound/waka/3.ogg",
Wav4 => "sound/waka/4.ogg",
Atlas => "atlas.png",
AtlasImage => "atlas.png",
Font => "TerminalVector.ttf",
}
}
}
@@ -33,7 +46,17 @@ mod imp {
use crate::error::AssetError;
use crate::platform::get_platform;
/// Returns the raw bytes of the given asset.
/// Loads asset bytes using the appropriate platform-specific method.
///
/// On desktop platforms, returns embedded compile-time data via `include_bytes!`.
/// On Emscripten, loads from the filesystem using the asset's path. The returned
/// `Cow` allows zero-copy access to embedded data while supporting owned data
/// when loaded from disk.
///
/// # Errors
///
/// Returns `AssetError::NotFound` if the asset file cannot be located (Emscripten only),
/// or `AssetError::Io` for filesystem I/O failures.
pub fn get_asset_bytes(asset: Asset) -> Result<Cow<'static, [u8]>, AssetError> {
get_platform().get_asset_bytes(asset)
}

View File

@@ -114,9 +114,11 @@ impl Audio {
}
}
/// Plays the "eat" sound effect.
/// Plays the next waka eating sound in the cycle of four variants.
///
/// If audio is disabled or muted, this function does nothing.
/// Automatically rotates through the four eating sound assets. The sound plays on channel 0 and the internal sound index
/// advances to the next variant. Silently returns if audio is disabled, muted,
/// or no sounds were loaded successfully.
#[allow(dead_code)]
pub fn eat(&mut self) {
if self.disabled || self.muted || self.sounds.is_empty() {
@@ -136,9 +138,11 @@ impl Audio {
self.next_sound_index = (self.next_sound_index + 1) % self.sounds.len();
}
/// Instantly mute or unmute all channels.
/// Instantly mutes or unmutes all audio channels by adjusting their volume.
///
/// If audio is disabled, this function does nothing.
/// Sets all 4 mixer channels to zero volume when muting, or restores them to
/// their default volume (32) when unmuting. The mute state is tracked internally
/// regardless of whether audio is disabled, allowing the state to be preserved.
pub fn set_mute(&mut self, mute: bool) {
if !self.disabled {
let channels = 4;
@@ -151,12 +155,19 @@ impl Audio {
self.muted = mute;
}
/// Returns `true` if the audio is muted.
/// Returns the current mute state regardless of whether audio is functional.
///
/// This tracks the user's mute preference and will return `true` if muted
/// even when the audio system is disabled due to initialization failures.
pub fn is_muted(&self) -> bool {
self.muted
}
/// Returns `true` if the audio system is disabled.
/// Returns whether the audio system failed to initialize and is non-functional.
///
/// Audio can be disabled due to SDL2_mixer initialization failures, missing
/// audio device, or failure to load any sound assets. When disabled, all
/// audio operations become no-ops.
#[allow(dead_code)]
pub fn is_disabled(&self) -> bool {
self.disabled

View File

@@ -4,6 +4,11 @@ use std::time::Duration;
use glam::UVec2;
/// Target frame duration for 60 FPS game loop timing.
///
/// Calculated as 1/60th of a second (≈16.67ms).
///
/// Written out explicitly to satisfy const-eval constraints.
pub const LOOP_TIME: Duration = Duration::from_nanos((1_000_000_000.0 / 60.0) as u64);
/// The size of each cell, in pixels.
@@ -14,32 +19,74 @@ pub const BOARD_CELL_SIZE: UVec2 = UVec2::new(28, 31);
/// The scale factor for the window (integer zoom)
pub const SCALE: f32 = 2.6;
/// The offset of the game board from the top-left corner of the window, in cells.
/// Game board offset from window origin to reserve space for HUD elements.
///
/// The 3-cell vertical offset (24 pixels) provides space at the top of the
/// screen for score display, player lives, and other UI elements.
pub const BOARD_CELL_OFFSET: UVec2 = UVec2::new(0, 3);
/// The offset of the game board from the top-left corner of the window, in pixels.
/// Pixel-space equivalent of `BOARD_CELL_OFFSET` for rendering calculations.
///
/// Automatically calculated from the cell offset to maintain consistency
/// when the cell size changes. Used for positioning sprites and debug overlays.
pub const BOARD_PIXEL_OFFSET: UVec2 = UVec2::new(BOARD_CELL_OFFSET.x * CELL_SIZE, BOARD_CELL_OFFSET.y * CELL_SIZE);
/// Animation timing constants for ghost state management
pub mod animation {
/// Normal ghost movement animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_NORMAL_SPEED: u16 = 12;
/// Eaten ghost (eyes) animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_EATEN_SPEED: u16 = 6;
/// Frightened ghost animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_FRIGHTENED_SPEED: u16 = 12;
/// Time in ticks when frightened ghosts start flashing (2 seconds at 60 FPS)
pub const FRIGHTENED_FLASH_START_TICKS: u32 = 120;
}
/// The size of the canvas, in pixels.
pub const CANVAS_SIZE: UVec2 = UVec2::new(
(BOARD_CELL_SIZE.x + BOARD_CELL_OFFSET.x) * CELL_SIZE,
(BOARD_CELL_SIZE.y + BOARD_CELL_OFFSET.y) * CELL_SIZE,
);
/// An enum representing the different types of tiles on the map.
/// Collider size constants for different entity types
pub mod collider {
use super::CELL_SIZE;
/// Collider size for player and ghosts (1.375x cell size)
pub const PLAYER_GHOST_SIZE: f32 = CELL_SIZE as f32 * 1.375;
/// Collider size for pellets (0.4x cell size)
pub const PELLET_SIZE: f32 = CELL_SIZE as f32 * 0.4;
/// Collider size for power pellets/energizers (0.95x cell size)
pub const POWER_PELLET_SIZE: f32 = CELL_SIZE as f32 * 0.95;
}
/// UI and rendering constants
pub mod ui {
/// Debug font size in points
pub const DEBUG_FONT_SIZE: u16 = 12;
/// Power pellet blink rate in seconds
pub const POWER_PELLET_BLINK_RATE: f32 = 0.2;
}
/// Map tile types that define gameplay behavior and collision properties.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum MapTile {
/// An empty tile.
/// Traversable space with no collectible items
Empty,
/// A wall tile.
Wall,
/// A regular pellet.
/// Small collectible. Implicitly a traversable tile.
Pellet,
/// A power pellet.
/// Large collectible. Implicitly a traversable tile.
PowerPellet,
/// A tunnel tile.
/// Special traversable tile that connects to tunnel portals.
Tunnel,
}
/// The raw layout of the game board, as a 2D array of characters.
/// ASCII art representation of the classic Pac-Man maze layout.
///
/// Uses character symbols to define the game world. This layout is parsed by `MapTileParser`
/// to generate the navigable graph and collision geometry.
pub const RAW_BOARD: [&str; BOARD_CELL_SIZE.y as usize] = [
"############################",
"#............##............#",
@@ -73,3 +120,17 @@ pub const RAW_BOARD: [&str; BOARD_CELL_SIZE.y as usize] = [
"#..........................#",
"############################",
];
/// Game initialization constants
pub mod startup {
/// Number of frames for the startup sequence (3 seconds at 60 FPS)
pub const STARTUP_FRAMES: u32 = 60 * 3;
/// Number of ticks per frame during startup
pub const STARTUP_TICKS_PER_FRAME: u32 = 60;
}
/// Game mechanics constants
pub mod mechanics {
/// Player movement speed multiplier
pub const PLAYER_SPEED: f32 = 1.15;
}

View File

@@ -1,172 +0,0 @@
use bevy_ecs::{
event::{EventReader, EventWriter},
query::With,
system::{Query, Res, ResMut},
};
use crate::{
ecs::{DeltaTime, GlobalState, PlayerControlled, Position, Velocity},
error::{EntityError, GameError},
game::events::GameEvent,
input::commands::GameCommand,
map::builder::Map,
};
pub fn movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut entities: Query<(&PlayerControlled, &mut Velocity, &mut Position)>,
mut errors: EventWriter<GameError>,
) {
for (player, mut velocity, mut position) in entities.iter_mut() {
let distance = velocity.speed.unwrap_or(0.0) * delta_time.0;
// Decrement the remaining frames for the next direction
if let Some((direction, remaining)) = velocity.next_direction {
if remaining > 0 {
velocity.next_direction = Some((direction, remaining - 1));
} else {
velocity.next_direction = None;
}
}
match *position {
Position::AtNode(node_id) => {
// We're not moving, but a buffered direction is available.
if let Some((next_direction, _)) = velocity.next_direction {
if let Some(edge) = map.graph.find_edge_in_direction(node_id, next_direction) {
// if edge.permissions.can_traverse(edge) {
// // Start moving in that direction
*position = Position::BetweenNodes {
from: node_id,
to: edge.target,
traversed: distance,
};
velocity.direction = next_direction;
// } else {
// return Err(crate::error::GameError::Entity(crate::error::EntityError::InvalidMovement(
// format!(
// "Cannot traverse edge from {} to {} in direction {:?}",
// node_id, edge.target, next_direction
// ),
// )));
// }
} else {
errors.write(
EntityError::InvalidMovement(format!(
"No edge found in direction {:?} from node {}",
next_direction, node_id
))
.into(),
);
}
velocity.next_direction = None; // Consume the buffered direction regardless of whether we started moving with it
}
}
Position::BetweenNodes { from, to, traversed } => {
// There is no point in any of the next logic if we don't travel at all
if distance <= 0.0 {
return;
}
let edge = map
.graph
.find_edge(from, to)
.ok_or_else(|| {
errors.write(
EntityError::InvalidMovement(format!(
"Inconsistent state: Traverser is on a non-existent edge from {} to {}.",
from, to
))
.into(),
);
return;
})
.unwrap();
let new_traversed = traversed + distance;
if new_traversed < edge.distance {
// Still on the same edge, just update the distance.
*position = Position::BetweenNodes {
from,
to,
traversed: new_traversed,
};
} else {
let overflow = new_traversed - edge.distance;
let mut moved = false;
// If we buffered a direction, try to find an edge in that direction
if let Some((next_dir, _)) = velocity.next_direction {
if let Some(edge) = map.graph.find_edge_in_direction(to, next_dir) {
// if edge.permissions.can_traverse(edge) {
// *position = Position::BetweenNodes {
// from: to,
// to: edge.target,
// traversed: overflow,
// };
velocity.direction = next_dir; // Remember our new direction
velocity.next_direction = None; // Consume the buffered direction
moved = true;
// }
}
}
// If we didn't move, try to continue in the current direction
if !moved {
if let Some(edge) = map.graph.find_edge_in_direction(to, velocity.direction) {
// if edge.permissions.can_traverse(edge) {
*position = Position::BetweenNodes {
from: to,
to: edge.target,
traversed: overflow,
};
// } else {
// *position = Position::AtNode(to);
// velocity.next_direction = None;
// }
} else {
*position = Position::AtNode(to);
velocity.next_direction = None;
}
}
}
}
}
}
}
// Handles
pub fn interact_system(
mut events: EventReader<GameEvent>,
mut state: ResMut<GlobalState>,
mut players: Query<(&PlayerControlled, &mut Velocity)>,
mut errors: EventWriter<GameError>,
) {
// Get the player's velocity (handling to ensure there is only one player)
let mut velocity = match players.single_mut() {
Ok((_, velocity)) => velocity,
Err(e) => {
errors.write(GameError::InvalidState(format!("Player not found: {}", e)).into());
return;
}
};
// Handle events
for event in events.read() {
match event {
GameEvent::Command(command) => match command {
GameCommand::MovePlayer(direction) => {
velocity.direction = *direction;
}
GameCommand::Exit => {
state.exit = true;
}
_ => {}
},
}
}
}

View File

@@ -1,150 +0,0 @@
//! The Entity-Component-System (ECS) module.
//!
//! This module contains all the ECS-related logic, including components, systems,
//! and resources.
use bevy_ecs::{bundle::Bundle, component::Component, resource::Resource};
use glam::Vec2;
use crate::{
entity::{direction::Direction, graph::Graph, traversal},
error::{EntityError, GameResult},
texture::{
animated::AnimatedTexture,
directional::DirectionalAnimatedTexture,
sprite::{AtlasTile, Sprite},
},
};
/// A tag component for entities that are controlled by the player.
#[derive(Default, Component)]
pub struct PlayerControlled;
/// A component for entities that have a sprite, with a layer for ordering.
///
/// This is intended to be modified by other entities allowing animation.
#[derive(Component)]
pub struct Renderable {
pub sprite: AtlasTile,
pub layer: u8,
}
/// A component for entities that have a directional animated texture.
#[derive(Component)]
pub struct DirectionalAnimated {
pub textures: [Option<AnimatedTexture>; 4],
pub stopped_textures: [Option<AnimatedTexture>; 4],
}
/// A unique identifier for a node, represented by its index in the graph's storage.
pub type NodeId = usize;
/// Represents the current position of an entity traversing the graph.
///
/// This enum allows for precise tracking of whether an entity is exactly at a node
/// or moving along an edge between two nodes.
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub enum Position {
/// The traverser is located exactly at a node.
AtNode(NodeId),
/// The traverser is on an edge between two nodes.
BetweenNodes {
from: NodeId,
to: NodeId,
/// The floating-point distance traversed along the edge from the `from` node.
traversed: f32,
},
}
impl Position {
/// Calculates the current pixel position in the game world.
///
/// Converts the graph position to screen coordinates, accounting for
/// the board offset and centering the sprite.
pub fn get_pixel_pos(&self, graph: &Graph) -> GameResult<Vec2> {
let pos = match self {
Position::AtNode(node_id) => {
let node = graph.get_node(*node_id).ok_or(EntityError::NodeNotFound(*node_id))?;
node.position
}
Position::BetweenNodes { from, to, traversed } => {
let from_node = graph.get_node(*from).ok_or(EntityError::NodeNotFound(*from))?;
let to_node = graph.get_node(*to).ok_or(EntityError::NodeNotFound(*to))?;
let edge = graph
.find_edge(*from, *to)
.ok_or(EntityError::EdgeNotFound { from: *from, to: *to })?;
from_node.position + (to_node.position - from_node.position) * (traversed / edge.distance)
}
};
Ok(Vec2::new(
pos.x + crate::constants::BOARD_PIXEL_OFFSET.x as f32,
pos.y + crate::constants::BOARD_PIXEL_OFFSET.y as f32,
))
}
}
impl Default for Position {
fn default() -> Self {
Position::AtNode(0)
}
}
#[allow(dead_code)]
impl Position {
/// Returns `true` if the position is exactly at a node.
pub fn is_at_node(&self) -> bool {
matches!(self, Position::AtNode(_))
}
/// Returns the `NodeId` of the current or most recently departed node.
#[allow(clippy::wrong_self_convention)]
pub fn from_node_id(&self) -> NodeId {
match self {
Position::AtNode(id) => *id,
Position::BetweenNodes { from, .. } => *from,
}
}
/// Returns the `NodeId` of the destination node, if currently on an edge.
#[allow(clippy::wrong_self_convention)]
pub fn to_node_id(&self) -> Option<NodeId> {
match self {
Position::AtNode(_) => None,
Position::BetweenNodes { to, .. } => Some(*to),
}
}
/// Returns `true` if the traverser is stopped at a node.
pub fn is_stopped(&self) -> bool {
matches!(self, Position::AtNode(_))
}
}
/// A component for entities that have a velocity, with a direction and speed.
#[derive(Default, Component)]
pub struct Velocity {
pub direction: Direction,
pub next_direction: Option<(Direction, u8)>,
pub speed: Option<f32>,
}
#[derive(Bundle)]
pub struct PlayerBundle {
pub player: PlayerControlled,
pub position: Position,
pub velocity: Velocity,
pub sprite: Renderable,
pub directional_animated: DirectionalAnimated,
}
#[derive(Resource)]
pub struct GlobalState {
pub exit: bool,
}
#[derive(Resource)]
pub struct DeltaTime(pub f32);
pub mod interact;
pub mod render;

View File

@@ -1,95 +0,0 @@
use crate::ecs::{DeltaTime, DirectionalAnimated, Position, Renderable, Velocity};
use crate::error::{EntityError, GameError, TextureError};
use crate::map::builder::Map;
use crate::texture::sprite::SpriteAtlas;
use bevy_ecs::entity::Entity;
use bevy_ecs::event::EventWriter;
use bevy_ecs::system::{NonSendMut, Query, Res};
use sdl2::render::{Canvas, Texture};
use sdl2::video::Window;
/// Updates the directional animated texture of an entity.
pub fn directional_render_system(
dt: Res<DeltaTime>,
mut renderables: Query<(&Velocity, &mut DirectionalAnimated, &mut Renderable)>,
mut errors: EventWriter<GameError>,
) {
for (velocity, mut texture, mut renderable) in renderables.iter_mut() {
let texture = if velocity.speed.is_none() {
texture.stopped_textures[velocity.direction.as_usize()].as_mut()
} else {
texture.textures[velocity.direction.as_usize()].as_mut()
};
if let Some(texture) = texture {
texture.tick(dt.0);
renderable.sprite = *texture.current_tile();
} else {
errors.write(TextureError::RenderFailed(format!("Entity has no texture")).into());
continue;
}
}
}
pub struct MapTextureResource(pub Texture<'static>);
pub struct BackbufferResource(pub Texture<'static>);
pub fn render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
map_texture: NonSendMut<MapTextureResource>,
mut backbuffer: NonSendMut<BackbufferResource>,
mut atlas: NonSendMut<SpriteAtlas>,
map: Res<Map>,
mut renderables: Query<(Entity, &mut Renderable, &Position)>,
mut errors: EventWriter<GameError>,
) {
// Clear the main canvas first
canvas.set_draw_color(sdl2::pixels::Color::BLACK);
canvas.clear();
// Render to backbuffer
canvas
.with_texture_canvas(&mut backbuffer.0, |backbuffer_canvas| {
// Clear the backbuffer
backbuffer_canvas.set_draw_color(sdl2::pixels::Color::BLACK);
backbuffer_canvas.clear();
// Copy the pre-rendered map texture to the backbuffer
backbuffer_canvas
.copy(&map_texture.0, None, None)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
// Render all entities to the backbuffer
for (_, mut renderable, position) in renderables.iter_mut() {
let pos = position.get_pixel_pos(&map.graph);
match pos {
Ok(pos) => {
let dest = crate::helpers::centered_with_size(
glam::IVec2::new(pos.x as i32, pos.y as i32),
glam::UVec2::new(renderable.sprite.size.x as u32, renderable.sprite.size.y as u32),
);
renderable
.sprite
.render(backbuffer_canvas, &mut atlas, dest)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
}
Err(e) => {
errors.write(e.into());
}
}
}
})
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
// Copy backbuffer to main canvas and present
canvas
.copy(&backbuffer.0, None, None)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
canvas.present();
}

View File

@@ -1,128 +0,0 @@
// use smallvec::SmallVec;
// use std::collections::HashMap;
// use crate::entity::{graph::NodeId, traversal::Position};
// /// Trait for entities that can participate in collision detection.
// pub trait Collidable {
// /// Returns the current position of this entity.
// fn position(&self) -> Position;
// /// Checks if this entity is colliding with another entity.
// #[allow(dead_code)]
// fn is_colliding_with(&self, other: &dyn Collidable) -> bool {
// positions_overlap(&self.position(), &other.position())
// }
// }
// /// System for tracking entities by their positions for efficient collision detection.
// #[derive(Default)]
// pub struct CollisionSystem {
// /// Maps node IDs to lists of entity IDs that are at that node
// node_entities: HashMap<NodeId, Vec<EntityId>>,
// /// Maps entity IDs to their current positions
// entity_positions: HashMap<EntityId, Position>,
// /// Next available entity ID
// next_id: EntityId,
// }
// /// Unique identifier for an entity in the collision system
// pub type EntityId = u32;
// impl CollisionSystem {
// /// Registers an entity with the collision system and returns its ID
// pub fn register_entity(&mut self, position: Position) -> EntityId {
// let id = self.next_id;
// self.next_id += 1;
// self.entity_positions.insert(id, position);
// self.update_node_entities(id, position);
// id
// }
// /// Updates an entity's position
// pub fn update_position(&mut self, entity_id: EntityId, new_position: Position) {
// if let Some(old_position) = self.entity_positions.get(&entity_id) {
// // Remove from old nodes
// self.remove_from_nodes(entity_id, *old_position);
// }
// // Update position and add to new nodes
// self.entity_positions.insert(entity_id, new_position);
// self.update_node_entities(entity_id, new_position);
// }
// /// Removes an entity from the collision system
// #[allow(dead_code)]
// pub fn remove_entity(&mut self, entity_id: EntityId) {
// if let Some(position) = self.entity_positions.remove(&entity_id) {
// self.remove_from_nodes(entity_id, position);
// }
// }
// /// Gets all entity IDs at a specific node
// pub fn entities_at_node(&self, node: NodeId) -> &[EntityId] {
// self.node_entities.get(&node).map(|v| v.as_slice()).unwrap_or(&[])
// }
// /// Gets all entity IDs that could collide with an entity at the given position
// pub fn potential_collisions(&self, position: &Position) -> Vec<EntityId> {
// let mut collisions = Vec::new();
// let nodes = get_nodes(position);
// for node in nodes {
// collisions.extend(self.entities_at_node(node));
// }
// // Remove duplicates
// collisions.sort_unstable();
// collisions.dedup();
// collisions
// }
// /// Updates the node_entities map when an entity's position changes
// fn update_node_entities(&mut self, entity_id: EntityId, position: Position) {
// let nodes = get_nodes(&position);
// for node in nodes {
// self.node_entities.entry(node).or_default().push(entity_id);
// }
// }
// /// Removes an entity from all nodes it was previously at
// fn remove_from_nodes(&mut self, entity_id: EntityId, position: Position) {
// let nodes = get_nodes(&position);
// for node in nodes {
// if let Some(entities) = self.node_entities.get_mut(&node) {
// entities.retain(|&id| id != entity_id);
// if entities.is_empty() {
// self.node_entities.remove(&node);
// }
// }
// }
// }
// }
// /// Checks if two positions overlap (entities are at the same location).
// fn positions_overlap(a: &Position, b: &Position) -> bool {
// let a_nodes = get_nodes(a);
// let b_nodes = get_nodes(b);
// // Check if any nodes overlap
// a_nodes.iter().any(|a_node| b_nodes.contains(a_node))
// // TODO: More complex overlap detection, the above is a simple check, but it could become an early filter for more precise calculations later
// }
// /// Gets all nodes that an entity is currently at or between.
// fn get_nodes(pos: &Position) -> SmallVec<[NodeId; 2]> {
// let mut nodes = SmallVec::new();
// match pos {
// Position::AtNode(node) => nodes.push(*node),
// Position::BetweenNodes { from, to, .. } => {
// nodes.push(*from);
// nodes.push(*to);
// }
// }
// nodes
// }

View File

@@ -1,254 +0,0 @@
// //! Ghost entity implementation.
// //!
// //! This module contains the ghost character logic, including movement,
// //! animation, and rendering. Ghosts move through the game graph using
// //! a traverser and display directional animated textures.
// use pathfinding::prelude::dijkstra;
// use rand::prelude::*;
// use smallvec::SmallVec;
// use tracing::error;
// use crate::entity::{
// collision::Collidable,
// direction::Direction,
// graph::{Edge, EdgePermissions, Graph, NodeId},
// r#trait::Entity,
// traversal::Traverser,
// };
// use crate::texture::animated::AnimatedTexture;
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// use crate::error::{EntityError, GameError, GameResult, TextureError};
// /// Determines if a ghost can traverse a given edge.
// ///
// /// Ghosts can move through edges that allow all entities or ghost-only edges.
// fn can_ghost_traverse(edge: Edge) -> bool {
// matches!(edge.permissions, EdgePermissions::All | EdgePermissions::GhostsOnly)
// }
// /// The four classic ghost types.
// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
// pub enum GhostType {
// Blinky,
// Pinky,
// Inky,
// Clyde,
// }
// impl GhostType {
// /// Returns the ghost type name for atlas lookups.
// pub fn as_str(self) -> &'static str {
// match self {
// GhostType::Blinky => "blinky",
// GhostType::Pinky => "pinky",
// GhostType::Inky => "inky",
// GhostType::Clyde => "clyde",
// }
// }
// /// Returns the base movement speed for this ghost type.
// pub fn base_speed(self) -> f32 {
// match self {
// GhostType::Blinky => 1.0,
// GhostType::Pinky => 0.95,
// GhostType::Inky => 0.9,
// GhostType::Clyde => 0.85,
// }
// }
// }
// /// A ghost entity that roams the game world.
// ///
// /// Ghosts move through the game world using a graph-based navigation system
// /// and display directional animated sprites. They randomly choose directions
// /// at each intersection.
// pub struct Ghost {
// /// Handles movement through the game graph
// pub traverser: Traverser,
// /// The type of ghost (affects appearance and speed)
// pub ghost_type: GhostType,
// /// Manages directional animated textures for different movement states
// texture: DirectionalAnimatedTexture,
// /// Current movement speed
// speed: f32,
// }
// impl Entity for Ghost {
// fn traverser(&self) -> &Traverser {
// &self.traverser
// }
// fn traverser_mut(&mut self) -> &mut Traverser {
// &mut self.traverser
// }
// fn texture(&self) -> &DirectionalAnimatedTexture {
// &self.texture
// }
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture {
// &mut self.texture
// }
// fn speed(&self) -> f32 {
// self.speed
// }
// fn can_traverse(&self, edge: Edge) -> bool {
// can_ghost_traverse(edge)
// }
// fn tick(&mut self, dt: f32, graph: &Graph) {
// // Choose random direction when at a node
// if self.traverser.position.is_at_node() {
// self.choose_random_direction(graph);
// }
// if let Err(e) = self.traverser.advance(graph, dt * 60.0 * self.speed, &can_ghost_traverse) {
// error!("Ghost movement error: {}", e);
// }
// self.texture.tick(dt);
// }
// }
// impl Ghost {
// /// Creates a new ghost instance at the specified starting node.
// ///
// /// Sets up animated textures for all four directions with moving and stopped states.
// /// The moving animation cycles through two sprite variants.
// pub fn new(graph: &Graph, start_node: NodeId, ghost_type: GhostType, atlas: &SpriteAtlas) -> GameResult<Self> {
// let mut textures = [None, None, None, None];
// let mut stopped_textures = [None, None, None, None];
// for direction in Direction::DIRECTIONS {
// let moving_prefix = match direction {
// Direction::Up => "up",
// Direction::Down => "down",
// Direction::Left => "left",
// Direction::Right => "right",
// };
// let moving_tiles = vec![
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "a"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "a"
// )))
// })?,
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "b"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "b"
// )))
// })?,
// ];
// let stopped_tiles =
// vec![
// SpriteAtlas::get_tile(atlas, &format!("ghost/{}/{}_{}.png", ghost_type.as_str(), moving_prefix, "a"))
// .ok_or_else(|| {
// GameError::Texture(TextureError::AtlasTileNotFound(format!(
// "ghost/{}/{}_{}.png",
// ghost_type.as_str(),
// moving_prefix,
// "a"
// )))
// })?,
// ];
// textures[direction.as_usize()] = Some(AnimatedTexture::new(moving_tiles, 0.2)?);
// stopped_textures[direction.as_usize()] = Some(AnimatedTexture::new(stopped_tiles, 0.1)?);
// }
// Ok(Self {
// traverser: Traverser::new(graph, start_node, Direction::Left, &can_ghost_traverse),
// ghost_type,
// texture: DirectionalAnimatedTexture::new(textures, stopped_textures),
// speed: ghost_type.base_speed(),
// })
// }
// /// Chooses a random available direction at the current intersection.
// fn choose_random_direction(&mut self, graph: &Graph) {
// let current_node = self.traverser.position.from_node_id();
// let intersection = &graph.adjacency_list[current_node];
// // Collect all available directions
// let mut available_directions = SmallVec::<[_; 4]>::new();
// for direction in Direction::DIRECTIONS {
// if let Some(edge) = intersection.get(direction) {
// if can_ghost_traverse(edge) {
// available_directions.push(direction);
// }
// }
// }
// // Choose a random direction (avoid reversing unless necessary)
// if !available_directions.is_empty() {
// let mut rng = SmallRng::from_os_rng();
// // Filter out the opposite direction if possible, but allow it if we have limited options
// let opposite = self.traverser.direction.opposite();
// let filtered_directions: Vec<_> = available_directions
// .iter()
// .filter(|&&dir| dir != opposite || available_directions.len() <= 2)
// .collect();
// if let Some(&random_direction) = filtered_directions.choose(&mut rng) {
// self.traverser.set_next_direction(*random_direction);
// }
// }
// }
// /// Calculates the shortest path from the ghost's current position to a target node using Dijkstra's algorithm.
// ///
// /// Returns a vector of NodeIds representing the path, or an error if pathfinding fails.
// /// The path includes the current node and the target node.
// pub fn calculate_path_to_target(&self, graph: &Graph, target: NodeId) -> GameResult<Vec<NodeId>> {
// let start_node = self.traverser.position.from_node_id();
// // Use Dijkstra's algorithm to find the shortest path
// let result = dijkstra(
// &start_node,
// |&node_id| {
// // Get all edges from the current node
// graph.adjacency_list[node_id]
// .edges()
// .filter(|edge| can_ghost_traverse(*edge))
// .map(|edge| (edge.target, (edge.distance * 100.0) as u32))
// .collect::<Vec<_>>()
// },
// |&node_id| node_id == target,
// );
// result.map(|(path, _cost)| path).ok_or_else(|| {
// GameError::Entity(EntityError::PathfindingFailed(format!(
// "No path found from node {} to target {}",
// start_node, target
// )))
// })
// }
// /// Returns the ghost's color for debug rendering.
// pub fn debug_color(&self) -> sdl2::pixels::Color {
// match self.ghost_type {
// GhostType::Blinky => sdl2::pixels::Color::RGB(255, 0, 0), // Red
// GhostType::Pinky => sdl2::pixels::Color::RGB(255, 182, 255), // Pink
// GhostType::Inky => sdl2::pixels::Color::RGB(0, 255, 255), // Cyan
// GhostType::Clyde => sdl2::pixels::Color::RGB(255, 182, 85), // Orange
// }
// }
// }
// impl Collidable for Ghost {
// fn position(&self) -> crate::entity::traversal::Position {
// self.traverser.position
// }
// }

View File

@@ -1,117 +0,0 @@
// use crate::{
// constants,
// entity::{collision::Collidable, graph::Graph},
// error::{EntityError, GameResult},
// texture::sprite::{Sprite, SpriteAtlas},
// };
// use sdl2::render::{Canvas, RenderTarget};
// use strum_macros::{EnumCount, EnumIter};
// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
// pub enum ItemType {
// Pellet,
// Energizer,
// #[allow(dead_code)]
// Fruit {
// kind: FruitKind,
// },
// }
// impl ItemType {
// pub fn get_score(self) -> u32 {
// match self {
// ItemType::Pellet => 10,
// ItemType::Energizer => 50,
// ItemType::Fruit { kind } => kind.get_score(),
// }
// }
// }
// #[derive(Debug, Clone, Copy, PartialEq, Eq, EnumIter, EnumCount)]
// #[allow(dead_code)]
// pub enum FruitKind {
// Apple,
// Strawberry,
// Orange,
// Melon,
// Bell,
// Key,
// Galaxian,
// }
// impl FruitKind {
// #[allow(dead_code)]
// pub fn index(self) -> u8 {
// match self {
// FruitKind::Apple => 0,
// FruitKind::Strawberry => 1,
// FruitKind::Orange => 2,
// FruitKind::Melon => 3,
// FruitKind::Bell => 4,
// FruitKind::Key => 5,
// FruitKind::Galaxian => 6,
// }
// }
// pub fn get_score(self) -> u32 {
// match self {
// FruitKind::Apple => 100,
// FruitKind::Strawberry => 300,
// FruitKind::Orange => 500,
// FruitKind::Melon => 700,
// FruitKind::Bell => 1000,
// FruitKind::Key => 2000,
// FruitKind::Galaxian => 3000,
// }
// }
// }
// pub struct Item {
// pub node_index: usize,
// pub item_type: ItemType,
// pub sprite: Sprite,
// pub collected: bool,
// }
// impl Item {
// pub fn new(node_index: usize, item_type: ItemType, sprite: Sprite) -> Self {
// Self {
// node_index,
// item_type,
// sprite,
// collected: false,
// }
// }
// pub fn is_collected(&self) -> bool {
// self.collected
// }
// pub fn collect(&mut self) {
// self.collected = true;
// }
// pub fn get_score(&self) -> u32 {
// self.item_type.get_score()
// }
// pub fn render<T: RenderTarget>(&self, canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, graph: &Graph) -> GameResult<()> {
// if self.collected {
// return Ok(());
// }
// let node = graph
// .get_node(self.node_index)
// .ok_or(EntityError::NodeNotFound(self.node_index))?;
// let position = node.position + constants::BOARD_PIXEL_OFFSET.as_vec2();
// self.sprite.render(canvas, atlas, position)?;
// Ok(())
// }
// }
// impl Collidable for Item {
// fn position(&self) -> crate::entity::traversal::Position {
// crate::entity::traversal::Position::AtNode(self.node_index)
// }
// }

View File

@@ -1,8 +0,0 @@
pub mod collision;
pub mod direction;
pub mod ghost;
pub mod graph;
pub mod item;
pub mod pacman;
pub mod r#trait;
pub mod traversal;

View File

@@ -1,115 +0,0 @@
// //! Pac-Man entity implementation.
// //!
// //! This module contains the main player character logic, including movement,
// //! animation, and rendering. Pac-Man moves through the game graph using
// //! a traverser and displays directional animated textures.
// use crate::entity::{
// collision::Collidable,
// direction::Direction,
// graph::{Edge, EdgePermissions, Graph, NodeId},
// r#trait::Entity,
// traversal::Traverser,
// };
// use crate::texture::animated::AnimatedTexture;
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// use tracing::error;
// use crate::error::{GameError, GameResult, TextureError};
// /// Determines if Pac-Man can traverse a given edge.
// ///
// /// Pac-Man can only move through edges that allow all entities.
// fn can_pacman_traverse(edge: Edge) -> bool {
// matches!(edge.permissions, EdgePermissions::All)
// }
// /// The main player character entity.
// ///
// /// Pac-Man moves through the game world using a graph-based navigation system
// /// and displays directional animated sprites based on movement state.
// pub struct Pacman {
// /// Handles movement through the game graph
// pub traverser: Traverser,
// /// Manages directional animated textures for different movement states
// texture: DirectionalAnimatedTexture,
// }
// impl Entity for Pacman {
// fn traverser(&self) -> &Traverser {
// &self.traverser
// }
// fn traverser_mut(&mut self) -> &mut Traverser {
// &mut self.traverser
// }
// fn texture(&self) -> &DirectionalAnimatedTexture {
// &self.texture
// }
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture {
// &mut self.texture
// }
// fn speed(&self) -> f32 {
// 1.125
// }
// fn can_traverse(&self, edge: Edge) -> bool {
// can_pacman_traverse(edge)
// }
// fn tick(&mut self, dt: f32, graph: &Graph) {
// if let Err(e) = self.traverser.advance(graph, dt * 60.0 * 1.125, &can_pacman_traverse) {
// error!("Pac-Man movement error: {}", e);
// }
// self.texture.tick(dt);
// }
// }
// impl Pacman {
// /// Creates a new Pac-Man instance at the specified starting node.
// ///
// /// Sets up animated textures for all four directions with moving and stopped states.
// /// The moving animation cycles through open mouth, closed mouth, and full sprites.
// pub fn new(graph: &Graph, start_node: NodeId, atlas: &SpriteAtlas) -> GameResult<Self> {
// let mut textures = [None, None, None, None];
// let mut stopped_textures = [None, None, None, None];
// for direction in Direction::DIRECTIONS {
// let moving_prefix = match direction {
// Direction::Up => "pacman/up",
// Direction::Down => "pacman/down",
// Direction::Left => "pacman/left",
// Direction::Right => "pacman/right",
// };
// let moving_tiles = vec![
// SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_a.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_a.png"))))?,
// SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_b.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?,
// SpriteAtlas::get_tile(atlas, "pacman/full.png")
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
// ];
// let stopped_tiles = vec![SpriteAtlas::get_tile(atlas, &format!("{moving_prefix}_b.png"))
// .ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?];
// textures[direction.as_usize()] = Some(AnimatedTexture::new(moving_tiles, 0.08)?);
// stopped_textures[direction.as_usize()] = Some(AnimatedTexture::new(stopped_tiles, 0.1)?);
// }
// Ok(Self {
// traverser: Traverser::new(graph, start_node, Direction::Left, &can_pacman_traverse),
// texture: DirectionalAnimatedTexture::new(textures, stopped_textures),
// })
// }
// }
// impl Collidable for Pacman {
// fn position(&self) -> crate::entity::traversal::Position {
// self.traverser.position
// }
// }

View File

@@ -1,114 +0,0 @@
// //! Entity trait for common movement and rendering functionality.
// //!
// //! This module defines a trait that captures the shared behavior between
// //! different game entities like Ghosts and Pac-Man, including movement,
// //! rendering, and position calculations.
// use glam::Vec2;
// use sdl2::render::{Canvas, RenderTarget};
// use crate::entity::direction::Direction;
// use crate::entity::graph::{Edge, Graph, NodeId};
// use crate::entity::traversal::{Position, Traverser};
// use crate::error::{EntityError, GameError, GameResult, TextureError};
// use crate::texture::directional::DirectionalAnimatedTexture;
// use crate::texture::sprite::SpriteAtlas;
// /// Trait defining common functionality for game entities that move through the graph.
// ///
// /// This trait provides a unified interface for entities that:
// /// - Move through the game graph using a traverser
// /// - Render using directional animated textures
// /// - Have position calculations and movement speed
// #[allow(dead_code)]
// pub trait Entity {
// /// Returns a reference to the entity's traverser for movement control.
// fn traverser(&self) -> &Traverser;
// /// Returns a mutable reference to the entity's traverser for movement control.
// fn traverser_mut(&mut self) -> &mut Traverser;
// /// Returns a reference to the entity's directional animated texture.
// fn texture(&self) -> &DirectionalAnimatedTexture;
// /// Returns a mutable reference to the entity's directional animated texture.
// fn texture_mut(&mut self) -> &mut DirectionalAnimatedTexture;
// /// Returns the movement speed multiplier for this entity.
// fn speed(&self) -> f32;
// /// Determines if this entity can traverse a given edge.
// fn can_traverse(&self, edge: Edge) -> bool;
// /// Updates the entity's position and animation state.
// ///
// /// This method advances movement through the graph and updates texture animation.
// fn tick(&mut self, dt: f32, graph: &Graph);
// /// Calculates the current pixel position in the game world.
// ///
// /// Converts the graph position to screen coordinates, accounting for
// /// the board offset and centering the sprite.
// fn get_pixel_pos(&self, graph: &Graph) -> GameResult<Vec2> {
// let pos = match self.traverser().position {
// Position::AtNode(node_id) => {
// let node = graph.get_node(node_id).ok_or(EntityError::NodeNotFound(node_id))?;
// node.position
// }
// Position::BetweenNodes { from, to, traversed } => {
// let from_node = graph.get_node(from).ok_or(EntityError::NodeNotFound(from))?;
// let to_node = graph.get_node(to).ok_or(EntityError::NodeNotFound(to))?;
// let edge = graph.find_edge(from, to).ok_or(EntityError::EdgeNotFound { from, to })?;
// from_node.position + (to_node.position - from_node.position) * (traversed / edge.distance)
// }
// };
// Ok(Vec2::new(
// pos.x + crate::constants::BOARD_PIXEL_OFFSET.x as f32,
// pos.y + crate::constants::BOARD_PIXEL_OFFSET.y as f32,
// ))
// }
// /// Returns the current node ID that the entity is at or moving towards.
// ///
// /// If the entity is at a node, returns that node ID.
// /// If the entity is between nodes, returns the node it's moving towards.
// fn current_node_id(&self) -> NodeId {
// match self.traverser().position {
// Position::AtNode(node_id) => node_id,
// Position::BetweenNodes { to, .. } => to,
// }
// }
// /// Sets the next direction for the entity to take.
// ///
// /// The direction is buffered and will be applied at the next opportunity,
// /// typically when the entity reaches a new node.
// fn set_next_direction(&mut self, direction: Direction) {
// self.traverser_mut().set_next_direction(direction);
// }
// /// Renders the entity at its current position.
// ///
// /// Draws the appropriate directional sprite based on the entity's
// /// current movement state and direction.
// fn render<T: RenderTarget>(&self, canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, graph: &Graph) -> GameResult<()> {
// let pixel_pos = self.get_pixel_pos(graph)?;
// let dest = crate::helpers::centered_with_size(
// glam::IVec2::new(pixel_pos.x as i32, pixel_pos.y as i32),
// glam::UVec2::new(16, 16),
// );
// if self.traverser().position.is_stopped() {
// self.texture()
// .render_stopped(canvas, atlas, dest, self.traverser().direction)
// .map_err(|e| GameError::Texture(TextureError::RenderFailed(e.to_string())))?;
// } else {
// self.texture()
// .render(canvas, atlas, dest, self.traverser().direction)
// .map_err(|e| GameError::Texture(TextureError::RenderFailed(e.to_string())))?;
// }
// Ok(())
// }
// }

View File

@@ -1,161 +0,0 @@
use tracing::error;
use crate::ecs::{NodeId, Position};
use crate::error::GameResult;
use super::direction::Direction;
use super::graph::{Edge, Graph};
/// Manages an entity's movement through the graph.
///
/// A `Traverser` encapsulates the state of an entity's position and direction,
/// providing a way to advance along the graph's paths based on a given distance.
/// It also handles direction changes, buffering the next intended direction.
pub struct Traverser {
/// The current position of the traverser in the graph.
pub position: Position,
/// The current direction of movement.
pub direction: Direction,
/// Buffered direction change with remaining frame count for timing.
///
/// The `u8` value represents the number of frames remaining before
/// the buffered direction expires. This allows for responsive controls
/// by storing direction changes for a limited time.
pub next_direction: Option<(Direction, u8)>,
}
impl Traverser {
/// Sets the next direction for the traverser to take.
///
/// The direction is buffered and will be applied at the next opportunity,
/// typically when the traverser reaches a new node. This allows for responsive
/// controls, as the new direction is stored for a limited time.
pub fn set_next_direction(&mut self, new_direction: Direction) {
if self.direction != new_direction {
self.next_direction = Some((new_direction, 30));
}
}
/// Advances the traverser along the graph by a specified distance.
///
/// This method updates the traverser's position based on its current state
/// and the distance to travel.
///
/// - If at a node, it checks for a buffered direction to start moving.
/// - If between nodes, it moves along the current edge.
/// - If it reaches a node, it attempts to transition to a new edge based on
/// the buffered direction or by continuing straight.
/// - If no valid move is possible, it stops at the node.
///
/// Returns an error if the movement is invalid (e.g., trying to move in an impossible direction).
pub fn advance<F>(&mut self, graph: &Graph, distance: f32, can_traverse: &F) -> GameResult<()>
where
F: Fn(Edge) -> bool,
{
// Decrement the remaining frames for the next direction
if let Some((direction, remaining)) = self.next_direction {
if remaining > 0 {
self.next_direction = Some((direction, remaining - 1));
} else {
self.next_direction = None;
}
}
match self.position {
Position::AtNode(node_id) => {
// We're not moving, but a buffered direction is available.
if let Some((next_direction, _)) = self.next_direction {
if let Some(edge) = graph.find_edge_in_direction(node_id, next_direction) {
if can_traverse(edge) {
// Start moving in that direction
self.position = Position::BetweenNodes {
from: node_id,
to: edge.target,
traversed: distance.max(0.0),
};
self.direction = next_direction;
} else {
return Err(crate::error::GameError::Entity(crate::error::EntityError::InvalidMovement(
format!(
"Cannot traverse edge from {} to {} in direction {:?}",
node_id, edge.target, next_direction
),
)));
}
} else {
return Err(crate::error::GameError::Entity(crate::error::EntityError::InvalidMovement(
format!("No edge found in direction {:?} from node {}", next_direction, node_id),
)));
}
self.next_direction = None; // Consume the buffered direction regardless of whether we started moving with it
}
}
Position::BetweenNodes { from, to, traversed } => {
// There is no point in any of the next logic if we don't travel at all
if distance <= 0.0 {
return Ok(());
}
let edge = graph.find_edge(from, to).ok_or_else(|| {
crate::error::GameError::Entity(crate::error::EntityError::InvalidMovement(format!(
"Inconsistent state: Traverser is on a non-existent edge from {} to {}.",
from, to
)))
})?;
let new_traversed = traversed + distance;
if new_traversed < edge.distance {
// Still on the same edge, just update the distance.
self.position = Position::BetweenNodes {
from,
to,
traversed: new_traversed,
};
} else {
let overflow = new_traversed - edge.distance;
let mut moved = false;
// If we buffered a direction, try to find an edge in that direction
if let Some((next_dir, _)) = self.next_direction {
if let Some(edge) = graph.find_edge_in_direction(to, next_dir) {
if can_traverse(edge) {
self.position = Position::BetweenNodes {
from: to,
to: edge.target,
traversed: overflow,
};
self.direction = next_dir; // Remember our new direction
self.next_direction = None; // Consume the buffered direction
moved = true;
}
}
}
// If we didn't move, try to continue in the current direction
if !moved {
if let Some(edge) = graph.find_edge_in_direction(to, self.direction) {
if can_traverse(edge) {
self.position = Position::BetweenNodes {
from: to,
to: edge.target,
traversed: overflow,
};
} else {
self.position = Position::AtNode(to);
self.next_direction = None;
}
} else {
self.position = Position::AtNode(to);
self.next_direction = None;
}
}
}
}
}
Ok(())
}
}

View File

@@ -31,9 +31,6 @@ pub enum GameError {
#[error("Entity error: {0}")]
Entity(#[from] EntityError),
#[error("Game state error: {0}")]
GameState(#[from] GameStateError),
#[error("SDL error: {0}")]
Sdl(String),
@@ -51,6 +48,8 @@ pub enum GameError {
pub enum AssetError {
#[error("IO error: {0}")]
Io(#[from] io::Error),
#[allow(dead_code)]
#[error("Asset not found: {0}")]
NotFound(String),
}
@@ -79,9 +78,6 @@ pub enum ParseError {
/// Errors related to texture operations.
#[derive(thiserror::Error, Debug)]
pub enum TextureError {
#[error("Animated texture error: {0}")]
Animated(#[from] AnimatedTextureError),
#[error("Failed to load texture: {0}")]
LoadFailed(String),
@@ -95,12 +91,6 @@ pub enum TextureError {
RenderFailed(String),
}
#[derive(thiserror::Error, Debug)]
pub enum AnimatedTextureError {
#[error("Frame duration must be positive, got {0}")]
InvalidFrameDuration(f32),
}
/// Errors related to entity operations.
#[derive(thiserror::Error, Debug)]
pub enum EntityError {
@@ -109,18 +99,8 @@ pub enum EntityError {
#[error("Edge not found: from {from} to {to}")]
EdgeNotFound { from: usize, to: usize },
#[error("Invalid movement: {0}")]
InvalidMovement(String),
#[error("Pathfinding failed: {0}")]
PathfindingFailed(String),
}
/// Errors related to game state operations.
#[derive(thiserror::Error, Debug)]
pub enum GameStateError {}
/// Errors related to map operations.
#[derive(thiserror::Error, Debug)]
pub enum MapError {

42
src/events.rs Normal file
View File

@@ -0,0 +1,42 @@
use bevy_ecs::{entity::Entity, event::Event};
use crate::map::direction::Direction;
/// Player input commands that trigger specific game actions.
///
/// Commands are generated by the input system in response to keyboard events
/// and processed by appropriate game systems to modify state or behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum GameCommand {
/// Request immediate game shutdown
Exit,
/// Set Pac-Man's movement direction
MovePlayer(Direction),
/// Cycle through debug visualization modes
ToggleDebug,
/// Toggle audio mute state
MuteAudio,
/// Restart the current level with fresh entity positions and items
ResetLevel,
/// Pause or resume game ticking logic
TogglePause,
}
/// Global events that flow through the ECS event system to coordinate game behavior.
///
/// Events enable loose coupling between systems - input generates commands, collision
/// detection reports overlaps, and various systems respond appropriately without
/// direct dependencies.
#[derive(Event, Clone, Copy, Debug, PartialEq, Eq)]
pub enum GameEvent {
/// Player input command to be processed by relevant game systems
Command(GameCommand),
/// Physical overlap detected between two entities requiring gameplay response
Collision(Entity, Entity),
}
impl From<GameCommand> for GameEvent {
fn from(command: GameCommand) -> Self {
GameEvent::Command(command)
}
}

665
src/game.rs Normal file
View File

@@ -0,0 +1,665 @@
//! This module contains the main game logic and state.
include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
use std::collections::HashMap;
use crate::constants::{self, animation, MapTile, CANVAS_SIZE};
use crate::error::{GameError, GameResult, TextureError};
use crate::events::GameEvent;
use crate::map::builder::Map;
use crate::map::direction::Direction;
use crate::systems::blinking::Blinking;
use crate::systems::components::{GhostAnimation, GhostState, LastAnimationState};
use crate::systems::movement::{BufferedDirection, Position, Velocity};
use crate::systems::profiling::SystemId;
use crate::systems::render::RenderDirty;
use crate::systems::{self, ghost_collision_system, present_system, Hidden, LinearAnimation, MovementModifiers, NodeId};
use crate::systems::{
audio_system, blinking_system, collision_system, debug_render_system, directional_render_system, dirty_render_system,
eaten_ghost_system, ghost_movement_system, ghost_state_system, hud_render_system, item_system, linear_render_system, profile,
render_system, AudioEvent, AudioResource, AudioState, BackbufferResource, Collider, DebugFontResource, DebugState,
DebugTextureResource, DeltaTime, DirectionalAnimation, EntityType, Frozen, Ghost, GhostAnimations, GhostBundle,
GhostCollider, GlobalState, ItemBundle, ItemCollider, MapTextureResource, PacmanCollider, PlayerBundle, PlayerControlled,
Renderable, ScoreResource, StartupSequence, SystemTimings,
};
use crate::texture::animated::{DirectionalTiles, TileSequence};
use crate::texture::sprite::AtlasTile;
use bevy_ecs::event::EventRegistry;
use bevy_ecs::observer::Trigger;
use bevy_ecs::schedule::common_conditions::resource_changed;
use bevy_ecs::schedule::{Condition, IntoScheduleConfigs, Schedule, SystemSet};
use bevy_ecs::system::ResMut;
use bevy_ecs::world::World;
use sdl2::image::LoadTexture;
use sdl2::render::{BlendMode, Canvas, ScaleMode, TextureCreator};
use sdl2::rwops::RWops;
use sdl2::video::{Window, WindowContext};
use sdl2::EventPump;
use crate::{
asset::{get_asset_bytes, Asset},
events::GameCommand,
map::render::MapRenderer,
systems::input::{Bindings, CursorPosition},
texture::sprite::{AtlasMapper, SpriteAtlas},
};
/// System set for all rendering systems to ensure they run after gameplay logic
#[derive(SystemSet, Debug, Hash, PartialEq, Eq, Clone)]
pub struct RenderSet;
/// Core game state manager built on the Bevy ECS architecture.
///
/// Orchestrates all game systems through a centralized `World` containing entities,
/// components, and resources, while a `Schedule` defines system execution order.
/// Handles initialization of graphics resources, entity spawning, and per-frame
/// game logic coordination. SDL2 resources are stored as `NonSend` to respect
/// thread safety requirements while integrating with the ECS.
pub struct Game {
pub world: World,
pub schedule: Schedule,
}
impl Game {
/// Initializes the complete game state including ECS world, graphics, and entity spawning.
///
/// Performs extensive setup: creates render targets and debug textures, loads and parses
/// the sprite atlas, renders the static map to a cached texture, builds the navigation
/// graph from the board layout, spawns Pac-Man with directional animations, creates
/// all four ghosts with their AI behavior, and places collectible items throughout
/// the maze. Registers event types and configures the system execution schedule.
///
/// # Arguments
///
/// * `canvas` - SDL2 rendering context with static lifetime for ECS storage
/// * `texture_creator` - SDL2 texture factory for creating render targets
/// * `event_pump` - SDL2 event polling interface for input handling
///
/// # Errors
///
/// Returns `GameError` for SDL2 failures, asset loading problems, atlas parsing
/// errors, or entity initialization issues.
pub fn new(
canvas: &'static mut Canvas<Window>,
texture_creator: &'static mut TextureCreator<WindowContext>,
event_pump: &'static mut EventPump,
) -> GameResult<Game> {
let ttf_context = Box::leak(Box::new(sdl2::ttf::init().map_err(|e| GameError::Sdl(e.to_string()))?));
let mut backbuffer = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
backbuffer.set_scale_mode(ScaleMode::Nearest);
let mut map_texture = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
map_texture.set_scale_mode(ScaleMode::Nearest);
// Create debug texture at output resolution for crisp debug rendering
let output_size = canvas.output_size().unwrap();
let mut debug_texture = texture_creator
.create_texture_target(None, output_size.0, output_size.1)
.map_err(|e| GameError::Sdl(e.to_string()))?;
// Debug texture is copied over the backbuffer, it requires transparency abilities
debug_texture.set_blend_mode(BlendMode::Blend);
debug_texture.set_scale_mode(ScaleMode::Nearest);
let font_data = get_asset_bytes(Asset::Font)?;
let static_font_data: &'static [u8] = Box::leak(font_data.to_vec().into_boxed_slice());
let font_asset = RWops::from_bytes(static_font_data).map_err(|_| GameError::Sdl("Failed to load font".to_string()))?;
let debug_font = ttf_context
.load_font_from_rwops(font_asset, constants::ui::DEBUG_FONT_SIZE)
.map_err(|e| GameError::Sdl(e.to_string()))?;
// Initialize audio system
let audio = crate::audio::Audio::new();
// Load atlas and create map texture
let atlas_bytes = get_asset_bytes(Asset::AtlasImage)?;
let atlas_texture = texture_creator.load_texture_bytes(&atlas_bytes).map_err(|e| {
if e.to_string().contains("format") || e.to_string().contains("unsupported") {
GameError::Texture(crate::error::TextureError::InvalidFormat(format!(
"Unsupported texture format: {e}"
)))
} else {
GameError::Texture(crate::error::TextureError::LoadFailed(e.to_string()))
}
})?;
let atlas_mapper = AtlasMapper {
frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
};
let mut atlas = SpriteAtlas::new(atlas_texture, atlas_mapper);
// Create map tiles
let mut map_tiles = Vec::with_capacity(35);
for i in 0..35 {
let tile_name = format!("maze/tiles/{}.png", i);
let tile = atlas.get_tile(&tile_name).unwrap();
map_tiles.push(tile);
}
// Render map to texture
canvas
.with_texture_canvas(&mut map_texture, |map_canvas| {
MapRenderer::render_map(map_canvas, &mut atlas, &map_tiles);
})
.map_err(|e| GameError::Sdl(e.to_string()))?;
let map = Map::new(constants::RAW_BOARD)?;
// Create directional animated textures for Pac-Man
let up_moving_tiles = [
SpriteAtlas::get_tile(&atlas, "pacman/up_a.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/up_a.png".to_string())))?,
SpriteAtlas::get_tile(&atlas, "pacman/up_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/up_b.png".to_string())))?,
SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
];
let down_moving_tiles = [
SpriteAtlas::get_tile(&atlas, "pacman/down_a.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/down_a.png".to_string())))?,
SpriteAtlas::get_tile(&atlas, "pacman/down_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/down_b.png".to_string())))?,
SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
];
let left_moving_tiles = [
SpriteAtlas::get_tile(&atlas, "pacman/left_a.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/left_a.png".to_string())))?,
SpriteAtlas::get_tile(&atlas, "pacman/left_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/left_b.png".to_string())))?,
SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
];
let right_moving_tiles = [
SpriteAtlas::get_tile(&atlas, "pacman/right_a.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/right_a.png".to_string())))?,
SpriteAtlas::get_tile(&atlas, "pacman/right_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/right_b.png".to_string())))?,
SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
];
let moving_tiles = DirectionalTiles::new(
TileSequence::new(&up_moving_tiles),
TileSequence::new(&down_moving_tiles),
TileSequence::new(&left_moving_tiles),
TileSequence::new(&right_moving_tiles),
);
let up_stopped_tile = SpriteAtlas::get_tile(&atlas, "pacman/up_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/up_b.png".to_string())))?;
let down_stopped_tile = SpriteAtlas::get_tile(&atlas, "pacman/down_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/down_b.png".to_string())))?;
let left_stopped_tile = SpriteAtlas::get_tile(&atlas, "pacman/left_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/left_b.png".to_string())))?;
let right_stopped_tile = SpriteAtlas::get_tile(&atlas, "pacman/right_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/right_b.png".to_string())))?;
let stopped_tiles = DirectionalTiles::new(
TileSequence::new(&[up_stopped_tile]),
TileSequence::new(&[down_stopped_tile]),
TileSequence::new(&[left_stopped_tile]),
TileSequence::new(&[right_stopped_tile]),
);
let player = PlayerBundle {
player: PlayerControlled,
position: Position::Stopped {
node: map.start_positions.pacman,
},
velocity: Velocity {
speed: constants::mechanics::PLAYER_SPEED,
direction: Direction::Left,
},
movement_modifiers: MovementModifiers::default(),
buffered_direction: BufferedDirection::None,
sprite: Renderable {
sprite: SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
layer: 0,
},
directional_animation: DirectionalAnimation::new(moving_tiles, stopped_tiles, 5),
entity_type: EntityType::Player,
collider: Collider {
size: constants::collider::PLAYER_GHOST_SIZE,
},
pacman_collider: PacmanCollider,
};
let mut world = World::default();
let mut schedule = Schedule::default();
EventRegistry::register_event::<GameError>(&mut world);
EventRegistry::register_event::<GameEvent>(&mut world);
EventRegistry::register_event::<AudioEvent>(&mut world);
world.insert_resource(Self::create_ghost_animations(&atlas)?);
world.insert_resource(map);
world.insert_resource(GlobalState { exit: false });
world.insert_resource(ScoreResource(0));
world.insert_resource(SystemTimings::default());
world.insert_resource(Bindings::default());
world.insert_resource(DeltaTime(0f32));
world.insert_resource(RenderDirty::default());
world.insert_resource(DebugState::default());
world.insert_resource(AudioState::default());
world.insert_resource(CursorPosition::default());
world.insert_resource(StartupSequence::new(
constants::startup::STARTUP_FRAMES,
constants::startup::STARTUP_TICKS_PER_FRAME,
));
world.insert_non_send_resource(atlas);
world.insert_non_send_resource(event_pump);
world.insert_non_send_resource(canvas);
world.insert_non_send_resource(BackbufferResource(backbuffer));
world.insert_non_send_resource(MapTextureResource(map_texture));
world.insert_non_send_resource(DebugTextureResource(debug_texture));
world.insert_non_send_resource(DebugFontResource(debug_font));
world.insert_non_send_resource(AudioResource(audio));
world.add_observer(
|event: Trigger<GameEvent>, mut state: ResMut<GlobalState>, _score: ResMut<ScoreResource>| {
if matches!(*event, GameEvent::Command(GameCommand::Exit)) {
state.exit = true;
}
},
);
let input_system = profile(SystemId::Input, systems::input::input_system);
let player_control_system = profile(SystemId::PlayerControls, systems::player_control_system);
let player_movement_system = profile(SystemId::PlayerMovement, systems::player_movement_system);
let startup_stage_system = profile(SystemId::Stage, systems::startup_stage_system);
let player_tunnel_slowdown_system = profile(SystemId::PlayerMovement, systems::player::player_tunnel_slowdown_system);
let ghost_movement_system = profile(SystemId::Ghost, ghost_movement_system);
let collision_system = profile(SystemId::Collision, collision_system);
let ghost_collision_system = profile(SystemId::GhostCollision, ghost_collision_system);
let item_system = profile(SystemId::Item, item_system);
let audio_system = profile(SystemId::Audio, audio_system);
let blinking_system = profile(SystemId::Blinking, blinking_system);
let directional_render_system = profile(SystemId::DirectionalRender, directional_render_system);
let linear_render_system = profile(SystemId::LinearRender, linear_render_system);
let dirty_render_system = profile(SystemId::DirtyRender, dirty_render_system);
let render_system = profile(SystemId::Render, render_system);
let hud_render_system = profile(SystemId::HudRender, hud_render_system);
let debug_render_system = profile(SystemId::DebugRender, debug_render_system);
let present_system = profile(SystemId::Present, present_system);
let unified_ghost_state_system = profile(SystemId::GhostStateAnimation, ghost_state_system);
let forced_dirty_system = |mut dirty: ResMut<RenderDirty>| {
dirty.0 = true;
};
schedule.add_systems((
forced_dirty_system.run_if(resource_changed::<ScoreResource>.or(resource_changed::<StartupSequence>)),
(
input_system,
player_control_system,
player_movement_system,
startup_stage_system,
)
.chain(),
player_tunnel_slowdown_system,
ghost_movement_system,
profile(SystemId::EatenGhost, eaten_ghost_system),
unified_ghost_state_system,
(collision_system, ghost_collision_system, item_system).chain(),
audio_system,
blinking_system,
(
directional_render_system,
linear_render_system,
dirty_render_system,
render_system,
hud_render_system,
debug_render_system,
present_system,
)
.chain(),
));
// Spawn player and attach initial state bundle
world.spawn(player).insert((Frozen, Hidden));
// Spawn ghosts
Self::spawn_ghosts(&mut world)?;
let pellet_sprite = SpriteAtlas::get_tile(world.non_send_resource::<SpriteAtlas>(), "maze/pellet.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("maze/pellet.png".to_string())))?;
let energizer_sprite = SpriteAtlas::get_tile(world.non_send_resource::<SpriteAtlas>(), "maze/energizer.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("maze/energizer.png".to_string())))?;
// Build a list of item entities to spawn from the map
let nodes: Vec<(NodeId, EntityType, AtlasTile, f32)> = world
.resource::<Map>()
.iter_nodes()
.filter_map(|(id, tile)| match tile {
MapTile::Pellet => Some((*id, EntityType::Pellet, pellet_sprite, constants::collider::PELLET_SIZE)),
MapTile::PowerPellet => Some((
*id,
EntityType::PowerPellet,
energizer_sprite,
constants::collider::POWER_PELLET_SIZE,
)),
_ => None,
})
.collect();
// Construct and spawn the item entities
for (id, item_type, sprite, size) in nodes {
let mut item = world.spawn(ItemBundle {
position: Position::Stopped { node: id },
sprite: Renderable { sprite, layer: 1 },
entity_type: item_type,
collider: Collider { size },
item_collider: ItemCollider,
});
// Make power pellets blink
if item_type == EntityType::PowerPellet {
item.insert((Frozen, Blinking::new(constants::ui::POWER_PELLET_BLINK_RATE)));
}
}
Ok(Game { world, schedule })
}
/// Creates and spawns all four ghosts with unique AI personalities and directional animations.
///
/// # Errors
///
/// Returns `GameError::Texture` if any ghost sprite cannot be found in the atlas,
/// typically indicating missing or misnamed sprite files.
fn spawn_ghosts(world: &mut World) -> GameResult<()> {
// Extract the data we need first to avoid borrow conflicts
let ghost_start_positions = {
let map = world.resource::<Map>();
[
(Ghost::Blinky, map.start_positions.blinky),
(Ghost::Pinky, map.start_positions.pinky),
(Ghost::Inky, map.start_positions.inky),
(Ghost::Clyde, map.start_positions.clyde),
]
};
for (ghost_type, start_node) in ghost_start_positions {
// Create the ghost bundle in a separate scope to manage borrows
let ghost = {
let animations = *world.resource::<GhostAnimations>().get_normal(&ghost_type).unwrap();
let atlas = world.non_send_resource::<SpriteAtlas>();
GhostBundle {
ghost: ghost_type,
position: Position::Stopped { node: start_node },
velocity: Velocity {
speed: ghost_type.base_speed(),
direction: Direction::Left,
},
sprite: Renderable {
sprite: SpriteAtlas::get_tile(atlas, &format!("ghost/{}/left_a.png", ghost_type.as_str())).ok_or_else(
|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/left_a.png",
ghost_type.as_str()
)))
},
)?,
layer: 0,
},
directional_animation: animations,
entity_type: EntityType::Ghost,
collider: Collider {
size: constants::collider::PLAYER_GHOST_SIZE,
},
ghost_collider: GhostCollider,
ghost_state: GhostState::Normal,
last_animation_state: LastAnimationState(GhostAnimation::Normal),
}
};
world.spawn(ghost).insert((Frozen, Hidden));
}
Ok(())
}
fn create_ghost_animations(atlas: &SpriteAtlas) -> GameResult<GhostAnimations> {
// Eaten (eyes) animations - single tile per direction
let up_eye = atlas
.get_tile("ghost/eyes/up.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("ghost/eyes/up.png".to_string())))?;
let down_eye = atlas
.get_tile("ghost/eyes/down.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("ghost/eyes/down.png".to_string())))?;
let left_eye = atlas
.get_tile("ghost/eyes/left.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("ghost/eyes/left.png".to_string())))?;
let right_eye = atlas
.get_tile("ghost/eyes/right.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("ghost/eyes/right.png".to_string())))?;
let eyes_tiles = DirectionalTiles::new(
TileSequence::new(&[up_eye]),
TileSequence::new(&[down_eye]),
TileSequence::new(&[left_eye]),
TileSequence::new(&[right_eye]),
);
let eyes = DirectionalAnimation::new(eyes_tiles, eyes_tiles, animation::GHOST_EATEN_SPEED);
let mut animations = HashMap::new();
for ghost_type in [Ghost::Blinky, Ghost::Pinky, Ghost::Inky, Ghost::Clyde] {
// Normal animations - create directional tiles for each direction
let up_tiles = [
atlas
.get_tile(&format!("ghost/{}/up_a.png", ghost_type.as_str()))
.ok_or_else(|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/up_a.png",
ghost_type.as_str()
)))
})?,
atlas
.get_tile(&format!("ghost/{}/up_b.png", ghost_type.as_str()))
.ok_or_else(|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/up_b.png",
ghost_type.as_str()
)))
})?,
];
let down_tiles = [
atlas
.get_tile(&format!("ghost/{}/down_a.png", ghost_type.as_str()))
.ok_or_else(|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/down_a.png",
ghost_type.as_str()
)))
})?,
atlas
.get_tile(&format!("ghost/{}/down_b.png", ghost_type.as_str()))
.ok_or_else(|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/down_b.png",
ghost_type.as_str()
)))
})?,
];
let left_tiles = [
atlas
.get_tile(&format!("ghost/{}/left_a.png", ghost_type.as_str()))
.ok_or_else(|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/left_a.png",
ghost_type.as_str()
)))
})?,
atlas
.get_tile(&format!("ghost/{}/left_b.png", ghost_type.as_str()))
.ok_or_else(|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/left_b.png",
ghost_type.as_str()
)))
})?,
];
let right_tiles = [
atlas
.get_tile(&format!("ghost/{}/right_a.png", ghost_type.as_str()))
.ok_or_else(|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/right_a.png",
ghost_type.as_str()
)))
})?,
atlas
.get_tile(&format!("ghost/{}/right_b.png", ghost_type.as_str()))
.ok_or_else(|| {
GameError::Texture(TextureError::AtlasTileNotFound(format!(
"ghost/{}/right_b.png",
ghost_type.as_str()
)))
})?,
];
let normal_moving = DirectionalTiles::new(
TileSequence::new(&up_tiles),
TileSequence::new(&down_tiles),
TileSequence::new(&left_tiles),
TileSequence::new(&right_tiles),
);
let normal = DirectionalAnimation::new(normal_moving, normal_moving, animation::GHOST_NORMAL_SPEED);
animations.insert(ghost_type, normal);
}
let (frightened, frightened_flashing) = {
// Load frightened animation tiles (same for all ghosts)
let frightened_blue_a = atlas
.get_tile("ghost/frightened/blue_a.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("ghost/frightened/blue_a.png".to_string())))?;
let frightened_blue_b = atlas
.get_tile("ghost/frightened/blue_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("ghost/frightened/blue_b.png".to_string())))?;
let frightened_white_a = atlas
.get_tile("ghost/frightened/white_a.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("ghost/frightened/white_a.png".to_string())))?;
let frightened_white_b = atlas
.get_tile("ghost/frightened/white_b.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("ghost/frightened/white_b.png".to_string())))?;
(
LinearAnimation::new(
TileSequence::new(&[frightened_blue_a, frightened_blue_b]),
animation::GHOST_NORMAL_SPEED,
),
LinearAnimation::new(
TileSequence::new(&[frightened_blue_a, frightened_white_a, frightened_blue_b, frightened_white_b]),
animation::GHOST_FRIGHTENED_SPEED,
),
)
};
Ok(GhostAnimations::new(animations, eyes, frightened, frightened_flashing))
}
/// Executes one frame of game logic by running all scheduled ECS systems.
///
/// Updates the world's delta time resource and runs the complete system pipeline:
/// input processing, entity movement, collision detection, item collection,
/// audio playback, animation updates, and rendering. Each system operates on
/// relevant entities and modifies world state, with the schedule ensuring
/// proper execution order and data dependencies.
///
/// # Arguments
///
/// * `dt` - Frame delta time in seconds for time-based animations and movement
///
/// # Returns
///
/// `true` if the game should terminate (exit command received), `false` to continue
pub fn tick(&mut self, dt: f32) -> bool {
self.world.insert_resource(DeltaTime(dt));
// Run all systems
self.schedule.run(&mut self.world);
let state = self
.world
.get_resource::<GlobalState>()
.expect("GlobalState could not be acquired");
state.exit
}
// /// Renders pathfinding debug lines from each ghost to Pac-Man.
// ///
// /// Each ghost's path is drawn in its respective color with a small offset
// /// to prevent overlapping lines.
// fn render_pathfinding_debug<T: sdl2::render::RenderTarget>(&self, canvas: &mut Canvas<T>) -> GameResult<()> {
// let pacman_node = self.state.pacman.current_node_id();
// for ghost in self.state.ghosts.iter() {
// if let Ok(path) = ghost.calculate_path_to_target(&self.state.map.graph, pacman_node) {
// if path.len() < 2 {
// continue; // Skip if path is too short
// }
// // Set the ghost's color
// canvas.set_draw_color(ghost.debug_color());
// // Calculate offset based on ghost index to prevent overlapping lines
// // let offset = (i as f32) * 2.0 - 3.0; // Offset range: -3.0 to 3.0
// // Calculate a consistent offset direction for the entire path
// // let first_node = self.map.graph.get_node(path[0]).unwrap();
// // let last_node = self.map.graph.get_node(path[path.len() - 1]).unwrap();
// // Use the overall direction from start to end to determine the perpendicular offset
// let offset = match ghost.ghost_type {
// GhostType::Blinky => glam::Vec2::new(0.25, 0.5),
// GhostType::Pinky => glam::Vec2::new(-0.25, -0.25),
// GhostType::Inky => glam::Vec2::new(0.5, -0.5),
// GhostType::Clyde => glam::Vec2::new(-0.5, 0.25),
// } * 5.0;
// // Calculate offset positions for all nodes using the same perpendicular direction
// let mut offset_positions = Vec::new();
// for &node_id in &path {
// let node = self
// .state
// .map
// .graph
// .get_node(node_id)
// .ok_or(crate::error::EntityError::NodeNotFound(node_id))?;
// let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
// offset_positions.push(pos + offset);
// }
// // Draw lines between the offset positions
// for window in offset_positions.windows(2) {
// if let (Some(from), Some(to)) = (window.first(), window.get(1)) {
// // Skip if the distance is too far (used for preventing lines between tunnel portals)
// if from.distance_squared(*to) > (crate::constants::CELL_SIZE * 16).pow(2) as f32 {
// continue;
// }
// // Draw the line
// canvas
// .draw_line((from.x as i32, from.y as i32), (to.x as i32, to.y as i32))
// .map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
// }
// }
// }
// }
// Ok(())
// }
}

View File

@@ -1,14 +0,0 @@
use bevy_ecs::event::Event;
use crate::input::commands::GameCommand;
#[derive(Debug, Clone, Copy, Event)]
pub enum GameEvent {
Command(GameCommand),
}
impl From<GameCommand> for GameEvent {
fn from(command: GameCommand) -> Self {
GameEvent::Command(command)
}
}

View File

@@ -1,528 +0,0 @@
//! This module contains the main game logic and state.
include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
use crate::constants::CANVAS_SIZE;
use crate::ecs::interact::{interact_system, movement_system};
use crate::ecs::render::{directional_render_system, render_system, BackbufferResource, MapTextureResource};
use crate::ecs::{DeltaTime, DirectionalAnimated, GlobalState, PlayerBundle, PlayerControlled, Position, Renderable, Velocity};
use crate::entity::direction::Direction;
use crate::entity::{graph, traversal};
use crate::error::{GameError, GameResult, TextureError};
use crate::input::commands::GameCommand;
use crate::map::builder::Map;
use crate::texture::animated::AnimatedTexture;
use crate::texture::directional::DirectionalAnimatedTexture;
use crate::texture::sprite::Sprite;
use bevy_ecs::event::EventRegistry;
use bevy_ecs::observer::Trigger;
use bevy_ecs::schedule::IntoScheduleConfigs;
use bevy_ecs::system::{Commands, ResMut};
use bevy_ecs::{schedule::Schedule, world::World};
use sdl2::image::LoadTexture;
use sdl2::render::{Canvas, ScaleMode, Texture, TextureCreator};
use sdl2::video::{Window, WindowContext};
use sdl2::EventPump;
use crate::asset::{get_asset_bytes, Asset};
use crate::input::{handle_input, Bindings};
use crate::map::render::MapRenderer;
use crate::{
constants,
texture::sprite::{AtlasMapper, AtlasTile, SpriteAtlas},
};
use self::events::GameEvent;
pub mod events;
pub mod state;
/// The `Game` struct is the main entry point for the game.
///
/// It contains the game's state and logic, and is responsible for
/// handling user input, updating the game state, and rendering the game.
pub struct Game {
pub world: World,
pub schedule: Schedule,
}
impl Game {
pub fn new(
canvas: &'static mut Canvas<Window>,
texture_creator: &'static mut TextureCreator<WindowContext>,
event_pump: &'static mut EventPump,
) -> GameResult<Game> {
let mut world = World::default();
let mut schedule = Schedule::default();
EventRegistry::register_event::<GameError>(&mut world);
EventRegistry::register_event::<GameEvent>(&mut world);
let mut backbuffer = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
backbuffer.set_scale_mode(ScaleMode::Nearest);
let mut map_texture = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
map_texture.set_scale_mode(ScaleMode::Nearest);
// Load atlas and create map texture
let atlas_bytes = get_asset_bytes(Asset::Atlas)?;
let atlas_texture = texture_creator.load_texture_bytes(&atlas_bytes).map_err(|e| {
if e.to_string().contains("format") || e.to_string().contains("unsupported") {
GameError::Texture(crate::error::TextureError::InvalidFormat(format!(
"Unsupported texture format: {e}"
)))
} else {
GameError::Texture(crate::error::TextureError::LoadFailed(e.to_string()))
}
})?;
let atlas_mapper = AtlasMapper {
frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
};
let mut atlas = SpriteAtlas::new(atlas_texture, atlas_mapper);
// Create map tiles
let mut map_tiles = Vec::with_capacity(35);
for i in 0..35 {
let tile_name = format!("maze/tiles/{}.png", i);
let tile = atlas.get_tile(&tile_name).unwrap();
map_tiles.push(tile);
}
// Render map to texture
canvas
.with_texture_canvas(&mut map_texture, |map_canvas| {
MapRenderer::render_map(map_canvas, &mut atlas, &mut map_tiles);
})
.map_err(|e| GameError::Sdl(e.to_string()))?;
let map = Map::new(constants::RAW_BOARD)?;
let pacman_start_node = map.start_positions.pacman;
let mut textures = [None, None, None, None];
let mut stopped_textures = [None, None, None, None];
for direction in Direction::DIRECTIONS {
let moving_prefix = match direction {
Direction::Up => "pacman/up",
Direction::Down => "pacman/down",
Direction::Left => "pacman/left",
Direction::Right => "pacman/right",
};
let moving_tiles = vec![
SpriteAtlas::get_tile(&atlas, &format!("{moving_prefix}_a.png"))
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_a.png"))))?,
SpriteAtlas::get_tile(&atlas, &format!("{moving_prefix}_b.png"))
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?,
SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
];
let stopped_tiles = vec![SpriteAtlas::get_tile(&atlas, &format!("{moving_prefix}_b.png"))
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound(format!("{moving_prefix}_b.png"))))?];
textures[direction.as_usize()] = Some(AnimatedTexture::new(moving_tiles, 0.08)?);
stopped_textures[direction.as_usize()] = Some(AnimatedTexture::new(stopped_tiles, 0.1)?);
}
let player = PlayerBundle {
player: PlayerControlled,
position: Position::AtNode(pacman_start_node),
velocity: Velocity {
direction: Direction::Up,
next_direction: None,
speed: Some(1.0),
},
sprite: Renderable {
sprite: SpriteAtlas::get_tile(&atlas, "pacman/full.png")
.ok_or_else(|| GameError::Texture(TextureError::AtlasTileNotFound("pacman/full.png".to_string())))?,
layer: 0,
},
directional_animated: DirectionalAnimated {
textures,
stopped_textures,
},
};
world.insert_non_send_resource(atlas);
world.insert_non_send_resource(event_pump);
world.insert_non_send_resource(canvas);
world.insert_non_send_resource(BackbufferResource(backbuffer));
world.insert_non_send_resource(MapTextureResource(map_texture));
world.insert_resource(map);
world.insert_resource(GlobalState { exit: false });
world.insert_resource(Bindings::default());
world.insert_resource(DeltaTime(0f32));
world.add_observer(|event: Trigger<GameEvent>, mut state: ResMut<GlobalState>| match *event {
GameEvent::Command(command) => match command {
GameCommand::Exit => {
state.exit = true;
}
_ => {}
},
});
schedule.add_systems(
(
handle_input,
interact_system,
movement_system,
directional_render_system,
render_system,
)
.chain(),
);
// Spawn player
world.spawn(player);
Ok(Game { world, schedule })
}
// fn handle_command(&mut self, command: crate::input::commands::GameCommand) {
// use crate::input::commands::GameCommand;
// match command {
// GameCommand::MovePlayer(direction) => {
// self.state.pacman.set_next_direction(direction);
// }
// GameCommand::ToggleDebug => {
// self.toggle_debug_mode();
// }
// GameCommand::MuteAudio => {
// let is_muted = self.state.audio.is_muted();
// self.state.audio.set_mute(!is_muted);
// }
// GameCommand::ResetLevel => {
// if let Err(e) = self.reset_game_state() {
// tracing::error!("Failed to reset game state: {}", e);
// }
// }
// GameCommand::TogglePause => {
// self.state.paused = !self.state.paused;
// }
// GameCommand::Exit => {}
// }
// }
// fn process_events(&mut self) {
// while let Some(event) = self.state.event_queue.pop_front() {
// match event {
// GameEvent::Command(command) => self.handle_command(command),
// }
// }
// }
// /// Resets the game state, randomizing ghost positions and resetting Pac-Man
// fn reset_game_state(&mut self) -> GameResult<()> {
// let pacman_start_node = self.state.map.start_positions.pacman;
// self.state.pacman = Pacman::new(&self.state.map.graph, pacman_start_node, &self.state.atlas)?;
// // Reset items
// self.state.items = self.state.map.generate_items(&self.state.atlas)?;
// // Randomize ghost positions
// let ghost_types = [GhostType::Blinky, GhostType::Pinky, GhostType::Inky, GhostType::Clyde];
// let mut rng = SmallRng::from_os_rng();
// for (i, ghost) in self.state.ghosts.iter_mut().enumerate() {
// let random_node = rng.random_range(0..self.state.map.graph.node_count());
// *ghost = Ghost::new(&self.state.map.graph, random_node, ghost_types[i], &self.state.atlas)?;
// }
// // Reset collision system
// self.state.collision_system = CollisionSystem::default();
// // Re-register Pac-Man
// self.state.pacman_id = self.state.collision_system.register_entity(self.state.pacman.position());
// // Re-register items
// self.state.item_ids.clear();
// for item in &self.state.items {
// let item_id = self.state.collision_system.register_entity(item.position());
// self.state.item_ids.push(item_id);
// }
// // Re-register ghosts
// self.state.ghost_ids.clear();
// for ghost in &self.state.ghosts {
// let ghost_id = self.state.collision_system.register_entity(ghost.position());
// self.state.ghost_ids.push(ghost_id);
// }
// Ok(())
// }
/// Ticks the game state.
///
/// Returns true if the game should exit.
pub fn tick(&mut self, dt: f32) -> bool {
self.world.insert_resource(DeltaTime(dt));
// Run all systems
self.schedule.run(&mut self.world);
let state = self
.world
.get_resource::<GlobalState>()
.expect("GlobalState could not be acquired");
return state.exit;
// // Process any events that have been posted (such as unpausing)
// self.process_events();
// // If the game is paused, we don't need to do anything beyond returning
// if self.state.paused {
// return false;
// }
// self.schedule.run(&mut self.world);
// self.state.pacman.tick(dt, &self.state.map.graph);
// // Update all ghosts
// for ghost in &mut self.state.ghosts {
// ghost.tick(dt, &self.state.map.graph);
// }
// // Update collision system positions
// self.update_collision_positions();
// // Check for collisions
// self.check_collisions();
}
// /// Toggles the debug mode on and off.
// ///
// /// When debug mode is enabled, the game will render additional information
// /// that is useful for debugging, such as the collision grid and entity paths.
// pub fn toggle_debug_mode(&mut self) {
// self.state.debug_mode = !self.state.debug_mode;
// }
// fn update_collision_positions(&mut self) {
// // Update Pac-Man's position
// self.state
// .collision_system
// .update_position(self.state.pacman_id, self.state.pacman.position());
// // Update ghost positions
// for (ghost, &ghost_id) in self.state.ghosts.iter().zip(&self.state.ghost_ids) {
// self.state.collision_system.update_position(ghost_id, ghost.position());
// }
// }
// fn check_collisions(&mut self) {
// // Check Pac-Man vs Items
// let potential_collisions = self
// .state
// .collision_system
// .potential_collisions(&self.state.pacman.position());
// for entity_id in potential_collisions {
// if entity_id != self.state.pacman_id {
// // Check if this is an item collision
// if let Some(item_index) = self.find_item_by_id(entity_id) {
// let item = &mut self.state.items[item_index];
// if !item.is_collected() {
// item.collect();
// self.state.score += item.get_score();
// self.state.audio.eat();
// // Handle energizer effects
// if matches!(item.item_type, crate::entity::item::ItemType::Energizer) {
// // TODO: Make ghosts frightened
// tracing::info!("Energizer collected! Ghosts should become frightened.");
// }
// }
// }
// // Check if this is a ghost collision
// if let Some(_ghost_index) = self.find_ghost_by_id(entity_id) {
// // TODO: Handle Pac-Man being eaten by ghost
// tracing::info!("Pac-Man collided with ghost!");
// }
// }
// }
// }
// fn find_item_by_id(&self, entity_id: EntityId) -> Option<usize> {
// self.state.item_ids.iter().position(|&id| id == entity_id)
// }
// fn find_ghost_by_id(&self, entity_id: EntityId) -> Option<usize> {
// self.state.ghost_ids.iter().position(|&id| id == entity_id)
// }
// pub fn draw<T: sdl2::render::RenderTarget>(&mut self, canvas: &mut Canvas<T>, backbuffer: &mut Texture) -> GameResult<()> {
// // Only render the map texture once and cache it
// if !self.state.map_rendered {
// let mut map_texture = self
// .state
// .texture_creator
// .create_texture_target(None, constants::CANVAS_SIZE.x, constants::CANVAS_SIZE.y)
// .map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
// canvas
// .with_texture_canvas(&mut map_texture, |map_canvas| {
// let mut map_tiles = Vec::with_capacity(35);
// for i in 0..35 {
// let tile_name = format!("maze/tiles/{}.png", i);
// let tile = SpriteAtlas::get_tile(&self.state.atlas, &tile_name).unwrap();
// map_tiles.push(tile);
// }
// MapRenderer::render_map(map_canvas, &mut self.state.atlas, &mut map_tiles);
// })
// .map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
// self.state.map_texture = Some(map_texture);
// self.state.map_rendered = true;
// }
// canvas.set_draw_color(Color::BLACK);
// canvas.clear();
// if let Some(ref map_texture) = self.state.map_texture {
// canvas.copy(map_texture, None, None).unwrap();
// }
// // Render all items
// for item in &self.state.items {
// if let Err(e) = item.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
// tracing::error!("Failed to render item: {}", e);
// }
// }
// // Render all ghosts
// for ghost in &self.state.ghosts {
// if let Err(e) = ghost.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
// tracing::error!("Failed to render ghost: {}", e);
// }
// }
// if let Err(e) = self.state.pacman.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
// tracing::error!("Failed to render pacman: {}", e);
// }
// if self.state.debug_mode {
// if let Err(e) =
// self.state
// .map
// .debug_render_with_cursor(canvas, &mut self.state.text_texture, &mut self.state.atlas, cursor_pos)
// {
// tracing::error!("Failed to render debug cursor: {}", e);
// }
// self.render_pathfinding_debug(canvas)?;
// }
// self.draw_hud(canvas)?;
// canvas.present();
// Ok(())
// }
// /// Renders pathfinding debug lines from each ghost to Pac-Man.
// ///
// /// Each ghost's path is drawn in its respective color with a small offset
// /// to prevent overlapping lines.
// fn render_pathfinding_debug<T: sdl2::render::RenderTarget>(&self, canvas: &mut Canvas<T>) -> GameResult<()> {
// let pacman_node = self.state.pacman.current_node_id();
// for ghost in self.state.ghosts.iter() {
// if let Ok(path) = ghost.calculate_path_to_target(&self.state.map.graph, pacman_node) {
// if path.len() < 2 {
// continue; // Skip if path is too short
// }
// // Set the ghost's color
// canvas.set_draw_color(ghost.debug_color());
// // Calculate offset based on ghost index to prevent overlapping lines
// // let offset = (i as f32) * 2.0 - 3.0; // Offset range: -3.0 to 3.0
// // Calculate a consistent offset direction for the entire path
// // let first_node = self.map.graph.get_node(path[0]).unwrap();
// // let last_node = self.map.graph.get_node(path[path.len() - 1]).unwrap();
// // Use the overall direction from start to end to determine the perpendicular offset
// let offset = match ghost.ghost_type {
// GhostType::Blinky => glam::Vec2::new(0.25, 0.5),
// GhostType::Pinky => glam::Vec2::new(-0.25, -0.25),
// GhostType::Inky => glam::Vec2::new(0.5, -0.5),
// GhostType::Clyde => glam::Vec2::new(-0.5, 0.25),
// } * 5.0;
// // Calculate offset positions for all nodes using the same perpendicular direction
// let mut offset_positions = Vec::new();
// for &node_id in &path {
// let node = self
// .state
// .map
// .graph
// .get_node(node_id)
// .ok_or(crate::error::EntityError::NodeNotFound(node_id))?;
// let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
// offset_positions.push(pos + offset);
// }
// // Draw lines between the offset positions
// for window in offset_positions.windows(2) {
// if let (Some(from), Some(to)) = (window.first(), window.get(1)) {
// // Skip if the distance is too far (used for preventing lines between tunnel portals)
// if from.distance_squared(*to) > (crate::constants::CELL_SIZE * 16).pow(2) as f32 {
// continue;
// }
// // Draw the line
// canvas
// .draw_line((from.x as i32, from.y as i32), (to.x as i32, to.y as i32))
// .map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
// }
// }
// }
// }
// Ok(())
// }
// fn draw_hud<T: sdl2::render::RenderTarget>(&mut self, canvas: &mut Canvas<T>) -> GameResult<()> {
// let lives = 3;
// let score_text = format!("{:02}", self.state.score);
// let x_offset = 4;
// let y_offset = 2;
// let lives_offset = 3;
// let score_offset = 7 - (score_text.len() as i32);
// self.state.text_texture.set_scale(1.0);
// if let Err(e) = self.state.text_texture.render(
// canvas,
// &mut self.state.atlas,
// &format!("{lives}UP HIGH SCORE "),
// glam::UVec2::new(8 * lives_offset as u32 + x_offset, y_offset),
// ) {
// tracing::error!("Failed to render HUD text: {}", e);
// }
// if let Err(e) = self.state.text_texture.render(
// canvas,
// &mut self.state.atlas,
// &score_text,
// glam::UVec2::new(8 * score_offset as u32 + x_offset, 8 + y_offset),
// ) {
// tracing::error!("Failed to render score text: {}", e);
// }
// // Display FPS information in top-left corner
// // let fps_text = format!("FPS: {:.1} (1s) / {:.1} (10s)", self.fps_1s, self.fps_10s);
// // self.render_text_on(
// // canvas,
// // &*texture_creator,
// // &fps_text,
// // IVec2::new(10, 10),
// // Color::RGB(255, 255, 0), // Yellow color for FPS display
// // );
// Ok(())
// }
}

View File

@@ -1,153 +0,0 @@
// use std::collections::VecDeque;
// use sdl2::{
// image::LoadTexture,
// render::{Texture, TextureCreator},
// video::WindowContext,
// };
// use smallvec::SmallVec;
// use crate::{
// asset::{get_asset_bytes, Asset},
// audio::Audio,
// constants::RAW_BOARD,
// entity::{
// collision::{Collidable, CollisionSystem, EntityId},
// ghost::{Ghost, GhostType},
// item::Item,
// pacman::Pacman,
// },
// error::{GameError, GameResult, TextureError},
// game::events::GameEvent,
// map::builder::Map,
// texture::{
// sprite::{AtlasMapper, SpriteAtlas},
// text::TextTexture,
// },
// };
// include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
// /// The `GameState` struct holds all the essential data for the game.
// ///
// /// This includes the score, map, entities (Pac-Man, ghosts, items),
// /// collision system, and rendering resources. By centralizing the game's state,
// /// we can cleanly separate it from the game's logic, making it easier to manage
// /// and reason about.
// pub struct GameState {
// pub paused: bool,
// pub score: u32,
// pub map: Map,
// pub pacman: Pacman,
// pub pacman_id: EntityId,
// pub ghosts: SmallVec<[Ghost; 4]>,
// pub ghost_ids: SmallVec<[EntityId; 4]>,
// pub items: Vec<Item>,
// pub item_ids: Vec<EntityId>,
// pub debug_mode: bool,
// pub event_queue: VecDeque<GameEvent>,
// // Collision system
// pub(crate) collision_system: CollisionSystem,
// // Rendering resources
// pub(crate) atlas: SpriteAtlas,
// pub(crate) text_texture: TextTexture,
// // Audio
// pub audio: Audio,
// // Map texture pre-rendering
// pub(crate) map_texture: Option<Texture<'static>>,
// pub(crate) map_rendered: bool,
// pub(crate) texture_creator: &'static TextureCreator<WindowContext>,
// }
// impl GameState {
// /// Creates a new `GameState` by initializing all the game's data.
// ///
// /// This function sets up the map, Pac-Man, ghosts, items, collision system,
// /// and all rendering resources required to start the game. It returns a `GameResult`
// /// to handle any potential errors during initialization.
// pub fn new(texture_creator: &'static TextureCreator<WindowContext>) -> GameResult<Self> {
// let map = Map::new(RAW_BOARD)?;
// let start_node = map.start_positions.pacman;
// let atlas_bytes = get_asset_bytes(Asset::Atlas)?;
// let atlas_texture = texture_creator.load_texture_bytes(&atlas_bytes).map_err(|e| {
// if e.to_string().contains("format") || e.to_string().contains("unsupported") {
// GameError::Texture(TextureError::InvalidFormat(format!("Unsupported texture format: {e}")))
// } else {
// GameError::Texture(TextureError::LoadFailed(e.to_string()))
// }
// })?;
// let atlas_mapper = AtlasMapper {
// frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
// };
// let atlas = SpriteAtlas::new(atlas_texture, atlas_mapper);
// let text_texture = TextTexture::new(1.0);
// let audio = Audio::new();
// let pacman = Pacman::new(&map.graph, start_node, &atlas)?;
// // Generate items (pellets and energizers)
// let items = map.generate_items(&atlas)?;
// // Initialize collision system
// let mut collision_system = CollisionSystem::default();
// // Register Pac-Man
// let pacman_id = collision_system.register_entity(pacman.position());
// // Register items
// let item_ids = items
// .iter()
// .map(|item| collision_system.register_entity(item.position()))
// .collect();
// // Create and register ghosts
// let ghosts = [GhostType::Blinky, GhostType::Pinky, GhostType::Inky, GhostType::Clyde]
// .iter()
// .zip(
// [
// map.start_positions.blinky,
// map.start_positions.pinky,
// map.start_positions.inky,
// map.start_positions.clyde,
// ]
// .iter(),
// )
// .map(|(ghost_type, start_node)| Ghost::new(&map.graph, *start_node, *ghost_type, &atlas))
// .collect::<GameResult<SmallVec<[_; 4]>>>()?;
// // Register ghosts
// let ghost_ids = ghosts
// .iter()
// .map(|ghost| collision_system.register_entity(ghost.position()))
// .collect();
// Ok(Self {
// paused: false,
// map,
// atlas,
// pacman,
// pacman_id,
// ghosts,
// ghost_ids,
// items,
// item_ids,
// text_texture,
// audio,
// score: 0,
// debug_mode: false,
// collision_system,
// map_texture: None,
// map_rendered: false,
// texture_creator,
// event_queue: VecDeque::new(),
// })
// }
// }

View File

@@ -1,10 +0,0 @@
use glam::{IVec2, UVec2};
use sdl2::rect::Rect;
pub fn centered_with_size(pixel_pos: IVec2, size: UVec2) -> Rect {
// Ensure the position doesn't cause integer overflow when centering
let x = pixel_pos.x.saturating_sub(size.x as i32 / 2);
let y = pixel_pos.y.saturating_sub(size.y as i32 / 2);
Rect::new(x, y, size.x, size.y)
}

View File

@@ -1,11 +0,0 @@
use crate::entity::direction::Direction;
#[derive(Debug, Clone, Copy)]
pub enum GameCommand {
MovePlayer(Direction),
Exit,
TogglePause,
ToggleDebug,
MuteAudio,
ResetLevel,
}

View File

@@ -1,61 +0,0 @@
use std::collections::HashMap;
use bevy_ecs::{
event::EventWriter,
resource::Resource,
system::{Commands, NonSendMut, Res},
};
use sdl2::{event::Event, keyboard::Keycode, EventPump};
use crate::{entity::direction::Direction, game::events::GameEvent, input::commands::GameCommand};
pub mod commands;
#[derive(Debug, Clone, Resource)]
pub struct Bindings {
key_bindings: HashMap<Keycode, GameCommand>,
}
impl Default for Bindings {
fn default() -> Self {
let mut key_bindings = HashMap::new();
// Player movement
key_bindings.insert(Keycode::Up, GameCommand::MovePlayer(Direction::Up));
key_bindings.insert(Keycode::W, GameCommand::MovePlayer(Direction::Up));
key_bindings.insert(Keycode::Down, GameCommand::MovePlayer(Direction::Down));
key_bindings.insert(Keycode::S, GameCommand::MovePlayer(Direction::Down));
key_bindings.insert(Keycode::Left, GameCommand::MovePlayer(Direction::Left));
key_bindings.insert(Keycode::A, GameCommand::MovePlayer(Direction::Left));
key_bindings.insert(Keycode::Right, GameCommand::MovePlayer(Direction::Right));
key_bindings.insert(Keycode::D, GameCommand::MovePlayer(Direction::Right));
// Game actions
key_bindings.insert(Keycode::P, GameCommand::TogglePause);
key_bindings.insert(Keycode::Space, GameCommand::ToggleDebug);
key_bindings.insert(Keycode::M, GameCommand::MuteAudio);
key_bindings.insert(Keycode::R, GameCommand::ResetLevel);
key_bindings.insert(Keycode::Escape, GameCommand::Exit);
key_bindings.insert(Keycode::Q, GameCommand::Exit);
Self { key_bindings }
}
}
pub fn handle_input(bindings: Res<Bindings>, mut writer: EventWriter<GameEvent>, mut pump: NonSendMut<&'static mut EventPump>) {
for event in pump.poll_iter() {
match event {
Event::Quit { .. } => {
writer.write(GameEvent::Command(GameCommand::Exit));
}
Event::KeyDown { keycode: Some(key), .. } => {
let command = bindings.key_bindings.get(&key).copied();
if let Some(command) = command {
tracing::info!("triggering command: {:?}", command);
writer.write(GameEvent::Command(command));
}
}
_ => {}
}
}
}

View File

@@ -4,12 +4,10 @@ pub mod app;
pub mod asset;
pub mod audio;
pub mod constants;
pub mod ecs;
pub mod entity;
pub mod error;
pub mod events;
pub mod game;
pub mod helpers;
pub mod input;
pub mod map;
pub mod platform;
pub mod systems;
pub mod texture;

View File

@@ -2,22 +2,18 @@
use crate::{app::App, constants::LOOP_TIME};
use tracing::info;
use tracing_error::ErrorLayer;
use tracing_subscriber::layer::SubscriberExt;
mod app;
mod asset;
mod audio;
mod constants;
mod ecs;
mod entity;
mod error;
mod events;
mod game;
mod helpers;
mod input;
mod map;
mod platform;
mod systems;
mod texture;
/// The main entry point of the application.
@@ -25,14 +21,22 @@ mod texture;
/// This function initializes SDL, the window, the game state, and then enters
/// the main game loop.
pub fn main() {
// Setup tracing
let subscriber = tracing_subscriber::fmt()
.with_ansi(cfg!(not(target_os = "emscripten")))
.with_max_level(tracing::Level::DEBUG)
.finish()
.with(ErrorLayer::default());
// Setup buffered tracing subscriber that will buffer logs until console is ready
let switchable_writer = platform::tracing_buffer::setup_switchable_subscriber();
tracing::subscriber::set_global_default(subscriber).expect("Could not set global default");
// Log early to show buffering is working
tracing::debug!("Tracing subscriber initialized with buffering - logs will be buffered until console is ready");
// Initialize platform-specific console
tracing::debug!("Starting console initialization...");
platform::get_platform().init_console().expect("Could not initialize console");
tracing::debug!("Console initialization completed");
// Now that console is initialized, flush buffered logs and switch to direct output
tracing::debug!("Switching to direct logging mode and flushing buffer...");
if let Err(e) = switchable_writer.switch_to_direct_mode() {
tracing::warn!("Failed to flush buffered logs to console: {}", e);
}
let mut app = App::new().expect("Could not create app");

View File

@@ -1,38 +1,48 @@
//! Map construction and building functionality.
use crate::constants::{MapTile, BOARD_CELL_SIZE, CELL_SIZE, RAW_BOARD};
use crate::ecs::NodeId;
use crate::entity::direction::Direction;
use crate::entity::graph::{EdgePermissions, Graph, Node};
use crate::constants::{MapTile, BOARD_CELL_SIZE, CELL_SIZE};
use crate::map::direction::Direction;
use crate::map::graph::{Graph, Node, TraversalFlags};
use crate::map::parser::MapTileParser;
use crate::map::render::MapRenderer;
use crate::texture::sprite::{Sprite, SpriteAtlas};
use crate::systems::movement::NodeId;
use bevy_ecs::resource::Resource;
use glam::{IVec2, Vec2};
use sdl2::render::{Canvas, RenderTarget};
use glam::{I8Vec2, IVec2, Vec2};
use std::collections::{HashMap, VecDeque};
use tracing::debug;
use crate::error::{GameResult, MapError};
/// The starting positions of the entities in the game.
/// Predefined spawn locations for all game entities within the navigation graph.
///
/// These positions are determined during map parsing and graph construction.
pub struct NodePositions {
/// Pac-Man's starting position in the lower section of the maze
pub pacman: NodeId,
/// Blinky starts at the ghost house entrance
pub blinky: NodeId,
/// Pinky starts in the left area of the ghost house
pub pinky: NodeId,
/// Inky starts in the right area of the ghost house
pub inky: NodeId,
/// Clyde starts in the center of the ghost house
pub clyde: NodeId,
}
/// The main map structure containing the game board and navigation graph.
/// Complete maze representation combining visual layout with navigation pathfinding.
///
/// Transforms the ASCII board layout into a fully connected navigation graph
/// while preserving tile-based collision and rendering data. The graph enables
/// smooth entity movement with proper pathfinding, while the grid mapping allows
/// efficient spatial queries and debug visualization.
#[derive(Resource)]
pub struct Map {
/// The node map for entity movement.
/// Connected graph of navigable positions.
pub graph: Graph,
/// A mapping from grid positions to node IDs.
pub grid_to_node: HashMap<IVec2, NodeId>,
/// A mapping of the starting positions of the entities.
/// Bidirectional mapping between 2D grid coordinates and graph node indices.
pub grid_to_node: HashMap<I8Vec2, NodeId>,
/// Predetermined spawn locations for all game entities
pub start_positions: NodePositions,
/// 2D array of tile types for collision detection and rendering
tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
}
impl Map {
@@ -66,8 +76,8 @@ impl Map {
let mut queue = VecDeque::new();
queue.push_back(start_pos);
let pos = Vec2::new(
(start_pos.x * CELL_SIZE as i32) as f32,
(start_pos.y * CELL_SIZE as i32) as f32,
(start_pos.x as i32 * CELL_SIZE as i32) as f32,
(start_pos.y as i32 * CELL_SIZE as i32) as f32,
) + cell_offset;
let node_id = graph.add_node(Node { position: pos });
grid_to_node.insert(start_pos, node_id);
@@ -79,9 +89,9 @@ impl Map {
// Skip if the new position is out of bounds
if new_position.x < 0
|| new_position.x >= BOARD_CELL_SIZE.x as i32
|| new_position.x as i32 >= BOARD_CELL_SIZE.x as i32
|| new_position.y < 0
|| new_position.y >= BOARD_CELL_SIZE.y as i32
|| new_position.y as i32 >= BOARD_CELL_SIZE.y as i32
{
continue;
}
@@ -98,8 +108,8 @@ impl Map {
) {
// Add the new position to the graph/queue
let pos = Vec2::new(
(new_position.x * CELL_SIZE as i32) as f32,
(new_position.y * CELL_SIZE as i32) as f32,
(new_position.x as i32 * CELL_SIZE as i32) as f32,
(new_position.y as i32 * CELL_SIZE as i32) as f32,
) + cell_offset;
let new_node_id = graph.add_node(Node { position: pos });
grid_to_node.insert(new_position, new_node_id);
@@ -122,7 +132,7 @@ impl Map {
for (grid_pos, &node_id) in &grid_to_node {
for dir in Direction::DIRECTIONS {
// If the node doesn't have an edge in this direction, look for a neighbor in that direction
if graph.adjacency_list[node_id].get(dir).is_none() {
if graph.adjacency_list[node_id as usize].get(dir).is_none() {
let neighbor = grid_pos + dir.as_ivec2();
// If the neighbor exists, connect the node to it
if let Some(&neighbor_id) = grid_to_node.get(&neighbor) {
@@ -153,67 +163,45 @@ impl Map {
graph,
grid_to_node,
start_positions,
tiles: map,
})
}
/// Generates Item entities for pellets and energizers from the parsed map.
// pub fn generate_items(&self, atlas: &SpriteAtlas) -> GameResult<Vec<Item>> {
// // Pre-load sprites to avoid repeated texture lookups
// let pellet_sprite = SpriteAtlas::get_tile(atlas, "maze/pellet.png")
// .ok_or_else(|| MapError::InvalidConfig("Pellet texture not found".to_string()))?;
// let energizer_sprite = SpriteAtlas::get_tile(atlas, "maze/energizer.png")
// .ok_or_else(|| MapError::InvalidConfig("Energizer texture not found".to_string()))?;
// // Pre-allocate with estimated capacity (typical Pac-Man maps have ~240 pellets + 4 energizers)
// let mut items = Vec::with_capacity(250);
// // Parse the raw board once
// let parsed_map = MapTileParser::parse_board(RAW_BOARD)?;
// let map = parsed_map.tiles;
// // Iterate through the map and collect items more efficiently
// for (x, row) in map.iter().enumerate() {
// for (y, tile) in row.iter().enumerate() {
// match tile {
// MapTile::Pellet | MapTile::PowerPellet => {
// let grid_pos = IVec2::new(x as i32, y as i32);
// if let Some(&node_id) = self.grid_to_node.get(&grid_pos) {
// let (item_type, sprite) = match tile {
// MapTile::Pellet => (ItemType::Pellet, Sprite::new(pellet_sprite)),
// MapTile::PowerPellet => (ItemType::Energizer, Sprite::new(energizer_sprite)),
// _ => unreachable!(), // We already filtered for these types
// };
// items.push(Item::new(node_id, item_type, sprite));
// }
// }
// _ => {}
// }
// }
// }
// Ok(items)
// }
/// Renders a debug visualization with cursor-based highlighting.
///
/// This function provides interactive debugging by highlighting the nearest node
/// to the cursor, showing its ID, and highlighting its connections.
pub fn debug_render_with_cursor<T: RenderTarget>(
&self,
canvas: &mut Canvas<T>,
text_renderer: &mut crate::texture::text::TextTexture,
atlas: &mut SpriteAtlas,
cursor_pos: glam::Vec2,
) -> GameResult<()> {
MapRenderer::debug_render_with_cursor(&self.graph, canvas, text_renderer, atlas, cursor_pos)
pub fn iter_nodes(&self) -> impl Iterator<Item = (&NodeId, &MapTile)> {
self.grid_to_node.iter().map(move |(pos, node_id)| {
let tile = &self.tiles[pos.x as usize][pos.y as usize];
(node_id, tile)
})
}
/// Builds the house structure in the graph.
/// Returns the `MapTile` at a given node id.
pub fn tile_at_node(&self, node_id: NodeId) -> Option<MapTile> {
// reverse lookup: node -> grid
for (grid_pos, id) in &self.grid_to_node {
if *id == node_id {
return Some(self.tiles[grid_pos.x as usize][grid_pos.y as usize]);
}
}
None
}
/// Constructs the ghost house area with restricted access and internal navigation.
///
/// Creates a multi-level ghost house with entrance control, internal movement
/// areas, and starting positions for each ghost. The house entrance uses
/// ghost-only traversal flags to prevent Pac-Man from entering while allowing
/// ghosts to exit. Internal nodes are arranged in vertical lines to provide
/// distinct starting areas for each ghost character.
///
/// # Returns
///
/// Tuple of node IDs: (house_entrance, left_center, center_center, right_center)
/// representing the four key positions within the ghost house structure.
fn build_house(
graph: &mut Graph,
grid_to_node: &HashMap<IVec2, NodeId>,
house_door: &[Option<IVec2>; 2],
) -> GameResult<(usize, usize, usize, usize)> {
grid_to_node: &HashMap<I8Vec2, NodeId>,
house_door: &[Option<I8Vec2>; 2],
) -> GameResult<(NodeId, NodeId, NodeId, NodeId)> {
// Calculate the position of the house entrance node
let (house_entrance_node_id, house_entrance_node_position) = {
// Translate the grid positions to the actual node ids
@@ -234,10 +222,13 @@ impl Map {
// Calculate the position of the house node
let (node_id, node_position) = {
let left_pos = graph.get_node(*left_node).ok_or(MapError::NodeNotFound(*left_node))?.position;
let left_pos = graph
.get_node(*left_node)
.ok_or(MapError::NodeNotFound(*left_node as usize))?
.position;
let right_pos = graph
.get_node(*right_node)
.ok_or(MapError::NodeNotFound(*right_node))?
.ok_or(MapError::NodeNotFound(*right_node as usize))?
.position;
let house_node = graph.add_node(Node {
position: left_pos.lerp(right_pos, 0.5),
@@ -261,10 +252,10 @@ impl Map {
// Place the nodes at, above, and below the center position
let center_node_id = graph.add_node(Node { position: center_pos });
let top_node_id = graph.add_node(Node {
position: center_pos + (Direction::Up.as_ivec2() * (CELL_SIZE as i32 / 2)).as_vec2(),
position: center_pos + IVec2::from(Direction::Up.as_ivec2()).as_vec2() * (CELL_SIZE as f32 / 2.0),
});
let bottom_node_id = graph.add_node(Node {
position: center_pos + (Direction::Down.as_ivec2() * (CELL_SIZE as i32 / 2)).as_vec2(),
position: center_pos + IVec2::from(Direction::Down.as_ivec2()).as_vec2() * (CELL_SIZE as f32 / 2.0),
});
// Connect the center node to the top and bottom nodes
@@ -280,7 +271,7 @@ impl Map {
// Calculate the position of the center line's center node
let center_line_center_position =
house_entrance_node_position + (Direction::Down.as_ivec2() * (3 * CELL_SIZE as i32)).as_vec2();
house_entrance_node_position + IVec2::from(Direction::Down.as_ivec2()).as_vec2() * (3.0 * CELL_SIZE as f32);
// Create the center line
let (center_center_node_id, center_top_node_id) = create_house_line(graph, center_line_center_position)?;
@@ -294,7 +285,7 @@ impl Map {
false,
None,
Direction::Down,
EdgePermissions::GhostsOnly,
TraversalFlags::GHOST,
)
.map_err(|e| MapError::InvalidConfig(format!("Failed to create ghost-only entrance to house: {e}")))?;
@@ -305,20 +296,20 @@ impl Map {
false,
None,
Direction::Up,
EdgePermissions::GhostsOnly,
TraversalFlags::GHOST,
)
.map_err(|e| MapError::InvalidConfig(format!("Failed to create ghost-only exit from house: {e}")))?;
// Create the left line
let (left_center_node_id, _) = create_house_line(
graph,
center_line_center_position + (Direction::Left.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
center_line_center_position + IVec2::from(Direction::Left.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
)?;
// Create the right line
let (right_center_node_id, _) = create_house_line(
graph,
center_line_center_position + (Direction::Right.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
center_line_center_position + IVec2::from(Direction::Right.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
)?;
debug!("Left center node id: {left_center_node_id}");
@@ -342,11 +333,14 @@ impl Map {
))
}
/// Builds the tunnel connections in the graph.
/// Creates horizontal tunnel portals for instant teleportation across the maze.
///
/// Establishes the tunnel system that allows entities to instantly travel from the left edge of the maze to the right edge.
/// Creates hidden intermediate nodes beyond the visible tunnel entrances and connects them with zero-distance edges for instantaneous traversal.
fn build_tunnels(
graph: &mut Graph,
grid_to_node: &HashMap<IVec2, NodeId>,
tunnel_ends: &[Option<IVec2>; 2],
grid_to_node: &HashMap<I8Vec2, NodeId>,
tunnel_ends: &[Option<I8Vec2>; 2],
) -> GameResult<()> {
// Create the hidden tunnel nodes
let left_tunnel_hidden_node_id = {
@@ -362,7 +356,7 @@ impl Map {
Direction::Left,
Node {
position: left_tunnel_entrance_node.position
+ (Direction::Left.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
+ IVec2::from(Direction::Left.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
},
)
.map_err(|e| {
@@ -387,7 +381,7 @@ impl Map {
Direction::Right,
Node {
position: right_tunnel_entrance_node.position
+ (Direction::Right.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
+ IVec2::from(Direction::Right.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
},
)
.map_err(|e| {

View File

@@ -1,8 +1,10 @@
use glam::IVec2;
use glam::I8Vec2;
use strum_macros::AsRefStr;
/// The four cardinal directions.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default, AsRefStr)]
#[repr(usize)]
#[strum(serialize_all = "lowercase")]
pub enum Direction {
Up,
Down,
@@ -26,8 +28,8 @@ impl Direction {
}
}
/// Returns the direction as an IVec2.
pub fn as_ivec2(self) -> IVec2 {
/// Returns the direction as an I8Vec2.
pub fn as_ivec2(self) -> I8Vec2 {
self.into()
}
@@ -43,13 +45,13 @@ impl Direction {
}
}
impl From<Direction> for IVec2 {
impl From<Direction> for I8Vec2 {
fn from(dir: Direction) -> Self {
match dir {
Direction::Up => -IVec2::Y,
Direction::Down => IVec2::Y,
Direction::Left => -IVec2::X,
Direction::Right => IVec2::X,
Direction::Up => -I8Vec2::Y,
Direction::Down => I8Vec2::Y,
Direction::Left => -I8Vec2::X,
Direction::Right => I8Vec2::X,
}
}
}

View File

@@ -1,17 +1,21 @@
use glam::Vec2;
use crate::ecs::NodeId;
use crate::systems::movement::NodeId;
use super::direction::Direction;
/// Defines who can traverse a given edge.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub enum EdgePermissions {
/// Anyone can use this edge.
#[default]
All,
/// Only ghosts can use this edge.
GhostsOnly,
use bitflags::bitflags;
bitflags! {
/// Defines who can traverse a given edge using flags for fast checking.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub struct TraversalFlags: u8 {
const PACMAN = 1 << 0;
const GHOST = 1 << 1;
/// Convenience flag for edges that all entities can use
const ALL = Self::PACMAN.bits() | Self::GHOST.bits();
}
}
/// Represents a directed edge from one node to another with a given weight (e.g., distance).
@@ -24,7 +28,7 @@ pub struct Edge {
/// The cardinal direction of this edge.
pub direction: Direction,
/// Defines who is allowed to traverse this edge.
pub permissions: EdgePermissions,
pub traversal_flags: TraversalFlags,
}
/// Represents a node in the graph, defined by its position.
@@ -103,7 +107,7 @@ impl Graph {
/// Adds a new node with the given data to the graph and returns its ID.
pub fn add_node(&mut self, data: Node) -> NodeId {
let id = self.nodes.len();
let id = self.nodes.len() as NodeId;
self.nodes.push(data);
self.adjacency_list.push(Intersection::default());
id
@@ -125,15 +129,15 @@ impl Graph {
distance: Option<f32>,
direction: Direction,
) -> Result<(), &'static str> {
if from >= self.adjacency_list.len() {
if from as usize >= self.adjacency_list.len() {
return Err("From node does not exist.");
}
if to >= self.adjacency_list.len() {
if to as usize >= self.adjacency_list.len() {
return Err("To node does not exist.");
}
let edge_a = self.add_edge(from, to, replace, distance, direction, EdgePermissions::default());
let edge_b = self.add_edge(to, from, replace, distance, direction.opposite(), EdgePermissions::default());
let edge_a = self.add_edge(from, to, replace, distance, direction, TraversalFlags::ALL);
let edge_b = self.add_edge(to, from, replace, distance, direction.opposite(), TraversalFlags::ALL);
if edge_a.is_err() && edge_b.is_err() {
return Err("Failed to connect nodes in both directions.");
@@ -161,7 +165,7 @@ impl Graph {
replace: bool,
distance: Option<f32>,
direction: Direction,
permissions: EdgePermissions,
traversal_flags: TraversalFlags,
) -> Result<(), &'static str> {
let edge = Edge {
target: to,
@@ -174,20 +178,20 @@ impl Graph {
}
None => {
// If no distance is provided, calculate it based on the positions of the nodes
let from_pos = self.nodes[from].position;
let to_pos = self.nodes[to].position;
let from_pos = self.nodes[from as usize].position;
let to_pos = self.nodes[to as usize].position;
from_pos.distance(to_pos)
}
},
direction,
permissions,
traversal_flags,
};
if from >= self.adjacency_list.len() {
if from as usize >= self.adjacency_list.len() {
return Err("From node does not exist.");
}
let adjacency_list = &mut self.adjacency_list[from];
let adjacency_list = &mut self.adjacency_list[from as usize];
// Check if the edge already exists in this direction or to the same target
if let Some(err) = adjacency_list.edges().find_map(|e| {
@@ -211,22 +215,30 @@ impl Graph {
/// Retrieves an immutable reference to a node's data.
pub fn get_node(&self, id: NodeId) -> Option<&Node> {
self.nodes.get(id)
self.nodes.get(id as usize)
}
/// Returns the total number of nodes in the graph.
pub fn node_count(&self) -> usize {
self.nodes.len()
/// Returns an iterator over all nodes in the graph.
pub fn nodes(&self) -> impl Iterator<Item = &Node> {
self.nodes.iter()
}
/// Returns an iterator over all edges in the graph.
pub fn edges(&self) -> impl Iterator<Item = (NodeId, Edge)> + '_ {
self.adjacency_list
.iter()
.enumerate()
.flat_map(|(node_id, intersection)| intersection.edges().map(move |edge| (node_id as NodeId, edge)))
}
/// Finds a specific edge from a source node to a target node.
pub fn find_edge(&self, from: NodeId, to: NodeId) -> Option<Edge> {
self.adjacency_list.get(from)?.edges().find(|edge| edge.target == to)
self.adjacency_list.get(from as usize)?.edges().find(|edge| edge.target == to)
}
/// Finds an edge originating from a given node that follows a specific direction.
pub fn find_edge_in_direction(&self, from: NodeId, direction: Direction) -> Option<Edge> {
self.adjacency_list.get(from)?.get(direction)
self.adjacency_list.get(from as usize)?.get(direction)
}
}

View File

@@ -1,6 +1,8 @@
//! This module defines the game map and provides functions for interacting with it.
pub mod builder;
pub mod direction;
pub mod graph;
pub mod layout;
pub mod parser;
pub mod render;

View File

@@ -2,34 +2,42 @@
use crate::constants::{MapTile, BOARD_CELL_SIZE};
use crate::error::ParseError;
use glam::IVec2;
use glam::I8Vec2;
/// Represents the parsed data from a raw board layout.
/// Structured representation of parsed ASCII board layout with extracted special positions.
///
/// Contains the complete board state after character-to-tile conversion, along with
/// the locations of special gameplay elements that require additional processing
/// during graph construction. Special positions are extracted during parsing to
/// enable proper map builder initialization.
#[derive(Debug)]
pub struct ParsedMap {
/// The parsed tile layout.
/// 2D array of tiles converted from ASCII characters
pub tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
/// The positions of the house door tiles.
pub house_door: [Option<IVec2>; 2],
/// The positions of the tunnel end tiles.
pub tunnel_ends: [Option<IVec2>; 2],
/// Pac-Man's starting position.
pub pacman_start: Option<IVec2>,
/// Two positions marking the ghost house entrance (represented by '=' characters)
pub house_door: [Option<I8Vec2>; 2],
/// Two positions marking tunnel portals for wraparound teleportation ('T' characters)
pub tunnel_ends: [Option<I8Vec2>; 2],
/// Starting position for Pac-Man (marked by 'X' character in the layout)
pub pacman_start: Option<I8Vec2>,
}
/// Parser for converting raw board layouts into structured map data.
pub struct MapTileParser;
impl MapTileParser {
/// Parses a single character into a map tile.
/// Converts ASCII characters from the board layout into corresponding tile types.
///
/// # Arguments
/// Interprets the character-based maze representation: walls (`#`), collectible
/// pellets (`.` and `o`), traversable spaces (` `), tunnel entrances (`T`),
/// ghost house doors (`=`), and entity spawn markers (`X`). Special characters
/// that don't represent tiles in the final map (like spawn markers) are
/// converted to `Empty` tiles while their positions are tracked separately.
///
/// * `c` - The character to parse
/// # Errors
///
/// # Returns
///
/// The parsed map tile, or an error if the character is unknown.
/// Returns `ParseError::UnknownCharacter` for any character not defined
/// in the game's ASCII art vocabulary.
pub fn parse_character(c: char) -> Result<MapTile, ParseError> {
match c {
'#' => Ok(MapTile::Wall),
@@ -80,7 +88,7 @@ impl MapTileParser {
let mut tiles = [[MapTile::Empty; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize];
let mut house_door = [None; 2];
let mut tunnel_ends = [None; 2];
let mut pacman_start: Option<IVec2> = None;
let mut pacman_start: Option<I8Vec2> = None;
for (y, line) in raw_board.iter().enumerate().take(BOARD_CELL_SIZE.y as usize) {
for (x, character) in line.chars().enumerate().take(BOARD_CELL_SIZE.x as usize) {
@@ -90,16 +98,16 @@ impl MapTileParser {
match tile {
MapTile::Tunnel => {
if tunnel_ends[0].is_none() {
tunnel_ends[0] = Some(IVec2::new(x as i32, y as i32));
tunnel_ends[0] = Some(I8Vec2::new(x as i8, y as i8));
} else {
tunnel_ends[1] = Some(IVec2::new(x as i32, y as i32));
tunnel_ends[1] = Some(I8Vec2::new(x as i8, y as i8));
}
}
MapTile::Wall if character == '=' => {
if house_door[0].is_none() {
house_door[0] = Some(IVec2::new(x as i32, y as i32));
house_door[0] = Some(I8Vec2::new(x as i8, y as i8));
} else {
house_door[1] = Some(IVec2::new(x as i32, y as i32));
house_door[1] = Some(I8Vec2::new(x as i8, y as i8));
}
}
_ => {}
@@ -107,7 +115,7 @@ impl MapTileParser {
// Track Pac-Man's starting position
if character == 'X' {
pacman_start = Some(IVec2::new(x as i32, y as i32));
pacman_start = Some(I8Vec2::new(x as i8, y as i8));
}
tiles[x][y] = tile;

View File

@@ -3,14 +3,10 @@
use crate::constants::{BOARD_CELL_OFFSET, CELL_SIZE};
use crate::map::layout::TILE_MAP;
use crate::texture::sprite::{AtlasTile, SpriteAtlas};
use crate::texture::text::TextTexture;
use glam::Vec2;
use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect};
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget};
use crate::error::{EntityError, GameError, GameResult};
/// Handles rendering operations for the map.
pub struct MapRenderer;
@@ -19,7 +15,7 @@ impl MapRenderer {
///
/// This function draws the static map texture to the screen at the correct
/// position and scale.
pub fn render_map<T: RenderTarget>(canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, map_tiles: &mut [AtlasTile]) {
pub fn render_map<T: RenderTarget>(canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, map_tiles: &[AtlasTile]) {
for (y, row) in TILE_MAP.iter().enumerate() {
for (x, &tile_index) in row.iter().enumerate() {
let mut tile = map_tiles[tile_index];
@@ -37,111 +33,4 @@ impl MapRenderer {
}
}
}
/// Renders a debug visualization with cursor-based highlighting.
///
/// This function provides interactive debugging by highlighting the nearest node
/// to the cursor, showing its ID, and highlighting its connections.
pub fn debug_render_with_cursor<T: RenderTarget>(
graph: &crate::entity::graph::Graph,
canvas: &mut Canvas<T>,
text_renderer: &mut TextTexture,
atlas: &mut SpriteAtlas,
cursor_pos: Vec2,
) -> GameResult<()> {
// Find the nearest node to the cursor
let nearest_node = Self::find_nearest_node(graph, cursor_pos);
// Draw all connections in blue
canvas.set_draw_color(Color::RGB(0, 0, 128)); // Dark blue for regular connections
for i in 0..graph.node_count() {
let node = graph.get_node(i).ok_or(GameError::Entity(EntityError::NodeNotFound(i)))?;
let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
for edge in graph.adjacency_list[i].edges() {
let end_pos = graph
.get_node(edge.target)
.ok_or(GameError::Entity(EntityError::NodeNotFound(edge.target)))?
.position
+ crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
canvas
.draw_line((pos.x as i32, pos.y as i32), (end_pos.x as i32, end_pos.y as i32))
.map_err(|e| GameError::Sdl(e.to_string()))?;
}
}
// Draw all nodes in green
canvas.set_draw_color(Color::RGB(0, 128, 0)); // Dark green for regular nodes
for i in 0..graph.node_count() {
let node = graph.get_node(i).ok_or(GameError::Entity(EntityError::NodeNotFound(i)))?;
let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
canvas
.fill_rect(Rect::new(0, 0, 3, 3).centered_on(Point::new(pos.x as i32, pos.y as i32)))
.map_err(|e| GameError::Sdl(e.to_string()))?;
}
// Highlight connections from the nearest node in bright blue
if let Some(nearest_id) = nearest_node {
let nearest_pos = graph
.get_node(nearest_id)
.ok_or(GameError::Entity(EntityError::NodeNotFound(nearest_id)))?
.position
+ crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
canvas.set_draw_color(Color::RGB(0, 255, 255)); // Bright cyan for highlighted connections
for edge in graph.adjacency_list[nearest_id].edges() {
let end_pos = graph
.get_node(edge.target)
.ok_or(GameError::Entity(EntityError::NodeNotFound(edge.target)))?
.position
+ crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
canvas
.draw_line(
(nearest_pos.x as i32, nearest_pos.y as i32),
(end_pos.x as i32, end_pos.y as i32),
)
.map_err(|e| GameError::Sdl(e.to_string()))?;
}
// Highlight the nearest node in bright green
canvas.set_draw_color(Color::RGB(0, 255, 0)); // Bright green for highlighted node
canvas
.fill_rect(Rect::new(0, 0, 5, 5).centered_on(Point::new(nearest_pos.x as i32, nearest_pos.y as i32)))
.map_err(|e| GameError::Sdl(e.to_string()))?;
// Draw node ID text (small, offset to top right)
text_renderer.set_scale(0.5); // Small text
let id_text = format!("#{nearest_id}");
let text_pos = glam::UVec2::new(
(nearest_pos.x + 4.0) as u32, // Offset to the right
(nearest_pos.y - 6.0) as u32, // Offset to the top
);
if let Err(e) = text_renderer.render(canvas, atlas, &id_text, text_pos) {
tracing::error!("Failed to render node ID text: {}", e);
}
}
Ok(())
}
/// Finds the nearest node to the given cursor position.
pub fn find_nearest_node(graph: &crate::entity::graph::Graph, cursor_pos: Vec2) -> Option<usize> {
let mut nearest_id = None;
let mut nearest_distance = f32::INFINITY;
for i in 0..graph.node_count() {
if let Some(node) = graph.get_node(i) {
let node_pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
let distance = cursor_pos.distance(node_pos);
if distance < nearest_distance {
nearest_distance = distance;
nearest_id = Some(i);
}
}
}
nearest_id
}
}

View File

@@ -0,0 +1,55 @@
//! Buffered writer for tracing logs that can store logs before console attachment.
use parking_lot::Mutex;
use std::io::{self, Write};
use std::sync::Arc;
/// A thread-safe buffered writer that stores logs in memory until flushed.
#[derive(Clone)]
pub struct BufferedWriter {
buffer: Arc<Mutex<Vec<u8>>>,
}
impl BufferedWriter {
/// Creates a new buffered writer.
pub fn new() -> Self {
Self {
buffer: Arc::new(Mutex::new(Vec::new())),
}
}
/// Flushes all buffered content to the provided writer and clears the buffer.
pub fn flush_to<W: Write>(&self, mut writer: W) -> io::Result<()> {
let mut buffer = self.buffer.lock();
if !buffer.is_empty() {
writer.write_all(&buffer)?;
writer.flush()?;
buffer.clear();
}
Ok(())
}
/// Returns the current buffer size in bytes.
pub fn buffer_size(&self) -> usize {
self.buffer.lock().len()
}
}
impl Write for BufferedWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let mut buffer = self.buffer.lock();
buffer.extend_from_slice(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
// For buffered writer, flush is a no-op since we're storing in memory
Ok(())
}
}
impl Default for BufferedWriter {
fn default() -> Self {
Self::new()
}
}

View File

@@ -5,12 +5,12 @@ use std::time::Duration;
use crate::asset::Asset;
use crate::error::{AssetError, PlatformError};
use crate::platform::Platform;
use crate::platform::CommonPlatform;
/// Desktop platform implementation.
pub struct DesktopPlatform;
pub struct Platform;
impl Platform for DesktopPlatform {
impl CommonPlatform for Platform {
fn sleep(&self, duration: Duration, focused: bool) {
if focused {
spin_sleep::sleep(duration);
@@ -24,44 +24,6 @@ impl Platform for DesktopPlatform {
}
fn init_console(&self) -> Result<(), PlatformError> {
#[cfg(windows)]
{
unsafe {
use winapi::{
shared::ntdef::NULL,
um::{
fileapi::{CreateFileA, OPEN_EXISTING},
handleapi::INVALID_HANDLE_VALUE,
processenv::SetStdHandle,
winbase::{STD_ERROR_HANDLE, STD_OUTPUT_HANDLE},
wincon::{AttachConsole, GetConsoleWindow},
winnt::{FILE_SHARE_READ, FILE_SHARE_WRITE, GENERIC_READ, GENERIC_WRITE},
},
};
if !std::ptr::eq(GetConsoleWindow(), std::ptr::null_mut()) {
return Ok(());
}
if AttachConsole(winapi::um::wincon::ATTACH_PARENT_PROCESS) != 0 {
let handle = CreateFileA(
c"CONOUT$".as_ptr(),
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
std::ptr::null_mut(),
OPEN_EXISTING,
0,
NULL,
);
if handle != INVALID_HANDLE_VALUE {
SetStdHandle(STD_OUTPUT_HANDLE, handle);
SetStdHandle(STD_ERROR_HANDLE, handle);
}
}
}
}
Ok(())
}
@@ -75,7 +37,8 @@ impl Platform for DesktopPlatform {
Asset::Wav2 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/2.ogg"))),
Asset::Wav3 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/3.ogg"))),
Asset::Wav4 => Ok(Cow::Borrowed(include_bytes!("../../assets/game/sound/waka/4.ogg"))),
Asset::Atlas => Ok(Cow::Borrowed(include_bytes!("../../assets/game/atlas.png"))),
Asset::AtlasImage => Ok(Cow::Borrowed(include_bytes!("../../assets/game/atlas.png"))),
Asset::Font => Ok(Cow::Borrowed(include_bytes!("../../assets/game/TerminalVector.ttf"))),
}
}
}

View File

@@ -5,12 +5,12 @@ use std::time::Duration;
use crate::asset::Asset;
use crate::error::{AssetError, PlatformError};
use crate::platform::Platform;
use crate::platform::CommonPlatform;
/// Emscripten platform implementation.
pub struct EmscriptenPlatform;
pub struct Platform;
impl Platform for EmscriptenPlatform {
impl CommonPlatform for Platform {
fn sleep(&self, duration: Duration, _focused: bool) {
unsafe {
emscripten_sleep(duration.as_millis() as u32);

View File

@@ -5,44 +5,44 @@ use crate::error::{AssetError, PlatformError};
use std::borrow::Cow;
use std::time::Duration;
pub mod desktop;
pub mod emscripten;
#[cfg(not(target_os = "emscripten"))]
mod desktop;
#[cfg(target_os = "emscripten")]
mod emscripten;
/// Platform abstraction trait that defines cross-platform functionality.
pub trait Platform {
/// Sleep for the specified duration using platform-appropriate method.
pub mod buffered_writer;
pub mod tracing_buffer;
/// Cross-platform abstraction layer providing unified APIs for platform-specific operations.
pub trait CommonPlatform {
/// Platform-specific sleep function (required due to Emscripten's non-standard sleep requirements).
///
/// Provides access to current window focus state, useful for changing sleep algorithm conditionally.
fn sleep(&self, duration: Duration, focused: bool);
/// Get the current time in seconds since some reference point.
/// This is available for future use in timing and performance monitoring.
#[allow(dead_code)]
fn get_time(&self) -> f64;
/// Initialize platform-specific console functionality.
/// Configures platform-specific console and debugging output capabilities.
fn init_console(&self) -> Result<(), PlatformError>;
/// Get canvas size for platforms that need it (e.g., Emscripten).
/// This is available for future use in responsive design.
/// Retrieves the actual display canvas dimensions.
#[allow(dead_code)]
fn get_canvas_size(&self) -> Option<(u32, u32)>;
/// Load asset bytes using platform-appropriate method.
/// Loads raw asset data using the appropriate platform-specific method.
fn get_asset_bytes(&self, asset: Asset) -> Result<Cow<'static, [u8]>, AssetError>;
}
/// Get the current platform implementation.
/// Returns the appropriate platform implementation based on compile-time target.
#[allow(dead_code)]
pub fn get_platform() -> &'static dyn Platform {
static DESKTOP: desktop::DesktopPlatform = desktop::DesktopPlatform;
static EMSCRIPTEN: emscripten::EmscriptenPlatform = emscripten::EmscriptenPlatform;
pub fn get_platform() -> &'static dyn CommonPlatform {
#[cfg(not(target_os = "emscripten"))]
{
&DESKTOP
&desktop::Platform
}
#[cfg(target_os = "emscripten")]
{
&EMSCRIPTEN
&emscripten::Platform
}
}

View File

@@ -0,0 +1,91 @@
//! Buffered tracing setup for handling logs before console attachment.
use crate::platform::buffered_writer::BufferedWriter;
use std::io;
use tracing::Level;
use tracing_error::ErrorLayer;
use tracing_subscriber::fmt::MakeWriter;
use tracing_subscriber::layer::SubscriberExt;
/// A writer that can switch between buffering and direct output.
#[derive(Clone, Default)]
pub struct SwitchableWriter {
buffered_writer: BufferedWriter,
direct_mode: std::sync::Arc<parking_lot::Mutex<bool>>,
}
impl SwitchableWriter {
pub fn switch_to_direct_mode(&self) -> io::Result<()> {
// Get buffer size before flushing for debug logging
let buffer_size = self.buffered_writer.buffer_size();
// First flush any buffered content
self.buffered_writer.flush_to(io::stdout())?;
// Switch to direct mode
*self.direct_mode.lock() = true;
// Log how much was buffered (this will now go directly to stdout)
tracing::debug!("Flushed {} bytes of buffered logs to console", buffer_size);
Ok(())
}
}
impl io::Write for SwitchableWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
if *self.direct_mode.lock() {
io::stdout().write(buf)
} else {
self.buffered_writer.clone().write(buf)
}
}
fn flush(&mut self) -> io::Result<()> {
if *self.direct_mode.lock() {
io::stdout().flush()
} else {
// For buffered mode, flush is a no-op
Ok(())
}
}
}
/// A make writer that uses the switchable writer.
#[derive(Clone)]
pub struct SwitchableMakeWriter {
writer: SwitchableWriter,
}
impl SwitchableMakeWriter {
pub fn new(writer: SwitchableWriter) -> Self {
Self { writer }
}
}
impl<'a> MakeWriter<'a> for SwitchableMakeWriter {
type Writer = SwitchableWriter;
fn make_writer(&'a self) -> Self::Writer {
self.writer.clone()
}
}
/// Sets up a switchable tracing subscriber that can transition from buffered to direct output.
///
/// Returns the switchable writer that can be used to control the behavior.
pub fn setup_switchable_subscriber() -> SwitchableWriter {
let switchable_writer = SwitchableWriter::default();
let make_writer = SwitchableMakeWriter::new(switchable_writer.clone());
let _subscriber = tracing_subscriber::fmt()
.with_ansi(cfg!(not(target_os = "emscripten")))
.with_max_level(Level::DEBUG)
.with_writer(make_writer)
.finish()
.with(ErrorLayer::default());
tracing::subscriber::set_global_default(_subscriber).expect("Could not set global default switchable subscriber");
switchable_writer
}

64
src/systems/audio.rs Normal file
View File

@@ -0,0 +1,64 @@
//! Audio system for handling sound playback in the Pac-Man game.
//!
//! This module provides an ECS-based audio system that integrates with SDL2_mixer
//! for playing sound effects. The system uses NonSendMut resources to handle SDL2's
//! main-thread requirements while maintaining Bevy ECS compatibility.
use bevy_ecs::{
event::{Event, EventReader, EventWriter},
resource::Resource,
system::{NonSendMut, ResMut},
};
use crate::{audio::Audio, error::GameError};
/// Resource for tracking audio state
#[derive(Resource, Debug, Clone, Default)]
pub struct AudioState {
/// Whether audio is currently muted
pub muted: bool,
/// Current sound index for cycling through eat sounds
pub sound_index: usize,
}
/// Events for triggering audio playback
#[derive(Event, Debug, Clone, Copy, PartialEq, Eq)]
pub enum AudioEvent {
/// Play the "eat" sound when Pac-Man consumes a pellet
PlayEat,
}
/// Non-send resource wrapper for SDL2 audio system
///
/// This wrapper is needed because SDL2 audio components are not Send,
/// but Bevy ECS requires Send for regular resources. Using NonSendMut
/// allows us to use SDL2 audio on the main thread while integrating
/// with the ECS system.
pub struct AudioResource(pub Audio);
/// System that processes audio events and plays sounds
pub fn audio_system(
mut audio: NonSendMut<AudioResource>,
mut audio_state: ResMut<AudioState>,
mut audio_events: EventReader<AudioEvent>,
_errors: EventWriter<GameError>,
) {
// Set mute state if it has changed
if audio.0.is_muted() != audio_state.muted {
audio.0.set_mute(audio_state.muted);
}
// Process audio events
for event in audio_events.read() {
match event {
AudioEvent::PlayEat => {
if !audio.0.is_disabled() && !audio_state.muted {
audio.0.eat();
// Update the sound index for cycling through sounds
audio_state.sound_index = (audio_state.sound_index + 1) % 4;
// 4 eat sounds available
}
}
}
}
}

63
src/systems/blinking.rs Normal file
View File

@@ -0,0 +1,63 @@
use bevy_ecs::{
component::Component,
entity::Entity,
query::{Has, With},
system::{Commands, Query, Res},
};
use crate::systems::{
components::{DeltaTime, Renderable},
Frozen, Hidden,
};
#[derive(Component, Debug)]
pub struct Blinking {
pub timer: f32,
pub interval: f32,
}
impl Blinking {
pub fn new(interval: f32) -> Self {
Self { timer: 0.0, interval }
}
}
/// Updates blinking entities by toggling their visibility at regular intervals.
///
/// This system manages entities that have both `Blinking` and `Renderable` components,
/// accumulating time and toggling visibility when the specified interval is reached.
#[allow(clippy::type_complexity)]
pub fn blinking_system(
mut commands: Commands,
time: Res<DeltaTime>,
mut query: Query<(Entity, &mut Blinking, Has<Hidden>, Has<Frozen>), With<Renderable>>,
) {
for (entity, mut blinking, hidden, frozen) in query.iter_mut() {
// If the entity is frozen, blinking is disabled and the entity is unhidden (if it was hidden)
if frozen {
if hidden {
commands.entity(entity).remove::<Hidden>();
}
continue;
}
// Increase the timer by the delta time
blinking.timer += time.0;
// If the timer is less than the interval, there's nothing to do yet
if blinking.timer < blinking.interval {
continue;
}
// Subtract the interval (allows for the timer to retain partial interval progress)
blinking.timer -= blinking.interval;
// Toggle the Hidden component
if hidden {
commands.entity(entity).remove::<Hidden>();
} else {
commands.entity(entity).insert(Hidden);
}
}
}

152
src/systems/collision.rs Normal file
View File

@@ -0,0 +1,152 @@
use bevy_ecs::component::Component;
use bevy_ecs::entity::Entity;
use bevy_ecs::event::{EventReader, EventWriter};
use bevy_ecs::query::With;
use bevy_ecs::system::{Query, Res, ResMut};
use crate::error::GameError;
use crate::events::GameEvent;
use crate::map::builder::Map;
use crate::systems::movement::Position;
use crate::systems::{AudioEvent, Ghost, GhostState, PlayerControlled, ScoreResource};
#[derive(Component)]
pub struct Collider {
pub size: f32,
}
impl Collider {
/// Checks if this collider collides with another collider at the given distance.
pub fn collides_with(&self, other_size: f32, distance: f32) -> bool {
let collision_distance = (self.size + other_size) / 2.0;
distance < collision_distance
}
}
/// Marker components for collision filtering optimization
#[derive(Component)]
pub struct PacmanCollider;
#[derive(Component)]
pub struct GhostCollider;
#[derive(Component)]
pub struct ItemCollider;
/// Helper function to check collision between two entities with colliders.
pub fn check_collision(
pos1: &Position,
collider1: &Collider,
pos2: &Position,
collider2: &Collider,
map: &Map,
) -> Result<bool, GameError> {
let pixel1 = pos1
.get_pixel_position(&map.graph)
.map_err(|e| GameError::InvalidState(format!("Failed to get pixel position for entity 1: {}", e)))?;
let pixel2 = pos2
.get_pixel_position(&map.graph)
.map_err(|e| GameError::InvalidState(format!("Failed to get pixel position for entity 2: {}", e)))?;
let distance = pixel1.distance(pixel2);
Ok(collider1.collides_with(collider2.size, distance))
}
/// Detects overlapping entities and generates collision events for gameplay systems.
///
/// Performs distance-based collision detection between Pac-Man and collectible items
/// using each entity's position and collision radius. When entities overlap, emits
/// a `GameEvent::Collision` for the item system to handle scoring and removal.
/// Collision detection accounts for both entities being in motion and supports
/// circular collision boundaries for accurate gameplay feel.
///
/// Also detects collisions between Pac-Man and ghosts for gameplay mechanics like
/// power pellet effects, ghost eating, and player death.
pub fn collision_system(
map: Res<Map>,
pacman_query: Query<(Entity, &Position, &Collider), With<PacmanCollider>>,
item_query: Query<(Entity, &Position, &Collider), With<ItemCollider>>,
ghost_query: Query<(Entity, &Position, &Collider), With<GhostCollider>>,
mut events: EventWriter<GameEvent>,
mut errors: EventWriter<GameError>,
) {
// Check PACMAN × ITEM collisions
for (pacman_entity, pacman_pos, pacman_collider) in pacman_query.iter() {
for (item_entity, item_pos, item_collider) in item_query.iter() {
match check_collision(pacman_pos, pacman_collider, item_pos, item_collider, &map) {
Ok(colliding) => {
if colliding {
events.write(GameEvent::Collision(pacman_entity, item_entity));
}
}
Err(e) => {
errors.write(GameError::InvalidState(format!(
"Collision system failed to check collision between entities {:?} and {:?}: {}",
pacman_entity, item_entity, e
)));
}
}
}
// Check PACMAN × GHOST collisions
for (ghost_entity, ghost_pos, ghost_collider) in ghost_query.iter() {
match check_collision(pacman_pos, pacman_collider, ghost_pos, ghost_collider, &map) {
Ok(colliding) => {
if colliding {
events.write(GameEvent::Collision(pacman_entity, ghost_entity));
}
}
Err(e) => {
errors.write(GameError::InvalidState(format!(
"Collision system failed to check collision between entities {:?} and {:?}: {}",
pacman_entity, ghost_entity, e
)));
}
}
}
}
}
pub fn ghost_collision_system(
mut collision_events: EventReader<GameEvent>,
mut score: ResMut<ScoreResource>,
pacman_query: Query<(), With<PlayerControlled>>,
ghost_query: Query<(Entity, &Ghost), With<GhostCollider>>,
mut ghost_state_query: Query<&mut GhostState>,
mut events: EventWriter<AudioEvent>,
) {
for event in collision_events.read() {
if let GameEvent::Collision(entity1, entity2) = event {
// Check if one is Pacman and the other is a ghost
let (_pacman_entity, ghost_entity) = if pacman_query.get(*entity1).is_ok() && ghost_query.get(*entity2).is_ok() {
(*entity1, *entity2)
} else if pacman_query.get(*entity2).is_ok() && ghost_query.get(*entity1).is_ok() {
(*entity2, *entity1)
} else {
continue;
};
// Check if the ghost is frightened
if let Ok((ghost_ent, _ghost_type)) = ghost_query.get(ghost_entity) {
if let Ok(mut ghost_state) = ghost_state_query.get_mut(ghost_ent) {
// Check if ghost is in frightened state
if matches!(*ghost_state, GhostState::Frightened { .. }) {
// Pac-Man eats the ghost
// Add score (200 points per ghost eaten)
score.0 += 200;
// Set ghost state to Eyes
*ghost_state = GhostState::Eyes;
// Play eat sound
events.write(AudioEvent::PlayEat);
} else {
// Pac-Man dies (this would need a death system)
// For now, just log it
tracing::warn!("Pac-Man collided with ghost while not frightened!");
}
}
}
}
}
}

364
src/systems/components.rs Normal file
View File

@@ -0,0 +1,364 @@
use std::collections::HashMap;
use bevy_ecs::{bundle::Bundle, component::Component, resource::Resource};
use bitflags::bitflags;
use crate::{
map::graph::TraversalFlags,
systems::{
movement::{BufferedDirection, Position, Velocity},
Collider, GhostCollider, ItemCollider, PacmanCollider,
},
texture::{
animated::{DirectionalTiles, TileSequence},
sprite::AtlasTile,
},
};
/// A tag component for entities that are controlled by the player.
#[derive(Default, Component)]
pub struct PlayerControlled;
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Ghost {
Blinky,
Pinky,
Inky,
Clyde,
}
impl Ghost {
/// Returns the ghost type name for atlas lookups.
pub fn as_str(self) -> &'static str {
match self {
Ghost::Blinky => "blinky",
Ghost::Pinky => "pinky",
Ghost::Inky => "inky",
Ghost::Clyde => "clyde",
}
}
/// Returns the base movement speed for this ghost type.
pub fn base_speed(self) -> f32 {
match self {
Ghost::Blinky => 1.0,
Ghost::Pinky => 0.95,
Ghost::Inky => 0.9,
Ghost::Clyde => 0.85,
}
}
/// Returns the ghost's color for debug rendering.
#[allow(dead_code)]
pub fn debug_color(&self) -> sdl2::pixels::Color {
match self {
Ghost::Blinky => sdl2::pixels::Color::RGB(255, 0, 0), // Red
Ghost::Pinky => sdl2::pixels::Color::RGB(255, 182, 255), // Pink
Ghost::Inky => sdl2::pixels::Color::RGB(0, 255, 255), // Cyan
Ghost::Clyde => sdl2::pixels::Color::RGB(255, 182, 85), // Orange
}
}
}
/// A tag component denoting the type of entity.
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum EntityType {
Player,
Ghost,
Pellet,
PowerPellet,
}
impl EntityType {
/// Returns the traversal flags for this entity type.
pub fn traversal_flags(&self) -> TraversalFlags {
match self {
EntityType::Player => TraversalFlags::PACMAN,
EntityType::Ghost => TraversalFlags::GHOST,
_ => TraversalFlags::empty(), // Static entities don't traverse
}
}
pub fn score_value(&self) -> Option<u32> {
match self {
EntityType::Pellet => Some(10),
EntityType::PowerPellet => Some(50),
_ => None,
}
}
pub fn is_collectible(&self) -> bool {
matches!(self, EntityType::Pellet | EntityType::PowerPellet)
}
}
/// A component for entities that have a sprite, with a layer for ordering.
///
/// This is intended to be modified by other entities allowing animation.
#[derive(Component)]
pub struct Renderable {
pub sprite: AtlasTile,
pub layer: u8,
}
/// Directional animation component with shared timing across all directions
#[derive(Component, Clone, Copy)]
pub struct DirectionalAnimation {
pub moving_tiles: DirectionalTiles,
pub stopped_tiles: DirectionalTiles,
pub current_frame: usize,
pub time_bank: u16,
pub frame_duration: u16,
}
impl DirectionalAnimation {
/// Creates a new directional animation with the given tiles and frame duration
pub fn new(moving_tiles: DirectionalTiles, stopped_tiles: DirectionalTiles, frame_duration: u16) -> Self {
Self {
moving_tiles,
stopped_tiles,
current_frame: 0,
time_bank: 0,
frame_duration,
}
}
}
/// Linear animation component for non-directional animations (frightened ghosts)
#[derive(Component, Clone, Copy)]
pub struct LinearAnimation {
pub tiles: TileSequence,
pub current_frame: usize,
pub time_bank: u16,
pub frame_duration: u16,
}
impl LinearAnimation {
/// Creates a new linear animation with the given tiles and frame duration
pub fn new(tiles: TileSequence, frame_duration: u16) -> Self {
Self {
tiles,
current_frame: 0,
time_bank: 0,
frame_duration,
}
}
}
bitflags! {
#[derive(Component, Default, Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CollisionLayer: u8 {
const PACMAN = 1 << 0;
const GHOST = 1 << 1;
const ITEM = 1 << 2;
}
}
#[derive(Resource)]
pub struct GlobalState {
pub exit: bool,
}
#[derive(Resource)]
pub struct ScoreResource(pub u32);
#[derive(Resource)]
pub struct DeltaTime(pub f32);
/// Movement modifiers that can affect Pac-Man's speed or handling.
#[derive(Component, Debug, Clone, Copy)]
pub struct MovementModifiers {
/// Multiplier applied to base speed (e.g., tunnels)
pub speed_multiplier: f32,
/// True when currently in a tunnel slowdown region
pub tunnel_slowdown_active: bool,
}
impl Default for MovementModifiers {
fn default() -> Self {
Self {
speed_multiplier: 1.0,
tunnel_slowdown_active: false,
}
}
}
/// Tag component for entities that should be frozen during startup
#[derive(Component, Debug, Clone, Copy)]
pub struct Frozen;
/// Tag component for eaten ghosts
#[derive(Component, Debug, Clone, Copy)]
pub struct Eaten;
#[derive(Component, Debug, Clone, Copy)]
pub enum GhostState {
/// Normal ghost behavior - chasing Pac-Man
Normal,
/// Frightened state after power pellet - ghost can be eaten
Frightened {
remaining_ticks: u32,
flash: bool,
remaining_flash_ticks: u32,
},
/// Eyes state - ghost has been eaten and is returning to ghost house
Eyes,
}
/// Component to track the last animation state for efficient change detection
#[derive(Component, Debug, Clone, Copy, PartialEq)]
pub struct LastAnimationState(pub GhostAnimation);
impl GhostState {
/// Creates a new frightened state with the specified duration
pub fn new_frightened(total_ticks: u32, flash_start_ticks: u32) -> Self {
Self::Frightened {
remaining_ticks: total_ticks,
flash: false,
remaining_flash_ticks: flash_start_ticks, // Time until flashing starts
}
}
/// Ticks the ghost state, returning true if the state changed.
pub fn tick(&mut self) -> bool {
if let GhostState::Frightened {
remaining_ticks,
flash,
remaining_flash_ticks,
} = self
{
// Transition out of frightened state
if *remaining_ticks == 0 {
*self = GhostState::Normal;
return true;
}
*remaining_ticks -= 1;
if *remaining_flash_ticks > 0 {
*remaining_flash_ticks = remaining_flash_ticks.saturating_sub(1);
if *remaining_flash_ticks == 0 {
*flash = true;
true
} else {
false
}
} else {
false
}
} else {
false
}
}
/// Returns the appropriate animation state for this ghost state
pub fn animation_state(&self) -> GhostAnimation {
match self {
GhostState::Normal => GhostAnimation::Normal,
GhostState::Eyes => GhostAnimation::Eyes,
GhostState::Frightened { flash: false, .. } => GhostAnimation::Frightened { flash: false },
GhostState::Frightened { flash: true, .. } => GhostAnimation::Frightened { flash: true },
}
}
}
/// Enumeration of different ghost animation states.
/// Note that this is used in micromap which has a fixed size based on the number of variants,
/// so extending this should be done with caution, and will require updating the micromap's capacity.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GhostAnimation {
/// Normal ghost appearance with directional movement animations
Normal,
/// Blue ghost appearance when vulnerable (power pellet active)
Frightened { flash: bool },
/// Eyes-only animation when ghost has been consumed by Pac-Man (Eaten state)
Eyes,
}
/// Global resource containing pre-loaded animation sets for all ghost types.
///
/// This resource is initialized once during game startup and provides O(1) access
/// to animation sets for each ghost type. The animation system uses this resource
/// to efficiently switch between different ghost states without runtime asset loading.
///
/// The HashMap is keyed by `Ghost` enum variants (Blinky, Pinky, Inky, Clyde) and
/// contains the normal directional animation for each ghost type.
#[derive(Resource)]
pub struct GhostAnimations {
pub normal: HashMap<Ghost, DirectionalAnimation>,
pub eyes: DirectionalAnimation,
pub frightened: LinearAnimation,
pub frightened_flashing: LinearAnimation,
}
impl GhostAnimations {
/// Creates a new GhostAnimations resource with the provided data.
pub fn new(
normal: HashMap<Ghost, DirectionalAnimation>,
eyes: DirectionalAnimation,
frightened: LinearAnimation,
frightened_flashing: LinearAnimation,
) -> Self {
Self {
normal,
eyes,
frightened,
frightened_flashing,
}
}
/// Gets the normal directional animation for the specified ghost type.
pub fn get_normal(&self, ghost_type: &Ghost) -> Option<&DirectionalAnimation> {
self.normal.get(ghost_type)
}
/// Gets the eyes animation (shared across all ghosts).
pub fn eyes(&self) -> &DirectionalAnimation {
&self.eyes
}
/// Gets the frightened animations (shared across all ghosts).
pub fn frightened(&self, flash: bool) -> &LinearAnimation {
if flash {
&self.frightened_flashing
} else {
&self.frightened
}
}
}
#[derive(Bundle)]
pub struct PlayerBundle {
pub player: PlayerControlled,
pub position: Position,
pub velocity: Velocity,
pub buffered_direction: BufferedDirection,
pub sprite: Renderable,
pub directional_animation: DirectionalAnimation,
pub entity_type: EntityType,
pub collider: Collider,
pub movement_modifiers: MovementModifiers,
pub pacman_collider: PacmanCollider,
}
#[derive(Bundle)]
pub struct ItemBundle {
pub position: Position,
pub sprite: Renderable,
pub entity_type: EntityType,
pub collider: Collider,
pub item_collider: ItemCollider,
}
#[derive(Bundle)]
pub struct GhostBundle {
pub ghost: Ghost,
pub position: Position,
pub velocity: Velocity,
pub sprite: Renderable,
pub directional_animation: DirectionalAnimation,
pub entity_type: EntityType,
pub collider: Collider,
pub ghost_collider: GhostCollider,
pub ghost_state: GhostState,
pub last_animation_state: LastAnimationState,
}

207
src/systems/debug.rs Normal file
View File

@@ -0,0 +1,207 @@
//! Debug rendering system
use std::cmp::Ordering;
use crate::constants::BOARD_PIXEL_OFFSET;
use crate::map::builder::Map;
use crate::systems::{Collider, CursorPosition, NodeId, Position, SystemTimings};
use bevy_ecs::resource::Resource;
use bevy_ecs::system::{NonSendMut, Query, Res};
use glam::{IVec2, UVec2, Vec2};
use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect};
use sdl2::render::{Canvas, Texture, TextureCreator};
use sdl2::ttf::Font;
use sdl2::video::{Window, WindowContext};
#[derive(Resource, Default, Debug, Copy, Clone)]
pub struct DebugState {
pub enabled: bool,
}
fn f32_to_u8(value: f32) -> u8 {
(value * 255.0) as u8
}
/// Resource to hold the debug texture for persistent rendering
pub struct DebugTextureResource(pub Texture<'static>);
/// Resource to hold the debug font
pub struct DebugFontResource(pub Font<'static, 'static>);
/// Transforms a position from logical canvas coordinates to output canvas coordinates (with board offset)
fn transform_position_with_offset(pos: Vec2, scale: f32) -> IVec2 {
((pos + BOARD_PIXEL_OFFSET.as_vec2()) * scale).as_ivec2()
}
/// Renders timing information in the top-left corner of the screen
fn render_timing_display(
canvas: &mut Canvas<Window>,
texture_creator: &mut TextureCreator<WindowContext>,
timings: &SystemTimings,
font: &Font,
) {
// Format timing information using the formatting module
let lines = timings.format_timing_display();
let line_height = 14; // Approximate line height for 12pt font
let padding = 10;
// Calculate background dimensions
let max_width = lines
.iter()
.filter(|l| !l.is_empty()) // Don't consider empty lines for width
.map(|line| font.size_of(line).unwrap().0)
.max()
.unwrap_or(0);
// Only draw background if there is text to display
let total_height = (lines.len() as u32) * line_height as u32;
if max_width > 0 && total_height > 0 {
let bg_padding = 5;
// Draw background
let bg_rect = Rect::new(
padding - bg_padding,
padding - bg_padding,
max_width + (bg_padding * 2) as u32,
total_height + bg_padding as u32,
);
canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
canvas.set_draw_color(Color::RGBA(40, 40, 40, 180));
canvas.fill_rect(bg_rect).unwrap();
}
for (i, line) in lines.iter().enumerate() {
if line.is_empty() {
continue;
}
// Render each line
let surface = font.render(line).blended(Color::RGBA(255, 255, 255, 200)).unwrap();
let texture = texture_creator.create_texture_from_surface(&surface).unwrap();
// Position each line below the previous one
let y_pos = padding + (i * line_height) as i32;
let dest = Rect::new(padding, y_pos, texture.query().width, texture.query().height);
canvas.copy(&texture, None, dest).unwrap();
}
}
#[allow(clippy::too_many_arguments)]
pub fn debug_render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
mut debug_texture: NonSendMut<DebugTextureResource>,
debug_font: NonSendMut<DebugFontResource>,
debug_state: Res<DebugState>,
timings: Res<SystemTimings>,
map: Res<Map>,
colliders: Query<(&Collider, &Position)>,
cursor: Res<CursorPosition>,
) {
if !debug_state.enabled {
return;
}
let scale =
(UVec2::from(canvas.output_size().unwrap()).as_vec2() / UVec2::from(canvas.logical_size()).as_vec2()).min_element();
// Get texture creator before entering the closure to avoid borrowing conflicts
let mut texture_creator = canvas.texture_creator();
let font = &debug_font.0;
let cursor_world_pos = match *cursor {
CursorPosition::None => None,
CursorPosition::Some { position, .. } => Some(position - BOARD_PIXEL_OFFSET.as_vec2()),
};
// Draw debug info on the high-resolution debug texture
canvas
.with_texture_canvas(&mut debug_texture.0, |debug_canvas| {
// Clear the debug canvas
debug_canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
debug_canvas.clear();
// Find the closest node to the cursor
let closest_node = if let Some(cursor_world_pos) = cursor_world_pos {
map.graph
.nodes()
.map(|node| node.position.distance(cursor_world_pos))
.enumerate()
.min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Less))
.map(|(id, _)| id)
} else {
None
};
debug_canvas.set_draw_color(Color::GREEN);
for (collider, position) in colliders.iter() {
let pos = position.get_pixel_position(&map.graph).unwrap();
// Transform position and size using common methods
let pos = (pos * scale).as_ivec2();
let size = (collider.size * scale) as u32;
let rect = Rect::from_center(Point::from((pos.x, pos.y)), size, size);
debug_canvas.draw_rect(rect).unwrap();
}
debug_canvas.set_draw_color(Color {
a: f32_to_u8(0.4),
..Color::RED
});
debug_canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
for (start_node, end_node) in map.graph.edges() {
let start_node_model = map.graph.get_node(start_node).unwrap();
let end_node = map.graph.get_node(end_node.target).unwrap().position;
// Transform positions using common method
let start = transform_position_with_offset(start_node_model.position, scale);
let end = transform_position_with_offset(end_node, scale);
debug_canvas
.draw_line(Point::from((start.x, start.y)), Point::from((end.x, end.y)))
.unwrap();
}
for (id, node) in map.graph.nodes().enumerate() {
let pos = node.position;
// Set color based on whether the node is the closest to the cursor
debug_canvas.set_draw_color(Color {
a: f32_to_u8(if Some(id) == closest_node { 0.75 } else { 0.6 }),
..(if Some(id) == closest_node {
Color::YELLOW
} else {
Color::BLUE
})
});
// Transform position using common method
let pos = transform_position_with_offset(pos, scale);
let size = (2.0 * scale) as u32;
debug_canvas
.fill_rect(Rect::new(pos.x - (size as i32 / 2), pos.y - (size as i32 / 2), size, size))
.unwrap();
}
// Render node ID if a node is highlighted
if let Some(closest_node_id) = closest_node {
let node = map.graph.get_node(closest_node_id as NodeId).unwrap();
let pos = transform_position_with_offset(node.position, scale);
let surface = font
.render(&closest_node_id.to_string())
.blended(Color {
a: f32_to_u8(0.4),
..Color::WHITE
})
.unwrap();
let texture = texture_creator.create_texture_from_surface(&surface).unwrap();
let dest = Rect::new(pos.x + 10, pos.y - 5, texture.query().width, texture.query().height);
debug_canvas.copy(&texture, None, dest).unwrap();
}
// Render timing information in the top-left corner
render_timing_display(debug_canvas, &mut texture_creator, &timings, font);
})
.unwrap();
}

219
src/systems/ghost.rs Normal file
View File

@@ -0,0 +1,219 @@
use crate::systems::components::{DirectionalAnimation, Frozen, GhostAnimation, GhostState, LastAnimationState, LinearAnimation};
use crate::{
map::{
builder::Map,
direction::Direction,
graph::{Edge, TraversalFlags},
},
systems::{
components::{DeltaTime, Ghost},
movement::{Position, Velocity},
},
};
use crate::systems::GhostAnimations;
use bevy_ecs::query::Without;
use bevy_ecs::system::{Commands, Query, Res};
use rand::rngs::SmallRng;
use rand::seq::IndexedRandom;
use rand::SeedableRng;
use smallvec::SmallVec;
/// Autonomous ghost AI system implementing randomized movement with backtracking avoidance.
pub fn ghost_movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut ghosts: Query<(&Ghost, &mut Velocity, &mut Position), Without<Frozen>>,
) {
for (_ghost, mut velocity, mut position) in ghosts.iter_mut() {
let mut distance = velocity.speed * 60.0 * delta_time.0;
loop {
match *position {
Position::Stopped { node: current_node } => {
let intersection = &map.graph.adjacency_list[current_node as usize];
let opposite = velocity.direction.opposite();
let mut non_opposite_options: SmallVec<[Edge; 3]> = SmallVec::new();
// Collect all available directions that ghosts can traverse
for edge in Direction::DIRECTIONS.iter().flat_map(|d| intersection.get(*d)) {
if edge.traversal_flags.contains(TraversalFlags::GHOST) && edge.direction != opposite {
non_opposite_options.push(edge);
}
}
let new_edge: Edge = if non_opposite_options.is_empty() {
if let Some(edge) = intersection.get(opposite) {
edge
} else {
break;
}
} else {
*non_opposite_options.choose(&mut SmallRng::from_os_rng()).unwrap()
};
velocity.direction = new_edge.direction;
*position = Position::Moving {
from: current_node,
to: new_edge.target,
remaining_distance: new_edge.distance,
};
}
Position::Moving { .. } => {
if let Some(overflow) = position.tick(distance) {
distance = overflow;
} else {
break;
}
}
}
}
}
}
/// System that handles eaten ghost behavior and respawn logic.
///
/// When a ghost is eaten by Pac-Man, it enters an "eaten" state where:
/// 1. It displays eyes-only animation
/// 2. It moves directly back to the ghost house at increased speed
/// 3. Once it reaches the ghost house center, it respawns as a normal ghost
///
/// This system runs after the main movement system to override eaten ghost movement.
pub fn eaten_ghost_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut eaten_ghosts: Query<(&Ghost, &mut Position, &mut Velocity, &mut GhostState)>,
) {
for (ghost_type, mut position, mut velocity, mut ghost_state) in eaten_ghosts.iter_mut() {
// Only process ghosts that are in Eyes state
if !matches!(*ghost_state, GhostState::Eyes) {
continue;
}
// Set higher speed for eaten ghosts returning to ghost house
let original_speed = velocity.speed;
velocity.speed = ghost_type.base_speed() * 2.0; // Move twice as fast when eaten
// Calculate direction towards ghost house center (using Clyde's start position)
let ghost_house_center = map.start_positions.clyde;
match *position {
Position::Stopped { node: current_node } => {
// Find path to ghost house center and start moving
if let Some(direction) = find_direction_to_target(&map, current_node, ghost_house_center) {
velocity.direction = direction;
*position = Position::Moving {
from: current_node,
to: map.graph.adjacency_list[current_node as usize].get(direction).unwrap().target,
remaining_distance: map.graph.adjacency_list[current_node as usize]
.get(direction)
.unwrap()
.distance,
};
}
}
Position::Moving { to, .. } => {
let distance = velocity.speed * 60.0 * delta_time.0;
if let Some(_overflow) = position.tick(distance) {
// Reached target node, check if we're at ghost house center
if to == ghost_house_center {
// Respawn the ghost - set state back to normal
*ghost_state = GhostState::Normal;
// Reset to stopped at ghost house center
*position = Position::Stopped {
node: ghost_house_center,
};
} else {
// Continue pathfinding to ghost house
if let Some(next_direction) = find_direction_to_target(&map, to, ghost_house_center) {
velocity.direction = next_direction;
*position = Position::Moving {
from: to,
to: map.graph.adjacency_list[to as usize].get(next_direction).unwrap().target,
remaining_distance: map.graph.adjacency_list[to as usize].get(next_direction).unwrap().distance,
};
}
}
}
}
}
// Restore original speed
velocity.speed = original_speed;
}
}
/// Helper function to find the direction from a node towards a target node.
/// Uses simple greedy pathfinding - prefers straight lines when possible.
fn find_direction_to_target(
map: &Map,
from_node: crate::systems::movement::NodeId,
target_node: crate::systems::movement::NodeId,
) -> Option<Direction> {
let from_pos = map.graph.get_node(from_node).unwrap().position;
let target_pos = map.graph.get_node(target_node).unwrap().position;
let dx = target_pos.x as i32 - from_pos.x as i32;
let dy = target_pos.y as i32 - from_pos.y as i32;
// Prefer horizontal movement first, then vertical
let preferred_dirs = if dx.abs() > dy.abs() {
if dx > 0 {
[Direction::Right, Direction::Up, Direction::Down, Direction::Left]
} else {
[Direction::Left, Direction::Up, Direction::Down, Direction::Right]
}
} else if dy > 0 {
[Direction::Down, Direction::Left, Direction::Right, Direction::Up]
} else {
[Direction::Up, Direction::Left, Direction::Right, Direction::Down]
};
// Return first available direction towards target
for direction in preferred_dirs {
if let Some(edge) = map.graph.adjacency_list[from_node as usize].get(direction) {
if edge.traversal_flags.contains(TraversalFlags::GHOST) {
return Some(direction);
}
}
}
None
}
/// Unified system that manages ghost state transitions and animations with component swapping
pub fn ghost_state_system(
mut commands: Commands,
animations: Res<GhostAnimations>,
mut ghosts: Query<(bevy_ecs::entity::Entity, &Ghost, &mut GhostState, &mut LastAnimationState)>,
) {
for (entity, ghost_type, mut ghost_state, mut last_animation_state) in ghosts.iter_mut() {
// Tick the ghost state to handle internal transitions (like flashing)
let _ = ghost_state.tick();
// Only update animation if the animation state actually changed
let current_animation_state = ghost_state.animation_state();
if last_animation_state.0 != current_animation_state {
match current_animation_state {
GhostAnimation::Frightened { flash } => {
// Remove DirectionalAnimation, add LinearAnimation
commands
.entity(entity)
.remove::<DirectionalAnimation>()
.insert(*animations.frightened(flash));
}
GhostAnimation::Normal => {
// Remove LinearAnimation, add DirectionalAnimation
commands
.entity(entity)
.remove::<LinearAnimation>()
.insert(*animations.get_normal(ghost_type).unwrap());
}
GhostAnimation::Eyes => {
// Remove LinearAnimation, add DirectionalAnimation (eyes animation)
commands.entity(entity).remove::<LinearAnimation>().insert(*animations.eyes());
}
}
last_animation_state.0 = current_animation_state;
}
}
}

182
src/systems/input.rs Normal file
View File

@@ -0,0 +1,182 @@
use std::collections::{HashMap, HashSet};
use bevy_ecs::{
event::EventWriter,
resource::Resource,
system::{NonSendMut, Res, ResMut},
};
use glam::Vec2;
use sdl2::{event::Event, keyboard::Keycode, EventPump};
use crate::systems::components::DeltaTime;
use crate::{
events::{GameCommand, GameEvent},
map::direction::Direction,
};
#[derive(Resource, Default, Debug, Copy, Clone)]
pub enum CursorPosition {
#[default]
None,
Some {
position: Vec2,
remaining_time: f32,
},
}
#[derive(Resource, Debug, Clone)]
pub struct Bindings {
key_bindings: HashMap<Keycode, GameCommand>,
movement_keys: HashSet<Keycode>,
pressed_movement_keys: Vec<Keycode>,
}
impl Default for Bindings {
fn default() -> Self {
let mut key_bindings = HashMap::new();
// Player movement
key_bindings.insert(Keycode::Up, GameCommand::MovePlayer(Direction::Up));
key_bindings.insert(Keycode::W, GameCommand::MovePlayer(Direction::Up));
key_bindings.insert(Keycode::Down, GameCommand::MovePlayer(Direction::Down));
key_bindings.insert(Keycode::S, GameCommand::MovePlayer(Direction::Down));
key_bindings.insert(Keycode::Left, GameCommand::MovePlayer(Direction::Left));
key_bindings.insert(Keycode::A, GameCommand::MovePlayer(Direction::Left));
key_bindings.insert(Keycode::Right, GameCommand::MovePlayer(Direction::Right));
key_bindings.insert(Keycode::D, GameCommand::MovePlayer(Direction::Right));
// Game actions
key_bindings.insert(Keycode::P, GameCommand::TogglePause);
key_bindings.insert(Keycode::Space, GameCommand::ToggleDebug);
key_bindings.insert(Keycode::M, GameCommand::MuteAudio);
key_bindings.insert(Keycode::R, GameCommand::ResetLevel);
key_bindings.insert(Keycode::Escape, GameCommand::Exit);
key_bindings.insert(Keycode::Q, GameCommand::Exit);
let movement_keys = HashSet::from([
Keycode::W,
Keycode::A,
Keycode::S,
Keycode::D,
Keycode::Up,
Keycode::Down,
Keycode::Left,
Keycode::Right,
]);
Self {
key_bindings,
movement_keys,
pressed_movement_keys: Vec::new(),
}
}
}
/// A simplified input event used for deterministic testing and logic reuse
/// without depending on SDL's event pump.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum SimpleKeyEvent {
KeyDown(Keycode),
KeyUp(Keycode),
}
/// Processes a frame's worth of simplified key events and returns the resulting
/// `GameEvent`s that would be emitted by the input system for that frame.
///
/// This mirrors the behavior of `input_system` for keyboard-related logic:
/// - KeyDown emits the bound command immediately (movement or otherwise)
/// - Tracks pressed movement keys in order to continue movement on subsequent frames
/// - KeyUp removes movement keys; if another movement key remains, it resumes
pub fn process_simple_key_events(bindings: &mut Bindings, frame_events: &[SimpleKeyEvent]) -> Vec<GameEvent> {
let mut emitted_events = Vec::new();
let mut movement_key_pressed = false;
for event in frame_events {
match *event {
SimpleKeyEvent::KeyDown(key) => {
if let Some(command) = bindings.key_bindings.get(&key).copied() {
emitted_events.push(GameEvent::Command(command));
}
if bindings.movement_keys.contains(&key) {
movement_key_pressed = true;
if !bindings.pressed_movement_keys.contains(&key) {
bindings.pressed_movement_keys.push(key);
}
}
}
SimpleKeyEvent::KeyUp(key) => {
if bindings.movement_keys.contains(&key) {
bindings.pressed_movement_keys.retain(|&k| k != key);
}
}
}
}
if !movement_key_pressed {
if let Some(&last_movement_key) = bindings.pressed_movement_keys.last() {
if let Some(command) = bindings.key_bindings.get(&last_movement_key).copied() {
emitted_events.push(GameEvent::Command(command));
}
}
}
emitted_events
}
pub fn input_system(
delta_time: Res<DeltaTime>,
mut bindings: ResMut<Bindings>,
mut writer: EventWriter<GameEvent>,
mut pump: NonSendMut<&'static mut EventPump>,
mut cursor: ResMut<CursorPosition>,
) {
let mut cursor_seen = false;
// Collect all events for this frame.
let frame_events: Vec<Event> = pump.poll_iter().collect();
// Handle non-keyboard events inline and build a simplified keyboard event stream.
let mut simple_key_events = Vec::new();
for event in &frame_events {
match *event {
Event::Quit { .. } => {
writer.write(GameEvent::Command(GameCommand::Exit));
}
Event::MouseMotion { x, y, .. } => {
*cursor = CursorPosition::Some {
position: Vec2::new(x as f32, y as f32),
remaining_time: 0.20,
};
cursor_seen = true;
}
Event::KeyDown {
keycode: Some(key),
repeat: false,
..
} => {
simple_key_events.push(SimpleKeyEvent::KeyDown(key));
}
Event::KeyUp {
keycode: Some(key),
repeat: false,
..
} => {
simple_key_events.push(SimpleKeyEvent::KeyUp(key));
}
_ => {}
}
}
// Delegate keyboard handling to shared logic used by tests and production.
let emitted = process_simple_key_events(&mut bindings, &simple_key_events);
for event in emitted {
writer.write(event);
}
if let (false, CursorPosition::Some { remaining_time, .. }) = (cursor_seen, &mut *cursor) {
*remaining_time -= delta_time.0;
if *remaining_time <= 0.0 {
*cursor = CursorPosition::None;
}
}
}

74
src/systems/item.rs Normal file
View File

@@ -0,0 +1,74 @@
use bevy_ecs::{
entity::Entity,
event::{EventReader, EventWriter},
query::With,
system::{Commands, Query, ResMut},
};
use crate::{
constants::animation::FRIGHTENED_FLASH_START_TICKS,
events::GameEvent,
systems::{AudioEvent, EntityType, GhostCollider, GhostState, ItemCollider, PacmanCollider, ScoreResource},
};
/// Determines if a collision between two entity types should be handled by the item system.
///
/// Returns `true` if one entity is a player and the other is a collectible item.
#[allow(dead_code)]
pub fn is_valid_item_collision(entity1: EntityType, entity2: EntityType) -> bool {
match (entity1, entity2) {
(EntityType::Player, entity) | (entity, EntityType::Player) => entity.is_collectible(),
_ => false,
}
}
pub fn item_system(
mut commands: Commands,
mut collision_events: EventReader<GameEvent>,
mut score: ResMut<ScoreResource>,
pacman_query: Query<Entity, With<PacmanCollider>>,
item_query: Query<(Entity, &EntityType), With<ItemCollider>>,
mut ghost_query: Query<&mut GhostState, With<GhostCollider>>,
mut events: EventWriter<AudioEvent>,
) {
for event in collision_events.read() {
if let GameEvent::Collision(entity1, entity2) = event {
// Check if one is Pacman and the other is an item
let (_pacman_entity, item_entity) = if pacman_query.get(*entity1).is_ok() && item_query.get(*entity2).is_ok() {
(*entity1, *entity2)
} else if pacman_query.get(*entity2).is_ok() && item_query.get(*entity1).is_ok() {
(*entity2, *entity1)
} else {
continue;
};
// Get the item type and update score
if let Ok((item_ent, entity_type)) = item_query.get(item_entity) {
if let Some(score_value) = entity_type.score_value() {
score.0 += score_value;
// Remove the collected item
commands.entity(item_ent).despawn();
// Trigger audio if appropriate
if entity_type.is_collectible() {
events.write(AudioEvent::PlayEat);
}
// Make ghosts frightened when power pellet is collected
if *entity_type == EntityType::PowerPellet {
// Convert seconds to frames (assumes 60 FPS)
let total_ticks = 60 * 5; // 5 seconds total
// Set all ghosts to frightened state, except those in Eyes state
for mut ghost_state in ghost_query.iter_mut() {
if !matches!(*ghost_state, GhostState::Eyes) {
*ghost_state = GhostState::new_frightened(total_ticks, FRIGHTENED_FLASH_START_TICKS);
}
}
}
}
}
}
}
}

32
src/systems/mod.rs Normal file
View File

@@ -0,0 +1,32 @@
//! The Entity-Component-System (ECS) module.
//!
//! This module contains all the ECS-related logic, including components, systems,
//! and resources.
pub mod audio;
pub mod blinking;
pub mod collision;
pub mod components;
pub mod debug;
pub mod ghost;
pub mod input;
pub mod item;
pub mod movement;
pub mod player;
pub mod profiling;
pub mod render;
pub mod stage;
pub use self::audio::*;
pub use self::blinking::*;
pub use self::collision::*;
pub use self::components::*;
pub use self::debug::*;
pub use self::ghost::*;
pub use self::input::*;
pub use self::item::*;
pub use self::movement::*;
pub use self::player::*;
pub use self::profiling::*;
pub use self::render::*;
pub use self::stage::*;

149
src/systems/movement.rs Normal file
View File

@@ -0,0 +1,149 @@
use crate::error::{EntityError, GameResult};
use crate::map::direction::Direction;
use crate::map::graph::Graph;
use bevy_ecs::component::Component;
use glam::Vec2;
/// Zero-based index identifying a specific node in the navigation graph.
///
/// Nodes represent discrete movement targets in the maze. The index directly corresponds to the node's position in the
/// graph's internal storage arrays.
pub type NodeId = u16;
/// A component that represents the speed and cardinal direction of an entity.
/// Speed is static, only applied when the entity has an edge to traverse.
/// Direction is dynamic, but is controlled externally.
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub struct Velocity {
pub speed: f32,
pub direction: Direction,
}
/// A component that represents a direction change that is only remembered for a period of time.
/// This is used to allow entities to change direction before they reach their current target node (which consumes their buffered direction).
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub enum BufferedDirection {
None,
Some { direction: Direction, remaining_time: f32 },
}
/// Entity position state that handles both stationary entities and moving entities.
///
/// Supports precise positioning during movement between discrete navigation nodes.
/// When moving, entities smoothly interpolate along edges while tracking exact distance remaining to the target node.
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub enum Position {
/// Entity is stationary at a specific graph node.
Stopped { node: NodeId },
/// Entity is traveling between two nodes.
Moving {
from: NodeId,
to: NodeId,
/// Distance remaining to reach the target node.
remaining_distance: f32,
},
}
impl Position {
/// Calculates the current pixel position in the game world.
///
/// Converts the graph position to screen coordinates, accounting for
/// the board offset and centering the sprite.
///
/// # Errors
///
/// Returns an `EntityError` if the node or edge is not found.
pub fn get_pixel_position(&self, graph: &Graph) -> GameResult<Vec2> {
let pos = match &self {
Position::Stopped { node } => {
// Entity is stationary at a node
let node = graph.get_node(*node).ok_or(EntityError::NodeNotFound(*node as usize))?;
node.position
}
Position::Moving {
from,
to,
remaining_distance,
} => {
// Entity is traveling between nodes
let from_node = graph.get_node(*from).ok_or(EntityError::NodeNotFound(*from as usize))?;
let to_node = graph.get_node(*to).ok_or(EntityError::NodeNotFound(*to as usize))?;
let edge = graph.find_edge(*from, *to).ok_or(EntityError::EdgeNotFound {
from: *from as usize,
to: *to as usize,
})?;
// For zero-distance edges (tunnels), progress >= 1.0 means we're at the target
if edge.distance == 0.0 {
to_node.position
} else {
// Interpolate position based on progress
let progress = 1.0 - (*remaining_distance / edge.distance);
from_node.position.lerp(to_node.position, progress)
}
}
};
Ok(Vec2::new(
pos.x + crate::constants::BOARD_PIXEL_OFFSET.x as f32,
pos.y + crate::constants::BOARD_PIXEL_OFFSET.y as f32,
))
}
/// Advances movement progress by the specified distance with overflow handling.
///
/// For moving entities, decreases the remaining distance to the target node.
/// If the distance would overshoot the target, the entity transitions to
/// `Stopped` state and returns the excess distance for chaining movement
/// to the next edge in the same frame.
///
/// # Arguments
///
/// * `distance` - Distance to travel this frame (typically speed × delta_time)
///
/// # Returns
///
/// `Some(overflow)` if the target was reached with distance remaining,
/// `None` if still moving or already stopped.
pub fn tick(&mut self, distance: f32) -> Option<f32> {
if distance <= 0.0 || self.is_at_node() {
return None;
}
match self {
Position::Moving {
to, remaining_distance, ..
} => {
// If the remaining distance is less than or equal the distance, we'll reach the target
if *remaining_distance <= distance {
let overflow: Option<f32> = if *remaining_distance != distance {
Some(distance - *remaining_distance)
} else {
None
};
*self = Position::Stopped { node: *to };
return overflow;
}
*remaining_distance -= distance;
None
}
_ => unreachable!(),
}
}
/// Returns `true` if the position is exactly at a node (not traveling).
pub fn is_at_node(&self) -> bool {
matches!(self, Position::Stopped { .. })
}
/// Returns the `NodeId` of the current node (source of travel if moving).
pub fn current_node(&self) -> NodeId {
match self {
Position::Stopped { node } => *node,
Position::Moving { from, .. } => *from,
}
}
}

168
src/systems/player.rs Normal file
View File

@@ -0,0 +1,168 @@
use bevy_ecs::{
event::{EventReader, EventWriter},
query::{With, Without},
system::{Query, Res, ResMut},
};
use crate::{
error::GameError,
events::{GameCommand, GameEvent},
map::{builder::Map, graph::Edge},
systems::{
components::{DeltaTime, EntityType, Frozen, GlobalState, MovementModifiers, PlayerControlled},
debug::DebugState,
movement::{BufferedDirection, Position, Velocity},
AudioState,
},
};
pub fn can_traverse(entity_type: EntityType, edge: Edge) -> bool {
let entity_flags = entity_type.traversal_flags();
edge.traversal_flags.contains(entity_flags)
}
/// Processes player input commands and updates game state accordingly.
///
/// Handles keyboard-driven commands like movement direction changes, debug mode
/// toggling, audio muting, and game exit requests. Movement commands are buffered
/// to allow direction changes before reaching intersections, improving gameplay
/// responsiveness. Non-movement commands immediately modify global game state.
pub fn player_control_system(
mut events: EventReader<GameEvent>,
mut state: ResMut<GlobalState>,
mut debug_state: ResMut<DebugState>,
mut audio_state: ResMut<AudioState>,
mut players: Query<&mut BufferedDirection, (With<PlayerControlled>, Without<Frozen>)>,
mut errors: EventWriter<GameError>,
) {
// Handle events
for event in events.read() {
if let GameEvent::Command(command) = event {
match command {
GameCommand::MovePlayer(direction) => {
// Get the player's movable component (ensuring there is only one player)
let mut buffered_direction = match players.single_mut() {
Ok(tuple) => tuple,
Err(e) => {
errors.write(GameError::InvalidState(format!(
"No/multiple entities queried for player system: {}",
e
)));
return;
}
};
*buffered_direction = BufferedDirection::Some {
direction: *direction,
remaining_time: 0.25,
};
}
GameCommand::Exit => {
state.exit = true;
}
GameCommand::ToggleDebug => {
debug_state.enabled = !debug_state.enabled;
}
GameCommand::MuteAudio => {
audio_state.muted = !audio_state.muted;
tracing::info!("Audio {}", if audio_state.muted { "muted" } else { "unmuted" });
}
_ => {}
}
}
}
}
/// Executes frame-by-frame movement for Pac-Man.
///
/// Handles movement logic including buffered direction changes, edge traversal validation, and continuous movement between nodes.
/// When stopped, prioritizes buffered directions for responsive controls, falling back to current direction.
/// Supports movement chaining within a single frame when traveling at high speeds.
#[allow(clippy::type_complexity)]
pub fn player_movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut entities: Query<
(&MovementModifiers, &mut Position, &mut Velocity, &mut BufferedDirection),
(With<PlayerControlled>, Without<Frozen>),
>,
) {
for (modifiers, mut position, mut velocity, mut buffered_direction) in entities.iter_mut() {
// Decrement the buffered direction remaining time
if let BufferedDirection::Some {
direction,
remaining_time,
} = *buffered_direction
{
if remaining_time <= 0.0 {
*buffered_direction = BufferedDirection::None;
} else {
*buffered_direction = BufferedDirection::Some {
direction,
remaining_time: remaining_time - delta_time.0,
};
}
}
let mut distance = velocity.speed * modifiers.speed_multiplier * 60.0 * delta_time.0;
loop {
match *position {
Position::Stopped { .. } => {
// If there is a buffered direction, travel it's edge first if available.
if let BufferedDirection::Some { direction, .. } = *buffered_direction {
// If there's no edge in that direction, ignore the buffered direction.
if let Some(edge) = map.graph.find_edge_in_direction(position.current_node(), direction) {
// If there is an edge in that direction (and it's traversable), start moving towards it and consume the buffered direction.
if can_traverse(EntityType::Player, edge) {
velocity.direction = edge.direction;
*position = Position::Moving {
from: position.current_node(),
to: edge.target,
remaining_distance: edge.distance,
};
*buffered_direction = BufferedDirection::None;
}
}
}
// If there is no buffered direction (or it's not yet valid), continue in the current direction.
if let Some(edge) = map.graph.find_edge_in_direction(position.current_node(), velocity.direction) {
if can_traverse(EntityType::Player, edge) {
velocity.direction = edge.direction;
*position = Position::Moving {
from: position.current_node(),
to: edge.target,
remaining_distance: edge.distance,
};
}
} else {
// No edge in our current direction either, erase the buffered direction and stop.
*buffered_direction = BufferedDirection::None;
break;
}
}
Position::Moving { .. } => {
if let Some(overflow) = position.tick(distance) {
distance = overflow;
} else {
break;
}
}
}
}
}
}
/// Applies tunnel slowdown based on the current node tile
pub fn player_tunnel_slowdown_system(map: Res<Map>, mut q: Query<(&Position, &mut MovementModifiers), With<PlayerControlled>>) {
if let Ok((position, mut modifiers)) = q.single_mut() {
let node = position.current_node();
let in_tunnel = map
.tile_at_node(node)
.map(|t| t == crate::constants::MapTile::Tunnel)
.unwrap_or(false);
modifiers.tunnel_slowdown_active = in_tunnel;
modifiers.speed_multiplier = if in_tunnel { 0.6 } else { 1.0 };
}
}

285
src/systems/profiling.rs Normal file
View File

@@ -0,0 +1,285 @@
use bevy_ecs::system::IntoSystem;
use bevy_ecs::{resource::Resource, system::System};
use circular_buffer::CircularBuffer;
use micromap::Map;
use num_width::NumberWidth;
use parking_lot::{Mutex, RwLock};
use smallvec::SmallVec;
use std::fmt::Display;
use std::time::Duration;
use strum::EnumCount;
use strum_macros::{EnumCount, IntoStaticStr};
use thousands::Separable;
/// The maximum number of systems that can be profiled. Must not be exceeded, or it will panic.
const MAX_SYSTEMS: usize = SystemId::COUNT;
/// The number of durations to keep in the circular buffer.
const TIMING_WINDOW_SIZE: usize = 30;
#[derive(EnumCount, IntoStaticStr, Debug, PartialEq, Eq, Hash, Copy, Clone)]
pub enum SystemId {
Input,
PlayerControls,
Ghost,
Movement,
Audio,
Blinking,
DirectionalRender,
LinearRender,
DirtyRender,
HudRender,
Render,
DebugRender,
Present,
Collision,
Item,
PlayerMovement,
GhostCollision,
Stage,
GhostStateAnimation,
EatenGhost,
}
impl Display for SystemId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", Into::<&'static str>::into(self).to_ascii_lowercase())
}
}
#[derive(Resource, Default, Debug)]
pub struct SystemTimings {
/// Map of system names to a queue of durations, using a circular buffer.
///
/// Uses a RwLock to allow multiple readers for the HashMap, and a Mutex on the circular buffer for exclusive access.
/// This is probably overkill, but it's fun to play with.
///
/// Also, we use a micromap::Map as the number of systems is generally quite small.
/// Just make sure to set the capacity appropriately, or it will panic.
pub timings: RwLock<Map<SystemId, Mutex<CircularBuffer<TIMING_WINDOW_SIZE, Duration>>, MAX_SYSTEMS>>,
}
impl SystemTimings {
pub fn add_timing(&self, id: SystemId, duration: Duration) {
// acquire a upgradable read lock
let mut timings = self.timings.upgradable_read();
// happy path, the name is already in the map (no need to mutate the hashmap)
if timings.contains_key(&id) {
let queue = timings
.get(&id)
.expect("System name not found in map after contains_key check");
let mut queue = queue.lock();
queue.push_back(duration);
return;
}
// otherwise, acquire a write lock and insert a new queue
timings.with_upgraded(|timings| {
let queue = timings.entry(id).or_insert_with(|| Mutex::new(CircularBuffer::new()));
queue.lock().push_back(duration);
});
}
pub fn get_stats(&self) -> Map<SystemId, (Duration, Duration), MAX_SYSTEMS> {
let timings = self.timings.read();
let mut stats = Map::new();
for (id, queue) in timings.iter() {
if queue.lock().is_empty() {
continue;
}
let durations: Vec<f64> = queue.lock().iter().map(|d| d.as_secs_f64() * 1000.0).collect();
let count = durations.len() as f64;
let sum: f64 = durations.iter().sum();
let mean = sum / count;
let variance = durations.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / count;
let std_dev = variance.sqrt();
stats.insert(
*id,
(
Duration::from_secs_f64(mean / 1000.0),
Duration::from_secs_f64(std_dev / 1000.0),
),
);
}
stats
}
pub fn get_total_stats(&self) -> (Duration, Duration) {
let duration_sums = {
let timings = self.timings.read();
timings
.iter()
.map(|(_, queue)| queue.lock().iter().sum::<Duration>())
.collect::<Vec<_>>()
};
let mean = duration_sums.iter().sum::<Duration>() / duration_sums.len() as u32;
let variance = duration_sums
.iter()
.map(|x| {
let diff_secs = x.as_secs_f64() - mean.as_secs_f64();
diff_secs * diff_secs
})
.sum::<f64>()
/ duration_sums.len() as f64;
let std_dev_secs = variance.sqrt();
(mean, Duration::from_secs_f64(std_dev_secs))
}
pub fn format_timing_display(&self) -> SmallVec<[String; SystemId::COUNT]> {
let stats = self.get_stats();
let (total_avg, total_std) = self.get_total_stats();
let effective_fps = match 1.0 / total_avg.as_secs_f64() {
f if f > 100.0 => (f as u32).separate_with_commas(),
f if f < 10.0 => format!("{:.1} FPS", f),
f => format!("{:.0} FPS", f),
};
// Collect timing data for formatting
let mut timing_data = vec![(effective_fps, total_avg, total_std)];
// Sort the stats by average duration
let mut sorted_stats: Vec<_> = stats.iter().collect();
sorted_stats.sort_by(|a, b| b.1 .0.cmp(&a.1 .0));
// Add the top 5 most expensive systems
for (name, (avg, std_dev)) in sorted_stats.iter().take(7) {
timing_data.push((name.to_string(), *avg, *std_dev));
}
// Use the formatting module to format the data
format_timing_display(timing_data)
}
}
pub fn profile<S, M>(id: SystemId, system: S) -> impl FnMut(&mut bevy_ecs::world::World)
where
S: IntoSystem<(), (), M> + 'static,
{
let mut system: S::System = IntoSystem::into_system(system);
let mut is_initialized = false;
move |world: &mut bevy_ecs::world::World| {
if !is_initialized {
system.initialize(world);
is_initialized = true;
}
let start = std::time::Instant::now();
system.run((), world);
let duration = start.elapsed();
if let Some(timings) = world.get_resource::<SystemTimings>() {
timings.add_timing(id, duration);
}
}
}
// Helper to split a duration into a integer, decimal, and unit
fn get_value(duration: &Duration) -> (u64, u32, &'static str) {
let (int, decimal, unit) = match duration {
// if greater than 1 second, return as seconds
n if n >= &Duration::from_secs(1) => {
let secs = n.as_secs();
let decimal = n.as_millis() as u64 % 1000;
(secs, decimal as u32, "s")
}
// if greater than 1 millisecond, return as milliseconds
n if n >= &Duration::from_millis(1) => {
let ms = n.as_millis() as u64;
let decimal = n.as_micros() as u64 % 1000;
(ms, decimal as u32, "ms")
}
// if greater than 1 microsecond, return as microseconds
n if n >= &Duration::from_micros(1) => {
let us = n.as_micros() as u64;
let decimal = n.as_nanos() as u64 % 1000;
(us, decimal as u32, "µs")
}
// otherwise, return as nanoseconds
n => {
let ns = n.as_nanos() as u64;
(ns, 0, "ns")
}
};
(int, decimal, unit)
}
/// Formats timing data into a vector of strings with proper alignment
pub fn format_timing_display(
timing_data: impl IntoIterator<Item = (String, Duration, Duration)>,
) -> SmallVec<[String; SystemId::COUNT]> {
let mut iter = timing_data.into_iter().peekable();
if iter.peek().is_none() {
return SmallVec::new();
}
struct Entry {
name: String,
avg_int: u64,
avg_decimal: u32,
avg_unit: &'static str,
std_int: u64,
std_decimal: u32,
std_unit: &'static str,
}
let entries = iter
.map(|(name, avg, std_dev)| {
let (avg_int, avg_decimal, avg_unit) = get_value(&avg);
let (std_int, std_decimal, std_unit) = get_value(&std_dev);
Entry {
name: name.clone(),
avg_int,
avg_decimal,
avg_unit,
std_int,
std_decimal,
std_unit,
}
})
.collect::<SmallVec<[Entry; 12]>>();
let (max_name_width, max_avg_int_width, max_avg_decimal_width, max_std_int_width, max_std_decimal_width) = entries
.iter()
.fold((0, 0, 3, 0, 3), |(name_w, avg_int_w, avg_dec_w, std_int_w, std_dec_w), e| {
(
name_w.max(e.name.len()),
avg_int_w.max(e.avg_int.width() as usize),
avg_dec_w.max(e.avg_decimal.width() as usize),
std_int_w.max(e.std_int.width() as usize),
std_dec_w.max(e.std_decimal.width() as usize),
)
});
entries.iter().map(|e| {
format!(
"{name:max_name_width$} : {avg_int:max_avg_int_width$}.{avg_decimal:<max_avg_decimal_width$}{avg_unit} ± {std_int:max_std_int_width$}.{std_decimal:<max_std_decimal_width$}{std_unit}",
// Content
name = e.name,
avg_int = e.avg_int,
avg_decimal = e.avg_decimal,
std_int = e.std_int,
std_decimal = e.std_decimal,
// Units
avg_unit = e.avg_unit,
std_unit = e.std_unit,
// Padding
max_name_width = max_name_width,
max_avg_int_width = max_avg_int_width,
max_avg_decimal_width = max_avg_decimal_width,
max_std_int_width = max_std_int_width,
max_std_decimal_width = max_std_decimal_width
)
}).collect::<SmallVec<[String; SystemId::COUNT]>>()
}

252
src/systems/render.rs Normal file
View File

@@ -0,0 +1,252 @@
use crate::constants::CANVAS_SIZE;
use crate::error::{GameError, TextureError};
use crate::map::builder::Map;
use crate::systems::{
DebugState, DebugTextureResource, DeltaTime, DirectionalAnimation, LinearAnimation, Position, Renderable, ScoreResource,
StartupSequence, Velocity,
};
use crate::texture::sprite::SpriteAtlas;
use crate::texture::text::TextTexture;
use bevy_ecs::component::Component;
use bevy_ecs::entity::Entity;
use bevy_ecs::event::EventWriter;
use bevy_ecs::query::{Changed, Or, Without};
use bevy_ecs::removal_detection::RemovedComponents;
use bevy_ecs::resource::Resource;
use bevy_ecs::system::{NonSendMut, Query, Res, ResMut};
use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect};
use sdl2::render::{BlendMode, Canvas, Texture};
use sdl2::video::Window;
#[derive(Resource, Default)]
pub struct RenderDirty(pub bool);
#[derive(Component)]
pub struct Hidden;
#[allow(clippy::type_complexity)]
pub fn dirty_render_system(
mut dirty: ResMut<RenderDirty>,
changed: Query<(), Or<(Changed<Renderable>, Changed<Position>)>>,
removed_hidden: RemovedComponents<Hidden>,
removed_renderables: RemovedComponents<Renderable>,
) {
if !changed.is_empty() || !removed_hidden.is_empty() || !removed_renderables.is_empty() {
dirty.0 = true;
}
}
/// Updates directional animated entities with synchronized timing across directions.
///
/// This runs before the render system to update sprites based on current direction and movement state.
/// All directions share the same frame timing to ensure perfect synchronization.
pub fn directional_render_system(
dt: Res<DeltaTime>,
mut query: Query<(&Position, &Velocity, &mut DirectionalAnimation, &mut Renderable)>,
) {
let ticks = (dt.0 * 60.0).round() as u16; // Convert from seconds to ticks at 60 ticks/sec
for (position, velocity, mut anim, mut renderable) in query.iter_mut() {
let stopped = matches!(position, Position::Stopped { .. });
// Only tick animation when moving to preserve stopped frame
if !stopped {
// Tick shared animation state
anim.time_bank += ticks;
while anim.time_bank >= anim.frame_duration {
anim.time_bank -= anim.frame_duration;
anim.current_frame += 1;
}
}
// Get tiles for current direction and movement state
let tiles = if stopped {
anim.stopped_tiles.get(velocity.direction)
} else {
anim.moving_tiles.get(velocity.direction)
};
if !tiles.is_empty() {
let new_tile = tiles.get_tile(anim.current_frame);
if renderable.sprite != new_tile {
renderable.sprite = new_tile;
}
}
}
}
/// Updates linear animated entities (used for non-directional animations like frightened ghosts).
///
/// This system handles entities that use LinearAnimation component for simple frame cycling.
pub fn linear_render_system(dt: Res<DeltaTime>, mut query: Query<(&mut LinearAnimation, &mut Renderable)>) {
let ticks = (dt.0 * 60.0).round() as u16; // Convert from seconds to ticks at 60 ticks/sec
for (mut anim, mut renderable) in query.iter_mut() {
// Tick animation
anim.time_bank += ticks;
while anim.time_bank >= anim.frame_duration {
anim.time_bank -= anim.frame_duration;
anim.current_frame += 1;
}
if !anim.tiles.is_empty() {
let new_tile = anim.tiles.get_tile(anim.current_frame);
if renderable.sprite != new_tile {
renderable.sprite = new_tile;
}
}
}
}
/// A non-send resource for the map texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource.
pub struct MapTextureResource(pub Texture<'static>);
/// A non-send resource for the backbuffer texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource.
pub struct BackbufferResource(pub Texture<'static>);
/// Renders the HUD (score, lives, etc.) on top of the game.
pub fn hud_render_system(
mut backbuffer: NonSendMut<BackbufferResource>,
mut canvas: NonSendMut<&mut Canvas<Window>>,
mut atlas: NonSendMut<SpriteAtlas>,
score: Res<ScoreResource>,
startup: Res<StartupSequence>,
mut errors: EventWriter<GameError>,
) {
let _ = canvas.with_texture_canvas(&mut backbuffer.0, |canvas| {
let mut text_renderer = TextTexture::new(1.0);
// Render lives and high score text in white
let lives = 3; // TODO: Get from actual lives resource
let lives_text = format!("{lives}UP HIGH SCORE ");
let lives_position = glam::UVec2::new(4 + 8 * 3, 2); // x_offset + lives_offset * 8, y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, &lives_text, lives_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render lives text: {}", e)).into());
}
// Render score text
let score_text = format!("{:02}", score.0);
let score_offset = 7 - (score_text.len() as i32);
let score_position = glam::UVec2::new(4 + 8 * score_offset as u32, 10); // x_offset + score_offset * 8, 8 + y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, &score_text, score_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render score text: {}", e)).into());
}
// Render high score text
let high_score_text = format!("{:02}", score.0);
let high_score_offset = 17 - (high_score_text.len() as i32);
let high_score_position = glam::UVec2::new(4 + 8 * high_score_offset as u32, 10); // x_offset + score_offset * 8, 8 + y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, &high_score_text, high_score_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render high score text: {}", e)).into());
}
// Render text based on StartupSequence stage
if matches!(
*startup,
StartupSequence::TextOnly { .. } | StartupSequence::CharactersVisible { .. }
) {
let ready_text = "READY!";
let ready_width = text_renderer.text_width(ready_text);
let ready_position = glam::UVec2::new((CANVAS_SIZE.x - ready_width) / 2, 160);
if let Err(e) = text_renderer.render_with_color(canvas, &mut atlas, ready_text, ready_position, Color::YELLOW) {
errors.write(TextureError::RenderFailed(format!("Failed to render READY text: {}", e)).into());
}
if matches!(*startup, StartupSequence::TextOnly { .. }) {
let player_one_text = "PLAYER ONE";
let player_one_width = text_renderer.text_width(player_one_text);
let player_one_position = glam::UVec2::new((CANVAS_SIZE.x - player_one_width) / 2, 113);
if let Err(e) =
text_renderer.render_with_color(canvas, &mut atlas, player_one_text, player_one_position, Color::CYAN)
{
errors.write(TextureError::RenderFailed(format!("Failed to render PLAYER ONE text: {}", e)).into());
}
}
}
});
}
#[allow(clippy::too_many_arguments)]
pub fn render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
map_texture: NonSendMut<MapTextureResource>,
mut backbuffer: NonSendMut<BackbufferResource>,
mut atlas: NonSendMut<SpriteAtlas>,
map: Res<Map>,
dirty: Res<RenderDirty>,
renderables: Query<(Entity, &Renderable, &Position), Without<Hidden>>,
mut errors: EventWriter<GameError>,
) {
if !dirty.0 {
return;
}
// Render to backbuffer
canvas
.with_texture_canvas(&mut backbuffer.0, |backbuffer_canvas| {
// Clear the backbuffer
backbuffer_canvas.set_draw_color(sdl2::pixels::Color::BLACK);
backbuffer_canvas.clear();
// Copy the pre-rendered map texture to the backbuffer
if let Err(e) = backbuffer_canvas.copy(&map_texture.0, None, None) {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Render all entities to the backbuffer
for (_, renderable, position) in renderables
.iter()
.sort_by_key::<(Entity, &Renderable, &Position), _>(|(_, renderable, _)| renderable.layer)
.rev()
{
let pos = position.get_pixel_position(&map.graph);
match pos {
Ok(pos) => {
let dest = Rect::from_center(
Point::from((pos.x as i32, pos.y as i32)),
renderable.sprite.size.x as u32,
renderable.sprite.size.y as u32,
);
renderable
.sprite
.render(backbuffer_canvas, &mut atlas, dest)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
}
Err(e) => {
errors.write(e);
}
}
}
})
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
canvas.copy(&backbuffer.0, None, None).unwrap();
}
pub fn present_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
mut dirty: ResMut<RenderDirty>,
backbuffer: NonSendMut<BackbufferResource>,
debug_texture: NonSendMut<DebugTextureResource>,
debug_state: Res<DebugState>,
) {
if dirty.0 {
// Copy the backbuffer to the main canvas
canvas.copy(&backbuffer.0, None, None).unwrap();
// Copy the debug texture to the canvas
if debug_state.enabled {
canvas.set_blend_mode(BlendMode::Blend);
canvas.copy(&debug_texture.0, None, None).unwrap();
}
canvas.present();
dirty.0 = false;
}
}

101
src/systems/stage.rs Normal file
View File

@@ -0,0 +1,101 @@
use bevy_ecs::{
entity::Entity,
query::With,
resource::Resource,
system::{Commands, Query, ResMut},
};
use tracing::debug;
use crate::systems::{Blinking, Frozen, GhostCollider, Hidden, PlayerControlled};
#[derive(Resource, Debug, Clone, Copy)]
pub enum StartupSequence {
/// Stage 1: Text-only stage
/// - Player & ghosts are hidden
/// - READY! and PLAYER ONE text are shown
/// - Energizers do not blink
TextOnly {
/// Remaining ticks in this stage
remaining_ticks: u32,
},
/// Stage 2: Characters visible stage
/// - PLAYER ONE text is hidden, READY! text remains
/// - Ghosts and Pac-Man are now shown
CharactersVisible {
/// Remaining ticks in this stage
remaining_ticks: u32,
},
/// Stage 3: Game begins
/// - Final state, game is fully active
GameActive,
}
impl StartupSequence {
/// Creates a new StartupSequence with the specified duration in ticks
pub fn new(text_only_ticks: u32, _characters_visible_ticks: u32) -> Self {
Self::TextOnly {
remaining_ticks: text_only_ticks,
}
}
/// Ticks the timer by one frame, returning transition information if state changes
pub fn tick(&mut self) -> Option<(StartupSequence, StartupSequence)> {
match self {
StartupSequence::TextOnly { remaining_ticks } => {
if *remaining_ticks > 0 {
*remaining_ticks -= 1;
None
} else {
let from = *self;
*self = StartupSequence::CharactersVisible {
remaining_ticks: 60, // 1 second at 60 FPS
};
Some((from, *self))
}
}
StartupSequence::CharactersVisible { remaining_ticks } => {
if *remaining_ticks > 0 {
*remaining_ticks -= 1;
None
} else {
let from = *self;
*self = StartupSequence::GameActive;
Some((from, *self))
}
}
StartupSequence::GameActive => None,
}
}
}
/// Handles startup sequence transitions and component management
pub fn startup_stage_system(
mut startup: ResMut<StartupSequence>,
mut commands: Commands,
mut blinking_query: Query<Entity, With<Blinking>>,
mut player_query: Query<Entity, With<PlayerControlled>>,
mut ghost_query: Query<Entity, With<GhostCollider>>,
) {
if let Some((from, to)) = startup.tick() {
debug!("StartupSequence transition from {from:?} to {to:?}");
match (from, to) {
(StartupSequence::TextOnly { .. }, StartupSequence::CharactersVisible { .. }) => {
// Unhide the player & ghosts
for entity in player_query.iter_mut().chain(ghost_query.iter_mut()) {
commands.entity(entity).remove::<Hidden>();
}
}
(StartupSequence::CharactersVisible { .. }, StartupSequence::GameActive) => {
// Unfreeze the player & ghosts & pellet blinking
for entity in player_query
.iter_mut()
.chain(ghost_query.iter_mut())
.chain(blinking_query.iter_mut())
{
commands.entity(entity).remove::<Frozen>();
}
}
_ => {}
}
}
}

View File

@@ -1,72 +1,73 @@
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget};
use crate::map::direction::Direction;
use crate::texture::sprite::AtlasTile;
use crate::error::{AnimatedTextureError, GameError, GameResult, TextureError};
use crate::texture::sprite::{AtlasTile, SpriteAtlas};
#[derive(Debug, Clone)]
pub struct AnimatedTexture {
tiles: Vec<AtlasTile>,
frame_duration: f32,
current_frame: usize,
time_bank: f32,
/// Fixed-size tile sequence that avoids heap allocation
#[derive(Clone, Copy, Debug)]
pub struct TileSequence {
tiles: [AtlasTile; 4], // Fixed array, max 4 frames
count: usize, // Actual number of frames used
}
impl AnimatedTexture {
pub fn new(tiles: Vec<AtlasTile>, frame_duration: f32) -> GameResult<Self> {
if frame_duration <= 0.0 {
return Err(GameError::Texture(TextureError::Animated(
AnimatedTextureError::InvalidFrameDuration(frame_duration),
)));
}
impl TileSequence {
/// Creates a new tile sequence from a slice of tiles
pub fn new(tiles: &[AtlasTile]) -> Self {
let mut tile_array = [AtlasTile {
pos: glam::U16Vec2::ZERO,
size: glam::U16Vec2::ZERO,
color: None,
}; 4];
Ok(Self {
tiles,
frame_duration,
current_frame: 0,
time_bank: 0.0,
})
}
let count = tiles.len().min(4);
tile_array[..count].copy_from_slice(&tiles[..count]);
pub fn tick(&mut self, dt: f32) {
self.time_bank += dt;
while self.time_bank >= self.frame_duration {
self.time_bank -= self.frame_duration;
self.current_frame = (self.current_frame + 1) % self.tiles.len();
Self {
tiles: tile_array,
count,
}
}
pub fn current_tile(&self) -> &AtlasTile {
&self.tiles[self.current_frame]
/// Returns the tile at the given frame index, wrapping if necessary
pub fn get_tile(&self, frame: usize) -> AtlasTile {
if self.count == 0 {
// Return a default empty tile if no tiles
AtlasTile {
pos: glam::U16Vec2::ZERO,
size: glam::U16Vec2::ZERO,
color: None,
}
} else {
self.tiles[frame % self.count]
}
}
pub fn render<T: RenderTarget>(&self, canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, dest: Rect) -> GameResult<()> {
let mut tile = *self.current_tile();
tile.render(canvas, atlas, dest)?;
Ok(())
}
/// Returns the current frame index.
#[allow(dead_code)]
pub fn current_frame(&self) -> usize {
self.current_frame
}
/// Returns the time bank.
#[allow(dead_code)]
pub fn time_bank(&self) -> f32 {
self.time_bank
}
/// Returns the frame duration.
#[allow(dead_code)]
pub fn frame_duration(&self) -> f32 {
self.frame_duration
}
/// Returns the number of tiles in the animation.
#[allow(dead_code)]
pub fn tiles_len(&self) -> usize {
self.tiles.len()
/// Returns true if this sequence has no tiles
pub fn is_empty(&self) -> bool {
self.count == 0
}
}
/// Type-safe directional tile storage with named fields
#[derive(Clone, Copy, Debug)]
pub struct DirectionalTiles {
pub up: TileSequence,
pub down: TileSequence,
pub left: TileSequence,
pub right: TileSequence,
}
impl DirectionalTiles {
/// Creates a new DirectionalTiles with different sequences per direction
pub fn new(up: TileSequence, down: TileSequence, left: TileSequence, right: TileSequence) -> Self {
Self { up, down, left, right }
}
/// Gets the tile sequence for the given direction
pub fn get(&self, direction: Direction) -> &TileSequence {
match direction {
Direction::Up => &self.up,
Direction::Down => &self.down,
Direction::Left => &self.left,
Direction::Right => &self.right,
}
}
}

View File

@@ -1,80 +0,0 @@
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget};
use crate::entity::direction::Direction;
use crate::error::GameResult;
use crate::texture::animated::AnimatedTexture;
use crate::texture::sprite::SpriteAtlas;
#[derive(Clone)]
pub struct DirectionalAnimatedTexture {
textures: [Option<AnimatedTexture>; 4],
stopped_textures: [Option<AnimatedTexture>; 4],
}
impl DirectionalAnimatedTexture {
pub fn new(textures: [Option<AnimatedTexture>; 4], stopped_textures: [Option<AnimatedTexture>; 4]) -> Self {
Self {
textures,
stopped_textures,
}
}
pub fn tick(&mut self, dt: f32) {
for texture in self.textures.iter_mut().flatten() {
texture.tick(dt);
}
}
pub fn render<T: RenderTarget>(
&self,
canvas: &mut Canvas<T>,
atlas: &mut SpriteAtlas,
dest: Rect,
direction: Direction,
) -> GameResult<()> {
if let Some(texture) = &self.textures[direction.as_usize()] {
texture.render(canvas, atlas, dest)
} else {
Ok(())
}
}
pub fn render_stopped<T: RenderTarget>(
&self,
canvas: &mut Canvas<T>,
atlas: &mut SpriteAtlas,
dest: Rect,
direction: Direction,
) -> GameResult<()> {
if let Some(texture) = &self.stopped_textures[direction.as_usize()] {
texture.render(canvas, atlas, dest)
} else {
Ok(())
}
}
/// Returns true if the texture has a direction.
#[allow(dead_code)]
pub fn has_direction(&self, direction: Direction) -> bool {
self.textures[direction.as_usize()].is_some()
}
/// Returns true if the texture has a stopped direction.
#[allow(dead_code)]
pub fn has_stopped_direction(&self, direction: Direction) -> bool {
self.stopped_textures[direction.as_usize()].is_some()
}
/// Returns the number of textures.
#[allow(dead_code)]
pub fn texture_count(&self) -> usize {
self.textures.iter().filter(|t| t.is_some()).count()
}
/// Returns the number of stopped textures.
#[allow(dead_code)]
pub fn stopped_texture_count(&self) -> usize {
self.stopped_textures.iter().filter(|t| t.is_some()).count()
}
}

View File

@@ -1,5 +1,4 @@
pub mod animated;
pub mod blinking;
pub mod directional;
pub mod sprite;
pub mod text;

View File

@@ -1,55 +1,26 @@
use anyhow::Result;
use bevy_ecs::resource::Resource;
use glam::U16Vec2;
use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget, Texture};
use serde::Deserialize;
use std::collections::HashMap;
use crate::error::TextureError;
/// A simple sprite for stationary items like pellets and energizers.
/// Atlas frame mapping data loaded from JSON metadata files.
#[derive(Clone, Debug)]
pub struct Sprite {
pub atlas_tile: AtlasTile,
}
impl Sprite {
pub fn new(atlas_tile: AtlasTile) -> Self {
Self { atlas_tile }
}
pub fn render<C: RenderTarget>(
&self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
position: glam::Vec2,
) -> Result<(), TextureError> {
let dest = crate::helpers::centered_with_size(
glam::IVec2::new(position.x as i32, position.y as i32),
glam::UVec2::new(self.atlas_tile.size.x as u32, self.atlas_tile.size.y as u32),
);
let mut tile = self.atlas_tile;
tile.render(canvas, atlas, dest)?;
Ok(())
}
}
#[derive(Clone, Debug, Deserialize)]
pub struct AtlasMapper {
/// Mapping from sprite name to frame bounds within the atlas texture
pub frames: HashMap<String, MapperFrame>,
}
#[derive(Copy, Clone, Debug, Deserialize)]
#[derive(Copy, Clone, Debug)]
pub struct MapperFrame {
pub x: u16,
pub y: u16,
pub width: u16,
pub height: u16,
pub pos: U16Vec2,
pub size: U16Vec2,
}
#[derive(Copy, Clone, Debug)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct AtlasTile {
pub pos: U16Vec2,
pub size: U16Vec2,
@@ -58,7 +29,7 @@ pub struct AtlasTile {
impl AtlasTile {
pub fn render<C: RenderTarget>(
&mut self,
&self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
dest: Rect,
@@ -69,7 +40,7 @@ impl AtlasTile {
}
pub fn render_with_color<C: RenderTarget>(
&mut self,
&self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
dest: Rect,
@@ -100,10 +71,19 @@ impl AtlasTile {
}
}
/// High-performance sprite atlas providing fast texture region lookups and rendering.
///
/// Combines a single large texture with metadata mapping to enable efficient
/// sprite rendering without texture switching. Caches color modulation state
/// to minimize redundant SDL2 calls and supports both named sprite lookups
/// and optional default color modulation configuration.
pub struct SpriteAtlas {
/// The combined texture containing all sprite frames
texture: Texture<'static>,
/// Mapping from sprite names to their pixel coordinates within the texture
tiles: HashMap<String, MapperFrame>,
default_color: Option<Color>,
/// Cached color modulation state to avoid redundant SDL2 calls
last_modulation: Option<Color>,
}
@@ -117,10 +97,16 @@ impl SpriteAtlas {
}
}
/// Retrieves a sprite tile by name from the atlas with fast HashMap lookup.
///
/// Returns an `AtlasTile` containing the texture coordinates and dimensions
/// for the named sprite, or `None` if the sprite name is not found in the
/// atlas. The returned tile can be used for immediate rendering or stored
/// for repeated use in animations and entity sprites.
pub fn get_tile(&self, name: &str) -> Option<AtlasTile> {
self.tiles.get(name).map(|frame| AtlasTile {
pos: U16Vec2::new(frame.x, frame.y),
size: U16Vec2::new(frame.width, frame.height),
pos: frame.pos,
size: frame.size,
color: None,
})
}

View File

@@ -10,10 +10,20 @@
//!
//! ```rust
//! use pacman::texture::text::TextTexture;
//! use sdl2::pixels::Color;
//!
//! // Create a text texture with 1.0 scale (8x8 pixels per character)
//! let mut text_renderer = TextTexture::new(1.0);
//!
//! // Set default color for all text
//! text_renderer.set_color(Color::WHITE);
//!
//! // Render text with default color
//! text_renderer.render(&mut canvas, &mut atlas, "Hello", position)?;
//!
//! // Render text with specific color
//! text_renderer.render_with_color(&mut canvas, &mut atlas, "World", position, Color::YELLOW)?;
//!
//! // Set scale for larger text
//! text_renderer.set_scale(2.0);
//!
@@ -46,6 +56,7 @@
use anyhow::Result;
use glam::UVec2;
use sdl2::pixels::Color;
use sdl2::render::{Canvas, RenderTarget};
use std::collections::HashMap;
@@ -79,6 +90,7 @@ fn char_to_tile_name(c: char) -> Option<String> {
pub struct TextTexture {
char_map: HashMap<char, AtlasTile>,
scale: f32,
default_color: Option<Color>,
}
impl Default for TextTexture {
@@ -86,6 +98,7 @@ impl Default for TextTexture {
Self {
scale: 1.0,
char_map: Default::default(),
default_color: None,
}
}
}
@@ -103,9 +116,9 @@ impl TextTexture {
&self.char_map
}
pub fn get_tile(&mut self, c: char, atlas: &mut SpriteAtlas) -> Result<Option<&mut AtlasTile>> {
pub fn get_tile(&mut self, c: char, atlas: &mut SpriteAtlas) -> Result<Option<&AtlasTile>> {
if self.char_map.contains_key(&c) {
return Ok(self.char_map.get_mut(&c));
return Ok(self.char_map.get(&c));
}
if let Some(tile_name) = char_to_tile_name(c) {
@@ -113,19 +126,32 @@ impl TextTexture {
.get_tile(&tile_name)
.ok_or(GameError::Texture(TextureError::AtlasTileNotFound(tile_name)))?;
self.char_map.insert(c, tile);
Ok(self.char_map.get_mut(&c))
Ok(self.char_map.get(&c))
} else {
Ok(None)
}
}
/// Renders a string of text at the given position.
/// Renders a string of text at the given position using the default color.
pub fn render<C: RenderTarget>(
&mut self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
text: &str,
position: UVec2,
) -> Result<()> {
let color = self.default_color.unwrap_or(Color::WHITE);
self.render_with_color(canvas, atlas, text, position, color)
}
/// Renders a string of text at the given position with a specific color.
pub fn render_with_color<C: RenderTarget>(
&mut self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
text: &str,
position: UVec2,
color: Color,
) -> Result<()> {
let mut x_offset = 0;
let char_width = (8.0 * self.scale) as u32;
@@ -134,9 +160,9 @@ impl TextTexture {
for c in text.chars() {
// Get the tile from the char_map, or insert it if it doesn't exist
if let Some(tile) = self.get_tile(c, atlas)? {
// Render the tile if it exists
// Render the tile with the specified color
let dest = sdl2::rect::Rect::new((position.x + x_offset) as i32, position.y as i32, char_width, char_height);
tile.render(canvas, atlas, dest)?;
tile.render_with_color(canvas, atlas, dest, color)?;
}
// Always advance x_offset for all characters (including spaces)
@@ -146,6 +172,16 @@ impl TextTexture {
Ok(())
}
/// Sets the default color for text rendering.
pub fn set_color(&mut self, color: Color) {
self.default_color = Some(color);
}
/// Gets the current default color.
pub fn color(&self) -> Option<Color> {
self.default_color
}
/// Sets the scale for text rendering.
pub fn set_scale(&mut self, scale: f32) {
self.scale = scale;

View File

@@ -1,62 +1,57 @@
use glam::U16Vec2;
use pacman::error::{AnimatedTextureError, GameError, TextureError};
use pacman::texture::animated::AnimatedTexture;
use pacman::texture::sprite::AtlasTile;
use sdl2::pixels::Color;
// use glam::U16Vec2;
// use pacman::error::{AnimatedTextureError, GameError, TextureError};
// use pacman::texture::sprite::AtlasTile;
// use sdl2::pixels::Color;
// use smallvec::smallvec;
fn mock_atlas_tile(id: u32) -> AtlasTile {
AtlasTile {
pos: U16Vec2::new(0, 0),
size: U16Vec2::new(16, 16),
color: Some(Color::RGB(id as u8, 0, 0)),
}
}
// fn mock_atlas_tile(id: u32) -> AtlasTile {
// AtlasTile {
// pos: U16Vec2::new(0, 0),
// size: U16Vec2::new(16, 16),
// color: Some(Color::RGB(id as u8, 0, 0)),
// }
// }
#[test]
fn test_animated_texture_creation_errors() {
let tiles = vec![mock_atlas_tile(1), mock_atlas_tile(2)];
// #[test]
// fn test_animated_texture_creation_errors() {
// let tiles = smallvec![mock_atlas_tile(1), mock_atlas_tile(2)];
assert!(matches!(
AnimatedTexture::new(tiles.clone(), 0.0).unwrap_err(),
GameError::Texture(TextureError::Animated(AnimatedTextureError::InvalidFrameDuration(0.0)))
));
// assert!(matches!(
// AnimatedTexture::new(tiles.clone(), 0).unwrap_err(),
// GameError::Texture(TextureError::Animated(AnimatedTextureError::InvalidFrameDuration(0)))
// ));
// }
assert!(matches!(
AnimatedTexture::new(tiles, -0.1).unwrap_err(),
GameError::Texture(TextureError::Animated(AnimatedTextureError::InvalidFrameDuration(-0.1)))
));
}
// #[test]
// fn test_animated_texture_advancement() {
// let tiles = smallvec![mock_atlas_tile(1), mock_atlas_tile(2), mock_atlas_tile(3)];
// let mut texture = AnimatedTexture::new(tiles, 10).unwrap();
#[test]
fn test_animated_texture_advancement() {
let tiles = vec![mock_atlas_tile(1), mock_atlas_tile(2), mock_atlas_tile(3)];
let mut texture = AnimatedTexture::new(tiles, 0.1).unwrap();
// assert_eq!(texture.current_frame(), 0);
assert_eq!(texture.current_frame(), 0);
// texture.tick(25);
// assert_eq!(texture.current_frame(), 2);
// assert_eq!(texture.time_bank(), 5);
// }
texture.tick(0.25);
assert_eq!(texture.current_frame(), 2);
assert!((texture.time_bank() - 0.05).abs() < 0.001);
}
// #[test]
// fn test_animated_texture_wrap_around() {
// let tiles = smallvec![mock_atlas_tile(1), mock_atlas_tile(2)];
// let mut texture = AnimatedTexture::new(tiles, 10).unwrap();
#[test]
fn test_animated_texture_wrap_around() {
let tiles = vec![mock_atlas_tile(1), mock_atlas_tile(2)];
let mut texture = AnimatedTexture::new(tiles, 0.1).unwrap();
// texture.tick(10);
// assert_eq!(texture.current_frame(), 1);
texture.tick(0.1);
assert_eq!(texture.current_frame(), 1);
// texture.tick(10);
// assert_eq!(texture.current_frame(), 0);
// }
texture.tick(0.1);
assert_eq!(texture.current_frame(), 0);
}
// #[test]
// fn test_animated_texture_single_frame() {
// let tiles = smallvec![mock_atlas_tile(1)];
// let mut texture = AnimatedTexture::new(tiles, 10).unwrap();
#[test]
fn test_animated_texture_single_frame() {
let tiles = vec![mock_atlas_tile(1)];
let mut texture = AnimatedTexture::new(tiles, 0.1).unwrap();
texture.tick(0.1);
assert_eq!(texture.current_frame(), 0);
assert_eq!(texture.current_tile().color.unwrap().r, 1);
}
// texture.tick(10);
// assert_eq!(texture.current_frame(), 0);
// assert_eq!(texture.current_tile().color.unwrap().r, 1);
// }

View File

@@ -1,14 +0,0 @@
use pacman::asset::Asset;
use std::path::Path;
use strum::IntoEnumIterator;
#[test]
fn test_asset_paths_valid() {
let base_path = Path::new("assets/game/");
for asset in Asset::iter() {
let path = base_path.join(asset.path());
assert!(path.exists(), "Asset path does not exist: {:?}", path);
assert!(path.is_file(), "Asset path is not a file: {:?}", path);
}
}

View File

@@ -1,119 +1,149 @@
use pacman::entity::collision::{Collidable, CollisionSystem};
use pacman::entity::traversal::Position;
use bevy_ecs::{entity::Entity, event::Events, system::RunSystemOnce, world::World};
struct MockCollidable {
pos: Position,
}
impl Collidable for MockCollidable {
fn position(&self) -> Position {
self.pos
}
}
#[test]
fn test_is_colliding_with() {
let entity1 = MockCollidable {
pos: Position::AtNode(1),
};
let entity2 = MockCollidable {
pos: Position::AtNode(1),
};
let entity3 = MockCollidable {
pos: Position::AtNode(2),
};
let entity4 = MockCollidable {
pos: Position::BetweenNodes {
from: 1,
to: 2,
traversed: 0.5,
use pacman::{
error::GameError,
events::GameEvent,
map::builder::Map,
systems::{
check_collision, collision_system, Collider, EntityType, Ghost, GhostCollider, ItemCollider, NodeId, PacmanCollider,
Position,
},
};
};
assert!(entity1.is_colliding_with(&entity2));
assert!(!entity1.is_colliding_with(&entity3));
assert!(entity1.is_colliding_with(&entity4));
assert!(entity3.is_colliding_with(&entity4));
fn create_test_world() -> World {
let mut world = World::new();
// Add required resources
world.insert_resource(Events::<GameEvent>::default());
world.insert_resource(Events::<GameError>::default());
// Add a minimal test map
world.insert_resource(create_test_map());
world
}
fn create_test_map() -> Map {
use pacman::constants::RAW_BOARD;
Map::new(RAW_BOARD).expect("Failed to create test map")
}
fn spawn_test_pacman(world: &mut World) -> Entity {
world
.spawn((Position::Stopped { node: 0 }, Collider { size: 10.0 }, PacmanCollider))
.id()
}
fn spawn_test_item(world: &mut World) -> Entity {
world
.spawn((
Position::Stopped { node: 0 },
Collider { size: 8.0 },
ItemCollider,
EntityType::Pellet,
))
.id()
}
fn spawn_test_ghost(world: &mut World) -> Entity {
world
.spawn((
Position::Stopped { node: 0 },
Collider { size: 12.0 },
GhostCollider,
Ghost::Blinky,
EntityType::Ghost,
))
.id()
}
fn spawn_test_ghost_at_node(world: &mut World, node: usize) -> Entity {
world
.spawn((
Position::Stopped { node: node as NodeId },
Collider { size: 12.0 },
GhostCollider,
Ghost::Blinky,
EntityType::Ghost,
))
.id()
}
#[test]
fn test_collision_system_register_and_query() {
let mut collision_system = CollisionSystem::default();
fn test_collider_collision_detection() {
let collider1 = Collider { size: 10.0 };
let collider2 = Collider { size: 8.0 };
let pos1 = Position::AtNode(1);
let entity1 = collision_system.register_entity(pos1);
let pos2 = Position::BetweenNodes {
from: 1,
to: 2,
traversed: 0.5,
};
let entity2 = collision_system.register_entity(pos2);
let pos3 = Position::AtNode(3);
let entity3 = collision_system.register_entity(pos3);
// Test entities_at_node
assert_eq!(collision_system.entities_at_node(1), &[entity1, entity2]);
assert_eq!(collision_system.entities_at_node(2), &[entity2]);
assert_eq!(collision_system.entities_at_node(3), &[entity3]);
assert_eq!(collision_system.entities_at_node(4), &[] as &[u32]);
// Test potential_collisions
let mut collisions1 = collision_system.potential_collisions(&pos1);
collisions1.sort_unstable();
assert_eq!(collisions1, vec![entity1, entity2]);
let mut collisions2 = collision_system.potential_collisions(&pos2);
collisions2.sort_unstable();
assert_eq!(collisions2, vec![entity1, entity2]);
let mut collisions3 = collision_system.potential_collisions(&pos3);
collisions3.sort_unstable();
assert_eq!(collisions3, vec![entity3]);
// Test collision detection
assert!(collider1.collides_with(collider2.size, 5.0)); // Should collide (distance < 9.0)
assert!(!collider1.collides_with(collider2.size, 15.0)); // Should not collide (distance > 9.0)
}
#[test]
fn test_collision_system_update() {
let mut collision_system = CollisionSystem::default();
fn test_check_collision_helper() {
let map = create_test_map();
let pos1 = Position::Stopped { node: 0 };
let pos2 = Position::Stopped { node: 0 }; // Same position
let collider1 = Collider { size: 10.0 };
let collider2 = Collider { size: 8.0 };
let entity1 = collision_system.register_entity(Position::AtNode(1));
// Test collision at same position
let result = check_collision(&pos1, &collider1, &pos2, &collider2, &map);
assert!(result.is_ok());
assert!(result.unwrap()); // Should collide at same position
assert_eq!(collision_system.entities_at_node(1), &[entity1]);
assert_eq!(collision_system.entities_at_node(2), &[] as &[u32]);
collision_system.update_position(entity1, Position::AtNode(2));
assert_eq!(collision_system.entities_at_node(1), &[] as &[u32]);
assert_eq!(collision_system.entities_at_node(2), &[entity1]);
collision_system.update_position(
entity1,
Position::BetweenNodes {
from: 2,
to: 3,
traversed: 0.1,
},
);
assert_eq!(collision_system.entities_at_node(1), &[] as &[u32]);
assert_eq!(collision_system.entities_at_node(2), &[entity1]);
assert_eq!(collision_system.entities_at_node(3), &[entity1]);
// Test collision at different positions
let pos3 = Position::Stopped { node: 1 }; // Different position
let result = check_collision(&pos1, &collider1, &pos3, &collider2, &map);
assert!(result.is_ok());
// May or may not collide depending on actual node positions
}
#[test]
fn test_collision_system_remove() {
let mut collision_system = CollisionSystem::default();
fn test_collision_system_pacman_item() {
let mut world = create_test_world();
let _pacman = spawn_test_pacman(&mut world);
let _item = spawn_test_item(&mut world);
let entity1 = collision_system.register_entity(Position::AtNode(1));
let entity2 = collision_system.register_entity(Position::AtNode(1));
assert_eq!(collision_system.entities_at_node(1), &[entity1, entity2]);
collision_system.remove_entity(entity1);
assert_eq!(collision_system.entities_at_node(1), &[entity2]);
collision_system.remove_entity(entity2);
assert_eq!(collision_system.entities_at_node(1), &[] as &[u32]);
// Run collision system - should not panic
world
.run_system_once(collision_system)
.expect("System should run successfully");
}
#[test]
fn test_collision_system_pacman_ghost() {
let mut world = create_test_world();
let _pacman = spawn_test_pacman(&mut world);
let _ghost = spawn_test_ghost(&mut world);
// Run collision system - should not panic
world
.run_system_once(collision_system)
.expect("System should run successfully");
}
#[test]
fn test_collision_system_no_collision() {
let mut world = create_test_world();
let _pacman = spawn_test_pacman(&mut world);
let _ghost = spawn_test_ghost_at_node(&mut world, 1); // Different node
// Run collision system - should not panic
world
.run_system_once(collision_system)
.expect("System should run successfully");
}
#[test]
fn test_collision_system_multiple_entities() {
let mut world = create_test_world();
let _pacman = spawn_test_pacman(&mut world);
let _item = spawn_test_item(&mut world);
let _ghost = spawn_test_ghost(&mut world);
// Run collision system - should not panic
world
.run_system_once(collision_system)
.expect("System should run successfully");
}

View File

@@ -2,7 +2,7 @@
use pacman::{
asset::{get_asset_bytes, Asset},
game::state::ATLAS_FRAMES,
game::ATLAS_FRAMES,
texture::sprite::{AtlasMapper, SpriteAtlas},
};
use sdl2::{
@@ -28,7 +28,7 @@ pub fn setup_sdl() -> Result<(Canvas<Window>, TextureCreator<WindowContext>, Sdl
pub fn create_atlas(canvas: &mut sdl2::render::Canvas<sdl2::video::Window>) -> SpriteAtlas {
let texture_creator = canvas.texture_creator();
let atlas_bytes = get_asset_bytes(Asset::Atlas).unwrap();
let atlas_bytes = get_asset_bytes(Asset::AtlasImage).unwrap();
let texture = texture_creator.load_texture_bytes(&atlas_bytes).unwrap();
let texture: Texture<'static> = unsafe { std::mem::transmute(texture) };

View File

@@ -2,27 +2,34 @@ use pacman::constants::*;
#[test]
fn test_raw_board_structure() {
// Test board dimensions match expected size
assert_eq!(RAW_BOARD.len(), BOARD_CELL_SIZE.y as usize);
for row in RAW_BOARD.iter() {
assert_eq!(row.len(), BOARD_CELL_SIZE.x as usize);
}
// Test boundaries
// Test boundaries are properly walled
assert!(RAW_BOARD[0].chars().all(|c| c == '#'));
assert!(RAW_BOARD[RAW_BOARD.len() - 1].chars().all(|c| c == '#'));
// Test tunnel row
let tunnel_row = RAW_BOARD[14];
assert_eq!(tunnel_row.chars().next().unwrap(), 'T');
assert_eq!(tunnel_row.chars().last().unwrap(), 'T');
}
#[test]
fn test_raw_board_content() {
let power_pellet_count = RAW_BOARD.iter().flat_map(|row| row.chars()).filter(|&c| c == 'o').count();
assert_eq!(power_pellet_count, 4);
assert!(RAW_BOARD.iter().any(|row| row.contains('X')));
assert!(RAW_BOARD.iter().any(|row| row.contains("==")));
fn test_raw_board_contains_required_elements() {
// Test that essential game elements are present
assert!(
RAW_BOARD.iter().any(|row| row.contains('X')),
"Board should contain Pac-Man start position"
);
assert!(
RAW_BOARD.iter().any(|row| row.contains("==")),
"Board should contain ghost house door"
);
assert!(
RAW_BOARD.iter().any(|row| row.chars().any(|c| c == 'T')),
"Board should contain tunnel entrances"
);
assert!(
RAW_BOARD.iter().any(|row| row.chars().any(|c| c == 'o')),
"Board should contain power pellets"
);
}

View File

@@ -1,34 +0,0 @@
use glam::Vec2;
use pacman::entity::graph::{Graph, Node};
use pacman::map::render::MapRenderer;
#[test]
fn test_find_nearest_node() {
let mut graph = Graph::new();
// Add some test nodes
let node1 = graph.add_node(Node {
position: Vec2::new(10.0, 10.0),
});
let node2 = graph.add_node(Node {
position: Vec2::new(50.0, 50.0),
});
let node3 = graph.add_node(Node {
position: Vec2::new(100.0, 100.0),
});
// Test cursor near node1
let cursor_pos = Vec2::new(12.0, 8.0);
let nearest = MapRenderer::find_nearest_node(&graph, cursor_pos);
assert_eq!(nearest, Some(node1));
// Test cursor near node2
let cursor_pos = Vec2::new(45.0, 55.0);
let nearest = MapRenderer::find_nearest_node(&graph, cursor_pos);
assert_eq!(nearest, Some(node2));
// Test cursor near node3
let cursor_pos = Vec2::new(98.0, 102.0);
let nearest = MapRenderer::find_nearest_node(&graph, cursor_pos);
assert_eq!(nearest, Some(node3));
}

View File

@@ -1,5 +1,5 @@
use glam::IVec2;
use pacman::entity::direction::*;
use glam::I8Vec2;
use pacman::map::direction::*;
#[test]
fn test_direction_opposite() {
@@ -18,14 +18,14 @@ fn test_direction_opposite() {
#[test]
fn test_direction_as_ivec2() {
let test_cases = [
(Direction::Up, -IVec2::Y),
(Direction::Down, IVec2::Y),
(Direction::Left, -IVec2::X),
(Direction::Right, IVec2::X),
(Direction::Up, -I8Vec2::Y),
(Direction::Down, I8Vec2::Y),
(Direction::Left, -I8Vec2::X),
(Direction::Right, I8Vec2::X),
];
for (dir, expected) in test_cases {
assert_eq!(dir.as_ivec2(), expected);
assert_eq!(IVec2::from(dir), expected);
assert_eq!(I8Vec2::from(dir), expected);
}
}

View File

@@ -1,77 +0,0 @@
use glam::U16Vec2;
use pacman::entity::direction::Direction;
use pacman::texture::animated::AnimatedTexture;
use pacman::texture::directional::DirectionalAnimatedTexture;
use pacman::texture::sprite::AtlasTile;
use sdl2::pixels::Color;
fn mock_atlas_tile(id: u32) -> AtlasTile {
AtlasTile {
pos: U16Vec2::new(0, 0),
size: U16Vec2::new(16, 16),
color: Some(Color::RGB(id as u8, 0, 0)),
}
}
fn mock_animated_texture(id: u32) -> AnimatedTexture {
AnimatedTexture::new(vec![mock_atlas_tile(id)], 0.1).expect("Invalid frame duration")
}
#[test]
fn test_directional_texture_partial_directions() {
let mut textures = [None, None, None, None];
textures[Direction::Up.as_usize()] = Some(mock_animated_texture(1));
let texture = DirectionalAnimatedTexture::new(textures, [None, None, None, None]);
assert_eq!(texture.texture_count(), 1);
assert!(texture.has_direction(Direction::Up));
assert!(!texture.has_direction(Direction::Down));
assert!(!texture.has_direction(Direction::Left));
assert!(!texture.has_direction(Direction::Right));
}
#[test]
fn test_directional_texture_all_directions() {
let mut textures = [None, None, None, None];
let directions = [
(Direction::Up, 1),
(Direction::Down, 2),
(Direction::Left, 3),
(Direction::Right, 4),
];
for (direction, id) in directions {
textures[direction.as_usize()] = Some(mock_animated_texture(id));
}
let texture = DirectionalAnimatedTexture::new(textures, [None, None, None, None]);
assert_eq!(texture.texture_count(), 4);
for direction in &[Direction::Up, Direction::Down, Direction::Left, Direction::Right] {
assert!(texture.has_direction(*direction));
}
}
#[test]
fn test_directional_texture_stopped() {
let mut stopped_textures = [None, None, None, None];
stopped_textures[Direction::Up.as_usize()] = Some(mock_animated_texture(1));
let texture = DirectionalAnimatedTexture::new([None, None, None, None], stopped_textures);
assert_eq!(texture.stopped_texture_count(), 1);
assert!(texture.has_stopped_direction(Direction::Up));
assert!(!texture.has_stopped_direction(Direction::Down));
}
#[test]
fn test_directional_texture_tick() {
let mut textures = [None, None, None, None];
textures[Direction::Up.as_usize()] = Some(mock_animated_texture(1));
let mut texture = DirectionalAnimatedTexture::new(textures, [None, None, None, None]);
// This is a bit of a placeholder, since we can't inspect the inner state easily.
// We're just ensuring the tick method runs without panicking.
texture.tick(0.1);
}

134
tests/error.rs Normal file
View File

@@ -0,0 +1,134 @@
use pacman::error::{
AssetError, EntityError, GameError, GameResult, IntoGameError, MapError, OptionExt, ParseError, ResultExt, TextureError,
};
use std::io;
#[test]
fn test_game_error_from_asset_error() {
let asset_error = AssetError::NotFound("test.png".to_string());
let game_error: GameError = asset_error.into();
assert!(matches!(game_error, GameError::Asset(_)));
}
#[test]
fn test_game_error_from_parse_error() {
let parse_error = ParseError::UnknownCharacter('Z');
let game_error: GameError = parse_error.into();
assert!(matches!(game_error, GameError::MapParse(_)));
}
#[test]
fn test_game_error_from_map_error() {
let map_error = MapError::NodeNotFound(42);
let game_error: GameError = map_error.into();
assert!(matches!(game_error, GameError::Map(_)));
}
#[test]
fn test_game_error_from_texture_error() {
let texture_error = TextureError::LoadFailed("Failed to load".to_string());
let game_error: GameError = texture_error.into();
assert!(matches!(game_error, GameError::Texture(_)));
}
#[test]
fn test_game_error_from_entity_error() {
let entity_error = EntityError::NodeNotFound(10);
let game_error: GameError = entity_error.into();
assert!(matches!(game_error, GameError::Entity(_)));
}
#[test]
fn test_game_error_from_io_error() {
let io_error = io::Error::new(io::ErrorKind::NotFound, "File not found");
let game_error: GameError = io_error.into();
assert!(matches!(game_error, GameError::Io(_)));
}
#[test]
fn test_asset_error_from_io_error() {
let io_error = io::Error::new(io::ErrorKind::PermissionDenied, "Permission denied");
let asset_error: AssetError = io_error.into();
assert!(matches!(asset_error, AssetError::Io(_)));
}
#[test]
fn test_parse_error_display() {
let error = ParseError::UnknownCharacter('!');
assert_eq!(error.to_string(), "Unknown character in board: !");
let error = ParseError::InvalidHouseDoorCount(3);
assert_eq!(error.to_string(), "House door must have exactly 2 positions, found 3");
}
#[test]
fn test_entity_error_display() {
let error = EntityError::NodeNotFound(42);
assert_eq!(error.to_string(), "Node not found in graph: 42");
let error = EntityError::EdgeNotFound { from: 1, to: 2 };
assert_eq!(error.to_string(), "Edge not found: from 1 to 2");
}
#[test]
fn test_into_game_error_trait() {
let result: Result<i32, io::Error> = Err(io::Error::new(io::ErrorKind::Other, "test error"));
let game_result: GameResult<i32> = result.into_game_error();
assert!(game_result.is_err());
if let Err(GameError::InvalidState(msg)) = game_result {
assert!(msg.contains("test error"));
} else {
panic!("Expected InvalidState error");
}
}
#[test]
fn test_into_game_error_trait_success() {
let result: Result<i32, io::Error> = Ok(42);
let game_result: GameResult<i32> = result.into_game_error();
assert_eq!(game_result.unwrap(), 42);
}
#[test]
fn test_option_ext_some() {
let option: Option<i32> = Some(42);
let result: GameResult<i32> = option.ok_or_game_error(|| GameError::InvalidState("Not found".to_string()));
assert_eq!(result.unwrap(), 42);
}
#[test]
fn test_option_ext_none() {
let option: Option<i32> = None;
let result: GameResult<i32> = option.ok_or_game_error(|| GameError::InvalidState("Not found".to_string()));
assert!(result.is_err());
if let Err(GameError::InvalidState(msg)) = result {
assert_eq!(msg, "Not found");
} else {
panic!("Expected InvalidState error");
}
}
#[test]
fn test_result_ext_success() {
let result: Result<i32, io::Error> = Ok(42);
let game_result: GameResult<i32> = result.with_context(|_| GameError::InvalidState("Context".to_string()));
assert_eq!(game_result.unwrap(), 42);
}
#[test]
fn test_result_ext_error() {
let result: Result<i32, io::Error> = Err(io::Error::new(io::ErrorKind::Other, "original error"));
let game_result: GameResult<i32> = result.with_context(|_| GameError::InvalidState("Context error".to_string()));
assert!(game_result.is_err());
if let Err(GameError::InvalidState(msg)) = game_result {
assert_eq!(msg, "Context error");
} else {
panic!("Expected InvalidState error");
}
}

19
tests/events.rs Normal file
View File

@@ -0,0 +1,19 @@
use pacman::events::{GameCommand, GameEvent};
use pacman::map::direction::Direction;
#[test]
fn test_game_command_to_game_event_conversion_all_variants() {
let commands = vec![
GameCommand::Exit,
GameCommand::MovePlayer(Direction::Up),
GameCommand::ToggleDebug,
GameCommand::MuteAudio,
GameCommand::ResetLevel,
GameCommand::TogglePause,
];
for command in commands {
let event: GameEvent = command.into();
assert_eq!(event, GameEvent::Command(command));
}
}

165
tests/formatting.rs Normal file
View File

@@ -0,0 +1,165 @@
use pacman::systems::profiling::format_timing_display;
use std::time::Duration;
use pretty_assertions::assert_eq;
fn get_timing_data() -> Vec<(String, Duration, Duration)> {
vec![
("total".to_string(), Duration::from_micros(1234), Duration::from_micros(570)),
("input".to_string(), Duration::from_micros(120), Duration::from_micros(45)),
("player".to_string(), Duration::from_micros(456), Duration::from_micros(123)),
("movement".to_string(), Duration::from_micros(789), Duration::from_micros(234)),
("render".to_string(), Duration::from_micros(12), Duration::from_micros(3)),
("debug".to_string(), Duration::from_nanos(460), Duration::from_nanos(557)),
]
}
fn get_formatted_output() -> impl IntoIterator<Item = String> {
format_timing_display(get_timing_data())
}
#[test]
fn test_complex_formatting_alignment() {
let mut colon_positions = vec![];
let mut first_decimal_positions = vec![];
let mut second_decimal_positions = vec![];
let mut first_unit_positions = vec![];
let mut second_unit_positions = vec![];
get_formatted_output().into_iter().for_each(|line| {
let (mut got_decimal, mut got_unit) = (false, false);
for (i, char) in line.chars().enumerate() {
match char {
':' => colon_positions.push(i),
'.' => {
if got_decimal {
second_decimal_positions.push(i);
} else {
first_decimal_positions.push(i);
}
got_decimal = true;
}
's' => {
if got_unit {
first_unit_positions.push(i);
} else {
second_unit_positions.push(i);
got_unit = true;
}
}
_ => {}
}
}
});
// Assert that all positions were found
assert_eq!(
[
&colon_positions,
&first_decimal_positions,
&second_decimal_positions,
&first_unit_positions,
&second_unit_positions
]
.iter()
.all(|p| p.len() == 6),
true
);
// Assert that all positions are the same
assert!(
colon_positions.iter().all(|&p| p == colon_positions[0]),
"colon positions are not the same {:?}",
colon_positions
);
assert!(
first_decimal_positions.iter().all(|&p| p == first_decimal_positions[0]),
"first decimal positions are not the same {:?}",
first_decimal_positions
);
assert!(
second_decimal_positions.iter().all(|&p| p == second_decimal_positions[0]),
"second decimal positions are not the same {:?}",
second_decimal_positions
);
assert!(
first_unit_positions.iter().all(|&p| p == first_unit_positions[0]),
"first unit positions are not the same {:?}",
first_unit_positions
);
assert!(
second_unit_positions.iter().all(|&p| p == second_unit_positions[0]),
"second unit positions are not the same {:?}",
second_unit_positions
);
}
#[test]
fn test_format_timing_display_basic() {
let timing_data = vec![
("render".to_string(), Duration::from_micros(1500), Duration::from_micros(200)),
("input".to_string(), Duration::from_micros(300), Duration::from_micros(50)),
("physics".to_string(), Duration::from_nanos(750), Duration::from_nanos(100)),
];
let formatted = format_timing_display(timing_data);
// Should have 3 lines (one for each system)
assert_eq!(formatted.len(), 3);
// Each line should contain the system name
assert!(formatted.iter().any(|line| line.contains("render")));
assert!(formatted.iter().any(|line| line.contains("input")));
assert!(formatted.iter().any(|line| line.contains("physics")));
// Each line should contain timing information with proper units
for line in formatted.iter() {
assert!(line.contains(":"), "Line should contain colon separator: {}", line);
assert!(line.contains("±"), "Line should contain ± symbol: {}", line);
}
}
#[test]
fn test_format_timing_display_units() {
let timing_data = vec![
("seconds".to_string(), Duration::from_secs(2), Duration::from_millis(100)),
("millis".to_string(), Duration::from_millis(15), Duration::from_micros(200)),
("micros".to_string(), Duration::from_micros(500), Duration::from_nanos(50)),
("nanos".to_string(), Duration::from_nanos(250), Duration::from_nanos(25)),
];
let formatted = format_timing_display(timing_data);
// Check that appropriate units are used
let all_lines = formatted.join(" ");
assert!(all_lines.contains("s"), "Should contain seconds unit");
assert!(all_lines.contains("ms"), "Should contain milliseconds unit");
assert!(all_lines.contains("µs"), "Should contain microseconds unit");
assert!(all_lines.contains("ns"), "Should contain nanoseconds unit");
}
#[test]
fn test_format_timing_display_alignment() {
let timing_data = vec![
("short".to_string(), Duration::from_micros(100), Duration::from_micros(10)),
(
"very_long_name".to_string(),
Duration::from_micros(200),
Duration::from_micros(20),
),
];
let formatted = format_timing_display(timing_data);
// Find colon positions - they should be aligned
let colon_positions: Vec<usize> = formatted.iter().map(|line| line.find(':').unwrap_or(0)).collect();
// All colons should be at the same position (aligned)
if colon_positions.len() > 1 {
let first_pos = colon_positions[0];
assert!(
colon_positions.iter().all(|&pos| pos == first_pos),
"Colons should be aligned at the same position"
);
}
}

View File

@@ -1,13 +0,0 @@
use pacman::constants::RAW_BOARD;
use pacman::map::builder::Map;
mod collision;
mod item;
#[test]
fn test_game_map_creation() {
let map = Map::new(RAW_BOARD).unwrap();
assert!(map.graph.node_count() > 0);
assert!(!map.grid_to_node.is_empty());
}

View File

@@ -1,48 +0,0 @@
use pacman::entity::ghost::{Ghost, GhostType};
use pacman::entity::graph::Graph;
use pacman::texture::sprite::{AtlasMapper, MapperFrame, SpriteAtlas};
use std::collections::HashMap;
fn create_test_atlas() -> SpriteAtlas {
let mut frames = HashMap::new();
let directions = ["up", "down", "left", "right"];
let ghost_types = ["blinky", "pinky", "inky", "clyde"];
for ghost_type in &ghost_types {
for (i, dir) in directions.iter().enumerate() {
frames.insert(
format!("ghost/{}/{}_{}.png", ghost_type, dir, "a"),
MapperFrame {
x: i as u16 * 16,
y: 0,
width: 16,
height: 16,
},
);
frames.insert(
format!("ghost/{}/{}_{}.png", ghost_type, dir, "b"),
MapperFrame {
x: i as u16 * 16,
y: 16,
width: 16,
height: 16,
},
);
}
}
let mapper = AtlasMapper { frames };
let dummy_texture = unsafe { std::mem::zeroed() };
SpriteAtlas::new(dummy_texture, mapper)
}
#[test]
fn test_ghost_creation() {
let graph = Graph::new();
let atlas = create_test_atlas();
let ghost = Ghost::new(&graph, 0, GhostType::Blinky, &atlas).unwrap();
assert_eq!(ghost.ghost_type, GhostType::Blinky);
assert_eq!(ghost.traverser.position.from_node_id(), 0);
}

View File

@@ -1,6 +1,5 @@
use pacman::entity::direction::Direction;
use pacman::entity::graph::{EdgePermissions, Graph, Node};
use pacman::entity::traversal::{Position, Traverser};
use pacman::map::direction::Direction;
use pacman::map::graph::{Graph, Node, TraversalFlags};
fn create_test_graph() -> Graph {
let mut graph = Graph::new();
@@ -30,7 +29,7 @@ fn test_graph_basic_operations() {
position: glam::Vec2::new(16.0, 0.0),
});
assert_eq!(graph.node_count(), 2);
assert_eq!(graph.nodes().count(), 2);
assert!(graph.get_node(node1).is_some());
assert!(graph.get_node(node2).is_some());
assert!(graph.get_node(999).is_none());
@@ -79,11 +78,11 @@ fn test_graph_edge_permissions() {
});
graph
.add_edge(node1, node2, false, None, Direction::Right, EdgePermissions::GhostsOnly)
.add_edge(node1, node2, false, None, Direction::Right, TraversalFlags::GHOST)
.unwrap();
let edge = graph.find_edge_in_direction(node1, Direction::Right).unwrap();
assert_eq!(edge.permissions, EdgePermissions::GhostsOnly);
assert_eq!(edge.traversal_flags, TraversalFlags::GHOST);
}
#[test]
@@ -103,7 +102,7 @@ fn should_add_connected_node() {
)
.unwrap();
assert_eq!(graph.node_count(), 2);
assert_eq!(graph.nodes().count(), 2);
let edge = graph.find_edge(node1, node2);
assert!(edge.is_some());
assert_eq!(edge.unwrap().direction, Direction::Right);
@@ -119,21 +118,21 @@ fn should_error_on_negative_edge_distance() {
position: glam::Vec2::new(16.0, 0.0),
});
let result = graph.add_edge(node1, node2, false, Some(-1.0), Direction::Right, EdgePermissions::All);
let result = graph.add_edge(node1, node2, false, Some(-1.0), Direction::Right, TraversalFlags::ALL);
assert!(result.is_err());
}
#[test]
fn should_error_on_duplicate_edge_without_replace() {
let mut graph = create_test_graph();
let result = graph.add_edge(0, 1, false, None, Direction::Right, EdgePermissions::All);
let result = graph.add_edge(0, 1, false, None, Direction::Right, TraversalFlags::ALL);
assert!(result.is_err());
}
#[test]
fn should_allow_replacing_an_edge() {
let mut graph = create_test_graph();
let result = graph.add_edge(0, 1, true, Some(42.0), Direction::Right, EdgePermissions::All);
let result = graph.add_edge(0, 1, true, Some(42.0), Direction::Right, TraversalFlags::ALL);
assert!(result.is_ok());
let edge = graph.find_edge(0, 1).unwrap();
@@ -150,68 +149,3 @@ fn should_find_edge_between_nodes() {
let non_existent_edge = graph.find_edge(0, 99);
assert!(non_existent_edge.is_none());
}
#[test]
fn test_traverser_basic() {
let graph = create_test_graph();
let mut traverser = Traverser::new(&graph, 0, Direction::Left, &|_| true);
traverser.set_next_direction(Direction::Up);
assert!(traverser.next_direction.is_some());
assert_eq!(traverser.next_direction.unwrap().0, Direction::Up);
}
#[test]
fn test_traverser_advance() {
let graph = create_test_graph();
let mut traverser = Traverser::new(&graph, 0, Direction::Right, &|_| true);
traverser.advance(&graph, 5.0, &|_| true).unwrap();
match traverser.position {
Position::BetweenNodes { from, to, traversed } => {
assert_eq!(from, 0);
assert_eq!(to, 1);
assert_eq!(traversed, 5.0);
}
_ => panic!("Expected to be between nodes"),
}
traverser.advance(&graph, 3.0, &|_| true).unwrap();
match traverser.position {
Position::BetweenNodes { from, to, traversed } => {
assert_eq!(from, 0);
assert_eq!(to, 1);
assert_eq!(traversed, 8.0);
}
_ => panic!("Expected to be between nodes"),
}
}
#[test]
fn test_traverser_with_permissions() {
let mut graph = Graph::new();
let node1 = graph.add_node(Node {
position: glam::Vec2::new(0.0, 0.0),
});
let node2 = graph.add_node(Node {
position: glam::Vec2::new(16.0, 0.0),
});
graph
.add_edge(node1, node2, false, None, Direction::Right, EdgePermissions::GhostsOnly)
.unwrap();
// Pacman can't traverse ghost-only edges
let mut traverser = Traverser::new(&graph, node1, Direction::Right, &|edge| {
matches!(edge.permissions, EdgePermissions::All)
});
traverser
.advance(&graph, 5.0, &|edge| matches!(edge.permissions, EdgePermissions::All))
.unwrap();
// Should still be at the node since it can't traverse
assert!(traverser.position.is_at_node());
}

View File

@@ -1,19 +0,0 @@
use glam::{IVec2, UVec2};
use pacman::helpers::centered_with_size;
#[test]
fn test_centered_with_size() {
let test_cases = [
((100, 100), (50, 30), (75, 85)),
((50, 50), (51, 31), (25, 35)),
((0, 0), (100, 100), (-50, -50)),
((-100, -50), (80, 40), (-140, -70)),
((1000, 1000), (1000, 1000), (500, 500)),
];
for ((pos_x, pos_y), (size_x, size_y), (expected_x, expected_y)) in test_cases {
let rect = centered_with_size(IVec2::new(pos_x, pos_y), UVec2::new(size_x, size_y));
assert_eq!(rect.origin(), (expected_x, expected_y));
assert_eq!(rect.size(), (size_x, size_y));
}
}

26
tests/hud.rs Normal file
View File

@@ -0,0 +1,26 @@
use bevy_ecs::{event::Events, world::World};
use pacman::{error::GameError, systems::components::ScoreResource};
fn create_test_world() -> World {
let mut world = World::new();
// Add required resources
world.insert_resource(Events::<GameError>::default());
world.insert_resource(ScoreResource(1230)); // Test score
world
}
#[test]
fn test_hud_render_system_runs_without_error() {
let world = create_test_world();
// The HUD render system requires SDL2 resources that aren't available in tests,
// but we can at least verify it doesn't panic when called
// In a real test environment, we'd need to mock the SDL2 canvas and atlas
// For now, just verify the score resource is accessible
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, 1230);
}

38
tests/input.rs Normal file
View File

@@ -0,0 +1,38 @@
use pacman::events::{GameCommand, GameEvent};
use pacman::map::direction::Direction;
use pacman::systems::input::{process_simple_key_events, Bindings, SimpleKeyEvent};
use sdl2::keyboard::Keycode;
#[test]
fn resumes_previous_direction_when_secondary_key_released() {
let mut bindings = Bindings::default();
// Frame 1: Press W (Up) => emits Move Up
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::W)]);
assert!(events.contains(&GameEvent::Command(GameCommand::MovePlayer(Direction::Up))));
// Frame 2: Press D (Right) => emits Move Right
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::D)]);
assert!(events.contains(&GameEvent::Command(GameCommand::MovePlayer(Direction::Right))));
// Frame 3: Release D, no new key this frame => should continue previous key W (Up)
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyUp(Keycode::D)]);
assert!(events.contains(&GameEvent::Command(GameCommand::MovePlayer(Direction::Up))));
}
#[test]
fn holds_last_pressed_key_across_frames_when_no_new_input() {
let mut bindings = Bindings::default();
// Frame 1: Press Left
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyDown(Keycode::Left)]);
assert!(events.contains(&GameEvent::Command(GameCommand::MovePlayer(Direction::Left))));
// Frame 2: No input => continues Left
let events = process_simple_key_events(&mut bindings, &[]);
assert!(events.contains(&GameEvent::Command(GameCommand::MovePlayer(Direction::Left))));
// Frame 3: Release Left, no input remains => nothing emitted
let events = process_simple_key_events(&mut bindings, &[SimpleKeyEvent::KeyUp(Keycode::Left)]);
assert!(events.is_empty());
}

View File

@@ -1,53 +1,302 @@
use glam::U16Vec2;
use bevy_ecs::{entity::Entity, event::Events, system::RunSystemOnce, world::World};
use pacman::{
entity::{
collision::Collidable,
item::{FruitKind, Item, ItemType},
events::GameEvent,
map::builder::Map,
systems::{
is_valid_item_collision, item_system, AudioEvent, AudioState, EntityType, Ghost, GhostCollider, GhostState, ItemCollider,
PacmanCollider, Position, ScoreResource,
},
texture::sprite::{AtlasTile, Sprite},
};
use strum::{EnumCount, IntoEnumIterator};
#[test]
fn test_item_type_get_score() {
assert_eq!(ItemType::Pellet.get_score(), 10);
assert_eq!(ItemType::Energizer.get_score(), 50);
let fruit = ItemType::Fruit { kind: FruitKind::Apple };
assert_eq!(fruit.get_score(), 100);
fn test_calculate_score_for_item() {
assert!(EntityType::Pellet.score_value() < EntityType::PowerPellet.score_value());
assert!(EntityType::Pellet.score_value().is_some());
assert!(EntityType::PowerPellet.score_value().is_some());
assert!(EntityType::Player.score_value().is_none());
assert!(EntityType::Ghost.score_value().is_none());
}
#[test]
fn test_fruit_kind_increasing_score() {
// Build a list of fruit kinds, sorted by their index
let mut kinds = FruitKind::iter()
.map(|kind| (kind.index(), kind.get_score()))
.collect::<Vec<_>>();
kinds.sort_unstable_by_key(|(index, _)| *index);
fn test_is_collectible_item() {
// Collectible
assert!(EntityType::Pellet.is_collectible());
assert!(EntityType::PowerPellet.is_collectible());
assert_eq!(kinds.len(), FruitKind::COUNT);
// Check that the score increases as expected
for window in kinds.windows(2) {
let ((_, prev), (_, next)) = (window[0], window[1]);
assert!(prev < next, "Fruits should have increasing scores, but {prev:?} < {next:?}");
}
// Non-collectible
assert!(!EntityType::Player.is_collectible());
assert!(!EntityType::Ghost.is_collectible());
}
#[test]
fn test_item_creation_and_collection() {
let atlas_tile = AtlasTile {
pos: U16Vec2::new(0, 0),
size: U16Vec2::new(16, 16),
color: None,
};
let sprite = Sprite::new(atlas_tile);
let mut item = Item::new(0, ItemType::Pellet, sprite);
fn test_is_valid_item_collision() {
// Player-item collisions should be valid
assert!(is_valid_item_collision(EntityType::Player, EntityType::Pellet));
assert!(is_valid_item_collision(EntityType::Player, EntityType::PowerPellet));
assert!(is_valid_item_collision(EntityType::Pellet, EntityType::Player));
assert!(is_valid_item_collision(EntityType::PowerPellet, EntityType::Player));
assert!(!item.is_collected());
assert_eq!(item.get_score(), 10);
assert_eq!(item.position().from_node_id(), 0);
item.collect();
assert!(item.is_collected());
// Non-player-item collisions should be invalid
assert!(!is_valid_item_collision(EntityType::Player, EntityType::Ghost));
assert!(!is_valid_item_collision(EntityType::Ghost, EntityType::Pellet));
assert!(!is_valid_item_collision(EntityType::Pellet, EntityType::PowerPellet));
assert!(!is_valid_item_collision(EntityType::Player, EntityType::Player));
}
fn create_test_world() -> World {
let mut world = World::new();
// Add required resources
world.insert_resource(ScoreResource(0));
world.insert_resource(AudioState::default());
world.insert_resource(Events::<GameEvent>::default());
world.insert_resource(Events::<AudioEvent>::default());
world.insert_resource(Events::<pacman::error::GameError>::default());
// Add a minimal test map
world.insert_resource(create_test_map());
world
}
fn create_test_map() -> Map {
use pacman::constants::RAW_BOARD;
Map::new(RAW_BOARD).expect("Failed to create test map")
}
fn spawn_test_pacman(world: &mut World) -> Entity {
world
.spawn((Position::Stopped { node: 0 }, EntityType::Player, PacmanCollider))
.id()
}
fn spawn_test_item(world: &mut World, item_type: EntityType) -> Entity {
world.spawn((Position::Stopped { node: 1 }, item_type, ItemCollider)).id()
}
fn spawn_test_ghost(world: &mut World, ghost_state: GhostState) -> Entity {
world
.spawn((
Position::Stopped { node: 2 },
Ghost::Blinky,
EntityType::Ghost,
GhostCollider,
ghost_state,
))
.id()
}
fn send_collision_event(world: &mut World, entity1: Entity, entity2: Entity) {
let mut events = world.resource_mut::<Events<GameEvent>>();
events.send(GameEvent::Collision(entity1, entity2));
}
#[test]
fn test_item_system_pellet_collection() {
let mut world = create_test_world();
let pacman = spawn_test_pacman(&mut world);
let pellet = spawn_test_item(&mut world, EntityType::Pellet);
// Send collision event
send_collision_event(&mut world, pacman, pellet);
// Run the item system
world.run_system_once(item_system).expect("System should run successfully");
// Check that score was updated
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, 10);
// Check that the pellet was despawned (query should return empty)
let item_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::Pellet))
.count();
assert_eq!(item_count, 0);
}
#[test]
fn test_item_system_power_pellet_collection() {
let mut world = create_test_world();
let pacman = spawn_test_pacman(&mut world);
let power_pellet = spawn_test_item(&mut world, EntityType::PowerPellet);
send_collision_event(&mut world, pacman, power_pellet);
world.run_system_once(item_system).expect("System should run successfully");
// Check that score was updated with power pellet value
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, 50);
// Check that the power pellet was despawned (query should return empty)
let item_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::PowerPellet))
.count();
assert_eq!(item_count, 0);
}
#[test]
fn test_item_system_multiple_collections() {
let mut world = create_test_world();
let pacman = spawn_test_pacman(&mut world);
let pellet1 = spawn_test_item(&mut world, EntityType::Pellet);
let pellet2 = spawn_test_item(&mut world, EntityType::Pellet);
let power_pellet = spawn_test_item(&mut world, EntityType::PowerPellet);
// Send multiple collision events
send_collision_event(&mut world, pacman, pellet1);
send_collision_event(&mut world, pacman, pellet2);
send_collision_event(&mut world, pacman, power_pellet);
world.run_system_once(item_system).expect("System should run successfully");
// Check final score: 2 pellets (20) + 1 power pellet (50) = 70
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, 70);
// Check that all items were despawned
let pellet_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::Pellet))
.count();
let power_pellet_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::PowerPellet))
.count();
assert_eq!(pellet_count, 0);
assert_eq!(power_pellet_count, 0);
}
#[test]
fn test_item_system_ignores_non_item_collisions() {
let mut world = create_test_world();
let pacman = spawn_test_pacman(&mut world);
// Create a ghost entity (not an item)
let ghost = world.spawn((Position::Stopped { node: 2 }, EntityType::Ghost)).id();
// Initial score
let initial_score = world.resource::<ScoreResource>().0;
// Send collision event between pacman and ghost
send_collision_event(&mut world, pacman, ghost);
world.run_system_once(item_system).expect("System should run successfully");
// Score should remain unchanged
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, initial_score);
// Ghost should still exist (not despawned)
let ghost_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::Ghost))
.count();
assert_eq!(ghost_count, 1);
}
#[test]
fn test_item_system_no_collision_events() {
let mut world = create_test_world();
let _pacman = spawn_test_pacman(&mut world);
let _pellet = spawn_test_item(&mut world, EntityType::Pellet);
let initial_score = world.resource::<ScoreResource>().0;
// Run system without any collision events
world.run_system_once(item_system).expect("System should run successfully");
// Nothing should change
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, initial_score);
let pellet_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::Pellet))
.count();
assert_eq!(pellet_count, 1);
}
#[test]
fn test_item_system_collision_with_missing_entity() {
let mut world = create_test_world();
let pacman = spawn_test_pacman(&mut world);
// Create a fake entity ID that doesn't exist
let fake_entity = Entity::from_raw(999);
send_collision_event(&mut world, pacman, fake_entity);
// System should handle gracefully and not crash
world
.run_system_once(item_system)
.expect("System should handle missing entities gracefully");
// Score should remain unchanged
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, 0);
}
#[test]
fn test_item_system_preserves_existing_score() {
let mut world = create_test_world();
// Set initial score
world.insert_resource(ScoreResource(100));
let pacman = spawn_test_pacman(&mut world);
let pellet = spawn_test_item(&mut world, EntityType::Pellet);
send_collision_event(&mut world, pacman, pellet);
world.run_system_once(item_system).expect("System should run successfully");
// Score should be initial + pellet value
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, 110);
}
#[test]
fn test_power_pellet_does_not_affect_ghosts_in_eyes_state() {
let mut world = create_test_world();
let pacman = spawn_test_pacman(&mut world);
let power_pellet = spawn_test_item(&mut world, EntityType::PowerPellet);
// Spawn a ghost in Eyes state (returning to ghost house)
let eyes_ghost = spawn_test_ghost(&mut world, GhostState::Eyes);
// Spawn a ghost in Normal state
let normal_ghost = spawn_test_ghost(&mut world, GhostState::Normal);
send_collision_event(&mut world, pacman, power_pellet);
world.run_system_once(item_system).expect("System should run successfully");
// Check that the power pellet was collected and score updated
let score = world.resource::<ScoreResource>();
assert_eq!(score.0, 50);
// Check that the power pellet was despawned
let power_pellet_count = world
.query::<&EntityType>()
.iter(&world)
.filter(|&entity_type| matches!(entity_type, EntityType::PowerPellet))
.count();
assert_eq!(power_pellet_count, 0);
// Check that the Eyes ghost state was not changed
let eyes_ghost_state = world.entity(eyes_ghost).get::<GhostState>().unwrap();
assert!(matches!(*eyes_ghost_state, GhostState::Eyes));
// Check that the Normal ghost state was changed to Frightened
let normal_ghost_state = world.entity(normal_ghost).get::<GhostState>().unwrap();
assert!(matches!(*normal_ghost_state, GhostState::Frightened { .. }));
}

View File

@@ -1,13 +1,12 @@
use glam::Vec2;
use pacman::constants::{CELL_SIZE, RAW_BOARD};
use pacman::map::builder::Map;
use sdl2::render::Texture;
#[test]
fn test_map_creation() {
let map = Map::new(RAW_BOARD).unwrap();
assert!(map.graph.node_count() > 0);
assert!(map.graph.nodes().count() > 0);
assert!(!map.grid_to_node.is_empty());
// Check that some connections were made
@@ -27,67 +26,69 @@ fn test_map_node_positions() {
for (grid_pos, &node_id) in &map.grid_to_node {
let node = map.graph.get_node(node_id).unwrap();
let expected_pos = Vec2::new((grid_pos.x * CELL_SIZE as i32) as f32, (grid_pos.y * CELL_SIZE as i32) as f32)
+ Vec2::splat(CELL_SIZE as f32 / 2.0);
let expected_pos = Vec2::new(
(grid_pos.x as i32 * CELL_SIZE as i32) as f32,
(grid_pos.y as i32 * CELL_SIZE as i32) as f32,
) + Vec2::splat(CELL_SIZE as f32 / 2.0);
assert_eq!(node.position, expected_pos);
}
}
#[test]
fn test_generate_items() {
use pacman::texture::sprite::{AtlasMapper, MapperFrame, SpriteAtlas};
use std::collections::HashMap;
// #[test]
// fn test_generate_items() {
// use pacman::texture::sprite::{AtlasMapper, MapperFrame, SpriteAtlas};
// use std::collections::HashMap;
let map = Map::new(RAW_BOARD).unwrap();
// let map = Map::new(RAW_BOARD).unwrap();
// Create a minimal atlas for testing
let mut frames = HashMap::new();
frames.insert(
"maze/pellet.png".to_string(),
MapperFrame {
x: 0,
y: 0,
width: 8,
height: 8,
},
);
frames.insert(
"maze/energizer.png".to_string(),
MapperFrame {
x: 8,
y: 0,
width: 8,
height: 8,
},
);
// // Create a minimal atlas for testing
// let mut frames = HashMap::new();
// frames.insert(
// "maze/pellet.png".to_string(),
// MapperFrame {
// x: 0,
// y: 0,
// width: 8,
// height: 8,
// },
// );
// frames.insert(
// "maze/energizer.png".to_string(),
// MapperFrame {
// x: 8,
// y: 0,
// width: 8,
// height: 8,
// },
// );
let mapper = AtlasMapper { frames };
let texture = unsafe { std::mem::transmute::<usize, Texture<'static>>(0usize) };
let atlas = SpriteAtlas::new(texture, mapper);
// let mapper = AtlasMapper { frames };
// let texture = unsafe { std::mem::transmute::<usize, Texture<'static>>(0usize) };
// let atlas = SpriteAtlas::new(texture, mapper);
let items = map.generate_items(&atlas).unwrap();
// let items = map.generate_items(&atlas).unwrap();
// Verify we have items
assert!(!items.is_empty());
// // Verify we have items
// assert!(!items.is_empty());
// Count different types
let pellet_count = items
.iter()
.filter(|item| matches!(item.item_type, pacman::entity::item::ItemType::Pellet))
.count();
let energizer_count = items
.iter()
.filter(|item| matches!(item.item_type, pacman::entity::item::ItemType::Energizer))
.count();
// // Count different types
// let pellet_count = items
// .iter()
// .filter(|item| matches!(item.item_type, pacman::entity::item::ItemType::Pellet))
// .count();
// let energizer_count = items
// .iter()
// .filter(|item| matches!(item.item_type, pacman::entity::item::ItemType::Energizer))
// .count();
// Should have both types
assert_eq!(pellet_count, 240);
assert_eq!(energizer_count, 4);
// // Should have both types
// assert_eq!(pellet_count, 240);
// assert_eq!(energizer_count, 4);
// All items should be uncollected initially
assert!(items.iter().all(|item| !item.is_collected()));
// // All items should be uncollected initially
// assert!(items.iter().all(|item| !item.is_collected()));
// All items should have valid node indices
assert!(items.iter().all(|item| item.node_index < map.graph.node_count()));
}
// // All items should have valid node indices
// assert!(items.iter().all(|item| item.node_index < map.graph.node_count()));
// }

195
tests/movement.rs Normal file
View File

@@ -0,0 +1,195 @@
use glam::Vec2;
use pacman::map::direction::Direction;
use pacman::map::graph::{Graph, Node};
use pacman::systems::movement::{BufferedDirection, Position, Velocity};
fn create_test_graph() -> Graph {
let mut graph = Graph::new();
// Add a few test nodes
let node0 = graph.add_node(Node {
position: Vec2::new(0.0, 0.0),
});
let node1 = graph.add_node(Node {
position: Vec2::new(16.0, 0.0),
});
let node2 = graph.add_node(Node {
position: Vec2::new(0.0, 16.0),
});
// Connect them
graph.connect(node0, node1, false, None, Direction::Right).unwrap();
graph.connect(node0, node2, false, None, Direction::Down).unwrap();
graph
}
#[test]
fn test_position_is_at_node() {
let stopped_pos = Position::Stopped { node: 0 };
let moving_pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 8.0,
};
assert!(stopped_pos.is_at_node());
assert!(!moving_pos.is_at_node());
}
#[test]
fn test_position_current_node() {
let stopped_pos = Position::Stopped { node: 5 };
let moving_pos = Position::Moving {
from: 3,
to: 7,
remaining_distance: 12.0,
};
assert_eq!(stopped_pos.current_node(), 5);
assert_eq!(moving_pos.current_node(), 3);
}
#[test]
fn test_position_tick_no_movement_when_stopped() {
let mut pos = Position::Stopped { node: 0 };
let result = pos.tick(5.0);
assert!(result.is_none());
assert_eq!(pos, Position::Stopped { node: 0 });
}
#[test]
fn test_position_tick_no_movement_when_zero_distance() {
let mut pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 10.0,
};
let result = pos.tick(0.0);
assert!(result.is_none());
assert_eq!(
pos,
Position::Moving {
from: 0,
to: 1,
remaining_distance: 10.0,
}
);
}
#[test]
fn test_position_tick_partial_movement() {
let mut pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 10.0,
};
let result = pos.tick(3.0);
assert!(result.is_none());
assert_eq!(
pos,
Position::Moving {
from: 0,
to: 1,
remaining_distance: 7.0,
}
);
}
#[test]
fn test_position_tick_exact_arrival() {
let mut pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 5.0,
};
let result = pos.tick(5.0);
assert!(result.is_none());
assert_eq!(pos, Position::Stopped { node: 1 });
}
#[test]
fn test_position_tick_overshoot_with_overflow() {
let mut pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 3.0,
};
let result = pos.tick(8.0);
assert_eq!(result, Some(5.0));
assert_eq!(pos, Position::Stopped { node: 1 });
}
#[test]
fn test_position_get_pixel_position_stopped() {
let graph = create_test_graph();
let pos = Position::Stopped { node: 0 };
let pixel_pos = pos.get_pixel_position(&graph).unwrap();
let expected = Vec2::new(
0.0 + pacman::constants::BOARD_PIXEL_OFFSET.x as f32,
0.0 + pacman::constants::BOARD_PIXEL_OFFSET.y as f32,
);
assert_eq!(pixel_pos, expected);
}
#[test]
fn test_position_get_pixel_position_moving() {
let graph = create_test_graph();
let pos = Position::Moving {
from: 0,
to: 1,
remaining_distance: 8.0, // Halfway through a 16-unit edge
};
let pixel_pos = pos.get_pixel_position(&graph).unwrap();
// Should be halfway between (0,0) and (16,0), so at (8,0) plus offset
let expected = Vec2::new(
8.0 + pacman::constants::BOARD_PIXEL_OFFSET.x as f32,
0.0 + pacman::constants::BOARD_PIXEL_OFFSET.y as f32,
);
assert_eq!(pixel_pos, expected);
}
#[test]
fn test_velocity_basic_properties() {
let velocity = Velocity {
speed: 2.5,
direction: Direction::Up,
};
assert_eq!(velocity.speed, 2.5);
assert_eq!(velocity.direction, Direction::Up);
}
#[test]
fn test_buffered_direction_none() {
let buffered = BufferedDirection::None;
assert_eq!(buffered, BufferedDirection::None);
}
#[test]
fn test_buffered_direction_some() {
let buffered = BufferedDirection::Some {
direction: Direction::Left,
remaining_time: 0.5,
};
if let BufferedDirection::Some {
direction,
remaining_time,
} = buffered
{
assert_eq!(direction, Direction::Left);
assert_eq!(remaining_time, 0.5);
} else {
panic!("Expected BufferedDirection::Some");
}
}

View File

@@ -1,73 +0,0 @@
use pacman::entity::direction::Direction;
use pacman::entity::graph::{Graph, Node};
use pacman::entity::pacman::Pacman;
use pacman::texture::sprite::{AtlasMapper, MapperFrame, SpriteAtlas};
use std::collections::HashMap;
fn create_test_graph() -> Graph {
let mut graph = Graph::new();
let node1 = graph.add_node(Node {
position: glam::Vec2::new(0.0, 0.0),
});
let node2 = graph.add_node(Node {
position: glam::Vec2::new(16.0, 0.0),
});
let node3 = graph.add_node(Node {
position: glam::Vec2::new(0.0, 16.0),
});
graph.connect(node1, node2, false, None, Direction::Right).unwrap();
graph.connect(node1, node3, false, None, Direction::Down).unwrap();
graph
}
fn create_test_atlas() -> SpriteAtlas {
let mut frames = HashMap::new();
let directions = ["up", "down", "left", "right"];
for (i, dir) in directions.iter().enumerate() {
frames.insert(
format!("pacman/{dir}_a.png"),
MapperFrame {
x: i as u16 * 16,
y: 0,
width: 16,
height: 16,
},
);
frames.insert(
format!("pacman/{dir}_b.png"),
MapperFrame {
x: i as u16 * 16,
y: 16,
width: 16,
height: 16,
},
);
}
frames.insert(
"pacman/full.png".to_string(),
MapperFrame {
x: 64,
y: 0,
width: 16,
height: 16,
},
);
let mapper = AtlasMapper { frames };
let dummy_texture = unsafe { std::mem::zeroed() };
SpriteAtlas::new(dummy_texture, mapper)
}
#[test]
fn test_pacman_creation() {
let graph = create_test_graph();
let atlas = create_test_atlas();
let pacman = Pacman::new(&graph, 0, &atlas).unwrap();
assert!(pacman.traverser.position.is_at_node());
assert_eq!(pacman.traverser.direction, Direction::Left);
}

View File

@@ -1,120 +0,0 @@
use pacman::entity::direction::Direction;
use pacman::entity::ghost::{Ghost, GhostType};
use pacman::entity::graph::{Graph, Node};
use pacman::texture::sprite::{AtlasMapper, MapperFrame, SpriteAtlas};
use std::collections::HashMap;
fn create_test_atlas() -> SpriteAtlas {
let mut frames = HashMap::new();
let directions = ["up", "down", "left", "right"];
let ghost_types = ["blinky", "pinky", "inky", "clyde"];
for ghost_type in &ghost_types {
for (i, dir) in directions.iter().enumerate() {
frames.insert(
format!("ghost/{}/{}_{}.png", ghost_type, dir, "a"),
MapperFrame {
x: i as u16 * 16,
y: 0,
width: 16,
height: 16,
},
);
frames.insert(
format!("ghost/{}/{}_{}.png", ghost_type, dir, "b"),
MapperFrame {
x: i as u16 * 16,
y: 16,
width: 16,
height: 16,
},
);
}
}
let mapper = AtlasMapper { frames };
let dummy_texture = unsafe { std::mem::zeroed() };
SpriteAtlas::new(dummy_texture, mapper)
}
#[test]
fn test_ghost_pathfinding() {
// Create a simple test graph
let mut graph = Graph::new();
// Add nodes in a simple line: 0 -> 1 -> 2
let node0 = graph.add_node(Node {
position: glam::Vec2::new(0.0, 0.0),
});
let node1 = graph.add_node(Node {
position: glam::Vec2::new(10.0, 0.0),
});
let node2 = graph.add_node(Node {
position: glam::Vec2::new(20.0, 0.0),
});
// Connect the nodes
graph.connect(node0, node1, false, None, Direction::Right).unwrap();
graph.connect(node1, node2, false, None, Direction::Right).unwrap();
// Create a test atlas for the ghost
let atlas = create_test_atlas();
// Create a ghost at node 0
let ghost = Ghost::new(&graph, node0, GhostType::Blinky, &atlas).unwrap();
// Test pathfinding from node 0 to node 2
let path = ghost.calculate_path_to_target(&graph, node2);
assert!(path.is_ok());
let path = path.unwrap();
assert!(
path == vec![node0, node1, node2] || path == vec![node2, node1, node0],
"Path was not what was expected"
);
}
#[test]
fn test_ghost_pathfinding_no_path() {
// Create a test graph with disconnected components
let mut graph = Graph::new();
let node0 = graph.add_node(Node {
position: glam::Vec2::new(0.0, 0.0),
});
let node1 = graph.add_node(Node {
position: glam::Vec2::new(10.0, 0.0),
});
// Don't connect the nodes
let atlas = create_test_atlas();
let ghost = Ghost::new(&graph, node0, GhostType::Blinky, &atlas).unwrap();
// Test pathfinding when no path exists
let path = ghost.calculate_path_to_target(&graph, node1);
assert!(path.is_err());
}
#[test]
fn test_ghost_debug_colors() {
let atlas = create_test_atlas();
let mut graph = Graph::new();
let node = graph.add_node(Node {
position: glam::Vec2::new(0.0, 0.0),
});
let blinky = Ghost::new(&graph, node, GhostType::Blinky, &atlas).unwrap();
let pinky = Ghost::new(&graph, node, GhostType::Pinky, &atlas).unwrap();
let inky = Ghost::new(&graph, node, GhostType::Inky, &atlas).unwrap();
let clyde = Ghost::new(&graph, node, GhostType::Clyde, &atlas).unwrap();
// Test that each ghost has a different debug color
let colors = std::collections::HashSet::from([
blinky.debug_color(),
pinky.debug_color(),
inky.debug_color(),
clyde.debug_color(),
]);
assert_eq!(colors.len(), 4, "All ghost colors should be unique");
}

575
tests/player.rs Normal file
View File

@@ -0,0 +1,575 @@
use bevy_ecs::{entity::Entity, event::Events, system::RunSystemOnce, world::World};
use pacman::{
events::{GameCommand, GameEvent},
map::{
builder::Map,
direction::Direction,
graph::{Edge, TraversalFlags},
},
systems::{
can_traverse, player_control_system, player_movement_system, AudioState, BufferedDirection, DebugState, DeltaTime,
EntityType, GlobalState, MovementModifiers, PlayerControlled, Position, Velocity,
},
};
// Test helper functions for ECS setup
fn create_test_world() -> World {
let mut world = World::new();
// Add resources
world.insert_resource(GlobalState { exit: false });
world.insert_resource(DebugState::default());
world.insert_resource(AudioState::default());
world.insert_resource(DeltaTime(1.0 / 60.0)); // 60 FPS
world.insert_resource(Events::<GameEvent>::default());
world.insert_resource(Events::<pacman::error::GameError>::default());
// Create a simple test map with nodes and edges
let test_map = create_test_map();
world.insert_resource(test_map);
world
}
fn create_test_map() -> Map {
// Use the actual RAW_BOARD from constants.rs
use pacman::constants::RAW_BOARD;
Map::new(RAW_BOARD).expect("Failed to create test map")
}
fn spawn_test_player(world: &mut World) -> Entity {
world
.spawn((
PlayerControlled,
Position::Stopped { node: 0 },
Velocity {
speed: 1.0,
direction: Direction::Right,
},
BufferedDirection::None,
EntityType::Player,
MovementModifiers::default(),
))
.id()
}
fn send_game_event(world: &mut World, command: GameCommand) {
let mut events = world.resource_mut::<Events<GameEvent>>();
events.send(GameEvent::Command(command));
}
#[test]
fn test_can_traverse_player_on_all_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Up,
traversal_flags: TraversalFlags::ALL,
};
assert!(can_traverse(EntityType::Player, edge));
}
#[test]
fn test_can_traverse_player_on_pacman_only_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Right,
traversal_flags: TraversalFlags::PACMAN,
};
assert!(can_traverse(EntityType::Player, edge));
}
#[test]
fn test_can_traverse_player_blocked_on_ghost_only_edges() {
let edge = Edge {
target: 1,
distance: 10.0,
direction: Direction::Left,
traversal_flags: TraversalFlags::GHOST,
};
assert!(!can_traverse(EntityType::Player, edge));
}
#[test]
fn test_can_traverse_ghost_on_all_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Down,
traversal_flags: TraversalFlags::ALL,
};
assert!(can_traverse(EntityType::Ghost, edge));
}
#[test]
fn test_can_traverse_ghost_on_ghost_only_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Up,
traversal_flags: TraversalFlags::GHOST,
};
assert!(can_traverse(EntityType::Ghost, edge));
}
#[test]
fn test_can_traverse_ghost_blocked_on_pacman_only_edges() {
let edge = Edge {
target: 2,
distance: 15.0,
direction: Direction::Right,
traversal_flags: TraversalFlags::PACMAN,
};
assert!(!can_traverse(EntityType::Ghost, edge));
}
#[test]
fn test_can_traverse_static_entities_flags() {
let edge = Edge {
target: 3,
distance: 8.0,
direction: Direction::Left,
traversal_flags: TraversalFlags::ALL,
};
// Static entities have empty traversal flags but can still "traverse"
// in the sense that empty flags are contained in any flag set
// This is the expected behavior since empty ⊆ any set
assert!(can_traverse(EntityType::Pellet, edge));
assert!(can_traverse(EntityType::PowerPellet, edge));
}
#[test]
fn test_entity_type_traversal_flags() {
assert_eq!(EntityType::Player.traversal_flags(), TraversalFlags::PACMAN);
assert_eq!(EntityType::Ghost.traversal_flags(), TraversalFlags::GHOST);
assert_eq!(EntityType::Pellet.traversal_flags(), TraversalFlags::empty());
assert_eq!(EntityType::PowerPellet.traversal_flags(), TraversalFlags::empty());
}
// ============================================================================
// ECS System Tests
// ============================================================================
#[test]
fn test_player_control_system_move_command() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Send move command
send_game_event(&mut world, GameCommand::MovePlayer(Direction::Up));
// Run the system
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that buffered direction was updated
let mut query = world.query::<&BufferedDirection>();
let buffered_direction = query.single(&world).expect("Player should exist");
match *buffered_direction {
BufferedDirection::Some {
direction,
remaining_time,
} => {
assert_eq!(direction, Direction::Up);
assert_eq!(remaining_time, 0.25);
}
BufferedDirection::None => panic!("Expected buffered direction to be set"),
}
}
#[test]
fn test_player_control_system_exit_command() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Send exit command
send_game_event(&mut world, GameCommand::Exit);
// Run the system
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that exit flag was set
let state = world.resource::<GlobalState>();
assert!(state.exit);
}
#[test]
fn test_player_control_system_toggle_debug() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Send toggle debug command
send_game_event(&mut world, GameCommand::ToggleDebug);
// Run the system
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that debug state changed
let debug_state = world.resource::<DebugState>();
assert!(debug_state.enabled);
}
#[test]
fn test_player_control_system_mute_audio() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Send mute audio command
send_game_event(&mut world, GameCommand::MuteAudio);
// Run the system
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that audio was muted
let audio_state = world.resource::<AudioState>();
assert!(audio_state.muted);
// Send mute audio command again to unmute - need fresh events
world.resource_mut::<Events<GameEvent>>().clear(); // Clear previous events
send_game_event(&mut world, GameCommand::MuteAudio);
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that audio was unmuted
let audio_state = world.resource::<AudioState>();
assert!(!audio_state.muted, "Audio should be unmuted after second toggle");
}
#[test]
fn test_player_control_system_no_player_entity() {
let mut world = create_test_world();
// Don't spawn a player entity
send_game_event(&mut world, GameCommand::MovePlayer(Direction::Up));
// Run the system - should write an error
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Check that an error was written (we can't easily check Events without manual management,
// so for this test we just verify the system ran without panicking)
// In a real implementation, you might expose error checking through the ECS world
}
#[test]
fn test_player_movement_system_buffered_direction_expires() {
let mut world = create_test_world();
let player = spawn_test_player(&mut world);
// Set a buffered direction with short time
world.entity_mut(player).insert(BufferedDirection::Some {
direction: Direction::Up,
remaining_time: 0.01, // Very short time
});
// Set delta time to expire the buffered direction
world.insert_resource(DeltaTime(0.02));
// Run the system
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that buffered direction expired or remaining time decreased significantly
let mut query = world.query::<&BufferedDirection>();
let buffered_direction = query.single(&world).expect("Player should exist");
match *buffered_direction {
BufferedDirection::None => {} // Expected - fully expired
BufferedDirection::Some { remaining_time, .. } => {
assert!(
remaining_time <= 0.0,
"Buffered direction should be expired or have non-positive time"
);
}
}
}
#[test]
fn test_player_movement_system_start_moving_from_stopped() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Player starts at node 0, facing right (towards node 1)
// Should start moving when system runs
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that player started moving
let mut query = world.query::<&Position>();
let position = query.single(&world).expect("Player should exist");
match *position {
Position::Moving { from, .. } => {
assert_eq!(from, 0, "Player should start from node 0");
// Don't assert exact target node since the real map has different connectivity
}
Position::Stopped { .. } => {} // May stay stopped if no valid edge in current direction
}
}
#[test]
fn test_player_movement_system_buffered_direction_change() {
let mut world = create_test_world();
let player = spawn_test_player(&mut world);
// Set a buffered direction to go down (towards node 2)
world.entity_mut(player).insert(BufferedDirection::Some {
direction: Direction::Down,
remaining_time: 1.0,
});
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that player started moving down instead of right
let mut query = world.query::<(&Position, &Velocity, &BufferedDirection)>();
let (position, _velocity, _buffered_direction) = query.single(&world).expect("Player should exist");
match *position {
Position::Moving { from, to, .. } => {
assert_eq!(from, 0);
assert_eq!(to, 2); // Should be moving to node 2 (down)
}
Position::Stopped { .. } => panic!("Player should have started moving"),
}
// Check if the movement actually happened based on the real map connectivity
// The buffered direction might not be consumed if there's no valid edge in that direction
}
#[test]
fn test_player_movement_system_no_valid_edge() {
let mut world = create_test_world();
let player = spawn_test_player(&mut world);
// Set velocity to direction with no edge
world.entity_mut(player).insert(Velocity {
speed: 1.0,
direction: Direction::Up, // No edge up from node 0
});
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Player should remain stopped
let mut query = world.query::<&Position>();
let position = query.single(&world).expect("Player should exist");
match *position {
Position::Stopped { node } => assert_eq!(node, 0),
Position::Moving { .. } => panic!("Player shouldn't be able to move without valid edge"),
}
}
#[test]
fn test_player_movement_system_continue_moving() {
let mut world = create_test_world();
let player = spawn_test_player(&mut world);
// Set player to already be moving
world.entity_mut(player).insert(Position::Moving {
from: 0,
to: 1,
remaining_distance: 50.0,
});
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that player continued moving and distance decreased
let mut query = world.query::<&Position>();
let position = query.single(&world).expect("Player should exist");
match *position {
Position::Moving { remaining_distance, .. } => {
assert!(remaining_distance < 50.0); // Should have moved
}
Position::Stopped { .. } => {
// If player reached destination, that's also valid
}
}
}
// ============================================================================
// Integration Tests
// ============================================================================
#[test]
fn test_full_player_input_to_movement_flow() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Send move command
send_game_event(&mut world, GameCommand::MovePlayer(Direction::Down));
// Run control system to process input
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Run movement system to execute movement
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check final state - player should be moving down
let mut query = world.query::<(&Position, &Velocity, &BufferedDirection)>();
let (position, _velocity, _buffered_direction) = query.single(&world).expect("Player should exist");
match *position {
Position::Moving { from, to, .. } => {
assert_eq!(from, 0);
assert_eq!(to, 2); // Moving to node 2 (down)
}
Position::Stopped { .. } => panic!("Player should be moving"),
}
// Check that player moved in the buffered direction if possible
// In the real map, the buffered direction may not be consumable if there's no valid edge
}
#[test]
fn test_buffered_direction_timing() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Send move command
send_game_event(&mut world, GameCommand::MovePlayer(Direction::Up));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Run movement system multiple times with small delta times
world.insert_resource(DeltaTime(0.1)); // 0.1 seconds
// First run - buffered direction should still be active
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
let mut query = world.query::<&BufferedDirection>();
let buffered_direction = query.single(&world).expect("Player should exist");
match *buffered_direction {
BufferedDirection::Some { remaining_time, .. } => {
assert!(remaining_time > 0.0);
assert!(remaining_time < 0.25);
}
BufferedDirection::None => panic!("Buffered direction should still be active"),
}
// Run again to fully expire the buffered direction
world.insert_resource(DeltaTime(0.2)); // Total 0.3 seconds, should expire
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
let buffered_direction = query.single(&world).expect("Player should exist");
assert_eq!(*buffered_direction, BufferedDirection::None);
}
#[test]
fn test_multiple_rapid_direction_changes() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Send multiple rapid direction changes
send_game_event(&mut world, GameCommand::MovePlayer(Direction::Up));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
send_game_event(&mut world, GameCommand::MovePlayer(Direction::Down));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
send_game_event(&mut world, GameCommand::MovePlayer(Direction::Left));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
// Only the last direction should be buffered
let mut query = world.query::<&BufferedDirection>();
let buffered_direction = query.single(&world).expect("Player should exist");
match *buffered_direction {
BufferedDirection::Some { direction, .. } => {
assert_eq!(direction, Direction::Left);
}
BufferedDirection::None => panic!("Expected buffered direction"),
}
}
#[test]
fn test_player_state_persistence_across_systems() {
let mut world = create_test_world();
let _player = spawn_test_player(&mut world);
// Test that multiple commands can be processed - but need to handle events properly
// Clear any existing events first
world.resource_mut::<Events<GameEvent>>().clear();
// Toggle debug mode
send_game_event(&mut world, GameCommand::ToggleDebug);
world
.run_system_once(player_control_system)
.expect("System should run successfully");
let debug_state_after_toggle = *world.resource::<DebugState>();
// Clear events and mute audio
world.resource_mut::<Events<GameEvent>>().clear();
send_game_event(&mut world, GameCommand::MuteAudio);
world
.run_system_once(player_control_system)
.expect("System should run successfully");
let audio_muted_after_toggle = world.resource::<AudioState>().muted;
// Clear events and move player
world.resource_mut::<Events<GameEvent>>().clear();
send_game_event(&mut world, GameCommand::MovePlayer(Direction::Down));
world
.run_system_once(player_control_system)
.expect("System should run successfully");
world
.run_system_once(player_movement_system)
.expect("System should run successfully");
// Check that all state changes persisted
// Variables already captured above during individual tests
let mut query = world.query::<&Position>();
let position = *query.single(&world).expect("Player should exist");
// Check that the state changes persisted individually
assert!(debug_state_after_toggle.enabled, "Debug state should have toggled");
assert!(audio_muted_after_toggle, "Audio should be muted");
// Player position depends on actual map connectivity
match position {
Position::Moving { .. } => {} // Good - player is moving
Position::Stopped { .. } => {} // Also ok - might not have valid edge in that direction
}
}

60
tests/profiling.rs Normal file
View File

@@ -0,0 +1,60 @@
use pacman::systems::profiling::{SystemId, SystemTimings};
use std::time::Duration;
#[test]
fn test_timing_statistics() {
let timings = SystemTimings::default();
// 10ms average, 2ms std dev
timings.add_timing(SystemId::PlayerControls, Duration::from_millis(10));
timings.add_timing(SystemId::PlayerControls, Duration::from_millis(12));
timings.add_timing(SystemId::PlayerControls, Duration::from_millis(8));
// 2ms average, 1ms std dev
timings.add_timing(SystemId::Blinking, Duration::from_millis(3));
timings.add_timing(SystemId::Blinking, Duration::from_millis(2));
timings.add_timing(SystemId::Blinking, Duration::from_millis(1));
fn close_enough(a: Duration, b: Duration) -> bool {
if a > b {
a - b < Duration::from_micros(500) // 0.1ms
} else {
b - a < Duration::from_micros(500)
}
}
let stats = timings.get_stats();
let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap();
// Average should be 10ms, standard deviation should be small
assert!(close_enough(*avg, Duration::from_millis(10)), "avg: {:?}", avg);
assert!(close_enough(*std_dev, Duration::from_millis(2)), "std_dev: {:?}", std_dev);
let (total_avg, total_std) = timings.get_total_stats();
assert!(
close_enough(total_avg, Duration::from_millis(18)),
"total_avg: {:?}",
total_avg
);
assert!(
close_enough(total_std, Duration::from_millis(12)),
"total_std: {:?}",
total_std
);
}
// #[test]
// fn test_window_size_limit() {
// let timings = SystemTimings::default();
// // Add more than 90 timings to test window size limit
// for i in 0..100 {
// timings.add_timing("test_system", Duration::from_millis(i));
// }
// let stats = timings.get_stats();
// let (avg, _) = stats.get("test_system").unwrap();
// // Should only keep the last 90 values, so average should be around 55ms
// // (average of 10-99)
// assert!((avg.as_millis() as f64 - 55.0).abs() < 5.0);
// }

View File

@@ -1,5 +1,5 @@
use glam::U16Vec2;
use pacman::texture::sprite::{AtlasMapper, AtlasTile, MapperFrame, Sprite, SpriteAtlas};
use pacman::texture::sprite::{AtlasMapper, AtlasTile, MapperFrame, SpriteAtlas};
use sdl2::pixels::Color;
use std::collections::HashMap;
@@ -13,10 +13,8 @@ fn test_sprite_atlas_basic() {
frames.insert(
"test".to_string(),
MapperFrame {
x: 10,
y: 20,
width: 32,
height: 64,
pos: U16Vec2::new(10, 20),
size: U16Vec2::new(32, 64),
},
);
@@ -38,19 +36,15 @@ fn test_sprite_atlas_multiple_tiles() {
frames.insert(
"tile1".to_string(),
MapperFrame {
x: 0,
y: 0,
width: 32,
height: 32,
pos: U16Vec2::new(0, 0),
size: U16Vec2::new(32, 32),
},
);
frames.insert(
"tile2".to_string(),
MapperFrame {
x: 32,
y: 0,
width: 64,
height: 64,
pos: U16Vec2::new(32, 0),
size: U16Vec2::new(64, 64),
},
);
@@ -92,12 +86,3 @@ fn test_atlas_tile_new_and_with_color() {
let tile_with_color = tile.with_color(color);
assert_eq!(tile_with_color.color, Some(color));
}
#[test]
fn test_sprite_new() {
let atlas_tile = AtlasTile::new(U16Vec2::new(0, 0), U16Vec2::new(16, 16), None);
let sprite = Sprite::new(atlas_tile);
assert_eq!(sprite.atlas_tile.pos, atlas_tile.pos);
assert_eq!(sprite.atlas_tile.size, atlas_tile.size);
}

View File

@@ -107,3 +107,23 @@ fn test_text_scale() -> Result<(), String> {
Ok(())
}
#[test]
fn test_text_color() -> Result<(), String> {
let mut text_texture = TextTexture::new(1.0);
// Test default color (should be None initially)
assert_eq!(text_texture.color(), None);
// Test setting color
let test_color = sdl2::pixels::Color::YELLOW;
text_texture.set_color(test_color);
assert_eq!(text_texture.color(), Some(test_color));
// Test changing color
let new_color = sdl2::pixels::Color::RED;
text_texture.set_color(new_color);
assert_eq!(text_texture.color(), Some(new_color));
Ok(())
}

19
tests/tracing_buffer.rs Normal file
View File

@@ -0,0 +1,19 @@
use pacman::platform::tracing_buffer::SwitchableWriter;
use std::io::Write;
#[test]
fn test_switchable_writer_buffering() {
let mut writer = SwitchableWriter::default();
// Write some data while in buffered mode
writer.write_all(b"Hello, ").unwrap();
writer.write_all(b"world!").unwrap();
writer.write_all(b"This is buffered content.\n").unwrap();
// Switch to direct mode (this should flush to stdout and show buffer size)
// In a real test we can't easily capture stdout, so we'll just verify it doesn't panic
writer.switch_to_direct_mode().unwrap();
// Write more data in direct mode
writer.write_all(b"Direct output after flush\n").unwrap();
}

View File

@@ -1,7 +1,7 @@
import { $ } from "bun";
import { existsSync, promises as fs } from "fs";
import { platform } from "os";
import { dirname, join, relative, resolve } from "path";
import { basename, dirname, join, relative, resolve } from "path";
import { match, P } from "ts-pattern";
import { configure, getConsoleSink, getLogger } from "@logtape/logtape";
@@ -79,16 +79,19 @@ async function build(release: boolean, env: Record<string, string> | null) {
// The files to copy into 'dist'
const files = [
...["index.html", "favicon.ico", "build.css", "TerminalVector.ttf"].map(
(file) => ({
src: join(siteFolder, file),
dest: join(dist, file),
...[
"index.html",
"favicon.ico",
"build.css",
"../game/TerminalVector.ttf",
].map((file) => ({
src: resolve(join(siteFolder, file)),
dest: join(dist, basename(file)),
optional: false,
})
),
})),
...["pacman.wasm", "pacman.js", "deps/pacman.data"].map((file) => ({
src: join(outputFolder, file),
dest: join(dist, file.split("/").pop() || file),
dest: join(dist, basename(file)),
optional: false,
})),
{