Compare commits

...

49 Commits

Author SHA1 Message Date
shunf4
ea290d53ad fix: EDITCHANGE should not append; SELCHANGE should delay (2) 2024-09-03 01:22:49 +08:00
shunf4
e2770ed02a fix: EDITCHANGE should not append; SELCHANGE should delay 2024-09-03 01:15:38 +08:00
shunf4
abb4a992d9 feat: append filename also on combo select 2024-09-03 00:50:16 +08:00
shunf4
2dbb212482 fix: ci; change document, 7-zip 23 is not latest now 2024-09-03 00:36:12 +08:00
shunf4
dee3259e58 copy history excludes appended filename path segment; always check open output folder, unless manually changing registry 2024-09-03 00:21:26 +08:00
shunf4
fb962a8070 feat: big dialog font 2024-05-14 11:36:59 +08:00
shunf4
eaf6d6d0c6 doc: update doc 2024-05-14 09:55:56 +08:00
Tino Reichardt
b7e2b5ca60 (shunf4 cherry-pick zstd 5a0006bf) Fix #76 - thanks go to @Liz-chan for pointing out ;) 2024-05-14 09:40:40 +08:00
shunf4
f941b40919 update: update docs 2024-05-14 09:38:08 +08:00
shunf4
cd0053957b docs: update docs 2024-05-13 22:37:05 +08:00
shunf4
c79f6c7f34 ci: add branches to trigger 2024-05-13 22:23:29 +08:00
Tino Reichardt
e19abb2958 shunf4 cherry-picking hash related commits from zstd. The following commits from 7-zip-zstd repository (https://github.com/mcmilk/7-Zip-zstd) is picked:
commit add56b5aed
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Thu Nov 1 23:08:00 2018 +0100

    Add MD5 hash function

commit 36a17a5184
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Sat Nov 3 00:18:33 2018 +0100

    Add some hash functions
    - new: md2, md4, md5, sha384, sha512, xxhash-32, xxhash-64
    - put Blake2sp hash stuff back to rar code
    - added the hashes to GUI and Explorer Menu code

commit 576c5df947
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Tue Apr 6 19:35:46 2021 +0200

    Add BLAKE3 hash function

commit 6b2a151549
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Tue Apr 6 19:51:01 2021 +0200

    Remove unneeded file HashesReg.cpp

commit dddf507557
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Sun Jun 18 09:13:59 2023 +0200

    Add SHA3 hashing

    - added these variants: SHA3-256, SHA3-384, SHA3-512
    - reordered also the hashing id's
    - added some notes about them in DOC/Hashes.txt

    Signed-off-by: Tino Reichardt <milky-7zip@mcmilk.de>

The cherry-picking was a chaos; they're not applied in order, and some
commits even got cherry-picked twice (1->4->0->2->4->3). So subsequent fixes and
adjustments were applied to make it build.
2024-05-13 22:20:40 +08:00
shunf4
cd0993fe9c feat: go on cancel folder priority over file in comparison 2024-05-11 16:06:57 +08:00
shunf4
6b5da20fb6 feat: opens sole folder instead of upper folder after extraction; cancel folder priority over file in comparison; other minor ui fix 2024-05-11 15:59:23 +08:00
shunf4
7c6d4e7757 feat: 1. drag to panel address combobox opens the archive/dir; 2. mouse forward/backward key nav 2024-05-11 00:29:54 +08:00
shunf4
ceda12136d fix: SoleFolderIndex: continue fixing method decl/impl 2024-05-10 19:50:32 +08:00
shunf4
b0fd5cfa48 fix: SoleFolderIndex: continue fixing method decl/impl 2024-05-10 19:45:55 +08:00
shunf4
e76e0f5d57 fix: SoleFolderIndex: continue fixing method decl/impl 2024-05-10 19:40:20 +08:00
shunf4
5be705687e fix: remove soleFolderIndex arg in IFolderOperations::CopyTo 2024-05-10 19:29:11 +08:00
shunf4
ffffba9e20 fix: compile error, using another way to pass down SoleFolderIndex 2024-05-10 19:22:11 +08:00
shunf4
fa9ded58f1 fix: missing soleFolderIndex arg in IFolder::CopyTo 2024-05-10 16:15:29 +08:00
shunf4
689d50eb7f fix: missing SoleFolderIndex field in CPP/7zip/UI/Common/ArchiveExtractCallback.h 2024-05-10 16:10:12 +08:00
shunf4
76db359120 feat: do not set time for sole folder in extraction 2024-05-10 15:52:53 +08:00
Shun Zi
fabeab4a9f Update README.md 2024-04-20 22:47:04 +08:00
Shun Zi
e96529572c Update README.md 2024-04-20 22:44:39 +08:00
Shun Zi
4baa50a867 Update README.md 2024-04-20 22:44:16 +08:00
shunf4
b22709156d fix: remove unused kPathHistory 2024-04-20 21:50:40 +08:00
shunf4
9d218e2681 when the archive has only one folder as its direct child, do not add filename to path by default on extraction; if not, add filename to path 2024-04-20 21:16:28 +08:00
shunf4
4b7e9f0800 setup ci 2024-04-20 21:16:23 +08:00
shunf4
33fc299a36 make changes to about dialog 2024-04-20 21:16:02 +08:00
shunf4
b085993aae apply James Hoo 's other original mod 2024-04-20 21:14:57 +08:00
shunf4
d5255dec84 make it build after mod 2024-04-20 12:48:57 +08:00
glachancecmaisonneuve
18725aeba6 easy 7-zip mod for 23.01: rebased from 19.00 2024-04-20 11:42:14 +08:00
Kornel Lesiński
082657f61b Github info 2023-12-22 17:17:26 +00:00
Igor Pavlov
a36c48cece 23.01 2023-12-22 17:17:05 +00:00
Igor Pavlov
ec44a8a070 22.00 2022-06-23 11:43:16 +01:00
Igor Pavlov
c3529a41f5 21.07 2022-01-22 18:43:09 +00:00
Kornel
52eeaf1ad6 Merge pull request #4 from FnControlOption/2106 2021-12-18 11:01:24 +00:00
Igor Pavlov
ccbf6ad3c1 21.06 2021-11-28 19:08:41 -08:00
Igor Pavlov
1194dc9353 21.04 2021-11-28 19:03:01 -08:00
Igor Pavlov
d789d4137d 21.03 2021-11-28 19:01:13 -08:00
Igor Pavlov
585698650f 21.02 2021-07-22 23:00:14 +01:00
Igor Pavlov
4a960640a3 19.00 2019-03-04 01:27:14 +00:00
Igor Pavlov
5b2a99c548 18.06 2018-12-30 14:01:47 +00:00
Igor Pavlov
18dc2b4161 18.05 2018-05-02 22:28:04 +01:00
Igor Pavlov
f19b649c73 18.03 2018-03-12 11:19:46 +00:00
Igor Pavlov
866a06f5a0 18.01 2018-01-30 00:35:06 +00:00
Igor Pavlov
da28077952 18.00 2018-01-11 22:16:32 +01:00
Igor Pavlov
b5dc853b24 17.01 2017-08-29 20:49:43 +01:00
1297 changed files with 126923 additions and 40016 deletions

13
.gitattributes vendored Normal file
View File

@@ -0,0 +1,13 @@
# Set default behavior to automatically normalize line endings.
* text=crlf
# These files are text and should be normalized (Convert crlf => lf)
*.txt text
*.vcproj text
*.cpp text
*.h text
*.def text
*.rc text
*.cmd

42
.github/workflows/build.yaml vendored Normal file
View File

@@ -0,0 +1,42 @@
name: Build and Upload Artifact
on:
push:
branches:
- easy7zip-sf
- e7z-sf-zstd
- e7z-sf-without-zstd
pull_request:
branches:
- easy7zip-sf
- e7z-sf-zstd
- e7z-sf-without-zstd
jobs:
build:
runs-on: windows-latest
steps:
- name: Checkout repository
uses: actions/checkout@v2
- name: Build project
shell: cmd
run: ${{ '"C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvars64.bat" && build.cmd' }}
- name: Download and unpack Lang
shell: cmd
run: ${{ 'cd out && curl -L -o official.exe.7z "https://sourceforge.net/projects/sevenzip/files/latest/download" && .\7z x official.exe.7z Lang/ License.txt && DEL official.exe.7z' }}
- name: Pack
shell: cmd
run: ${{ 'cd out && COPY 7zipUninstall.exe Uninstall.exe && .\7z a -m0=LZMA -mx=9 install.7z Lang/ 7z.dll 7z.exe 7z.sfx 7zCon.sfx 7zFM.exe 7zG.exe 7-zip.dll Uninstall.exe License.txt && RENAME 7zipInstall.exe 7zipInstall.exe.bak && COPY /Y /B 7zipInstall.exe.bak + install.7z 7zipInstall.exe && DEL Uninstall.exe && DEL install.7z' }}
- name: Upload artifact
uses: actions/upload-artifact@v2
with:
name: Easy_7zip_Artifact
# Exclude directories
path: |
./out/*
!./out/*/*

7
.gitignore vendored Normal file
View File

@@ -0,0 +1,7 @@
*.o
errorfile.txt
*.user
*.obj
out/
*.vcxproj
*.db

0
Asm/arm/7zCrcOpt.asm Normal file → Executable file
View File

181
Asm/arm64/7zAsm.S Executable file
View File

@@ -0,0 +1,181 @@
// 7zAsm.S -- ASM macros for arm64
// 2021-04-25 : Igor Pavlov : Public domain
#define r0 x0
#define r1 x1
#define r2 x2
#define r3 x3
#define r4 x4
#define r5 x5
#define r6 x6
#define r7 x7
#define r8 x8
#define r9 x9
#define r10 x10
#define r11 x11
#define r12 x12
#define r13 x13
#define r14 x14
#define r15 x15
#define r16 x16
#define r17 x17
#define r18 x18
#define r19 x19
#define r20 x20
#define r21 x21
#define r22 x22
#define r23 x23
#define r24 x24
#define r25 x25
#define r26 x26
#define r27 x27
#define r28 x28
#define r29 x29
#define r30 x30
#define REG_ABI_PARAM_0 r0
#define REG_ABI_PARAM_1 r1
#define REG_ABI_PARAM_2 r2
.macro p2_add reg:req, param:req
add \reg, \reg, \param
.endm
.macro p2_sub reg:req, param:req
sub \reg, \reg, \param
.endm
.macro p2_sub_s reg:req, param:req
subs \reg, \reg, \param
.endm
.macro p2_and reg:req, param:req
and \reg, \reg, \param
.endm
.macro xor reg:req, param:req
eor \reg, \reg, \param
.endm
.macro or reg:req, param:req
orr \reg, \reg, \param
.endm
.macro shl reg:req, param:req
lsl \reg, \reg, \param
.endm
.macro shr reg:req, param:req
lsr \reg, \reg, \param
.endm
.macro sar reg:req, param:req
asr \reg, \reg, \param
.endm
.macro p1_neg reg:req
neg \reg, \reg
.endm
.macro dec reg:req
sub \reg, \reg, 1
.endm
.macro dec_s reg:req
subs \reg, \reg, 1
.endm
.macro inc reg:req
add \reg, \reg, 1
.endm
.macro inc_s reg:req
adds \reg, \reg, 1
.endm
.macro imul reg:req, param:req
mul \reg, \reg, \param
.endm
/*
arm64 and arm use reverted c flag after subs/cmp instructions:
arm64-arm : x86
b.lo / b.cc : jb / jc
b.hs / b.cs : jae / jnc
*/
.macro jmp lab:req
b \lab
.endm
.macro je lab:req
b.eq \lab
.endm
.macro jz lab:req
b.eq \lab
.endm
.macro jnz lab:req
b.ne \lab
.endm
.macro jne lab:req
b.ne \lab
.endm
.macro jb lab:req
b.lo \lab
.endm
.macro jbe lab:req
b.ls \lab
.endm
.macro ja lab:req
b.hi \lab
.endm
.macro jae lab:req
b.hs \lab
.endm
.macro cmove dest:req, srcTrue:req
csel \dest, \srcTrue, \dest, eq
.endm
.macro cmovne dest:req, srcTrue:req
csel \dest, \srcTrue, \dest, ne
.endm
.macro cmovs dest:req, srcTrue:req
csel \dest, \srcTrue, \dest, mi
.endm
.macro cmovns dest:req, srcTrue:req
csel \dest, \srcTrue, \dest, pl
.endm
.macro cmovb dest:req, srcTrue:req
csel \dest, \srcTrue, \dest, lo
.endm
.macro cmovae dest:req, srcTrue:req
csel \dest, \srcTrue, \dest, hs
.endm
.macro MY_ALIGN_16 macro
.p2align 4,, (1 << 4) - 1
.endm
.macro MY_ALIGN_32 macro
.p2align 5,, (1 << 5) - 1
.endm
.macro MY_ALIGN_64 macro
.p2align 6,, (1 << 6) - 1
.endm

1487
Asm/arm64/LzmaDecOpt.S Executable file
View File

File diff suppressed because it is too large Load Diff

202
Asm/x86/7zAsm.asm Normal file → Executable file
View File

@@ -1,5 +1,50 @@
; 7zAsm.asm -- ASM macros
; 2012-12-30 : Igor Pavlov : Public domain
; 2022-05-16 : Igor Pavlov : Public domain
; UASM can require these changes
; OPTION FRAMEPRESERVEFLAGS:ON
; OPTION PROLOGUE:NONE
; OPTION EPILOGUE:NONE
ifdef @wordsize
; @wordsize is defined only in JWASM and ASMC and is not defined in MASM
; @wordsize eq 8 for 64-bit x64
; @wordsize eq 2 for 32-bit x86
if @wordsize eq 8
x64 equ 1
endif
else
ifdef RAX
x64 equ 1
endif
endif
ifdef x64
IS_X64 equ 1
else
IS_X64 equ 0
endif
ifdef ABI_LINUX
IS_LINUX equ 1
else
IS_LINUX equ 0
endif
ifndef x64
; Use ABI_CDECL for x86 (32-bit) only
; if ABI_CDECL is not defined, we use fastcall abi
ifdef ABI_CDECL
IS_CDECL equ 1
else
IS_CDECL equ 0
endif
endif
OPTION PROLOGUE:NONE
OPTION EPILOGUE:NONE
MY_ASM_START macro
ifdef x64
@@ -14,8 +59,12 @@ endm
MY_PROC macro name:req, numParams:req
align 16
proc_numParams = numParams
ifdef x64
if (IS_X64 gt 0)
proc_name equ name
elseif (IS_LINUX gt 0)
proc_name equ name
elseif (IS_CDECL gt 0)
proc_name equ @CatStr(_,name)
else
proc_name equ @CatStr(@,name,@, %numParams * 4)
endif
@@ -23,18 +72,19 @@ MY_PROC macro name:req, numParams:req
endm
MY_ENDP macro
ifdef x64
ret
else
if proc_numParams LT 3
ret
if (IS_X64 gt 0)
ret
elseif (IS_CDECL gt 0)
ret
elseif (proc_numParams LT 3)
ret
else
ret (proc_numParams - 2) * 4
ret (proc_numParams - 2) * 4
endif
endif
proc_name ENDP
endm
ifdef x64
REG_SIZE equ 8
REG_LOGAR_SIZE equ 3
@@ -52,6 +102,15 @@ endif
x6 equ ESI
x7 equ EDI
x0_W equ AX
x1_W equ CX
x2_W equ DX
x3_W equ BX
x5_W equ BP
x6_W equ SI
x7_W equ DI
x0_L equ AL
x1_L equ CL
x2_L equ DL
@@ -63,6 +122,10 @@ endif
x3_H equ BH
ifdef x64
x5_L equ BPL
x6_L equ SIL
x7_L equ DIL
r0 equ RAX
r1 equ RCX
r2 equ RDX
@@ -90,6 +153,24 @@ else
r7 equ x7
endif
ifdef x64
ifdef ABI_LINUX
MY_PUSH_2_REGS macro
push r3
push r5
endm
MY_POP_2_REGS macro
pop r5
pop r3
endm
endif
endif
MY_PUSH_4_REGS macro
push r3
push r5
@@ -103,3 +184,106 @@ MY_POP_4_REGS macro
pop r5
pop r3
endm
; for fastcall and for WIN-x64
REG_PARAM_0_x equ x1
REG_PARAM_0 equ r1
REG_PARAM_1_x equ x2
REG_PARAM_1 equ r2
ifndef x64
; for x86-fastcall
REG_ABI_PARAM_0_x equ REG_PARAM_0_x
REG_ABI_PARAM_0 equ REG_PARAM_0
REG_ABI_PARAM_1_x equ REG_PARAM_1_x
REG_ABI_PARAM_1 equ REG_PARAM_1
else
; x64
if (IS_LINUX eq 0)
; for WIN-x64:
REG_PARAM_2_x equ x8
REG_PARAM_2 equ r8
REG_PARAM_3 equ r9
REG_ABI_PARAM_0_x equ REG_PARAM_0_x
REG_ABI_PARAM_0 equ REG_PARAM_0
REG_ABI_PARAM_1_x equ REG_PARAM_1_x
REG_ABI_PARAM_1 equ REG_PARAM_1
REG_ABI_PARAM_2_x equ REG_PARAM_2_x
REG_ABI_PARAM_2 equ REG_PARAM_2
REG_ABI_PARAM_3 equ REG_PARAM_3
else
; for LINUX-x64:
REG_LINUX_PARAM_0_x equ x7
REG_LINUX_PARAM_0 equ r7
REG_LINUX_PARAM_1_x equ x6
REG_LINUX_PARAM_1 equ r6
REG_LINUX_PARAM_2 equ r2
REG_LINUX_PARAM_3 equ r1
REG_LINUX_PARAM_4_x equ x8
REG_LINUX_PARAM_4 equ r8
REG_LINUX_PARAM_5 equ r9
REG_ABI_PARAM_0_x equ REG_LINUX_PARAM_0_x
REG_ABI_PARAM_0 equ REG_LINUX_PARAM_0
REG_ABI_PARAM_1_x equ REG_LINUX_PARAM_1_x
REG_ABI_PARAM_1 equ REG_LINUX_PARAM_1
REG_ABI_PARAM_2 equ REG_LINUX_PARAM_2
REG_ABI_PARAM_3 equ REG_LINUX_PARAM_3
REG_ABI_PARAM_4_x equ REG_LINUX_PARAM_4_x
REG_ABI_PARAM_4 equ REG_LINUX_PARAM_4
REG_ABI_PARAM_5 equ REG_LINUX_PARAM_5
MY_ABI_LINUX_TO_WIN_2 macro
mov r2, r6
mov r1, r7
endm
MY_ABI_LINUX_TO_WIN_3 macro
mov r8, r2
mov r2, r6
mov r1, r7
endm
MY_ABI_LINUX_TO_WIN_4 macro
mov r9, r1
mov r8, r2
mov r2, r6
mov r1, r7
endm
endif ; IS_LINUX
MY_PUSH_PRESERVED_ABI_REGS macro
if (IS_LINUX gt 0)
MY_PUSH_2_REGS
else
MY_PUSH_4_REGS
endif
push r12
push r13
push r14
push r15
endm
MY_POP_PRESERVED_ABI_REGS macro
pop r15
pop r14
pop r13
pop r12
if (IS_LINUX gt 0)
MY_POP_2_REGS
else
MY_POP_4_REGS
endif
endm
endif ; x64

57
Asm/x86/7zCrcOpt.asm Normal file → Executable file
View File

@@ -1,5 +1,5 @@
; 7zCrcOpt.asm -- CRC32 calculation : optimized version
; 2009-12-12 : Igor Pavlov : Public domain
; 2021-02-07 : Igor Pavlov : Public domain
include 7zAsm.asm
@@ -7,21 +7,28 @@ MY_ASM_START
rD equ r2
rN equ r7
rT equ r5
ifdef x64
num_VAR equ r8
table_VAR equ r9
else
data_size equ (REG_SIZE * 5)
crc_table equ (REG_SIZE + data_size)
num_VAR equ [r4 + data_size]
table_VAR equ [r4 + crc_table]
if (IS_CDECL gt 0)
crc_OFFS equ (REG_SIZE * 5)
data_OFFS equ (REG_SIZE + crc_OFFS)
size_OFFS equ (REG_SIZE + data_OFFS)
else
size_OFFS equ (REG_SIZE * 5)
endif
table_OFFS equ (REG_SIZE + size_OFFS)
num_VAR equ [r4 + size_OFFS]
table_VAR equ [r4 + table_OFFS]
endif
SRCDAT equ rN + rD + 4 *
SRCDAT equ rD + rN * 1 + 4 *
CRC macro op:req, dest:req, src:req, t:req
op dest, DWORD PTR [r5 + src * 4 + 0400h * t]
op dest, DWORD PTR [rT + src * 4 + 0400h * t]
endm
CRC_XOR macro dest:req, src:req, t:req
@@ -43,11 +50,33 @@ CRC1b macro
endm
MY_PROLOG macro crc_end:req
MY_PUSH_4_REGS
ifdef x64
if (IS_LINUX gt 0)
MY_PUSH_2_REGS
mov x0, REG_ABI_PARAM_0_x ; x0 = x7
mov rT, REG_ABI_PARAM_3 ; r5 = r1
mov rN, REG_ABI_PARAM_2 ; r7 = r2
mov rD, REG_ABI_PARAM_1 ; r2 = r6
else
MY_PUSH_4_REGS
mov x0, REG_ABI_PARAM_0_x ; x0 = x1
mov rT, REG_ABI_PARAM_3 ; r5 = r9
mov rN, REG_ABI_PARAM_2 ; r7 = r8
; mov rD, REG_ABI_PARAM_1 ; r2 = r2
endif
else
MY_PUSH_4_REGS
if (IS_CDECL gt 0)
mov x0, [r4 + crc_OFFS]
mov rD, [r4 + data_OFFS]
else
mov x0, REG_ABI_PARAM_0_x
endif
mov rN, num_VAR
mov rT, table_VAR
endif
mov x0, x1
mov rN, num_VAR
mov r5, table_VAR
test rN, rN
jz crc_end
@@:
@@ -77,7 +106,11 @@ MY_EPILOG macro crc_end:req
CRC1b
jmp crc_end
@@:
MY_POP_4_REGS
if (IS_X64 gt 0) and (IS_LINUX gt 0)
MY_POP_2_REGS
else
MY_POP_4_REGS
endif
endm
MY_PROC CrcUpdateT8, 4

855
Asm/x86/AesOpt.asm Normal file → Executable file
View File

@@ -1,237 +1,742 @@
; AesOpt.asm -- Intel's AES.
; 2009-12-12 : Igor Pavlov : Public domain
; AesOpt.asm -- AES optimized code for x86 AES hardware instructions
; 2021-12-25 : Igor Pavlov : Public domain
include 7zAsm.asm
ifdef __ASMC__
use_vaes_256 equ 1
else
ifdef ymm0
use_vaes_256 equ 1
endif
endif
ifdef use_vaes_256
ECHO "++ VAES 256"
else
ECHO "-- NO VAES 256"
endif
ifdef x64
ECHO "x86-64"
else
ECHO "x86"
if (IS_CDECL gt 0)
ECHO "ABI : CDECL"
else
ECHO "ABI : no CDECL : FASTCALL"
endif
endif
if (IS_LINUX gt 0)
ECHO "ABI : LINUX"
else
ECHO "ABI : WINDOWS"
endif
MY_ASM_START
ifndef x64
.686
.xmm
endif
ifdef x64
num equ r8
else
num equ [r4 + REG_SIZE * 4]
; MY_ALIGN EQU ALIGN(64)
MY_ALIGN EQU
SEG_ALIGN EQU MY_ALIGN
MY_SEG_PROC macro name:req, numParams:req
; seg_name equ @CatStr(_TEXT$, name)
; seg_name SEGMENT SEG_ALIGN 'CODE'
MY_PROC name, numParams
endm
MY_SEG_ENDP macro
; seg_name ENDS
endm
NUM_AES_KEYS_MAX equ 15
; the number of push operators in function PROLOG
if (IS_LINUX eq 0) or (IS_X64 eq 0)
num_regs_push equ 2
stack_param_offset equ (REG_SIZE * (1 + num_regs_push))
endif
rD equ r2
rN equ r0
ifdef x64
num_param equ REG_ABI_PARAM_2
else
if (IS_CDECL gt 0)
; size_t size
; void * data
; UInt32 * aes
; ret-ip <- (r4)
aes_OFFS equ (stack_param_offset)
data_OFFS equ (REG_SIZE + aes_OFFS)
size_OFFS equ (REG_SIZE + data_OFFS)
num_param equ [r4 + size_OFFS]
else
num_param equ [r4 + stack_param_offset]
endif
endif
MY_PROLOG macro reg:req
ifdef x64
movdqa [r4 + 8], xmm6
movdqa [r4 + 8 + 16], xmm7
endif
keys equ REG_PARAM_0 ; r1
rD equ REG_PARAM_1 ; r2
rN equ r0
push r3
push r5
push r6
koffs_x equ x7
koffs_r equ r7
mov rN, num
mov x6, [r1 + 16]
shl x6, 5
ksize_x equ x6
ksize_r equ r6
movdqa reg, [r1]
add r1, 32
endm
keys2 equ r3
MY_EPILOG macro
pop r6
pop r5
pop r3
state equ xmm0
key equ xmm0
key_ymm equ ymm0
key_ymm_n equ 0
ifdef x64
movdqa xmm6, [r4 + 8]
movdqa xmm7, [r4 + 8 + 16]
endif
ifdef x64
ways = 11
else
ways = 4
endif
MY_ENDP
endm
ways_start_reg equ 1
ways equ 4
ways16 equ (ways * 16)
iv equ @CatStr(xmm, %(ways_start_reg + ways))
iv_ymm equ @CatStr(ymm, %(ways_start_reg + ways))
OP_W macro op, op2
WOP macro op, op2
i = 0
rept ways
op @CatStr(xmm,%i), op2
i = i + 1
op @CatStr(xmm, %(ways_start_reg + i)), op2
i = i + 1
endm
endm
LOAD_OP macro op:req, offs:req
op xmm0, [r1 + r3 offs]
endm
ifndef ABI_LINUX
ifdef x64
; we use 32 bytes of home space in stack in WIN64-x64
NUM_HOME_MM_REGS equ (32 / 16)
; we preserve xmm registers starting from xmm6 in WIN64-x64
MM_START_SAVE_REG equ 6
SAVE_XMM macro num_used_mm_regs:req
num_save_mm_regs = num_used_mm_regs - MM_START_SAVE_REG
if num_save_mm_regs GT 0
num_save_mm_regs2 = num_save_mm_regs - NUM_HOME_MM_REGS
; RSP is (16*x + 8) after entering the function in WIN64-x64
stack_offset = 16 * num_save_mm_regs2 + (stack_param_offset mod 16)
LOAD_OP_W macro op:req, offs:req
movdqa xmm7, [r1 + r3 offs]
OP_W op, xmm7
i = 0
rept num_save_mm_regs
if i eq NUM_HOME_MM_REGS
sub r4, stack_offset
endif
if i lt NUM_HOME_MM_REGS
movdqa [r4 + stack_param_offset + i * 16], @CatStr(xmm, %(MM_START_SAVE_REG + i))
else
movdqa [r4 + (i - NUM_HOME_MM_REGS) * 16], @CatStr(xmm, %(MM_START_SAVE_REG + i))
endif
i = i + 1
endm
endif
endm
RESTORE_XMM macro num_used_mm_regs:req
if num_save_mm_regs GT 0
i = 0
if num_save_mm_regs2 GT 0
rept num_save_mm_regs2
movdqa @CatStr(xmm, %(MM_START_SAVE_REG + NUM_HOME_MM_REGS + i)), [r4 + i * 16]
i = i + 1
endm
add r4, stack_offset
endif
num_low_regs = num_save_mm_regs - i
i = 0
rept num_low_regs
movdqa @CatStr(xmm, %(MM_START_SAVE_REG + i)), [r4 + stack_param_offset + i * 16]
i = i + 1
endm
endif
endm
endif ; x64
endif ; ABI_LINUX
MY_PROLOG macro num_used_mm_regs:req
; num_regs_push: must be equal to the number of push operators
; push r3
; push r5
if (IS_LINUX eq 0) or (IS_X64 eq 0)
push r6
push r7
endif
mov rN, num_param ; don't move it; num_param can use stack pointer (r4)
if (IS_X64 eq 0)
if (IS_CDECL gt 0)
mov rD, [r4 + data_OFFS]
mov keys, [r4 + aes_OFFS]
endif
elseif (IS_LINUX gt 0)
MY_ABI_LINUX_TO_WIN_2
endif
ifndef ABI_LINUX
ifdef x64
SAVE_XMM num_used_mm_regs
endif
endif
mov ksize_x, [keys + 16]
shl ksize_x, 5
endm
MY_EPILOG macro
ifndef ABI_LINUX
ifdef x64
RESTORE_XMM num_save_mm_regs
endif
endif
if (IS_LINUX eq 0) or (IS_X64 eq 0)
pop r7
pop r6
endif
; pop r5
; pop r3
MY_ENDP
endm
OP_KEY macro op:req, offs:req
op state, [keys + offs]
endm
WOP_KEY macro op:req, offs:req
movdqa key, [keys + offs]
WOP op, key
endm
; ---------- AES-CBC Decode ----------
CBC_DEC_UPDATE macro reg, offs
pxor reg, xmm6
movdqa xmm6, [rD + offs]
movdqa [rD + offs], reg
XOR_WITH_DATA macro reg, _ppp_
pxor reg, [rD + i * 16]
endm
DECODE macro op:req
op aesdec, +16
@@:
op aesdec, +0
op aesdec, -16
sub x3, 32
jnz @B
op aesdeclast, +0
WRITE_TO_DATA macro reg, _ppp_
movdqa [rD + i * 16], reg
endm
MY_PROC AesCbc_Decode_Intel, 3
MY_PROLOG xmm6
sub x6, 32
; state0 equ @CatStr(xmm, %(ways_start_reg))
jmp check2
key0 equ @CatStr(xmm, %(ways_start_reg + ways + 1))
key0_ymm equ @CatStr(ymm, %(ways_start_reg + ways + 1))
align 16
nextBlocks2:
mov x3, x6
OP_W movdqa, [rD + i * 16]
LOAD_OP_W pxor, +32
DECODE LOAD_OP_W
OP_W CBC_DEC_UPDATE, i * 16
add rD, ways16
check2:
sub rN, ways
jnc nextBlocks2
key_last equ @CatStr(xmm, %(ways_start_reg + ways + 2))
key_last_ymm equ @CatStr(ymm, %(ways_start_reg + ways + 2))
key_last_ymm_n equ (ways_start_reg + ways + 2)
add rN, ways
jmp check
nextBlock:
mov x3, x6
movdqa xmm1, [rD]
LOAD_OP movdqa, +32
pxor xmm0, xmm1
DECODE LOAD_OP
pxor xmm0, xmm6
movdqa [rD], xmm0
movdqa xmm6, xmm1
add rD, 16
check:
sub rN, 1
jnc nextBlock
movdqa [r1 - 32], xmm6
MY_EPILOG
NUM_CBC_REGS equ (ways_start_reg + ways + 3)
; ---------- AES-CBC Encode ----------
MY_SEG_PROC AesCbc_Decode_HW, 3
ENCODE macro op:req
op aesenc, -16
@@:
op aesenc, +0
op aesenc, +16
add r3, 32
jnz @B
op aesenclast, +0
endm
AesCbc_Decode_HW_start::
MY_PROLOG NUM_CBC_REGS
AesCbc_Decode_HW_start_2::
movdqa iv, [keys]
add keys, 32
MY_PROC AesCbc_Encode_Intel, 3
MY_PROLOG xmm0
movdqa key0, [keys + 1 * ksize_r]
movdqa key_last, [keys]
sub ksize_x, 16
add r1, r6
neg r6
add r6, 32
jmp check2
align 16
nextBlocks2:
WOP movdqa, [rD + i * 16]
mov koffs_x, ksize_x
; WOP_KEY pxor, ksize_r + 16
WOP pxor, key0
; align 16
@@:
WOP_KEY aesdec, 1 * koffs_r
sub koffs_r, 16
jnz @B
; WOP_KEY aesdeclast, 0
WOP aesdeclast, key_last
pxor @CatStr(xmm, %(ways_start_reg)), iv
i = 1
rept ways - 1
pxor @CatStr(xmm, %(ways_start_reg + i)), [rD + i * 16 - 16]
i = i + 1
endm
movdqa iv, [rD + ways * 16 - 16]
WOP WRITE_TO_DATA
jmp check_e
add rD, ways * 16
AesCbc_Decode_HW_start_3::
check2:
sub rN, ways
jnc nextBlocks2
add rN, ways
align 16
nextBlock_e:
mov r3, r6
pxor xmm0, [rD]
pxor xmm0, [r1 + r3 - 32]
ENCODE LOAD_OP
movdqa [rD], xmm0
add rD, 16
check_e:
sub rN, 1
jnc nextBlock_e
sub ksize_x, 16
movdqa [r1 + r6 - 64], xmm0
MY_EPILOG
jmp check
nextBlock:
movdqa state, [rD]
mov koffs_x, ksize_x
; OP_KEY pxor, 1 * ksize_r + 32
pxor state, key0
; movdqa state0, [rD]
; movdqa state, key0
; pxor state, state0
@@:
OP_KEY aesdec, 1 * koffs_r + 16
OP_KEY aesdec, 1 * koffs_r
sub koffs_r, 32
jnz @B
OP_KEY aesdec, 16
; OP_KEY aesdeclast, 0
aesdeclast state, key_last
pxor state, iv
movdqa iv, [rD]
; movdqa iv, state0
movdqa [rD], state
add rD, 16
check:
sub rN, 1
jnc nextBlock
movdqa [keys - 32], iv
MY_EPILOG
; ---------- AES-CTR ----------
XOR_UPD_1 macro reg, offs
pxor reg, [rD + offs]
endm
XOR_UPD_2 macro reg, offs
movdqa [rD + offs], reg
endm
; ---------- AVX ----------
MY_PROC AesCtr_Code_Intel, 3
MY_PROLOG xmm6
mov r5, r4
shr r5, 4
dec r5
shl r5, 4
mov DWORD PTR [r5], 1
mov DWORD PTR [r5 + 4], 0
mov DWORD PTR [r5 + 8], 0
mov DWORD PTR [r5 + 12], 0
add r1, r6
neg r6
add r6, 32
jmp check2_c
align 16
nextBlocks2_c:
movdqa xmm7, [r5]
AVX__WOP_n macro op
i = 0
rept ways
paddq xmm6, xmm7
movdqa @CatStr(xmm,%i), xmm6
i = i + 1
op (ways_start_reg + i)
i = i + 1
endm
endm
AVX__WOP macro op
i = 0
rept ways
op @CatStr(ymm, %(ways_start_reg + i))
i = i + 1
endm
endm
AVX__WOP_KEY macro op:req, offs:req
vmovdqa key_ymm, ymmword ptr [keys2 + offs]
AVX__WOP_n op
endm
AVX__CBC_START macro reg
; vpxor reg, key_ymm, ymmword ptr [rD + 32 * i]
vpxor reg, key0_ymm, ymmword ptr [rD + 32 * i]
endm
AVX__CBC_END macro reg
if i eq 0
vpxor reg, reg, iv_ymm
else
vpxor reg, reg, ymmword ptr [rD + i * 32 - 16]
endif
endm
AVX__WRITE_TO_DATA macro reg
vmovdqu ymmword ptr [rD + 32 * i], reg
endm
AVX__XOR_WITH_DATA macro reg
vpxor reg, reg, ymmword ptr [rD + 32 * i]
endm
AVX__CTR_START macro reg
vpaddq iv_ymm, iv_ymm, one_ymm
; vpxor reg, iv_ymm, key_ymm
vpxor reg, iv_ymm, key0_ymm
endm
MY_VAES_INSTR_2 macro cmd, dest, a1, a2
db 0c4H
db 2 + 040H + 020h * (1 - (a2) / 8) + 080h * (1 - (dest) / 8)
db 5 + 8 * ((not (a1)) and 15)
db cmd
db 0c0H + 8 * ((dest) and 7) + ((a2) and 7)
endm
MY_VAES_INSTR macro cmd, dest, a
MY_VAES_INSTR_2 cmd, dest, dest, a
endm
MY_vaesenc macro dest, a
MY_VAES_INSTR 0dcH, dest, a
endm
MY_vaesenclast macro dest, a
MY_VAES_INSTR 0ddH, dest, a
endm
MY_vaesdec macro dest, a
MY_VAES_INSTR 0deH, dest, a
endm
MY_vaesdeclast macro dest, a
MY_VAES_INSTR 0dfH, dest, a
endm
AVX__VAES_DEC macro reg
MY_vaesdec reg, key_ymm_n
endm
AVX__VAES_DEC_LAST_key_last macro reg
; MY_vaesdeclast reg, key_ymm_n
MY_vaesdeclast reg, key_last_ymm_n
endm
AVX__VAES_ENC macro reg
MY_vaesenc reg, key_ymm_n
endm
AVX__VAES_ENC_LAST macro reg
MY_vaesenclast reg, key_ymm_n
endm
AVX__vinserti128_TO_HIGH macro dest, src
vinserti128 dest, dest, src, 1
endm
MY_PROC AesCbc_Decode_HW_256, 3
ifdef use_vaes_256
MY_PROLOG NUM_CBC_REGS
cmp rN, ways * 2
jb AesCbc_Decode_HW_start_2
vmovdqa iv, xmmword ptr [keys]
add keys, 32
vbroadcasti128 key0_ymm, xmmword ptr [keys + 1 * ksize_r]
vbroadcasti128 key_last_ymm, xmmword ptr [keys]
sub ksize_x, 16
mov koffs_x, ksize_x
add ksize_x, ksize_x
AVX_STACK_SUB = ((NUM_AES_KEYS_MAX + 1 - 2) * 32)
push keys2
sub r4, AVX_STACK_SUB
; sub r4, 32
; sub r4, ksize_r
; lea keys2, [r4 + 32]
mov keys2, r4
and keys2, -32
broad:
vbroadcasti128 key_ymm, xmmword ptr [keys + 1 * koffs_r]
vmovdqa ymmword ptr [keys2 + koffs_r * 2], key_ymm
sub koffs_r, 16
; jnc broad
jnz broad
sub rN, ways * 2
align 16
avx_cbcdec_nextBlock2:
mov koffs_x, ksize_x
; AVX__WOP_KEY AVX__CBC_START, 1 * koffs_r + 32
AVX__WOP AVX__CBC_START
@@:
AVX__WOP_KEY AVX__VAES_DEC, 1 * koffs_r
sub koffs_r, 32
jnz @B
; AVX__WOP_KEY AVX__VAES_DEC_LAST, 0
AVX__WOP_n AVX__VAES_DEC_LAST_key_last
AVX__vinserti128_TO_HIGH iv_ymm, xmmword ptr [rD]
AVX__WOP AVX__CBC_END
vmovdqa iv, xmmword ptr [rD + ways * 32 - 16]
AVX__WOP AVX__WRITE_TO_DATA
add rD, ways * 32
sub rN, ways * 2
jnc avx_cbcdec_nextBlock2
add rN, ways * 2
shr ksize_x, 1
; lea r4, [r4 + 1 * ksize_r + 32]
add r4, AVX_STACK_SUB
pop keys2
vzeroupper
jmp AesCbc_Decode_HW_start_3
else
jmp AesCbc_Decode_HW_start
endif
MY_ENDP
MY_SEG_ENDP
; ---------- AES-CBC Encode ----------
e0 equ xmm1
CENC_START_KEY equ 2
CENC_NUM_REG_KEYS equ (3 * 2)
; last_key equ @CatStr(xmm, %(CENC_START_KEY + CENC_NUM_REG_KEYS))
MY_SEG_PROC AesCbc_Encode_HW, 3
MY_PROLOG (CENC_START_KEY + CENC_NUM_REG_KEYS + 0)
movdqa state, [keys]
add keys, 32
i = 0
rept CENC_NUM_REG_KEYS
movdqa @CatStr(xmm, %(CENC_START_KEY + i)), [keys + i * 16]
i = i + 1
endm
add keys, ksize_r
neg ksize_r
add ksize_r, (16 * CENC_NUM_REG_KEYS)
; movdqa last_key, [keys]
jmp check_e
align 16
nextBlock_e:
movdqa e0, [rD]
mov koffs_r, ksize_r
pxor e0, @CatStr(xmm, %(CENC_START_KEY))
pxor state, e0
i = 1
rept (CENC_NUM_REG_KEYS - 1)
aesenc state, @CatStr(xmm, %(CENC_START_KEY + i))
i = i + 1
endm
mov r3, r6
LOAD_OP_W pxor, -32
ENCODE LOAD_OP_W
OP_W XOR_UPD_1, i * 16
OP_W XOR_UPD_2, i * 16
add rD, ways16
check2_c:
sub rN, ways
jnc nextBlocks2_c
@@:
OP_KEY aesenc, 1 * koffs_r
OP_KEY aesenc, 1 * koffs_r + 16
add koffs_r, 32
jnz @B
OP_KEY aesenclast, 0
; aesenclast state, last_key
movdqa [rD], state
add rD, 16
check_e:
sub rN, 1
jnc nextBlock_e
add rN, ways
jmp check_c
; movdqa [keys - 32], state
movdqa [keys + 1 * ksize_r - (16 * CENC_NUM_REG_KEYS) - 32], state
MY_EPILOG
MY_SEG_ENDP
nextBlock_c:
paddq xmm6, [r5]
mov r3, r6
movdqa xmm0, [r1 + r3 - 32]
pxor xmm0, xmm6
ENCODE LOAD_OP
XOR_UPD_1 xmm0, 0
XOR_UPD_2 xmm0, 0
add rD, 16
check_c:
sub rN, 1
jnc nextBlock_c
movdqa [r1 + r6 - 64], xmm6
MY_EPILOG
; ---------- AES-CTR ----------
ifdef x64
; ways = 11
endif
one equ @CatStr(xmm, %(ways_start_reg + ways + 1))
one_ymm equ @CatStr(ymm, %(ways_start_reg + ways + 1))
key0 equ @CatStr(xmm, %(ways_start_reg + ways + 2))
key0_ymm equ @CatStr(ymm, %(ways_start_reg + ways + 2))
NUM_CTR_REGS equ (ways_start_reg + ways + 3)
INIT_CTR macro reg, _ppp_
paddq iv, one
movdqa reg, iv
endm
MY_SEG_PROC AesCtr_Code_HW, 3
Ctr_start::
MY_PROLOG NUM_CTR_REGS
Ctr_start_2::
movdqa iv, [keys]
add keys, 32
movdqa key0, [keys]
add keys, ksize_r
neg ksize_r
add ksize_r, 16
Ctr_start_3::
mov koffs_x, 1
movd one, koffs_x
jmp check2_c
align 16
nextBlocks2_c:
WOP INIT_CTR, 0
mov koffs_r, ksize_r
; WOP_KEY pxor, 1 * koffs_r -16
WOP pxor, key0
@@:
WOP_KEY aesenc, 1 * koffs_r
add koffs_r, 16
jnz @B
WOP_KEY aesenclast, 0
WOP XOR_WITH_DATA
WOP WRITE_TO_DATA
add rD, ways * 16
check2_c:
sub rN, ways
jnc nextBlocks2_c
add rN, ways
sub keys, 16
add ksize_r, 16
jmp check_c
; align 16
nextBlock_c:
paddq iv, one
; movdqa state, [keys + 1 * koffs_r - 16]
movdqa state, key0
mov koffs_r, ksize_r
pxor state, iv
@@:
OP_KEY aesenc, 1 * koffs_r
OP_KEY aesenc, 1 * koffs_r + 16
add koffs_r, 32
jnz @B
OP_KEY aesenc, 0
OP_KEY aesenclast, 16
pxor state, [rD]
movdqa [rD], state
add rD, 16
check_c:
sub rN, 1
jnc nextBlock_c
; movdqa [keys - 32], iv
movdqa [keys + 1 * ksize_r - 16 - 32], iv
MY_EPILOG
MY_PROC AesCtr_Code_HW_256, 3
ifdef use_vaes_256
MY_PROLOG NUM_CTR_REGS
cmp rN, ways * 2
jb Ctr_start_2
vbroadcasti128 iv_ymm, xmmword ptr [keys]
add keys, 32
vbroadcasti128 key0_ymm, xmmword ptr [keys]
mov koffs_x, 1
vmovd one, koffs_x
vpsubq iv_ymm, iv_ymm, one_ymm
vpaddq one, one, one
AVX__vinserti128_TO_HIGH one_ymm, one
add keys, ksize_r
sub ksize_x, 16
neg ksize_r
mov koffs_r, ksize_r
add ksize_r, ksize_r
AVX_STACK_SUB = ((NUM_AES_KEYS_MAX + 1 - 1) * 32)
push keys2
lea keys2, [r4 - 32]
sub r4, AVX_STACK_SUB
and keys2, -32
vbroadcasti128 key_ymm, xmmword ptr [keys]
vmovdqa ymmword ptr [keys2], key_ymm
@@:
vbroadcasti128 key_ymm, xmmword ptr [keys + 1 * koffs_r]
vmovdqa ymmword ptr [keys2 + koffs_r * 2], key_ymm
add koffs_r, 16
jnz @B
sub rN, ways * 2
align 16
avx_ctr_nextBlock2:
mov koffs_r, ksize_r
AVX__WOP AVX__CTR_START
; AVX__WOP_KEY AVX__CTR_START, 1 * koffs_r - 32
@@:
AVX__WOP_KEY AVX__VAES_ENC, 1 * koffs_r
add koffs_r, 32
jnz @B
AVX__WOP_KEY AVX__VAES_ENC_LAST, 0
AVX__WOP AVX__XOR_WITH_DATA
AVX__WOP AVX__WRITE_TO_DATA
add rD, ways * 32
sub rN, ways * 2
jnc avx_ctr_nextBlock2
add rN, ways * 2
vextracti128 iv, iv_ymm, 1
sar ksize_r, 1
add r4, AVX_STACK_SUB
pop keys2
vzeroupper
jmp Ctr_start_3
else
jmp Ctr_start
endif
MY_ENDP
MY_SEG_ENDP
end

513
Asm/x86/LzFindOpt.asm Executable file
View File

@@ -0,0 +1,513 @@
; LzFindOpt.asm -- ASM version of GetMatchesSpecN_2() function
; 2021-07-21: Igor Pavlov : Public domain
;
ifndef x64
; x64=1
; .err <x64_IS_REQUIRED>
endif
include 7zAsm.asm
MY_ASM_START
_TEXT$LZFINDOPT SEGMENT ALIGN(64) 'CODE'
MY_ALIGN macro num:req
align num
endm
MY_ALIGN_32 macro
MY_ALIGN 32
endm
MY_ALIGN_64 macro
MY_ALIGN 64
endm
t0_L equ x0_L
t0_x equ x0
t0 equ r0
t1_x equ x3
t1 equ r3
cp_x equ t1_x
cp_r equ t1
m equ x5
m_r equ r5
len_x equ x6
len equ r6
diff_x equ x7
diff equ r7
len0 equ r10
len1_x equ x11
len1 equ r11
maxLen_x equ x12
maxLen equ r12
d equ r13
ptr0 equ r14
ptr1 equ r15
d_lim equ m_r
cycSize equ len_x
hash_lim equ len0
delta1_x equ len1_x
delta1_r equ len1
delta_x equ maxLen_x
delta_r equ maxLen
hash equ ptr0
src equ ptr1
if (IS_LINUX gt 0)
; r1 r2 r8 r9 : win32
; r7 r6 r2 r1 r8 r9 : linux
lenLimit equ r8
lenLimit_x equ x8
; pos_r equ r2
pos equ x2
cur equ r1
son equ r9
else
lenLimit equ REG_ABI_PARAM_2
lenLimit_x equ REG_ABI_PARAM_2_x
pos equ REG_ABI_PARAM_1_x
cur equ REG_ABI_PARAM_0
son equ REG_ABI_PARAM_3
endif
if (IS_LINUX gt 0)
maxLen_OFFS equ (REG_SIZE * (6 + 1))
else
cutValue_OFFS equ (REG_SIZE * (8 + 1 + 4))
d_OFFS equ (REG_SIZE + cutValue_OFFS)
maxLen_OFFS equ (REG_SIZE + d_OFFS)
endif
hash_OFFS equ (REG_SIZE + maxLen_OFFS)
limit_OFFS equ (REG_SIZE + hash_OFFS)
size_OFFS equ (REG_SIZE + limit_OFFS)
cycPos_OFFS equ (REG_SIZE + size_OFFS)
cycSize_OFFS equ (REG_SIZE + cycPos_OFFS)
posRes_OFFS equ (REG_SIZE + cycSize_OFFS)
if (IS_LINUX gt 0)
else
cutValue_PAR equ [r0 + cutValue_OFFS]
d_PAR equ [r0 + d_OFFS]
endif
maxLen_PAR equ [r0 + maxLen_OFFS]
hash_PAR equ [r0 + hash_OFFS]
limit_PAR equ [r0 + limit_OFFS]
size_PAR equ [r0 + size_OFFS]
cycPos_PAR equ [r0 + cycPos_OFFS]
cycSize_PAR equ [r0 + cycSize_OFFS]
posRes_PAR equ [r0 + posRes_OFFS]
cutValue_VAR equ DWORD PTR [r4 + 8 * 0]
cutValueCur_VAR equ DWORD PTR [r4 + 8 * 0 + 4]
cycPos_VAR equ DWORD PTR [r4 + 8 * 1 + 0]
cycSize_VAR equ DWORD PTR [r4 + 8 * 1 + 4]
hash_VAR equ QWORD PTR [r4 + 8 * 2]
limit_VAR equ QWORD PTR [r4 + 8 * 3]
size_VAR equ QWORD PTR [r4 + 8 * 4]
distances equ QWORD PTR [r4 + 8 * 5]
maxLen_VAR equ QWORD PTR [r4 + 8 * 6]
Old_RSP equ QWORD PTR [r4 + 8 * 7]
LOCAL_SIZE equ 8 * 8
COPY_VAR_32 macro dest_var, src_var
mov x3, src_var
mov dest_var, x3
endm
COPY_VAR_64 macro dest_var, src_var
mov r3, src_var
mov dest_var, r3
endm
; MY_ALIGN_64
MY_PROC GetMatchesSpecN_2, 13
MY_PUSH_PRESERVED_ABI_REGS
mov r0, RSP
lea r3, [r0 - LOCAL_SIZE]
and r3, -64
mov RSP, r3
mov Old_RSP, r0
if (IS_LINUX gt 0)
mov d, REG_ABI_PARAM_5 ; r13 = r9
mov cutValue_VAR, REG_ABI_PARAM_4_x ; = r8
mov son, REG_ABI_PARAM_3 ; r9 = r1
mov r8, REG_ABI_PARAM_2 ; r8 = r2
mov pos, REG_ABI_PARAM_1_x ; r2 = x6
mov r1, REG_ABI_PARAM_0 ; r1 = r7
else
COPY_VAR_32 cutValue_VAR, cutValue_PAR
mov d, d_PAR
endif
COPY_VAR_64 limit_VAR, limit_PAR
mov hash_lim, size_PAR
mov size_VAR, hash_lim
mov cp_x, cycPos_PAR
mov hash, hash_PAR
mov cycSize, cycSize_PAR
mov cycSize_VAR, cycSize
; we want cur in (rcx). So we change the cur and lenLimit variables
sub lenLimit, cur
neg lenLimit_x
inc lenLimit_x
mov t0_x, maxLen_PAR
sub t0, lenLimit
mov maxLen_VAR, t0
jmp main_loop
MY_ALIGN_64
fill_empty:
; ptr0 = *ptr1 = kEmptyHashValue;
mov QWORD PTR [ptr1], 0
inc pos
inc cp_x
mov DWORD PTR [d - 4], 0
cmp d, limit_VAR
jae fin
cmp hash, hash_lim
je fin
; MY_ALIGN_64
main_loop:
; UInt32 delta = *hash++;
mov diff_x, [hash] ; delta
add hash, 4
; mov cycPos_VAR, cp_x
inc cur
add d, 4
mov m, pos
sub m, diff_x; ; matchPos
; CLzRef *ptr1 = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2;
lea ptr1, [son + 8 * cp_r]
; mov cycSize, cycSize_VAR
cmp pos, cycSize
jb directMode ; if (pos < cycSize_VAR)
; CYC MODE
cmp diff_x, cycSize
jae fill_empty ; if (delta >= cycSize_VAR)
xor t0_x, t0_x
mov cycPos_VAR, cp_x
sub cp_x, diff_x
; jae prepare_for_tree_loop
; add cp_x, cycSize
cmovb t0_x, cycSize
add cp_x, t0_x ; cp_x += (cycPos < delta ? cycSize : 0)
jmp prepare_for_tree_loop
directMode:
cmp diff_x, pos
je fill_empty ; if (delta == pos)
jae fin_error ; if (delta >= pos)
mov cycPos_VAR, cp_x
mov cp_x, m
prepare_for_tree_loop:
mov len0, lenLimit
mov hash_VAR, hash
; CLzRef *ptr0 = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2 + 1;
lea ptr0, [ptr1 + 4]
; UInt32 *_distances = ++d;
mov distances, d
neg len0
mov len1, len0
mov t0_x, cutValue_VAR
mov maxLen, maxLen_VAR
mov cutValueCur_VAR, t0_x
MY_ALIGN_32
tree_loop:
neg diff
mov len, len0
cmp len1, len0
cmovb len, len1 ; len = (len1 < len0 ? len1 : len0);
add diff, cur
mov t0_x, [son + cp_r * 8] ; prefetch
movzx t0_x, BYTE PTR [diff + 1 * len]
lea cp_r, [son + cp_r * 8]
cmp [cur + 1 * len], t0_L
je matched_1
jb left_0
mov [ptr1], m
mov m, [cp_r + 4]
lea ptr1, [cp_r + 4]
sub diff, cur ; FIX32
jmp next_node
MY_ALIGN_32
left_0:
mov [ptr0], m
mov m, [cp_r]
mov ptr0, cp_r
sub diff, cur ; FIX32
; jmp next_node
; ------------ NEXT NODE ------------
; MY_ALIGN_32
next_node:
mov cycSize, cycSize_VAR
dec cutValueCur_VAR
je finish_tree
add diff_x, pos ; prev_match = pos + diff
cmp m, diff_x
jae fin_error ; if (new_match >= prev_match)
mov diff_x, pos
sub diff_x, m ; delta = pos - new_match
cmp pos, cycSize
jae cyc_mode_2 ; if (pos >= cycSize)
mov cp_x, m
test m, m
jne tree_loop ; if (m != 0)
finish_tree:
; ptr0 = *ptr1 = kEmptyHashValue;
mov DWORD PTR [ptr0], 0
mov DWORD PTR [ptr1], 0
inc pos
; _distances[-1] = (UInt32)(d - _distances);
mov t0, distances
mov t1, d
sub t1, t0
shr t1_x, 2
mov [t0 - 4], t1_x
cmp d, limit_VAR
jae fin ; if (d >= limit)
mov cp_x, cycPos_VAR
mov hash, hash_VAR
mov hash_lim, size_VAR
inc cp_x
cmp hash, hash_lim
jne main_loop ; if (hash != size)
jmp fin
MY_ALIGN_32
cyc_mode_2:
cmp diff_x, cycSize
jae finish_tree ; if (delta >= cycSize)
mov cp_x, cycPos_VAR
xor t0_x, t0_x
sub cp_x, diff_x ; cp_x = cycPos - delta
cmovb t0_x, cycSize
add cp_x, t0_x ; cp_x += (cycPos < delta ? cycSize : 0)
jmp tree_loop
MY_ALIGN_32
matched_1:
inc len
; cmp len_x, lenLimit_x
je short lenLimit_reach
movzx t0_x, BYTE PTR [diff + 1 * len]
cmp [cur + 1 * len], t0_L
jne mismatch
MY_ALIGN_32
match_loop:
; while (++len != lenLimit) (len[diff] != len[0]) ;
inc len
; cmp len_x, lenLimit_x
je short lenLimit_reach
movzx t0_x, BYTE PTR [diff + 1 * len]
cmp BYTE PTR [cur + 1 * len], t0_L
je match_loop
mismatch:
jb left_2
mov [ptr1], m
mov m, [cp_r + 4]
lea ptr1, [cp_r + 4]
mov len1, len
jmp max_update
MY_ALIGN_32
left_2:
mov [ptr0], m
mov m, [cp_r]
mov ptr0, cp_r
mov len0, len
max_update:
sub diff, cur ; restore diff
cmp maxLen, len
jae next_node
mov maxLen, len
add len, lenLimit
mov [d], len_x
mov t0_x, diff_x
not t0_x
mov [d + 4], t0_x
add d, 8
jmp next_node
MY_ALIGN_32
lenLimit_reach:
mov delta_r, cur
sub delta_r, diff
lea delta1_r, [delta_r - 1]
mov t0_x, [cp_r]
mov [ptr1], t0_x
mov t0_x, [cp_r + 4]
mov [ptr0], t0_x
mov [d], lenLimit_x
mov [d + 4], delta1_x
add d, 8
; _distances[-1] = (UInt32)(d - _distances);
mov t0, distances
mov t1, d
sub t1, t0
shr t1_x, 2
mov [t0 - 4], t1_x
mov hash, hash_VAR
mov hash_lim, size_VAR
inc pos
mov cp_x, cycPos_VAR
inc cp_x
mov d_lim, limit_VAR
mov cycSize, cycSize_VAR
; if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
; break;
cmp hash, hash_lim
je fin
cmp d, d_lim
jae fin
cmp delta_x, [hash]
jne main_loop
movzx t0_x, BYTE PTR [diff]
cmp [cur], t0_L
jne main_loop
; jmp main_loop ; bypass for debug
mov cycPos_VAR, cp_x
shl len, 3 ; cycSize * 8
sub diff, cur ; restore diff
xor t0_x, t0_x
cmp cp_x, delta_x ; cmp (cycPos_VAR, delta)
lea cp_r, [son + 8 * cp_r] ; dest
lea src, [cp_r + 8 * diff]
cmovb t0, len ; t0 = (cycPos_VAR < delta ? cycSize * 8 : 0)
add src, t0
add len, son ; len = son + cycSize * 8
MY_ALIGN_32
long_loop:
add hash, 4
; *(UInt64 *)(void *)ptr = ((const UInt64 *)(const void *)ptr)[diff];
mov t0, [src]
add src, 8
mov [cp_r], t0
add cp_r, 8
cmp src, len
cmove src, son ; if end of (son) buffer is reached, we wrap to begin
mov DWORD PTR [d], 2
mov [d + 4], lenLimit_x
mov [d + 8], delta1_x
add d, 12
inc cur
cmp hash, hash_lim
je long_footer
cmp delta_x, [hash]
jne long_footer
movzx t0_x, BYTE PTR [diff + 1 * cur]
cmp [cur], t0_L
jne long_footer
cmp d, d_lim
jb long_loop
long_footer:
sub cp_r, son
shr cp_r, 3
add pos, cp_x
sub pos, cycPos_VAR
mov cycSize, cycSize_VAR
cmp d, d_lim
jae fin
cmp hash, hash_lim
jne main_loop
jmp fin
fin_error:
xor d, d
fin:
mov RSP, Old_RSP
mov t0, [r4 + posRes_OFFS]
mov [t0], pos
mov r0, d
MY_POP_PRESERVED_ABI_REGS
MY_ENDP
_TEXT$LZFINDOPT ENDS
end

1303
Asm/x86/LzmaDecOpt.asm Executable file
View File

File diff suppressed because it is too large Load Diff

263
Asm/x86/Sha1Opt.asm Executable file
View File

@@ -0,0 +1,263 @@
; Sha1Opt.asm -- SHA-1 optimized code for SHA-1 x86 hardware instructions
; 2021-03-10 : Igor Pavlov : Public domain
include 7zAsm.asm
MY_ASM_START
CONST SEGMENT
align 16
Reverse_Endian_Mask db 15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0
CONST ENDS
; _TEXT$SHA1OPT SEGMENT 'CODE'
ifndef x64
.686
.xmm
endif
ifdef x64
rNum equ REG_ABI_PARAM_2
if (IS_LINUX eq 0)
LOCAL_SIZE equ (16 * 2)
endif
else
rNum equ r0
LOCAL_SIZE equ (16 * 1)
endif
rState equ REG_ABI_PARAM_0
rData equ REG_ABI_PARAM_1
MY_sha1rnds4 macro a1, a2, imm
db 0fH, 03aH, 0ccH, (0c0H + a1 * 8 + a2), imm
endm
MY_SHA_INSTR macro cmd, a1, a2
db 0fH, 038H, cmd, (0c0H + a1 * 8 + a2)
endm
cmd_sha1nexte equ 0c8H
cmd_sha1msg1 equ 0c9H
cmd_sha1msg2 equ 0caH
MY_sha1nexte macro a1, a2
MY_SHA_INSTR cmd_sha1nexte, a1, a2
endm
MY_sha1msg1 macro a1, a2
MY_SHA_INSTR cmd_sha1msg1, a1, a2
endm
MY_sha1msg2 macro a1, a2
MY_SHA_INSTR cmd_sha1msg2, a1, a2
endm
MY_PROLOG macro
ifdef x64
if (IS_LINUX eq 0)
movdqa [r4 + 8], xmm6
movdqa [r4 + 8 + 16], xmm7
sub r4, LOCAL_SIZE + 8
movdqa [r4 ], xmm8
movdqa [r4 + 16], xmm9
endif
else ; x86
if (IS_CDECL gt 0)
mov rState, [r4 + REG_SIZE * 1]
mov rData, [r4 + REG_SIZE * 2]
mov rNum, [r4 + REG_SIZE * 3]
else ; fastcall
mov rNum, [r4 + REG_SIZE * 1]
endif
push r5
mov r5, r4
and r4, -16
sub r4, LOCAL_SIZE
endif
endm
MY_EPILOG macro
ifdef x64
if (IS_LINUX eq 0)
movdqa xmm8, [r4]
movdqa xmm9, [r4 + 16]
add r4, LOCAL_SIZE + 8
movdqa xmm6, [r4 + 8]
movdqa xmm7, [r4 + 8 + 16]
endif
else ; x86
mov r4, r5
pop r5
endif
MY_ENDP
endm
e0_N equ 0
e1_N equ 1
abcd_N equ 2
e0_save_N equ 3
w_regs equ 4
e0 equ @CatStr(xmm, %e0_N)
e1 equ @CatStr(xmm, %e1_N)
abcd equ @CatStr(xmm, %abcd_N)
e0_save equ @CatStr(xmm, %e0_save_N)
ifdef x64
abcd_save equ xmm8
mask2 equ xmm9
else
abcd_save equ [r4]
mask2 equ e1
endif
LOAD_MASK macro
movdqa mask2, XMMWORD PTR Reverse_Endian_Mask
endm
LOAD_W macro k:req
movdqu @CatStr(xmm, %(w_regs + k)), [rData + (16 * (k))]
pshufb @CatStr(xmm, %(w_regs + k)), mask2
endm
; pre2 can be 2 or 3 (recommended)
pre2 equ 3
pre1 equ (pre2 + 1)
NUM_ROUNDS4 equ 20
RND4 macro k
movdqa @CatStr(xmm, %(e0_N + ((k + 1) mod 2))), abcd
MY_sha1rnds4 abcd_N, (e0_N + (k mod 2)), k / 5
nextM = (w_regs + ((k + 1) mod 4))
if (k EQ NUM_ROUNDS4 - 1)
nextM = e0_save_N
endif
MY_sha1nexte (e0_N + ((k + 1) mod 2)), nextM
if (k GE (4 - pre2)) AND (k LT (NUM_ROUNDS4 - pre2))
pxor @CatStr(xmm, %(w_regs + ((k + pre2) mod 4))), @CatStr(xmm, %(w_regs + ((k + pre2 - 2) mod 4)))
endif
if (k GE (4 - pre1)) AND (k LT (NUM_ROUNDS4 - pre1))
MY_sha1msg1 (w_regs + ((k + pre1) mod 4)), (w_regs + ((k + pre1 - 3) mod 4))
endif
if (k GE (4 - pre2)) AND (k LT (NUM_ROUNDS4 - pre2))
MY_sha1msg2 (w_regs + ((k + pre2) mod 4)), (w_regs + ((k + pre2 - 1) mod 4))
endif
endm
REVERSE_STATE macro
; abcd ; dcba
; e0 ; 000e
pshufd abcd, abcd, 01bH ; abcd
pshufd e0, e0, 01bH ; e000
endm
MY_PROC Sha1_UpdateBlocks_HW, 3
MY_PROLOG
cmp rNum, 0
je end_c
movdqu abcd, [rState] ; dcba
movd e0, dword ptr [rState + 16] ; 000e
REVERSE_STATE
ifdef x64
LOAD_MASK
endif
align 16
nextBlock:
movdqa abcd_save, abcd
movdqa e0_save, e0
ifndef x64
LOAD_MASK
endif
LOAD_W 0
LOAD_W 1
LOAD_W 2
LOAD_W 3
paddd e0, @CatStr(xmm, %(w_regs))
k = 0
rept NUM_ROUNDS4
RND4 k
k = k + 1
endm
paddd abcd, abcd_save
add rData, 64
sub rNum, 1
jnz nextBlock
REVERSE_STATE
movdqu [rState], abcd
movd dword ptr [rState + 16], e0
end_c:
MY_EPILOG
; _TEXT$SHA1OPT ENDS
end

275
Asm/x86/Sha256Opt.asm Executable file
View File

@@ -0,0 +1,275 @@
; Sha256Opt.asm -- SHA-256 optimized code for SHA-256 x86 hardware instructions
; 2022-04-17 : Igor Pavlov : Public domain
include 7zAsm.asm
MY_ASM_START
; .data
; public K
; we can use external SHA256_K_ARRAY defined in Sha256.c
; but we must guarantee that SHA256_K_ARRAY is aligned for 16-bytes
COMMENT @
ifdef x64
K_CONST equ SHA256_K_ARRAY
else
K_CONST equ _SHA256_K_ARRAY
endif
EXTRN K_CONST:xmmword
@
CONST SEGMENT
align 16
Reverse_Endian_Mask db 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12
; COMMENT @
align 16
K_CONST \
DD 0428a2f98H, 071374491H, 0b5c0fbcfH, 0e9b5dba5H
DD 03956c25bH, 059f111f1H, 0923f82a4H, 0ab1c5ed5H
DD 0d807aa98H, 012835b01H, 0243185beH, 0550c7dc3H
DD 072be5d74H, 080deb1feH, 09bdc06a7H, 0c19bf174H
DD 0e49b69c1H, 0efbe4786H, 00fc19dc6H, 0240ca1ccH
DD 02de92c6fH, 04a7484aaH, 05cb0a9dcH, 076f988daH
DD 0983e5152H, 0a831c66dH, 0b00327c8H, 0bf597fc7H
DD 0c6e00bf3H, 0d5a79147H, 006ca6351H, 014292967H
DD 027b70a85H, 02e1b2138H, 04d2c6dfcH, 053380d13H
DD 0650a7354H, 0766a0abbH, 081c2c92eH, 092722c85H
DD 0a2bfe8a1H, 0a81a664bH, 0c24b8b70H, 0c76c51a3H
DD 0d192e819H, 0d6990624H, 0f40e3585H, 0106aa070H
DD 019a4c116H, 01e376c08H, 02748774cH, 034b0bcb5H
DD 0391c0cb3H, 04ed8aa4aH, 05b9cca4fH, 0682e6ff3H
DD 0748f82eeH, 078a5636fH, 084c87814H, 08cc70208H
DD 090befffaH, 0a4506cebH, 0bef9a3f7H, 0c67178f2H
; @
CONST ENDS
; _TEXT$SHA256OPT SEGMENT 'CODE'
ifndef x64
.686
.xmm
endif
; jwasm-based assemblers for linux and linker from new versions of binutils
; can generate incorrect code for load [ARRAY + offset] instructions.
; 22.00: we load K_CONST offset to (rTable) register to avoid jwasm+binutils problem
rTable equ r0
; rTable equ K_CONST
ifdef x64
rNum equ REG_ABI_PARAM_2
if (IS_LINUX eq 0)
LOCAL_SIZE equ (16 * 2)
endif
else
rNum equ r3
LOCAL_SIZE equ (16 * 1)
endif
rState equ REG_ABI_PARAM_0
rData equ REG_ABI_PARAM_1
MY_SHA_INSTR macro cmd, a1, a2
db 0fH, 038H, cmd, (0c0H + a1 * 8 + a2)
endm
cmd_sha256rnds2 equ 0cbH
cmd_sha256msg1 equ 0ccH
cmd_sha256msg2 equ 0cdH
MY_sha256rnds2 macro a1, a2
MY_SHA_INSTR cmd_sha256rnds2, a1, a2
endm
MY_sha256msg1 macro a1, a2
MY_SHA_INSTR cmd_sha256msg1, a1, a2
endm
MY_sha256msg2 macro a1, a2
MY_SHA_INSTR cmd_sha256msg2, a1, a2
endm
MY_PROLOG macro
ifdef x64
if (IS_LINUX eq 0)
movdqa [r4 + 8], xmm6
movdqa [r4 + 8 + 16], xmm7
sub r4, LOCAL_SIZE + 8
movdqa [r4 ], xmm8
movdqa [r4 + 16], xmm9
endif
else ; x86
push r3
push r5
mov r5, r4
NUM_PUSH_REGS equ 2
PARAM_OFFSET equ (REG_SIZE * (1 + NUM_PUSH_REGS))
if (IS_CDECL gt 0)
mov rState, [r4 + PARAM_OFFSET]
mov rData, [r4 + PARAM_OFFSET + REG_SIZE * 1]
mov rNum, [r4 + PARAM_OFFSET + REG_SIZE * 2]
else ; fastcall
mov rNum, [r4 + PARAM_OFFSET]
endif
and r4, -16
sub r4, LOCAL_SIZE
endif
endm
MY_EPILOG macro
ifdef x64
if (IS_LINUX eq 0)
movdqa xmm8, [r4]
movdqa xmm9, [r4 + 16]
add r4, LOCAL_SIZE + 8
movdqa xmm6, [r4 + 8]
movdqa xmm7, [r4 + 8 + 16]
endif
else ; x86
mov r4, r5
pop r5
pop r3
endif
MY_ENDP
endm
msg equ xmm0
tmp equ xmm0
state0_N equ 2
state1_N equ 3
w_regs equ 4
state1_save equ xmm1
state0 equ @CatStr(xmm, %state0_N)
state1 equ @CatStr(xmm, %state1_N)
ifdef x64
state0_save equ xmm8
mask2 equ xmm9
else
state0_save equ [r4]
mask2 equ xmm0
endif
LOAD_MASK macro
movdqa mask2, XMMWORD PTR Reverse_Endian_Mask
endm
LOAD_W macro k:req
movdqu @CatStr(xmm, %(w_regs + k)), [rData + (16 * (k))]
pshufb @CatStr(xmm, %(w_regs + k)), mask2
endm
; pre1 <= 4 && pre2 >= 1 && pre1 > pre2 && (pre1 - pre2) <= 1
pre1 equ 3
pre2 equ 2
RND4 macro k
movdqa msg, xmmword ptr [rTable + (k) * 16]
paddd msg, @CatStr(xmm, %(w_regs + ((k + 0) mod 4)))
MY_sha256rnds2 state0_N, state1_N
pshufd msg, msg, 0eH
if (k GE (4 - pre1)) AND (k LT (16 - pre1))
; w4[0] = msg1(w4[-4], w4[-3])
MY_sha256msg1 (w_regs + ((k + pre1) mod 4)), (w_regs + ((k + pre1 - 3) mod 4))
endif
MY_sha256rnds2 state1_N, state0_N
if (k GE (4 - pre2)) AND (k LT (16 - pre2))
movdqa tmp, @CatStr(xmm, %(w_regs + ((k + pre2 - 1) mod 4)))
palignr tmp, @CatStr(xmm, %(w_regs + ((k + pre2 - 2) mod 4))), 4
paddd @CatStr(xmm, %(w_regs + ((k + pre2) mod 4))), tmp
; w4[0] = msg2(w4[0], w4[-1])
MY_sha256msg2 %(w_regs + ((k + pre2) mod 4)), %(w_regs + ((k + pre2 - 1) mod 4))
endif
endm
REVERSE_STATE macro
; state0 ; dcba
; state1 ; hgfe
pshufd tmp, state0, 01bH ; abcd
pshufd state0, state1, 01bH ; efgh
movdqa state1, state0 ; efgh
punpcklqdq state0, tmp ; cdgh
punpckhqdq state1, tmp ; abef
endm
MY_PROC Sha256_UpdateBlocks_HW, 3
MY_PROLOG
lea rTable, [K_CONST]
cmp rNum, 0
je end_c
movdqu state0, [rState] ; dcba
movdqu state1, [rState + 16] ; hgfe
REVERSE_STATE
ifdef x64
LOAD_MASK
endif
align 16
nextBlock:
movdqa state0_save, state0
movdqa state1_save, state1
ifndef x64
LOAD_MASK
endif
LOAD_W 0
LOAD_W 1
LOAD_W 2
LOAD_W 3
k = 0
rept 16
RND4 k
k = k + 1
endm
paddd state0, state0_save
paddd state1, state1_save
add rData, 64
sub rNum, 1
jnz nextBlock
REVERSE_STATE
movdqu [rState], state0
movdqu [rState + 16], state1
end_c:
MY_EPILOG
; _TEXT$SHA256OPT ENDS
end

104
Asm/x86/XzCrc64Opt.asm Normal file → Executable file
View File

@@ -1,5 +1,5 @@
; XzCrc64Opt.asm -- CRC64 calculation : optimized version
; 2011-06-28 : Igor Pavlov : Public domain
; 2021-02-06 : Igor Pavlov : Public domain
include 7zAsm.asm
@@ -7,16 +7,15 @@ MY_ASM_START
ifdef x64
rD equ r9
rN equ r10
num_VAR equ r8
table_VAR equ r9
SRCDAT equ rN + rD
rD equ r9
rN equ r10
rT equ r5
num_VAR equ r8
SRCDAT4 equ dword ptr [rD + rN * 1]
CRC_XOR macro dest:req, src:req, t:req
xor dest, QWORD PTR [r5 + src * 8 + 0800h * t]
xor dest, QWORD PTR [rT + src * 8 + 0800h * t]
endm
CRC1b macro
@@ -30,12 +29,15 @@ CRC1b macro
endm
MY_PROLOG macro crc_end:req
ifdef ABI_LINUX
MY_PUSH_2_REGS
else
MY_PUSH_4_REGS
mov r0, r1
mov rN, num_VAR
mov r5, table_VAR
mov rD, r2
endif
mov r0, REG_ABI_PARAM_0
mov rN, REG_ABI_PARAM_2
mov rT, REG_ABI_PARAM_3
mov rD, REG_ABI_PARAM_1
test rN, rN
jz crc_end
@@:
@@ -51,14 +53,14 @@ MY_PROLOG macro crc_end:req
sub rN, 4
and rN, NOT 3
sub rD, rN
mov x1, [SRCDAT]
mov x1, SRCDAT4
xor r0, r1
add rN, 4
endm
MY_EPILOG macro crc_end:req
sub rN, 4
mov x1, [SRCDAT]
mov x1, SRCDAT4
xor r0, r1
mov rD, rN
mov rN, num_VAR
@@ -69,14 +71,18 @@ MY_EPILOG macro crc_end:req
CRC1b
jmp crc_end
@@:
ifdef ABI_LINUX
MY_POP_2_REGS
else
MY_POP_4_REGS
endif
endm
MY_PROC XzCrc64UpdateT4, 4
MY_PROLOG crc_end_4
align 16
main_loop_4:
mov x1, [SRCDAT]
mov x1, SRCDAT4
movzx x2, x0_L
movzx x3, x0_H
shr r0, 16
@@ -96,21 +102,43 @@ MY_PROC XzCrc64UpdateT4, 4
MY_ENDP
else
; x86 (32-bit)
rD equ r1
rN equ r7
rD equ r1
rN equ r7
rT equ r5
crc_val equ (REG_SIZE * 5)
crc_table equ (8 + crc_val)
table_VAR equ [r4 + crc_table]
num_VAR equ table_VAR
crc_OFFS equ (REG_SIZE * 5)
if (IS_CDECL gt 0) or (IS_LINUX gt 0)
; cdecl or (GNU fastcall) stack:
; (UInt32 *) table
; size_t size
; void * data
; (UInt64) crc
; ret-ip <-(r4)
data_OFFS equ (8 + crc_OFFS)
size_OFFS equ (REG_SIZE + data_OFFS)
table_OFFS equ (REG_SIZE + size_OFFS)
num_VAR equ [r4 + size_OFFS]
table_VAR equ [r4 + table_OFFS]
else
; Windows fastcall:
; r1 = data, r2 = size
; stack:
; (UInt32 *) table
; (UInt64) crc
; ret-ip <-(r4)
table_OFFS equ (8 + crc_OFFS)
table_VAR equ [r4 + table_OFFS]
num_VAR equ table_VAR
endif
SRCDAT equ rN + rD
SRCDAT4 equ dword ptr [rD + rN * 1]
CRC macro op0:req, op1:req, dest0:req, dest1:req, src:req, t:req
op0 dest0, DWORD PTR [r5 + src * 8 + 0800h * t]
op1 dest1, DWORD PTR [r5 + src * 8 + 0800h * t + 4]
op0 dest0, DWORD PTR [rT + src * 8 + 0800h * t]
op1 dest1, DWORD PTR [rT + src * 8 + 0800h * t + 4]
endm
CRC_XOR macro dest0:req, dest1:req, src:req, t:req
@@ -131,12 +159,18 @@ endm
MY_PROLOG macro crc_end:req
MY_PUSH_4_REGS
mov rN, r2
mov x0, [r4 + crc_val]
mov x2, [r4 + crc_val + 4]
mov r5, table_VAR
if (IS_CDECL gt 0) or (IS_LINUX gt 0)
proc_numParams = proc_numParams + 2 ; for ABI_LINUX
mov rN, [r4 + size_OFFS]
mov rD, [r4 + data_OFFS]
else
mov rN, r2
endif
mov x0, [r4 + crc_OFFS]
mov x2, [r4 + crc_OFFS + 4]
mov rT, table_VAR
test rN, rN
jz crc_end
@@:
@@ -154,13 +188,13 @@ MY_PROLOG macro crc_end:req
sub rN, 4
and rN, NOT 3
sub rD, rN
xor r0, [SRCDAT]
xor r0, SRCDAT4
add rN, 4
endm
MY_EPILOG macro crc_end:req
sub rN, 4
xor r0, [SRCDAT]
xor r0, SRCDAT4
mov rD, rN
mov rN, num_VAR
@@ -179,7 +213,7 @@ MY_PROC XzCrc64UpdateT4, 5
movzx x6, x0_L
align 16
main_loop_4:
mov r3, [SRCDAT]
mov r3, SRCDAT4
xor r3, r2
CRC xor, mov, r3, r2, r6, 3
@@ -200,6 +234,6 @@ MY_PROC XzCrc64UpdateT4, 5
MY_EPILOG crc_end_4
MY_ENDP
endif
endif ; ! x64
end

14
C/7z.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* 7z.h -- 7z interface
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __7Z_H
#define __7Z_H
#ifndef ZIP7_INC_7Z_H
#define ZIP7_INC_7Z_H
#include "7zTypes.h"
@@ -91,12 +91,14 @@ typedef struct
UInt64 *CoderUnpackSizes; // for all coders in all folders
Byte *CodersData;
UInt64 RangeLimit;
} CSzAr;
UInt64 SzAr_GetFolderUnpackSize(const CSzAr *p, UInt32 folderIndex);
SRes SzAr_DecodeFolder(const CSzAr *p, UInt32 folderIndex,
ILookInStream *stream, UInt64 startPos,
ILookInStreamPtr stream, UInt64 startPos,
Byte *outBuffer, size_t outSize,
ISzAllocPtr allocMain);
@@ -172,7 +174,7 @@ UInt16 *SzArEx_GetFullNameUtf16_Back(const CSzArEx *p, size_t fileIndex, UInt16
SRes SzArEx_Extract(
const CSzArEx *db,
ILookInStream *inStream,
ILookInStreamPtr inStream,
UInt32 fileIndex, /* index of file */
UInt32 *blockIndex, /* index of solid block */
Byte **outBuffer, /* pointer to pointer to output buffer (allocated with allocMain) */
@@ -194,7 +196,7 @@ SZ_ERROR_INPUT_EOF
SZ_ERROR_FAIL
*/
SRes SzArEx_Open(CSzArEx *p, ILookInStream *inStream,
SRes SzArEx_Open(CSzArEx *p, ILookInStreamPtr inStream,
ISzAllocPtr allocMain, ISzAllocPtr allocTemp);
EXTERN_C_END

69
C/7zAlloc.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* 7zAlloc.c -- Allocation functions
2017-04-03 : Igor Pavlov : Public domain */
/* 7zAlloc.c -- Allocation functions for 7z processing
2023-03-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -7,74 +7,83 @@
#include "7zAlloc.h"
/* #define _SZ_ALLOC_DEBUG */
/* use _SZ_ALLOC_DEBUG to debug alloc/free operations */
/* #define SZ_ALLOC_DEBUG */
/* use SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef _SZ_ALLOC_DEBUG
#ifdef SZ_ALLOC_DEBUG
/*
#ifdef _WIN32
#include <windows.h>
#include "7zWindows.h"
#endif
*/
#include <stdio.h>
int g_allocCount = 0;
int g_allocCountTemp = 0;
static int g_allocCount = 0;
static int g_allocCountTemp = 0;
static void Print_Alloc(const char *s, size_t size, int *counter)
{
const unsigned size2 = (unsigned)size;
fprintf(stderr, "\n%s count = %10d : %10u bytes; ", s, *counter, size2);
(*counter)++;
}
static void Print_Free(const char *s, int *counter)
{
(*counter)--;
fprintf(stderr, "\n%s count = %10d", s, *counter);
}
#endif
void *SzAlloc(ISzAllocPtr p, size_t size)
{
UNUSED_VAR(p);
UNUSED_VAR(p)
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc %10u bytes; count = %10d", (unsigned)size, g_allocCount);
g_allocCount++;
#ifdef SZ_ALLOC_DEBUG
Print_Alloc("Alloc", size, &g_allocCount);
#endif
return malloc(size);
}
void SzFree(ISzAllocPtr p, void *address)
{
UNUSED_VAR(p);
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
{
g_allocCount--;
fprintf(stderr, "\nFree; count = %10d", g_allocCount);
}
UNUSED_VAR(p)
#ifdef SZ_ALLOC_DEBUG
if (address)
Print_Free("Free ", &g_allocCount);
#endif
free(address);
}
void *SzAllocTemp(ISzAllocPtr p, size_t size)
{
UNUSED_VAR(p);
UNUSED_VAR(p)
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_temp %10u bytes; count = %10d", (unsigned)size, g_allocCountTemp);
g_allocCountTemp++;
#ifdef SZ_ALLOC_DEBUG
Print_Alloc("Alloc_temp", size, &g_allocCountTemp);
/*
#ifdef _WIN32
return HeapAlloc(GetProcessHeap(), 0, size);
#endif
*/
#endif
return malloc(size);
}
void SzFreeTemp(ISzAllocPtr p, void *address)
{
UNUSED_VAR(p);
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
{
g_allocCountTemp--;
fprintf(stderr, "\nFree_temp; count = %10d", g_allocCountTemp);
}
UNUSED_VAR(p)
#ifdef SZ_ALLOC_DEBUG
if (address)
Print_Free("Free_temp ", &g_allocCountTemp);
/*
#ifdef _WIN32
HeapFree(GetProcessHeap(), 0, address);
return;
#endif
*/
#endif
free(address);
}

6
C/7zAlloc.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* 7zAlloc.h -- Allocation functions
2017-04-03 : Igor Pavlov : Public domain */
2023-03-04 : Igor Pavlov : Public domain */
#ifndef __7Z_ALLOC_H
#define __7Z_ALLOC_H
#ifndef ZIP7_INC_7Z_ALLOC_H
#define ZIP7_INC_7Z_ALLOC_H
#include "7zTypes.h"

449
C/7zArcIn.c Normal file → Executable file
View File

File diff suppressed because it is too large Load Diff

0
C/7zBuf.c Normal file → Executable file
View File

6
C/7zBuf.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* 7zBuf.h -- Byte Buffer
2017-04-03 : Igor Pavlov : Public domain */
2023-03-04 : Igor Pavlov : Public domain */
#ifndef __7Z_BUF_H
#define __7Z_BUF_H
#ifndef ZIP7_INC_7Z_BUF_H
#define ZIP7_INC_7Z_BUF_H
#include "7zTypes.h"

0
C/7zBuf2.c Normal file → Executable file
View File

302
C/7zCrc.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* 7zCrc.c -- CRC32 init
2017-04-03 : Igor Pavlov : Public domain */
/* 7zCrc.c -- CRC32 calculation and init
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -13,38 +13,51 @@
#else
#define CRC_NUM_TABLES 9
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
#ifndef MY_CPU_BE
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
typedef UInt32 (MY_FAST_CALL *CRC_FUNC)(UInt32 v, const void *data, size_t size, const UInt32 *table);
/*
extern
CRC_FUNC g_CrcUpdateT4;
CRC_FUNC g_CrcUpdateT4;
*/
extern
CRC_FUNC g_CrcUpdateT8;
CRC_FUNC g_CrcUpdateT8;
extern
CRC_FUNC g_CrcUpdateT0_32;
CRC_FUNC g_CrcUpdateT0_32;
extern
CRC_FUNC g_CrcUpdateT0_64;
CRC_FUNC g_CrcUpdateT0_64;
extern
CRC_FUNC g_CrcUpdate;
CRC_FUNC g_CrcUpdate;
UInt32 g_CrcTable[256 * CRC_NUM_TABLES];
UInt32 MY_FAST_CALL CrcUpdate(UInt32 v, const void *data, size_t size)
UInt32 Z7_FASTCALL CrcUpdate(UInt32 v, const void *data, size_t size)
{
return g_CrcUpdate(v, data, size, g_CrcTable);
}
UInt32 MY_FAST_CALL CrcCalc(const void *data, size_t size)
UInt32 Z7_FASTCALL CrcCalc(const void *data, size_t size)
{
return g_CrcUpdate(CRC_INIT_VAL, data, size, g_CrcTable) ^ CRC_INIT_VAL;
}
#if CRC_NUM_TABLES < 4 \
|| (CRC_NUM_TABLES == 4 && defined(MY_CPU_BE)) \
|| (!defined(MY_CPU_LE) && !defined(MY_CPU_BE))
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table)
UInt32 Z7_FASTCALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
const Byte *pEnd = p + size;
@@ -52,8 +65,184 @@ UInt32 MY_FAST_CALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const U
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
#endif
void MY_FAST_CALL CrcGenerateTable()
/* ---------- hardware CRC ---------- */
#ifdef MY_CPU_LE
#if defined(MY_CPU_ARM_OR_ARM64)
// #pragma message("ARM*")
#if defined(_MSC_VER)
#if defined(MY_CPU_ARM64)
#if (_MSC_VER >= 1910)
#ifndef __clang__
#define USE_ARM64_CRC
#include <intrin.h>
#endif
#endif
#endif
#elif (defined(__clang__) && (__clang_major__ >= 3)) \
|| (defined(__GNUC__) && (__GNUC__ > 4))
#if !defined(__ARM_FEATURE_CRC32)
#define __ARM_FEATURE_CRC32 1
#if defined(__clang__)
#if defined(MY_CPU_ARM64)
#define ATTRIB_CRC __attribute__((__target__("crc")))
#else
#define ATTRIB_CRC __attribute__((__target__("armv8-a,crc")))
#endif
#else
#if defined(MY_CPU_ARM64)
#define ATTRIB_CRC __attribute__((__target__("+crc")))
#else
#define ATTRIB_CRC __attribute__((__target__("arch=armv8-a+crc")))
#endif
#endif
#endif
#if defined(__ARM_FEATURE_CRC32)
#define USE_ARM64_CRC
#include <arm_acle.h>
#endif
#endif
#else
// no hardware CRC
// #define USE_CRC_EMU
#ifdef USE_CRC_EMU
#pragma message("ARM64 CRC emulation")
Z7_FORCE_INLINE
UInt32 __crc32b(UInt32 v, UInt32 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data);
return v;
}
Z7_FORCE_INLINE
UInt32 __crc32w(UInt32 v, UInt32 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
return v;
}
Z7_FORCE_INLINE
UInt32 __crc32d(UInt32 v, UInt64 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
return v;
}
#endif // USE_CRC_EMU
#endif // defined(MY_CPU_ARM64) && defined(MY_CPU_LE)
#if defined(USE_ARM64_CRC) || defined(USE_CRC_EMU)
#define T0_32_UNROLL_BYTES (4 * 4)
#define T0_64_UNROLL_BYTES (4 * 8)
#ifndef ATTRIB_CRC
#define ATTRIB_CRC
#endif
// #pragma message("USE ARM HW CRC")
ATTRIB_CRC
UInt32 Z7_FASTCALL CrcUpdateT0_32(UInt32 v, const void *data, size_t size, const UInt32 *table);
ATTRIB_CRC
UInt32 Z7_FASTCALL CrcUpdateT0_32(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
UNUSED_VAR(table);
for (; size != 0 && ((unsigned)(ptrdiff_t)p & (T0_32_UNROLL_BYTES - 1)) != 0; size--)
v = __crc32b(v, *p++);
if (size >= T0_32_UNROLL_BYTES)
{
const Byte *lim = p + size;
size &= (T0_32_UNROLL_BYTES - 1);
lim -= size;
do
{
v = __crc32w(v, *(const UInt32 *)(const void *)(p));
v = __crc32w(v, *(const UInt32 *)(const void *)(p + 4)); p += 2 * 4;
v = __crc32w(v, *(const UInt32 *)(const void *)(p));
v = __crc32w(v, *(const UInt32 *)(const void *)(p + 4)); p += 2 * 4;
}
while (p != lim);
}
for (; size != 0; size--)
v = __crc32b(v, *p++);
return v;
}
ATTRIB_CRC
UInt32 Z7_FASTCALL CrcUpdateT0_64(UInt32 v, const void *data, size_t size, const UInt32 *table);
ATTRIB_CRC
UInt32 Z7_FASTCALL CrcUpdateT0_64(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
UNUSED_VAR(table);
for (; size != 0 && ((unsigned)(ptrdiff_t)p & (T0_64_UNROLL_BYTES - 1)) != 0; size--)
v = __crc32b(v, *p++);
if (size >= T0_64_UNROLL_BYTES)
{
const Byte *lim = p + size;
size &= (T0_64_UNROLL_BYTES - 1);
lim -= size;
do
{
v = __crc32d(v, *(const UInt64 *)(const void *)(p));
v = __crc32d(v, *(const UInt64 *)(const void *)(p + 8)); p += 2 * 8;
v = __crc32d(v, *(const UInt64 *)(const void *)(p));
v = __crc32d(v, *(const UInt64 *)(const void *)(p + 8)); p += 2 * 8;
}
while (p != lim);
}
for (; size != 0; size--)
v = __crc32b(v, *p++);
return v;
}
#undef T0_32_UNROLL_BYTES
#undef T0_64_UNROLL_BYTES
#endif // defined(USE_ARM64_CRC) || defined(USE_CRC_EMU)
#endif // MY_CPU_LE
void Z7_FASTCALL CrcGenerateTable(void)
{
UInt32 i;
for (i = 0; i < 256; i++)
@@ -66,63 +255,86 @@ void MY_FAST_CALL CrcGenerateTable()
}
for (i = 256; i < 256 * CRC_NUM_TABLES; i++)
{
UInt32 r = g_CrcTable[(size_t)i - 256];
const UInt32 r = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = g_CrcTable[r & 0xFF] ^ (r >> 8);
}
#if CRC_NUM_TABLES < 4
g_CrcUpdate = CrcUpdateT1;
#else
#ifdef MY_CPU_LE
g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdate = CrcUpdateT1;
#elif defined(MY_CPU_LE)
// g_CrcUpdateT4 = CrcUpdateT4;
#if CRC_NUM_TABLES < 8
g_CrcUpdate = CrcUpdateT4;
#else // CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
/*
#ifdef MY_CPU_X86_OR_AMD64
if (!CPU_Is_InOrder())
g_CrcUpdate = CrcUpdateT8;
#endif
*/
g_CrcUpdate = CrcUpdateT8;
#endif
#else
{
#ifndef MY_CPU_BE
#ifndef MY_CPU_BE
UInt32 k = 0x01020304;
const Byte *p = (const Byte *)&k;
if (p[0] == 4 && p[1] == 3)
{
g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
// g_CrcUpdate = CrcUpdateT8;
#if CRC_NUM_TABLES < 8
// g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#else // CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
g_CrcUpdate = CrcUpdateT8;
#endif
}
else if (p[0] != 1 || p[1] != 2)
g_CrcUpdate = CrcUpdateT1;
else
#endif
#endif // MY_CPU_BE
{
for (i = 256 * CRC_NUM_TABLES - 1; i >= 256; i--)
{
UInt32 x = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = CRC_UINT32_SWAP(x);
const UInt32 x = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = Z7_BSWAP32(x);
}
g_CrcUpdateT4 = CrcUpdateT1_BeT4;
g_CrcUpdate = CrcUpdateT1_BeT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT1_BeT8;
// g_CrcUpdate = CrcUpdateT1_BeT8;
#if CRC_NUM_TABLES <= 4
g_CrcUpdate = CrcUpdateT1;
#elif CRC_NUM_TABLES <= 8
// g_CrcUpdateT4 = CrcUpdateT1_BeT4;
g_CrcUpdate = CrcUpdateT1_BeT4;
#else // CRC_NUM_TABLES > 8
g_CrcUpdateT8 = CrcUpdateT1_BeT8;
g_CrcUpdate = CrcUpdateT1_BeT8;
#endif
}
}
#endif
#endif // CRC_NUM_TABLES < 4
#ifdef MY_CPU_LE
#ifdef USE_ARM64_CRC
if (CPU_IsSupported_CRC32())
{
g_CrcUpdateT0_32 = CrcUpdateT0_32;
g_CrcUpdateT0_64 = CrcUpdateT0_64;
g_CrcUpdate =
#if defined(MY_CPU_ARM)
CrcUpdateT0_32;
#else
CrcUpdateT0_64;
#endif
}
#endif
#ifdef USE_CRC_EMU
g_CrcUpdateT0_32 = CrcUpdateT0_32;
g_CrcUpdateT0_64 = CrcUpdateT0_64;
g_CrcUpdate = CrcUpdateT0_64;
#endif
#endif
}
#undef kCrcPoly
#undef CRC64_NUM_TABLES
#undef CRC_UPDATE_BYTE_2

14
C/7zCrc.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* 7zCrc.h -- CRC32 calculation
2013-01-18 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __7Z_CRC_H
#define __7Z_CRC_H
#ifndef ZIP7_INC_7Z_CRC_H
#define ZIP7_INC_7Z_CRC_H
#include "7zTypes.h"
@@ -11,14 +11,16 @@ EXTERN_C_BEGIN
extern UInt32 g_CrcTable[];
/* Call CrcGenerateTable one time before other CRC functions */
void MY_FAST_CALL CrcGenerateTable(void);
void Z7_FASTCALL CrcGenerateTable(void);
#define CRC_INIT_VAL 0xFFFFFFFF
#define CRC_GET_DIGEST(crc) ((crc) ^ CRC_INIT_VAL)
#define CRC_UPDATE_BYTE(crc, b) (g_CrcTable[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdate(UInt32 crc, const void *data, size_t size);
UInt32 MY_FAST_CALL CrcCalc(const void *data, size_t size);
UInt32 Z7_FASTCALL CrcUpdate(UInt32 crc, const void *data, size_t size);
UInt32 Z7_FASTCALL CrcCalc(const void *data, size_t size);
typedef UInt32 (Z7_FASTCALL *CRC_FUNC)(UInt32 v, const void *data, size_t size, const UInt32 *table);
EXTERN_C_END

26
C/7zCrcOpt.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* 7zCrcOpt.c -- CRC32 calculation
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -9,14 +9,15 @@
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
UInt32 Z7_FASTCALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)p;
v ^= *(const UInt32 *)(const void *)p;
v =
(table + 0x300)[((v ) & 0xFF)]
^ (table + 0x200)[((v >> 8) & 0xFF)]
@@ -28,7 +29,8 @@ UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const U
return v;
}
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
UInt32 Z7_FASTCALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 7) != 0; size--, p++)
@@ -36,13 +38,13 @@ UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const U
for (; size >= 8; size -= 8, p += 8)
{
UInt32 d;
v ^= *(const UInt32 *)p;
v ^= *(const UInt32 *)(const void *)p;
v =
(table + 0x700)[((v ) & 0xFF)]
^ (table + 0x600)[((v >> 8) & 0xFF)]
^ (table + 0x500)[((v >> 16) & 0xFF)]
^ (table + 0x400)[((v >> 24))];
d = *((const UInt32 *)p + 1);
d = *((const UInt32 *)(const void *)p + 1);
v ^=
(table + 0x300)[((d ) & 0xFF)]
^ (table + 0x200)[((d >> 8) & 0xFF)]
@@ -59,11 +61,11 @@ UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const U
#ifndef MY_CPU_LE
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
#define CRC_UINT32_SWAP(v) Z7_BSWAP32(v)
#define CRC_UPDATE_BYTE_2_BE(crc, b) (table[(((crc) >> 24) ^ (b))] ^ ((crc) << 8))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
UInt32 Z7_FASTCALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
@@ -72,7 +74,7 @@ UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, co
v = CRC_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)p;
v ^= *(const UInt32 *)(const void *)p;
v =
(table + 0x000)[((v ) & 0xFF)]
^ (table + 0x100)[((v >> 8) & 0xFF)]
@@ -84,7 +86,7 @@ UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, co
return CRC_UINT32_SWAP(v);
}
UInt32 MY_FAST_CALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
UInt32 Z7_FASTCALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
@@ -94,13 +96,13 @@ UInt32 MY_FAST_CALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, co
for (; size >= 8; size -= 8, p += 8)
{
UInt32 d;
v ^= *(const UInt32 *)p;
v ^= *(const UInt32 *)(const void *)p;
v =
(table + 0x400)[((v ) & 0xFF)]
^ (table + 0x500)[((v >> 8) & 0xFF)]
^ (table + 0x600)[((v >> 16) & 0xFF)]
^ (table + 0x700)[((v >> 24))];
d = *((const UInt32 *)p + 1);
d = *((const UInt32 *)(const void *)p + 1);
v ^=
(table + 0x000)[((d ) & 0xFF)]
^ (table + 0x100)[((d >> 8) & 0xFF)]

219
C/7zDec.c Normal file → Executable file
View File

@@ -1,11 +1,11 @@
/* 7zDec.c -- Decoding from 7z folder
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
/* #define _7ZIP_PPMD_SUPPPORT */
/* #define Z7_PPMD_SUPPORT */
#include "7z.h"
#include "7zCrc.h"
@@ -16,24 +16,49 @@
#include "Delta.h"
#include "LzmaDec.h"
#include "Lzma2Dec.h"
#ifdef _7ZIP_PPMD_SUPPPORT
#ifdef Z7_PPMD_SUPPORT
#include "Ppmd7.h"
#endif
#define k_Copy 0
#define k_Delta 3
#ifndef Z7_NO_METHOD_LZMA2
#define k_LZMA2 0x21
#endif
#define k_LZMA 0x30101
#define k_BCJ 0x3030103
#define k_BCJ2 0x303011B
#if !defined(Z7_NO_METHODS_FILTERS)
#define Z7_USE_BRANCH_FILTER
#endif
#if !defined(Z7_NO_METHODS_FILTERS) || \
defined(Z7_USE_NATIVE_BRANCH_FILTER) && defined(MY_CPU_ARM64)
#define Z7_USE_FILTER_ARM64
#ifndef Z7_USE_BRANCH_FILTER
#define Z7_USE_BRANCH_FILTER
#endif
#define k_ARM64 0xa
#endif
#if !defined(Z7_NO_METHODS_FILTERS) || \
defined(Z7_USE_NATIVE_BRANCH_FILTER) && defined(MY_CPU_ARMT)
#define Z7_USE_FILTER_ARMT
#ifndef Z7_USE_BRANCH_FILTER
#define Z7_USE_BRANCH_FILTER
#endif
#define k_ARMT 0x3030701
#endif
#ifndef Z7_NO_METHODS_FILTERS
#define k_Delta 3
#define k_BCJ 0x3030103
#define k_PPC 0x3030205
#define k_IA64 0x3030401
#define k_ARM 0x3030501
#define k_ARMT 0x3030701
#define k_SPARC 0x3030805
#endif
#ifdef _7ZIP_PPMD_SUPPPORT
#ifdef Z7_PPMD_SUPPORT
#define k_PPMD 0x30401
@@ -44,19 +69,19 @@ typedef struct
const Byte *end;
const Byte *begin;
UInt64 processed;
Bool extra;
BoolInt extra;
SRes res;
const ILookInStream *inStream;
ILookInStreamPtr inStream;
} CByteInToLook;
static Byte ReadByte(const IByteIn *pp)
static Byte ReadByte(IByteInPtr pp)
{
CByteInToLook *p = CONTAINER_FROM_VTBL(pp, CByteInToLook, vt);
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CByteInToLook)
if (p->cur != p->end)
return *p->cur++;
if (p->res == SZ_OK)
{
size_t size = p->cur - p->begin;
size_t size = (size_t)(p->cur - p->begin);
p->processed += size;
p->res = ILookInStream_Skip(p->inStream, size);
size = (1 << 25);
@@ -64,13 +89,13 @@ static Byte ReadByte(const IByteIn *pp)
p->cur = p->begin;
p->end = p->begin + size;
if (size != 0)
return *p->cur++;;
return *p->cur++;
}
p->extra = True;
return 0;
}
static SRes SzDecodePpmd(const Byte *props, unsigned propsSize, UInt64 inSize, const ILookInStream *inStream,
static SRes SzDecodePpmd(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStreamPtr inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CPpmd7 ppmd;
@@ -101,28 +126,32 @@ static SRes SzDecodePpmd(const Byte *props, unsigned propsSize, UInt64 inSize, c
Ppmd7_Init(&ppmd, order);
}
{
CPpmd7z_RangeDec rc;
Ppmd7z_RangeDec_CreateVTable(&rc);
rc.Stream = &s.vt;
if (!Ppmd7z_RangeDec_Init(&rc))
ppmd.rc.dec.Stream = &s.vt;
if (!Ppmd7z_RangeDec_Init(&ppmd.rc.dec))
res = SZ_ERROR_DATA;
else if (s.extra)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else
else if (!s.extra)
{
SizeT i;
for (i = 0; i < outSize; i++)
Byte *buf = outBuffer;
const Byte *lim = buf + outSize;
for (; buf != lim; buf++)
{
int sym = Ppmd7_DecodeSymbol(&ppmd, &rc.vt);
int sym = Ppmd7z_DecodeSymbol(&ppmd);
if (s.extra || sym < 0)
break;
outBuffer[i] = (Byte)sym;
*buf = (Byte)sym;
}
if (i != outSize)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else if (s.processed + (s.cur - s.begin) != inSize || !Ppmd7z_RangeDec_IsFinishedOK(&rc))
if (buf != lim)
res = SZ_ERROR_DATA;
else if (!Ppmd7z_RangeDec_IsFinishedOK(&ppmd.rc.dec))
{
/* if (Ppmd7z_DecodeSymbol(&ppmd) != PPMD7_SYM_END || !Ppmd7z_RangeDec_IsFinishedOK(&ppmd.rc.dec)) */
res = SZ_ERROR_DATA;
}
}
if (s.extra)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else if (s.processed + (size_t)(s.cur - s.begin) != inSize)
res = SZ_ERROR_DATA;
}
Ppmd7_Free(&ppmd, allocMain);
return res;
@@ -131,14 +160,14 @@ static SRes SzDecodePpmd(const Byte *props, unsigned propsSize, UInt64 inSize, c
#endif
static SRes SzDecodeLzma(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStream *inStream,
static SRes SzDecodeLzma(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStreamPtr inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CLzmaDec state;
SRes res = SZ_OK;
LzmaDec_Construct(&state);
RINOK(LzmaDec_AllocateProbs(&state, props, propsSize, allocMain));
LzmaDec_CONSTRUCT(&state)
RINOK(LzmaDec_AllocateProbs(&state, props, propsSize, allocMain))
state.dic = outBuffer;
state.dicBufSize = outSize;
LzmaDec_Init(&state);
@@ -156,7 +185,7 @@ static SRes SzDecodeLzma(const Byte *props, unsigned propsSize, UInt64 inSize, I
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.dicPos;
ELzmaStatus status;
res = LzmaDec_DecodeToDic(&state, outSize, inBuf, &inProcessed, LZMA_FINISH_END, &status);
res = LzmaDec_DecodeToDic(&state, outSize, (const Byte *)inBuf, &inProcessed, LZMA_FINISH_END, &status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
@@ -189,18 +218,18 @@ static SRes SzDecodeLzma(const Byte *props, unsigned propsSize, UInt64 inSize, I
}
#ifndef _7Z_NO_METHOD_LZMA2
#ifndef Z7_NO_METHOD_LZMA2
static SRes SzDecodeLzma2(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStream *inStream,
static SRes SzDecodeLzma2(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStreamPtr inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CLzma2Dec state;
SRes res = SZ_OK;
Lzma2Dec_Construct(&state);
Lzma2Dec_CONSTRUCT(&state)
if (propsSize != 1)
return SZ_ERROR_DATA;
RINOK(Lzma2Dec_AllocateProbs(&state, props[0], allocMain));
RINOK(Lzma2Dec_AllocateProbs(&state, props[0], allocMain))
state.decoder.dic = outBuffer;
state.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&state);
@@ -218,7 +247,7 @@ static SRes SzDecodeLzma2(const Byte *props, unsigned propsSize, UInt64 inSize,
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.decoder.dicPos;
ELzmaStatus status;
res = Lzma2Dec_DecodeToDic(&state, outSize, inBuf, &inProcessed, LZMA_FINISH_END, &status);
res = Lzma2Dec_DecodeToDic(&state, outSize, (const Byte *)inBuf, &inProcessed, LZMA_FINISH_END, &status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
@@ -250,7 +279,7 @@ static SRes SzDecodeLzma2(const Byte *props, unsigned propsSize, UInt64 inSize,
#endif
static SRes SzDecodeCopy(UInt64 inSize, ILookInStream *inStream, Byte *outBuffer)
static SRes SzDecodeCopy(UInt64 inSize, ILookInStreamPtr inStream, Byte *outBuffer)
{
while (inSize > 0)
{
@@ -258,35 +287,35 @@ static SRes SzDecodeCopy(UInt64 inSize, ILookInStream *inStream, Byte *outBuffer
size_t curSize = (1 << 18);
if (curSize > inSize)
curSize = (size_t)inSize;
RINOK(ILookInStream_Look(inStream, &inBuf, &curSize));
RINOK(ILookInStream_Look(inStream, &inBuf, &curSize))
if (curSize == 0)
return SZ_ERROR_INPUT_EOF;
memcpy(outBuffer, inBuf, curSize);
outBuffer += curSize;
inSize -= curSize;
RINOK(ILookInStream_Skip(inStream, curSize));
RINOK(ILookInStream_Skip(inStream, curSize))
}
return SZ_OK;
}
static Bool IS_MAIN_METHOD(UInt32 m)
static BoolInt IS_MAIN_METHOD(UInt32 m)
{
switch (m)
{
case k_Copy:
case k_LZMA:
#ifndef _7Z_NO_METHOD_LZMA2
#ifndef Z7_NO_METHOD_LZMA2
case k_LZMA2:
#endif
#ifdef _7ZIP_PPMD_SUPPPORT
#endif
#ifdef Z7_PPMD_SUPPORT
case k_PPMD:
#endif
#endif
return True;
}
return False;
}
static Bool IS_SUPPORTED_CODER(const CSzCoderInfo *c)
static BoolInt IS_SUPPORTED_CODER(const CSzCoderInfo *c)
{
return
c->NumStreams == 1
@@ -310,7 +339,7 @@ static SRes CheckSupportedFolder(const CSzFolder *f)
}
#ifndef _7Z_NO_METHODS_FILTERS
#if defined(Z7_USE_BRANCH_FILTER)
if (f->NumCoders == 2)
{
@@ -326,13 +355,20 @@ static SRes CheckSupportedFolder(const CSzFolder *f)
return SZ_ERROR_UNSUPPORTED;
switch ((UInt32)c->MethodID)
{
#if !defined(Z7_NO_METHODS_FILTERS)
case k_Delta:
case k_BCJ:
case k_PPC:
case k_IA64:
case k_SPARC:
case k_ARM:
#endif
#ifdef Z7_USE_FILTER_ARM64
case k_ARM64:
#endif
#ifdef Z7_USE_FILTER_ARMT
case k_ARMT:
#endif
break;
default:
return SZ_ERROR_UNSUPPORTED;
@@ -365,13 +401,16 @@ static SRes CheckSupportedFolder(const CSzFolder *f)
return SZ_ERROR_UNSUPPORTED;
}
#define CASE_BRA_CONV(isa) case k_ ## isa: isa ## _Convert(outBuffer, outSize, 0, 0); break;
static SRes SzFolder_Decode2(const CSzFolder *folder,
const Byte *propsData,
const UInt64 *unpackSizes,
const UInt64 *packPositions,
ILookInStream *inStream, UInt64 startPos,
ILookInStreamPtr inStream, UInt64 startPos,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain,
Byte *tempBuf[])
{
@@ -380,7 +419,7 @@ static SRes SzFolder_Decode2(const CSzFolder *folder,
SizeT tempSize3 = 0;
Byte *tempBuf3 = 0;
RINOK(CheckSupportedFolder(folder));
RINOK(CheckSupportedFolder(folder))
for (ci = 0; ci < folder->NumCoders; ci++)
{
@@ -395,8 +434,8 @@ static SRes SzFolder_Decode2(const CSzFolder *folder,
SizeT outSizeCur = outSize;
if (folder->NumCoders == 4)
{
UInt32 indices[] = { 3, 2, 0 };
UInt64 unpackSize = unpackSizes[ci];
const UInt32 indices[] = { 3, 2, 0 };
const UInt64 unpackSize = unpackSizes[ci];
si = indices[ci];
if (ci < 2)
{
@@ -422,37 +461,37 @@ static SRes SzFolder_Decode2(const CSzFolder *folder,
}
offset = packPositions[si];
inSize = packPositions[(size_t)si + 1] - offset;
RINOK(LookInStream_SeekTo(inStream, startPos + offset));
RINOK(LookInStream_SeekTo(inStream, startPos + offset))
if (coder->MethodID == k_Copy)
{
if (inSize != outSizeCur) /* check it */
return SZ_ERROR_DATA;
RINOK(SzDecodeCopy(inSize, inStream, outBufCur));
RINOK(SzDecodeCopy(inSize, inStream, outBufCur))
}
else if (coder->MethodID == k_LZMA)
{
RINOK(SzDecodeLzma(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain));
RINOK(SzDecodeLzma(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain))
}
#ifndef _7Z_NO_METHOD_LZMA2
#ifndef Z7_NO_METHOD_LZMA2
else if (coder->MethodID == k_LZMA2)
{
RINOK(SzDecodeLzma2(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain));
RINOK(SzDecodeLzma2(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain))
}
#endif
#ifdef _7ZIP_PPMD_SUPPPORT
#endif
#ifdef Z7_PPMD_SUPPORT
else if (coder->MethodID == k_PPMD)
{
RINOK(SzDecodePpmd(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain));
RINOK(SzDecodePpmd(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain))
}
#endif
#endif
else
return SZ_ERROR_UNSUPPORTED;
}
else if (coder->MethodID == k_BCJ2)
{
UInt64 offset = packPositions[1];
UInt64 s3Size = packPositions[2] - offset;
const UInt64 offset = packPositions[1];
const UInt64 s3Size = packPositions[2] - offset;
if (ci != 3)
return SZ_ERROR_UNSUPPORTED;
@@ -464,8 +503,8 @@ static SRes SzFolder_Decode2(const CSzFolder *folder,
if (!tempBuf[2] && tempSizes[2] != 0)
return SZ_ERROR_MEM;
RINOK(LookInStream_SeekTo(inStream, startPos + offset));
RINOK(SzDecodeCopy(s3Size, inStream, tempBuf[2]));
RINOK(LookInStream_SeekTo(inStream, startPos + offset))
RINOK(SzDecodeCopy(s3Size, inStream, tempBuf[2]))
if ((tempSizes[0] & 3) != 0 ||
(tempSizes[1] & 3) != 0 ||
@@ -484,26 +523,22 @@ static SRes SzFolder_Decode2(const CSzFolder *folder,
p.destLim = outBuffer + outSize;
Bcj2Dec_Init(&p);
RINOK(Bcj2Dec_Decode(&p));
RINOK(Bcj2Dec_Decode(&p))
{
unsigned i;
for (i = 0; i < 4; i++)
if (p.bufs[i] != p.lims[i])
return SZ_ERROR_DATA;
if (!Bcj2Dec_IsFinished(&p))
return SZ_ERROR_DATA;
if (p.dest != p.destLim
|| p.state != BCJ2_STREAM_MAIN)
if (p.dest != p.destLim || !Bcj2Dec_IsMaybeFinished(&p))
return SZ_ERROR_DATA;
}
}
}
#ifndef _7Z_NO_METHODS_FILTERS
#if defined(Z7_USE_BRANCH_FILTER)
else if (ci == 1)
{
#if !defined(Z7_NO_METHODS_FILTERS)
if (coder->MethodID == k_Delta)
{
if (coder->PropsSize != 1)
@@ -513,31 +548,53 @@ static SRes SzFolder_Decode2(const CSzFolder *folder,
Delta_Init(state);
Delta_Decode(state, (unsigned)(propsData[coder->PropsOffset]) + 1, outBuffer, outSize);
}
continue;
}
else
#endif
#ifdef Z7_USE_FILTER_ARM64
if (coder->MethodID == k_ARM64)
{
UInt32 pc = 0;
if (coder->PropsSize == 4)
pc = GetUi32(propsData + coder->PropsOffset);
else if (coder->PropsSize != 0)
return SZ_ERROR_UNSUPPORTED;
z7_BranchConv_ARM64_Dec(outBuffer, outSize, pc);
continue;
}
#endif
#if !defined(Z7_NO_METHODS_FILTERS) || defined(Z7_USE_FILTER_ARMT)
{
if (coder->PropsSize != 0)
return SZ_ERROR_UNSUPPORTED;
#define CASE_BRA_CONV(isa) case k_ ## isa: Z7_BRANCH_CONV_DEC(isa)(outBuffer, outSize, 0); break; // pc = 0;
switch (coder->MethodID)
{
#if !defined(Z7_NO_METHODS_FILTERS)
case k_BCJ:
{
UInt32 state;
x86_Convert_Init(state);
x86_Convert(outBuffer, outSize, 0, &state, 0);
UInt32 state = Z7_BRANCH_CONV_ST_X86_STATE_INIT_VAL;
z7_BranchConvSt_X86_Dec(outBuffer, outSize, 0, &state); // pc = 0
break;
}
CASE_BRA_CONV(PPC)
CASE_BRA_CONV(IA64)
CASE_BRA_CONV(SPARC)
CASE_BRA_CONV(ARM)
#endif
#if !defined(Z7_NO_METHODS_FILTERS) || defined(Z7_USE_FILTER_ARMT)
CASE_BRA_CONV(ARMT)
#endif
default:
return SZ_ERROR_UNSUPPORTED;
}
continue;
}
}
#endif
#endif
} // (c == 1)
#endif
else
return SZ_ERROR_UNSUPPORTED;
}
@@ -547,7 +604,7 @@ static SRes SzFolder_Decode2(const CSzFolder *folder,
SRes SzAr_DecodeFolder(const CSzAr *p, UInt32 folderIndex,
ILookInStream *inStream, UInt64 startPos,
ILookInStreamPtr inStream, UInt64 startPos,
Byte *outBuffer, size_t outSize,
ISzAllocPtr allocMain)
{

273
C/7zFile.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* 7zFile.c -- File IO
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -7,9 +7,19 @@
#ifndef USE_WINDOWS_FILE
#ifndef UNDER_CE
#include <errno.h>
#endif
#include <errno.h>
#ifndef USE_FOPEN
#include <stdio.h>
#include <fcntl.h>
#ifdef _WIN32
#include <io.h>
typedef int ssize_t;
typedef int off_t;
#else
#include <unistd.h>
#endif
#endif
#else
@@ -23,30 +33,36 @@
And message can be "Network connection was lost"
*/
#define kChunkSizeMax (1 << 22)
#endif
#define kChunkSizeMax (1 << 22)
void File_Construct(CSzFile *p)
{
#ifdef USE_WINDOWS_FILE
p->handle = INVALID_HANDLE_VALUE;
#else
#elif defined(USE_FOPEN)
p->file = NULL;
#else
p->fd = -1;
#endif
}
#if !defined(UNDER_CE) || !defined(USE_WINDOWS_FILE)
static WRes File_Open(CSzFile *p, const char *name, int writeMode)
{
#ifdef USE_WINDOWS_FILE
p->handle = CreateFileA(name,
writeMode ? GENERIC_WRITE : GENERIC_READ,
FILE_SHARE_READ, NULL,
writeMode ? CREATE_ALWAYS : OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
return (p->handle != INVALID_HANDLE_VALUE) ? 0 : GetLastError();
#else
#elif defined(USE_FOPEN)
p->file = fopen(name, writeMode ? "wb+" : "rb");
return (p->file != 0) ? 0 :
#ifdef UNDER_CE
@@ -54,13 +70,34 @@ static WRes File_Open(CSzFile *p, const char *name, int writeMode)
#else
errno;
#endif
#else
int flags = (writeMode ? (O_CREAT | O_EXCL | O_WRONLY) : O_RDONLY);
#ifdef O_BINARY
flags |= O_BINARY;
#endif
p->fd = open(name, flags, 0666);
return (p->fd != -1) ? 0 : errno;
#endif
}
WRes InFile_Open(CSzFile *p, const char *name) { return File_Open(p, name, 0); }
WRes OutFile_Open(CSzFile *p, const char *name) { return File_Open(p, name, 1); }
WRes OutFile_Open(CSzFile *p, const char *name)
{
#if defined(USE_WINDOWS_FILE) || defined(USE_FOPEN)
return File_Open(p, name, 1);
#else
p->fd = creat(name, 0666);
return (p->fd != -1) ? 0 : errno;
#endif
}
#endif
#ifdef USE_WINDOWS_FILE
static WRes File_OpenW(CSzFile *p, const WCHAR *name, int writeMode)
{
@@ -78,74 +115,124 @@ WRes OutFile_OpenW(CSzFile *p, const WCHAR *name) { return File_OpenW(p, name, 1
WRes File_Close(CSzFile *p)
{
#ifdef USE_WINDOWS_FILE
if (p->handle != INVALID_HANDLE_VALUE)
{
if (!CloseHandle(p->handle))
return GetLastError();
p->handle = INVALID_HANDLE_VALUE;
}
#else
#elif defined(USE_FOPEN)
if (p->file != NULL)
{
int res = fclose(p->file);
if (res != 0)
{
if (res == EOF)
return errno;
return res;
}
p->file = NULL;
}
#else
if (p->fd != -1)
{
if (close(p->fd) != 0)
return errno;
p->fd = -1;
}
#endif
return 0;
}
WRes File_Read(CSzFile *p, void *data, size_t *size)
{
size_t originalSize = *size;
*size = 0;
if (originalSize == 0)
return 0;
#ifdef USE_WINDOWS_FILE
*size = 0;
do
{
DWORD curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : (DWORD)originalSize;
const DWORD curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : (DWORD)originalSize;
DWORD processed = 0;
BOOL res = ReadFile(p->handle, data, curSize, &processed, NULL);
const BOOL res = ReadFile(p->handle, data, curSize, &processed, NULL);
data = (void *)((Byte *)data + processed);
originalSize -= processed;
*size += processed;
if (!res)
return GetLastError();
// debug : we can break here for partial reading mode
if (processed == 0)
break;
}
while (originalSize > 0);
#elif defined(USE_FOPEN)
do
{
const size_t curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : originalSize;
const size_t processed = fread(data, 1, curSize, p->file);
data = (void *)((Byte *)data + (size_t)processed);
originalSize -= processed;
*size += processed;
if (processed != curSize)
return ferror(p->file);
// debug : we can break here for partial reading mode
if (processed == 0)
break;
}
while (originalSize > 0);
return 0;
#else
*size = fread(data, 1, originalSize, p->file);
if (*size == originalSize)
return 0;
return ferror(p->file);
do
{
const size_t curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : originalSize;
const ssize_t processed = read(p->fd, data, curSize);
if (processed == -1)
return errno;
if (processed == 0)
break;
data = (void *)((Byte *)data + (size_t)processed);
originalSize -= (size_t)processed;
*size += (size_t)processed;
// debug : we can break here for partial reading mode
// break;
}
while (originalSize > 0);
#endif
return 0;
}
WRes File_Write(CSzFile *p, const void *data, size_t *size)
{
size_t originalSize = *size;
*size = 0;
if (originalSize == 0)
return 0;
#ifdef USE_WINDOWS_FILE
*size = 0;
do
{
DWORD curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : (DWORD)originalSize;
const DWORD curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : (DWORD)originalSize;
DWORD processed = 0;
BOOL res = WriteFile(p->handle, data, curSize, &processed, NULL);
data = (void *)((Byte *)data + processed);
const BOOL res = WriteFile(p->handle, data, curSize, &processed, NULL);
data = (const void *)((const Byte *)data + processed);
originalSize -= processed;
*size += processed;
if (!res)
@@ -154,61 +241,106 @@ WRes File_Write(CSzFile *p, const void *data, size_t *size)
break;
}
while (originalSize > 0);
return 0;
#elif defined(USE_FOPEN)
do
{
const size_t curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : originalSize;
const size_t processed = fwrite(data, 1, curSize, p->file);
data = (void *)((Byte *)data + (size_t)processed);
originalSize -= processed;
*size += processed;
if (processed != curSize)
return ferror(p->file);
if (processed == 0)
break;
}
while (originalSize > 0);
#else
*size = fwrite(data, 1, originalSize, p->file);
if (*size == originalSize)
return 0;
return ferror(p->file);
do
{
const size_t curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : originalSize;
const ssize_t processed = write(p->fd, data, curSize);
if (processed == -1)
return errno;
if (processed == 0)
break;
data = (const void *)((const Byte *)data + (size_t)processed);
originalSize -= (size_t)processed;
*size += (size_t)processed;
}
while (originalSize > 0);
#endif
return 0;
}
WRes File_Seek(CSzFile *p, Int64 *pos, ESzSeek origin)
{
#ifdef USE_WINDOWS_FILE
LARGE_INTEGER value;
DWORD moveMethod;
value.LowPart = (DWORD)*pos;
value.HighPart = (LONG)((UInt64)*pos >> 16 >> 16); /* for case when UInt64 is 32-bit only */
switch (origin)
UInt32 low = (UInt32)*pos;
LONG high = (LONG)((UInt64)*pos >> 16 >> 16); /* for case when UInt64 is 32-bit only */
// (int) to eliminate clang warning
switch ((int)origin)
{
case SZ_SEEK_SET: moveMethod = FILE_BEGIN; break;
case SZ_SEEK_CUR: moveMethod = FILE_CURRENT; break;
case SZ_SEEK_END: moveMethod = FILE_END; break;
default: return ERROR_INVALID_PARAMETER;
}
value.LowPart = SetFilePointer(p->handle, value.LowPart, &value.HighPart, moveMethod);
if (value.LowPart == 0xFFFFFFFF)
low = SetFilePointer(p->handle, (LONG)low, &high, moveMethod);
if (low == (UInt32)0xFFFFFFFF)
{
WRes res = GetLastError();
if (res != NO_ERROR)
return res;
}
*pos = ((Int64)value.HighPart << 32) | value.LowPart;
*pos = ((Int64)high << 32) | low;
return 0;
#else
int moveMethod;
int res;
switch (origin)
int moveMethod; // = origin;
switch ((int)origin)
{
case SZ_SEEK_SET: moveMethod = SEEK_SET; break;
case SZ_SEEK_CUR: moveMethod = SEEK_CUR; break;
case SZ_SEEK_END: moveMethod = SEEK_END; break;
default: return 1;
default: return EINVAL;
}
res = fseek(p->file, (long)*pos, moveMethod);
*pos = ftell(p->file);
return res;
#endif
#if defined(USE_FOPEN)
{
int res = fseek(p->file, (long)*pos, moveMethod);
if (res == -1)
return errno;
*pos = ftell(p->file);
if (*pos == -1)
return errno;
return 0;
}
#else
{
off_t res = lseek(p->fd, (off_t)*pos, moveMethod);
if (res == -1)
return errno;
*pos = res;
return 0;
}
#endif // USE_FOPEN
#endif // USE_WINDOWS_FILE
}
WRes File_GetLength(CSzFile *p, UInt64 *length)
{
#ifdef USE_WINDOWS_FILE
@@ -224,13 +356,31 @@ WRes File_GetLength(CSzFile *p, UInt64 *length)
*length = (((UInt64)sizeHigh) << 32) + sizeLow;
return 0;
#else
#elif defined(USE_FOPEN)
long pos = ftell(p->file);
int res = fseek(p->file, 0, SEEK_END);
*length = ftell(p->file);
fseek(p->file, pos, SEEK_SET);
return res;
#else
off_t pos;
*length = 0;
pos = lseek(p->fd, 0, SEEK_CUR);
if (pos != -1)
{
const off_t len2 = lseek(p->fd, 0, SEEK_END);
const off_t res2 = lseek(p->fd, pos, SEEK_SET);
if (len2 != -1)
{
*length = (UInt64)len2;
if (res2 != -1)
return 0;
}
}
return errno;
#endif
}
@@ -238,10 +388,12 @@ WRes File_GetLength(CSzFile *p, UInt64 *length)
/* ---------- FileSeqInStream ---------- */
static SRes FileSeqInStream_Read(const ISeqInStream *pp, void *buf, size_t *size)
static SRes FileSeqInStream_Read(ISeqInStreamPtr pp, void *buf, size_t *size)
{
CFileSeqInStream *p = CONTAINER_FROM_VTBL(pp, CFileSeqInStream, vt);
return File_Read(&p->file, buf, size) == 0 ? SZ_OK : SZ_ERROR_READ;
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CFileSeqInStream)
const WRes wres = File_Read(&p->file, buf, size);
p->wres = wres;
return (wres == 0) ? SZ_OK : SZ_ERROR_READ;
}
void FileSeqInStream_CreateVTable(CFileSeqInStream *p)
@@ -252,16 +404,20 @@ void FileSeqInStream_CreateVTable(CFileSeqInStream *p)
/* ---------- FileInStream ---------- */
static SRes FileInStream_Read(const ISeekInStream *pp, void *buf, size_t *size)
static SRes FileInStream_Read(ISeekInStreamPtr pp, void *buf, size_t *size)
{
CFileInStream *p = CONTAINER_FROM_VTBL(pp, CFileInStream, vt);
return (File_Read(&p->file, buf, size) == 0) ? SZ_OK : SZ_ERROR_READ;
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CFileInStream)
const WRes wres = File_Read(&p->file, buf, size);
p->wres = wres;
return (wres == 0) ? SZ_OK : SZ_ERROR_READ;
}
static SRes FileInStream_Seek(const ISeekInStream *pp, Int64 *pos, ESzSeek origin)
static SRes FileInStream_Seek(ISeekInStreamPtr pp, Int64 *pos, ESzSeek origin)
{
CFileInStream *p = CONTAINER_FROM_VTBL(pp, CFileInStream, vt);
return File_Seek(&p->file, pos, origin);
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CFileInStream)
const WRes wres = File_Seek(&p->file, pos, origin);
p->wres = wres;
return (wres == 0) ? SZ_OK : SZ_ERROR_READ;
}
void FileInStream_CreateVTable(CFileInStream *p)
@@ -273,10 +429,11 @@ void FileInStream_CreateVTable(CFileInStream *p)
/* ---------- FileOutStream ---------- */
static size_t FileOutStream_Write(const ISeqOutStream *pp, const void *data, size_t size)
static size_t FileOutStream_Write(ISeqOutStreamPtr pp, const void *data, size_t size)
{
CFileOutStream *p = CONTAINER_FROM_VTBL(pp, CFileOutStream, vt);
File_Write(&p->file, data, &size);
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CFileOutStream)
const WRes wres = File_Write(&p->file, data, &size);
p->wres = wres;
return size;
}

21
C/7zFile.h Normal file → Executable file
View File

@@ -1,17 +1,21 @@
/* 7zFile.h -- File IO
2017-04-03 : Igor Pavlov : Public domain */
2023-03-05 : Igor Pavlov : Public domain */
#ifndef __7Z_FILE_H
#define __7Z_FILE_H
#ifndef ZIP7_INC_FILE_H
#define ZIP7_INC_FILE_H
#ifdef _WIN32
#define USE_WINDOWS_FILE
// #include <windows.h>
#endif
#ifdef USE_WINDOWS_FILE
#include <windows.h>
#include "7zWindows.h"
#else
#include <stdio.h>
// note: USE_FOPEN mode is limited to 32-bit file size
// #define USE_FOPEN
// #include <stdio.h>
#endif
#include "7zTypes.h"
@@ -24,8 +28,10 @@ typedef struct
{
#ifdef USE_WINDOWS_FILE
HANDLE handle;
#else
#elif defined(USE_FOPEN)
FILE *file;
#else
int fd;
#endif
} CSzFile;
@@ -56,6 +62,7 @@ typedef struct
{
ISeqInStream vt;
CSzFile file;
WRes wres;
} CFileSeqInStream;
void FileSeqInStream_CreateVTable(CFileSeqInStream *p);
@@ -65,6 +72,7 @@ typedef struct
{
ISeekInStream vt;
CSzFile file;
WRes wres;
} CFileInStream;
void FileInStream_CreateVTable(CFileInStream *p);
@@ -74,6 +82,7 @@ typedef struct
{
ISeqOutStream vt;
CSzFile file;
WRes wres;
} CFileOutStream;
void FileOutStream_CreateVTable(CFileOutStream *p);

69
C/7zStream.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* 7zStream.c -- 7z Stream functions
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -7,12 +7,33 @@
#include "7zTypes.h"
SRes SeqInStream_Read2(const ISeqInStream *stream, void *buf, size_t size, SRes errorType)
SRes SeqInStream_ReadMax(ISeqInStreamPtr stream, void *buf, size_t *processedSize)
{
size_t size = *processedSize;
*processedSize = 0;
while (size != 0)
{
size_t cur = size;
const SRes res = ISeqInStream_Read(stream, buf, &cur);
*processedSize += cur;
buf = (void *)((Byte *)buf + cur);
size -= cur;
if (res != SZ_OK)
return res;
if (cur == 0)
return SZ_OK;
}
return SZ_OK;
}
/*
SRes SeqInStream_Read2(ISeqInStreamPtr stream, void *buf, size_t size, SRes errorType)
{
while (size != 0)
{
size_t processed = size;
RINOK(ISeqInStream_Read(stream, buf, &processed));
RINOK(ISeqInStream_Read(stream, buf, &processed))
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
@@ -21,42 +42,44 @@ SRes SeqInStream_Read2(const ISeqInStream *stream, void *buf, size_t size, SRes
return SZ_OK;
}
SRes SeqInStream_Read(const ISeqInStream *stream, void *buf, size_t size)
SRes SeqInStream_Read(ISeqInStreamPtr stream, void *buf, size_t size)
{
return SeqInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
*/
SRes SeqInStream_ReadByte(const ISeqInStream *stream, Byte *buf)
SRes SeqInStream_ReadByte(ISeqInStreamPtr stream, Byte *buf)
{
size_t processed = 1;
RINOK(ISeqInStream_Read(stream, buf, &processed));
RINOK(ISeqInStream_Read(stream, buf, &processed))
return (processed == 1) ? SZ_OK : SZ_ERROR_INPUT_EOF;
}
SRes LookInStream_SeekTo(const ILookInStream *stream, UInt64 offset)
SRes LookInStream_SeekTo(ILookInStreamPtr stream, UInt64 offset)
{
Int64 t = offset;
Int64 t = (Int64)offset;
return ILookInStream_Seek(stream, &t, SZ_SEEK_SET);
}
SRes LookInStream_LookRead(const ILookInStream *stream, void *buf, size_t *size)
SRes LookInStream_LookRead(ILookInStreamPtr stream, void *buf, size_t *size)
{
const void *lookBuf;
if (*size == 0)
return SZ_OK;
RINOK(ILookInStream_Look(stream, &lookBuf, size));
RINOK(ILookInStream_Look(stream, &lookBuf, size))
memcpy(buf, lookBuf, *size);
return ILookInStream_Skip(stream, *size);
}
SRes LookInStream_Read2(const ILookInStream *stream, void *buf, size_t size, SRes errorType)
SRes LookInStream_Read2(ILookInStreamPtr stream, void *buf, size_t size, SRes errorType)
{
while (size != 0)
{
size_t processed = size;
RINOK(ILookInStream_Read(stream, buf, &processed));
RINOK(ILookInStream_Read(stream, buf, &processed))
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
@@ -65,16 +88,16 @@ SRes LookInStream_Read2(const ILookInStream *stream, void *buf, size_t size, SRe
return SZ_OK;
}
SRes LookInStream_Read(const ILookInStream *stream, void *buf, size_t size)
SRes LookInStream_Read(ILookInStreamPtr stream, void *buf, size_t size)
{
return LookInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
#define GET_LookToRead2 CLookToRead2 *p = CONTAINER_FROM_VTBL(pp, CLookToRead2, vt);
#define GET_LookToRead2 Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CLookToRead2)
static SRes LookToRead2_Look_Lookahead(const ILookInStream *pp, const void **buf, size_t *size)
static SRes LookToRead2_Look_Lookahead(ILookInStreamPtr pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
GET_LookToRead2
@@ -93,7 +116,7 @@ static SRes LookToRead2_Look_Lookahead(const ILookInStream *pp, const void **buf
return res;
}
static SRes LookToRead2_Look_Exact(const ILookInStream *pp, const void **buf, size_t *size)
static SRes LookToRead2_Look_Exact(ILookInStreamPtr pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
GET_LookToRead2
@@ -113,14 +136,14 @@ static SRes LookToRead2_Look_Exact(const ILookInStream *pp, const void **buf, si
return res;
}
static SRes LookToRead2_Skip(const ILookInStream *pp, size_t offset)
static SRes LookToRead2_Skip(ILookInStreamPtr pp, size_t offset)
{
GET_LookToRead2
p->pos += offset;
return SZ_OK;
}
static SRes LookToRead2_Read(const ILookInStream *pp, void *buf, size_t *size)
static SRes LookToRead2_Read(ILookInStreamPtr pp, void *buf, size_t *size)
{
GET_LookToRead2
size_t rem = p->size - p->pos;
@@ -134,7 +157,7 @@ static SRes LookToRead2_Read(const ILookInStream *pp, void *buf, size_t *size)
return SZ_OK;
}
static SRes LookToRead2_Seek(const ILookInStream *pp, Int64 *pos, ESzSeek origin)
static SRes LookToRead2_Seek(ILookInStreamPtr pp, Int64 *pos, ESzSeek origin)
{
GET_LookToRead2
p->pos = p->size = 0;
@@ -153,9 +176,9 @@ void LookToRead2_CreateVTable(CLookToRead2 *p, int lookahead)
static SRes SecToLook_Read(const ISeqInStream *pp, void *buf, size_t *size)
static SRes SecToLook_Read(ISeqInStreamPtr pp, void *buf, size_t *size)
{
CSecToLook *p = CONTAINER_FROM_VTBL(pp, CSecToLook, vt);
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CSecToLook)
return LookInStream_LookRead(p->realStream, buf, size);
}
@@ -164,9 +187,9 @@ void SecToLook_CreateVTable(CSecToLook *p)
p->vt.Read = SecToLook_Read;
}
static SRes SecToRead_Read(const ISeqInStream *pp, void *buf, size_t *size)
static SRes SecToRead_Read(ISeqInStreamPtr pp, void *buf, size_t *size)
{
CSecToRead *p = CONTAINER_FROM_VTBL(pp, CSecToRead, vt);
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CSecToRead)
return ILookInStream_Read(p->realStream, buf, size);
}

415
C/7zTypes.h Normal file → Executable file
View File

@@ -1,11 +1,13 @@
/* 7zTypes.h -- Basic types
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __7Z_TYPES_H
#define __7Z_TYPES_H
#ifndef ZIP7_7Z_TYPES_H
#define ZIP7_7Z_TYPES_H
#ifdef _WIN32
/* #include <windows.h> */
#else
#include <errno.h>
#endif
#include <stddef.h>
@@ -42,22 +44,135 @@ EXTERN_C_BEGIN
typedef int SRes;
#ifdef _WIN32
/* typedef DWORD WRes; */
typedef unsigned WRes;
#ifdef _MSC_VER
#if _MSC_VER > 1200
#define MY_ALIGN(n) __declspec(align(n))
#else
#define MY_ALIGN(n)
#endif
#else
typedef int WRes;
/*
// C11/C++11:
#include <stdalign.h>
#define MY_ALIGN(n) alignas(n)
*/
#define MY_ALIGN(n) __attribute__ ((aligned(n)))
#endif
#ifdef _WIN32
/* typedef DWORD WRes; */
typedef unsigned WRes;
#define MY_SRes_HRESULT_FROM_WRes(x) HRESULT_FROM_WIN32(x)
// #define MY_HRES_ERROR_INTERNAL_ERROR MY_SRes_HRESULT_FROM_WRes(ERROR_INTERNAL_ERROR)
#else // _WIN32
// #define ENV_HAVE_LSTAT
typedef int WRes;
// (FACILITY_ERRNO = 0x800) is 7zip's FACILITY constant to represent (errno) errors in HRESULT
#define MY_FACILITY_ERRNO 0x800
#define MY_FACILITY_WIN32 7
#define MY_FACILITY_WRes MY_FACILITY_ERRNO
#define MY_HRESULT_FROM_errno_CONST_ERROR(x) ((HRESULT)( \
( (HRESULT)(x) & 0x0000FFFF) \
| (MY_FACILITY_WRes << 16) \
| (HRESULT)0x80000000 ))
#define MY_SRes_HRESULT_FROM_WRes(x) \
((HRESULT)(x) <= 0 ? ((HRESULT)(x)) : MY_HRESULT_FROM_errno_CONST_ERROR(x))
// we call macro HRESULT_FROM_WIN32 for system errors (WRes) that are (errno)
#define HRESULT_FROM_WIN32(x) MY_SRes_HRESULT_FROM_WRes(x)
/*
#define ERROR_FILE_NOT_FOUND 2L
#define ERROR_ACCESS_DENIED 5L
#define ERROR_NO_MORE_FILES 18L
#define ERROR_LOCK_VIOLATION 33L
#define ERROR_FILE_EXISTS 80L
#define ERROR_DISK_FULL 112L
#define ERROR_NEGATIVE_SEEK 131L
#define ERROR_ALREADY_EXISTS 183L
#define ERROR_DIRECTORY 267L
#define ERROR_TOO_MANY_POSTS 298L
#define ERROR_INTERNAL_ERROR 1359L
#define ERROR_INVALID_REPARSE_DATA 4392L
#define ERROR_REPARSE_TAG_INVALID 4393L
#define ERROR_REPARSE_TAG_MISMATCH 4394L
*/
// we use errno equivalents for some WIN32 errors:
#define ERROR_INVALID_PARAMETER EINVAL
#define ERROR_INVALID_FUNCTION EINVAL
#define ERROR_ALREADY_EXISTS EEXIST
#define ERROR_FILE_EXISTS EEXIST
#define ERROR_PATH_NOT_FOUND ENOENT
#define ERROR_FILE_NOT_FOUND ENOENT
#define ERROR_DISK_FULL ENOSPC
// #define ERROR_INVALID_HANDLE EBADF
// we use FACILITY_WIN32 for errors that has no errno equivalent
// Too many posts were made to a semaphore.
#define ERROR_TOO_MANY_POSTS ((HRESULT)0x8007012AL)
#define ERROR_INVALID_REPARSE_DATA ((HRESULT)0x80071128L)
#define ERROR_REPARSE_TAG_INVALID ((HRESULT)0x80071129L)
// if (MY_FACILITY_WRes != FACILITY_WIN32),
// we use FACILITY_WIN32 for COM errors:
#define E_OUTOFMEMORY ((HRESULT)0x8007000EL)
#define E_INVALIDARG ((HRESULT)0x80070057L)
#define MY_E_ERROR_NEGATIVE_SEEK ((HRESULT)0x80070083L)
/*
// we can use FACILITY_ERRNO for some COM errors, that have errno equivalents:
#define E_OUTOFMEMORY MY_HRESULT_FROM_errno_CONST_ERROR(ENOMEM)
#define E_INVALIDARG MY_HRESULT_FROM_errno_CONST_ERROR(EINVAL)
#define MY_E_ERROR_NEGATIVE_SEEK MY_HRESULT_FROM_errno_CONST_ERROR(EINVAL)
*/
#define TEXT(quote) quote
#define FILE_ATTRIBUTE_READONLY 0x0001
#define FILE_ATTRIBUTE_HIDDEN 0x0002
#define FILE_ATTRIBUTE_SYSTEM 0x0004
#define FILE_ATTRIBUTE_DIRECTORY 0x0010
#define FILE_ATTRIBUTE_ARCHIVE 0x0020
#define FILE_ATTRIBUTE_DEVICE 0x0040
#define FILE_ATTRIBUTE_NORMAL 0x0080
#define FILE_ATTRIBUTE_TEMPORARY 0x0100
#define FILE_ATTRIBUTE_SPARSE_FILE 0x0200
#define FILE_ATTRIBUTE_REPARSE_POINT 0x0400
#define FILE_ATTRIBUTE_COMPRESSED 0x0800
#define FILE_ATTRIBUTE_OFFLINE 0x1000
#define FILE_ATTRIBUTE_NOT_CONTENT_INDEXED 0x2000
#define FILE_ATTRIBUTE_ENCRYPTED 0x4000
#define FILE_ATTRIBUTE_UNIX_EXTENSION 0x8000 /* trick for Unix */
#endif
#ifndef RINOK
#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
#define RINOK(x) { const int _result_ = (x); if (_result_ != 0) return _result_; }
#endif
#ifndef RINOK_WRes
#define RINOK_WRes(x) { const WRes _result_ = (x); if (_result_ != 0) return _result_; }
#endif
typedef unsigned char Byte;
typedef short Int16;
typedef unsigned short UInt16;
#ifdef _LZMA_UINT32_IS_ULONG
#ifdef Z7_DECL_Int32_AS_long
typedef long Int32;
typedef unsigned long UInt32;
#else
@@ -65,115 +180,182 @@ typedef int Int32;
typedef unsigned int UInt32;
#endif
#ifdef _SZ_NO_INT_64
/* define _SZ_NO_INT_64, if your compiler doesn't support 64-bit integers.
NOTES: Some code will work incorrectly in that case! */
#ifndef _WIN32
typedef int INT;
typedef Int32 INT32;
typedef unsigned int UINT;
typedef UInt32 UINT32;
typedef INT32 LONG; // LONG, ULONG and DWORD must be 32-bit for _WIN32 compatibility
typedef UINT32 ULONG;
#undef DWORD
typedef UINT32 DWORD;
#define VOID void
#define HRESULT LONG
typedef void *LPVOID;
// typedef void VOID;
// typedef ULONG_PTR DWORD_PTR, *PDWORD_PTR;
// gcc / clang on Unix : sizeof(long==sizeof(void*) in 32 or 64 bits)
typedef long INT_PTR;
typedef unsigned long UINT_PTR;
typedef long LONG_PTR;
typedef unsigned long DWORD_PTR;
typedef size_t SIZE_T;
#endif // _WIN32
#define MY_HRES_ERROR_INTERNAL_ERROR ((HRESULT)0x8007054FL)
#ifdef Z7_DECL_Int64_AS_long
typedef long Int64;
typedef unsigned long UInt64;
#else
#if defined(_MSC_VER) || defined(__BORLANDC__)
#if (defined(_MSC_VER) || defined(__BORLANDC__)) && !defined(__clang__)
typedef __int64 Int64;
typedef unsigned __int64 UInt64;
#define UINT64_CONST(n) n
#else
#if defined(__clang__) || defined(__GNUC__)
#include <stdint.h>
typedef int64_t Int64;
typedef uint64_t UInt64;
#else
typedef long long int Int64;
typedef unsigned long long int UInt64;
#define UINT64_CONST(n) n ## ULL
// #define UINT64_CONST(n) n ## ULL
#endif
#endif
#endif
#ifdef _LZMA_NO_SYSTEM_SIZE_T
typedef UInt32 SizeT;
#define UINT64_CONST(n) n
#ifdef Z7_DECL_SizeT_AS_unsigned_int
typedef unsigned int SizeT;
#else
typedef size_t SizeT;
#endif
typedef int Bool;
/*
#if (defined(_MSC_VER) && _MSC_VER <= 1200)
typedef size_t MY_uintptr_t;
#else
#include <stdint.h>
typedef uintptr_t MY_uintptr_t;
#endif
*/
typedef int BoolInt;
/* typedef BoolInt Bool; */
#define True 1
#define False 0
#ifdef _WIN32
#define MY_STD_CALL __stdcall
#define Z7_STDCALL __stdcall
#else
#define MY_STD_CALL
#define Z7_STDCALL
#endif
#ifdef _MSC_VER
#if _MSC_VER >= 1300
#define MY_NO_INLINE __declspec(noinline)
#define Z7_NO_INLINE __declspec(noinline)
#else
#define MY_NO_INLINE
#define Z7_NO_INLINE
#endif
#define MY_FORCE_INLINE __forceinline
#define Z7_FORCE_INLINE __forceinline
#define MY_CDECL __cdecl
#define MY_FAST_CALL __fastcall
#define Z7_CDECL __cdecl
#define Z7_FASTCALL __fastcall
#else // _MSC_VER
#if (defined(__GNUC__) && (__GNUC__ >= 4)) \
|| (defined(__clang__) && (__clang_major__ >= 4)) \
|| defined(__INTEL_COMPILER) \
|| defined(__xlC__)
#define Z7_NO_INLINE __attribute__((noinline))
#define Z7_FORCE_INLINE __attribute__((always_inline)) inline
#else
#define MY_NO_INLINE
#define MY_FORCE_INLINE
#define MY_CDECL
#define MY_FAST_CALL
/* inline keyword : for C++ / C99 */
/* GCC, clang: */
/*
#if defined (__GNUC__) && (__GNUC__ >= 4)
#define MY_FORCE_INLINE __attribute__((always_inline))
#define MY_NO_INLINE __attribute__((noinline))
#define Z7_NO_INLINE
#define Z7_FORCE_INLINE
#endif
*/
#define Z7_CDECL
#if defined(_M_IX86) \
|| defined(__i386__)
// #define Z7_FASTCALL __attribute__((fastcall))
// #define Z7_FASTCALL __attribute__((cdecl))
#define Z7_FASTCALL
#elif defined(MY_CPU_AMD64)
// #define Z7_FASTCALL __attribute__((ms_abi))
#define Z7_FASTCALL
#else
#define Z7_FASTCALL
#endif
#endif // _MSC_VER
/* The following interfaces use first parameter as pointer to structure */
typedef struct IByteIn IByteIn;
struct IByteIn
// #define Z7_C_IFACE_CONST_QUAL
#define Z7_C_IFACE_CONST_QUAL const
#define Z7_C_IFACE_DECL(a) \
struct a ## _; \
typedef Z7_C_IFACE_CONST_QUAL struct a ## _ * a ## Ptr; \
typedef struct a ## _ a; \
struct a ## _
Z7_C_IFACE_DECL (IByteIn)
{
Byte (*Read)(const IByteIn *p); /* reads one byte, returns 0 in case of EOF or error */
Byte (*Read)(IByteInPtr p); /* reads one byte, returns 0 in case of EOF or error */
};
#define IByteIn_Read(p) (p)->Read(p)
typedef struct IByteOut IByteOut;
struct IByteOut
Z7_C_IFACE_DECL (IByteOut)
{
void (*Write)(const IByteOut *p, Byte b);
void (*Write)(IByteOutPtr p, Byte b);
};
#define IByteOut_Write(p, b) (p)->Write(p, b)
typedef struct ISeqInStream ISeqInStream;
struct ISeqInStream
Z7_C_IFACE_DECL (ISeqInStream)
{
SRes (*Read)(const ISeqInStream *p, void *buf, size_t *size);
SRes (*Read)(ISeqInStreamPtr p, void *buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) < input(*size)) is allowed */
};
#define ISeqInStream_Read(p, buf, size) (p)->Read(p, buf, size)
/* try to read as much as avail in stream and limited by (*processedSize) */
SRes SeqInStream_ReadMax(ISeqInStreamPtr stream, void *buf, size_t *processedSize);
/* it can return SZ_ERROR_INPUT_EOF */
SRes SeqInStream_Read(const ISeqInStream *stream, void *buf, size_t size);
SRes SeqInStream_Read2(const ISeqInStream *stream, void *buf, size_t size, SRes errorType);
SRes SeqInStream_ReadByte(const ISeqInStream *stream, Byte *buf);
// SRes SeqInStream_Read(ISeqInStreamPtr stream, void *buf, size_t size);
// SRes SeqInStream_Read2(ISeqInStreamPtr stream, void *buf, size_t size, SRes errorType);
SRes SeqInStream_ReadByte(ISeqInStreamPtr stream, Byte *buf);
typedef struct ISeqOutStream ISeqOutStream;
struct ISeqOutStream
Z7_C_IFACE_DECL (ISeqOutStream)
{
size_t (*Write)(const ISeqOutStream *p, const void *buf, size_t size);
size_t (*Write)(ISeqOutStreamPtr p, const void *buf, size_t size);
/* Returns: result - the number of actually written bytes.
(result < size) means error */
};
@@ -187,29 +369,26 @@ typedef enum
} ESzSeek;
typedef struct ISeekInStream ISeekInStream;
struct ISeekInStream
Z7_C_IFACE_DECL (ISeekInStream)
{
SRes (*Read)(const ISeekInStream *p, void *buf, size_t *size); /* same as ISeqInStream::Read */
SRes (*Seek)(const ISeekInStream *p, Int64 *pos, ESzSeek origin);
SRes (*Read)(ISeekInStreamPtr p, void *buf, size_t *size); /* same as ISeqInStream::Read */
SRes (*Seek)(ISeekInStreamPtr p, Int64 *pos, ESzSeek origin);
};
#define ISeekInStream_Read(p, buf, size) (p)->Read(p, buf, size)
#define ISeekInStream_Seek(p, pos, origin) (p)->Seek(p, pos, origin)
typedef struct ILookInStream ILookInStream;
struct ILookInStream
Z7_C_IFACE_DECL (ILookInStream)
{
SRes (*Look)(const ILookInStream *p, const void **buf, size_t *size);
SRes (*Look)(ILookInStreamPtr p, const void **buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) > input(*size)) is not allowed
(output(*size) < input(*size)) is allowed */
SRes (*Skip)(const ILookInStream *p, size_t offset);
SRes (*Skip)(ILookInStreamPtr p, size_t offset);
/* offset must be <= output(*size) of Look */
SRes (*Read)(const ILookInStream *p, void *buf, size_t *size);
SRes (*Read)(ILookInStreamPtr p, void *buf, size_t *size);
/* reads directly (without buffer). It's same as ISeqInStream::Read */
SRes (*Seek)(const ILookInStream *p, Int64 *pos, ESzSeek origin);
SRes (*Seek)(ILookInStreamPtr p, Int64 *pos, ESzSeek origin);
};
#define ILookInStream_Look(p, buf, size) (p)->Look(p, buf, size)
@@ -218,19 +397,18 @@ struct ILookInStream
#define ILookInStream_Seek(p, pos, origin) (p)->Seek(p, pos, origin)
SRes LookInStream_LookRead(const ILookInStream *stream, void *buf, size_t *size);
SRes LookInStream_SeekTo(const ILookInStream *stream, UInt64 offset);
SRes LookInStream_LookRead(ILookInStreamPtr stream, void *buf, size_t *size);
SRes LookInStream_SeekTo(ILookInStreamPtr stream, UInt64 offset);
/* reads via ILookInStream::Read */
SRes LookInStream_Read2(const ILookInStream *stream, void *buf, size_t size, SRes errorType);
SRes LookInStream_Read(const ILookInStream *stream, void *buf, size_t size);
SRes LookInStream_Read2(ILookInStreamPtr stream, void *buf, size_t size, SRes errorType);
SRes LookInStream_Read(ILookInStreamPtr stream, void *buf, size_t size);
typedef struct
{
ILookInStream vt;
const ISeekInStream *realStream;
ISeekInStreamPtr realStream;
size_t pos;
size_t size; /* it's data size */
@@ -242,13 +420,13 @@ typedef struct
void LookToRead2_CreateVTable(CLookToRead2 *p, int lookahead);
#define LookToRead2_Init(p) { (p)->pos = (p)->size = 0; }
#define LookToRead2_INIT(p) { (p)->pos = (p)->size = 0; }
typedef struct
{
ISeqInStream vt;
const ILookInStream *realStream;
ILookInStreamPtr realStream;
} CSecToLook;
void SecToLook_CreateVTable(CSecToLook *p);
@@ -258,20 +436,19 @@ void SecToLook_CreateVTable(CSecToLook *p);
typedef struct
{
ISeqInStream vt;
const ILookInStream *realStream;
ILookInStreamPtr realStream;
} CSecToRead;
void SecToRead_CreateVTable(CSecToRead *p);
typedef struct ICompressProgress ICompressProgress;
struct ICompressProgress
Z7_C_IFACE_DECL (ICompressProgress)
{
SRes (*Progress)(const ICompressProgress *p, UInt64 inSize, UInt64 outSize);
SRes (*Progress)(ICompressProgressPtr p, UInt64 inSize, UInt64 outSize);
/* Returns: result. (result != SZ_OK) means break.
Value (UInt64)(Int64)-1 for size means unknown value. */
};
#define ICompressProgress_Progress(p, inSize, outSize) (p)->Progress(p, inSize, outSize)
@@ -309,13 +486,13 @@ struct ISzAlloc
#ifndef MY_container_of
#ifndef Z7_container_of
/*
#define MY_container_of(ptr, type, m) container_of(ptr, type, m)
#define MY_container_of(ptr, type, m) CONTAINING_RECORD(ptr, type, m)
#define MY_container_of(ptr, type, m) ((type *)((char *)(ptr) - offsetof(type, m)))
#define MY_container_of(ptr, type, m) (&((type *)0)->m == (ptr), ((type *)(((char *)(ptr)) - MY_offsetof(type, m))))
#define Z7_container_of(ptr, type, m) container_of(ptr, type, m)
#define Z7_container_of(ptr, type, m) CONTAINING_RECORD(ptr, type, m)
#define Z7_container_of(ptr, type, m) ((type *)((char *)(ptr) - offsetof(type, m)))
#define Z7_container_of(ptr, type, m) (&((type *)0)->m == (ptr), ((type *)(((char *)(ptr)) - MY_offsetof(type, m))))
*/
/*
@@ -324,23 +501,63 @@ struct ISzAlloc
GCC 4.8.1 : classes with non-public variable members"
*/
#define MY_container_of(ptr, type, m) ((type *)((char *)(1 ? (ptr) : &((type *)0)->m) - MY_offsetof(type, m)))
#define Z7_container_of(ptr, type, m) \
((type *)(void *)((char *)(void *) \
(1 ? (ptr) : &((type *)NULL)->m) - MY_offsetof(type, m)))
#define Z7_container_of_CONST(ptr, type, m) \
((const type *)(const void *)((const char *)(const void *) \
(1 ? (ptr) : &((type *)NULL)->m) - MY_offsetof(type, m)))
/*
#define Z7_container_of_NON_CONST_FROM_CONST(ptr, type, m) \
((type *)(void *)(const void *)((const char *)(const void *) \
(1 ? (ptr) : &((type *)NULL)->m) - MY_offsetof(type, m)))
*/
#endif
#define CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m) ((type *)(ptr))
#define Z7_CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m) ((type *)(void *)(ptr))
// #define Z7_CONTAINER_FROM_VTBL(ptr, type, m) Z7_CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m)
#define Z7_CONTAINER_FROM_VTBL(ptr, type, m) Z7_container_of(ptr, type, m)
// #define Z7_CONTAINER_FROM_VTBL(ptr, type, m) Z7_container_of_NON_CONST_FROM_CONST(ptr, type, m)
#define Z7_CONTAINER_FROM_VTBL_CONST(ptr, type, m) Z7_container_of_CONST(ptr, type, m)
#define Z7_CONTAINER_FROM_VTBL_CLS(ptr, type, m) Z7_CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m)
/*
#define CONTAINER_FROM_VTBL(ptr, type, m) CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m)
#define Z7_CONTAINER_FROM_VTBL_CLS(ptr, type, m) Z7_CONTAINER_FROM_VTBL(ptr, type, m)
*/
#define CONTAINER_FROM_VTBL(ptr, type, m) MY_container_of(ptr, type, m)
#if defined (__clang__) || defined(__GNUC__)
#define Z7_DIAGNOSCTIC_IGNORE_BEGIN_CAST_QUAL \
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wcast-qual\"")
#define Z7_DIAGNOSCTIC_IGNORE_END_CAST_QUAL \
_Pragma("GCC diagnostic pop")
#else
#define Z7_DIAGNOSCTIC_IGNORE_BEGIN_CAST_QUAL
#define Z7_DIAGNOSCTIC_IGNORE_END_CAST_QUAL
#endif
#define CONTAINER_FROM_VTBL_CLS(ptr, type, m) CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m)
/*
#define CONTAINER_FROM_VTBL_CLS(ptr, type, m) CONTAINER_FROM_VTBL(ptr, type, m)
*/
#define Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR(ptr, type, m, p) \
Z7_DIAGNOSCTIC_IGNORE_BEGIN_CAST_QUAL \
type *p = Z7_CONTAINER_FROM_VTBL(ptr, type, m); \
Z7_DIAGNOSCTIC_IGNORE_END_CAST_QUAL
#define Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(type) \
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR(pp, type, vt, p)
// #define ZIP7_DECLARE_HANDLE(name) typedef void *name;
#define Z7_DECLARE_HANDLE(name) struct name##_dummy{int unused;}; typedef struct name##_dummy *name;
#define Z7_memset_0_ARRAY(a) memset((a), 0, sizeof(a))
#ifndef Z7_ARRAY_SIZE
#define Z7_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#endif
#ifdef _WIN32
@@ -359,6 +576,22 @@ struct ISzAlloc
#endif
#define k_PropVar_TimePrec_0 0
#define k_PropVar_TimePrec_Unix 1
#define k_PropVar_TimePrec_DOS 2
#define k_PropVar_TimePrec_HighPrec 3
#define k_PropVar_TimePrec_Base 16
#define k_PropVar_TimePrec_100ns (k_PropVar_TimePrec_Base + 7)
#define k_PropVar_TimePrec_1ns (k_PropVar_TimePrec_Base + 9)
EXTERN_C_END
#endif
/*
#ifndef Z7_ST
#ifdef _7ZIP_ST
#define Z7_ST
#endif
#endif
*/

25
C/7zVersion.h Normal file → Executable file
View File

@@ -1,7 +1,7 @@
#define MY_VER_MAJOR 17
#define MY_VER_MINOR 00
#define MY_VER_MAJOR 23
#define MY_VER_MINOR 01
#define MY_VER_BUILD 0
#define MY_VERSION_NUMBERS "17.00 beta"
#define MY_VERSION_NUMBERS "23.01"
#define MY_VERSION MY_VERSION_NUMBERS
#ifdef MY_CPU_NAME
@@ -10,12 +10,12 @@
#define MY_VERSION_CPU MY_VERSION
#endif
#define MY_DATE "2017-04-29"
#define MY_DATE "2023-06-20"
#undef MY_COPYRIGHT
#undef MY_VERSION_COPYRIGHT_DATE
#define MY_AUTHOR_NAME "Igor Pavlov"
#define MY_COPYRIGHT_PD "Igor Pavlov : Public domain"
#define MY_COPYRIGHT_CR "Copyright (c) 1999-2017 Igor Pavlov"
#define MY_COPYRIGHT_CR "Copyright (c) 1999-2023 Igor Pavlov"
#ifdef USE_COPYRIGHT_CR
#define MY_COPYRIGHT MY_COPYRIGHT_CR
@@ -25,3 +25,18 @@
#define MY_COPYRIGHT_DATE MY_COPYRIGHT " : " MY_DATE
#define MY_VERSION_COPYRIGHT_DATE MY_VERSION_CPU " : " MY_COPYRIGHT " : " MY_DATE
#define MY_EASY7ZIP_VER_MAJOR 0
#define MY_EASY7ZIP_VER_MINOR 1
#define MY_EASY7ZIP_7ZIP "Easy 7-Zip"
#define MY_EASY7ZIP_VERSION "0.1.6-shunf4-2"
#define MY_EASY7ZIP_7ZIP_VERSION "Easy 7-Zip v0.1.6-shunf4-2"
#define MY_EASY7ZIP_COPYRIGHT "Portions Copyright (C) 2013-2016 James Hoo"
#define MY_EASY7ZIP_AUTHOR "James Hoo"
#define MY_EASY7ZIP_HOMEPAGE "e7z.org"
#define MY_EASY7ZIP_SPECIAL_BUILD MY_EASY7ZIP_7ZIP_VERSION " (www." MY_EASY7ZIP_HOMEPAGE ") made by " MY_EASY7ZIP_AUTHOR

0
C/7zVersion.rc Normal file → Executable file
View File

103
C/7zWindows.h Executable file
View File

@@ -0,0 +1,103 @@
/* 7zWindows.h -- StdAfx
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_7Z_WINDOWS_H
#define ZIP7_INC_7Z_WINDOWS_H
#ifdef _WIN32
#if defined(__clang__)
# pragma clang diagnostic push
#endif
#pragma warning(disable : 4255)
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4668) // '_WIN32_WINNT' is not defined as a preprocessor macro, replacing with '0' for '#if/#elif'
#if _MSC_VER == 1900
// for old kit10 versions
#pragma warning(disable : 4255) // winuser.h(13979): warning C4255: 'GetThreadDpiAwarenessContext':
#endif
// win10 Windows Kit:
#endif // _MSC_VER
#if defined(_MSC_VER) && _MSC_VER <= 1200 && !defined(_WIN64)
// for msvc6 without sdk2003
#define RPC_NO_WINDOWS_H
#endif
#if defined(__MINGW32__) || defined(__MINGW64__)
// #if defined(__GNUC__) && !defined(__clang__)
#include <windows.h>
#else
#include <Windows.h>
#endif
// #include <basetsd.h>
// #include <wtypes.h>
// but if precompiled with clang-cl then we need
// #include <windows.h>
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
#if defined(_MSC_VER) && _MSC_VER <= 1200 && !defined(_WIN64)
#ifndef _W64
typedef long LONG_PTR, *PLONG_PTR;
typedef unsigned long ULONG_PTR, *PULONG_PTR;
typedef ULONG_PTR DWORD_PTR, *PDWORD_PTR;
#define Z7_OLD_WIN_SDK
#endif // _W64
#endif // _MSC_VER == 1200
#ifdef Z7_OLD_WIN_SDK
#ifndef INVALID_FILE_ATTRIBUTES
#define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif
#ifndef INVALID_SET_FILE_POINTER
#define INVALID_SET_FILE_POINTER ((DWORD)-1)
#endif
#ifndef FILE_SPECIAL_ACCESS
#define FILE_SPECIAL_ACCESS (FILE_ANY_ACCESS)
#endif
// ShlObj.h:
// #define BIF_NEWDIALOGSTYLE 0x0040
#pragma warning(disable : 4201)
// #pragma warning(disable : 4115)
#undef VARIANT_TRUE
#define VARIANT_TRUE ((VARIANT_BOOL)-1)
#endif
#endif // Z7_OLD_WIN_SDK
#ifdef UNDER_CE
#undef VARIANT_TRUE
#define VARIANT_TRUE ((VARIANT_BOOL)-1)
#endif
#if defined(_MSC_VER)
#if _MSC_VER >= 1400 && _MSC_VER <= 1600
// BaseTsd.h(148) : 'HandleToULong' : unreferenced inline function has been removed
// string.h
// #pragma warning(disable : 4514)
#endif
#endif
/* #include "7zTypes.h" */
#endif

360
C/7zip_gcc_c.mak Executable file
View File

@@ -0,0 +1,360 @@
MY_ARCH_2 = $(MY_ARCH)
MY_ASM = jwasm
MY_ASM = asmc
ifndef RC
#RC=windres.exe --target=pe-x86-64
#RC=windres.exe -F pe-i386
RC=windres.exe
endif
PROGPATH = $(O)/$(PROG)
PROGPATH_STATIC = $(O)/$(PROG)s
ifneq ($(CC), xlc)
CFLAGS_WARN_WALL = -Wall -Werror -Wextra
endif
# for object file
CFLAGS_BASE_LIST = -c
# for ASM file
# CFLAGS_BASE_LIST = -S
FLAGS_FLTO =
FLAGS_FLTO = -flto
CFLAGS_BASE = $(MY_ARCH_2) -O2 $(CFLAGS_BASE_LIST) $(CFLAGS_WARN_WALL) $(CFLAGS_WARN) \
-DNDEBUG -D_REENTRANT -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE
ifdef SystemDrive
IS_MINGW = 1
else
ifdef SYSTEMDRIVE
# ifdef OS
IS_MINGW = 1
endif
endif
ifdef IS_MINGW
LDFLAGS_STATIC_2 = -static
else
ifndef DEF_FILE
ifndef IS_NOT_STANDALONE
ifndef MY_DYNAMIC_LINK
ifneq ($(CC), clang)
LDFLAGS_STATIC_2 =
# -static
# -static-libstdc++ -static-libgcc
endif
endif
endif
endif
endif
LDFLAGS_STATIC = -DNDEBUG $(LDFLAGS_STATIC_2)
ifdef DEF_FILE
ifdef IS_MINGW
SHARED_EXT=.dll
LDFLAGS = -shared -DEF $(DEF_FILE) $(LDFLAGS_STATIC)
else
SHARED_EXT=.so
LDFLAGS = -shared -fPIC $(LDFLAGS_STATIC)
CC_SHARED=-fPIC
endif
else
LDFLAGS = $(LDFLAGS_STATIC)
# -s is not required for clang, do we need it for GGC ???
# -s
#-static -static-libgcc -static-libstdc++
ifdef IS_MINGW
SHARED_EXT=.exe
else
SHARED_EXT=
endif
endif
PROGPATH = $(O)/$(PROG)$(SHARED_EXT)
PROGPATH_STATIC = $(O)/$(PROG)s$(SHARED_EXT)
ifndef O
O=_o
endif
ifdef IS_MINGW
ifdef MSYSTEM
RM = rm -f
MY_MKDIR=mkdir -p
DEL_OBJ_EXE = -$(RM) $(PROGPATH) $(PROGPATH_STATIC) $(OBJS)
else
RM = del
MY_MKDIR=mkdir
DEL_OBJ_EXE = -$(RM) $(O)\*.o $(O)\$(PROG).exe $(O)\$(PROG).dll
endif
LIB2 = -lOle32 -loleaut32 -luuid -ladvapi32 -lUser32 -lShell32
CFLAGS_EXTRA = -DUNICODE -D_UNICODE
# -Wno-delete-non-virtual-dtor
else
RM = rm -f
MY_MKDIR=mkdir -p
# CFLAGS_BASE := $(CFLAGS_BASE) -DZ7_ST
# CFLAGS_EXTRA = -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE
# LOCAL_LIBS=-lpthread
# LOCAL_LIBS_DLL=$(LOCAL_LIBS) -ldl
LIB2 = -lpthread -ldl
DEL_OBJ_EXE = -$(RM) $(PROGPATH) $(PROGPATH_STATIC) $(OBJS)
endif
ifdef IS_X64
AFLAGS_ABI = -elf64 -DABI_LINUX
else
AFLAGS_ABI = -elf -DABI_LINUX -DABI_CDECL
# -DABI_CDECL
# -DABI_LINUX
# -DABI_CDECL
endif
AFLAGS = $(AFLAGS_ABI) -Fo$(O)/
C_WARN_FLAGS =
CFLAGS = $(LOCAL_FLAGS) $(CFLAGS_BASE2) $(CFLAGS_BASE) $(CFLAGS_EXTRA) $(C_WARN_FLAGS) $(FLAGS_FLTO) $(CC_SHARED) -o $@
STATIC_TARGET=
ifdef COMPL_STATIC
STATIC_TARGET=$(PROGPATH_STATIC)
endif
all: $(O) $(PROGPATH) $(STATIC_TARGET)
$(O):
$(MY_MKDIR) $(O)
ifneq ($(CC), $(CROSS_COMPILE)clang)
LFLAGS_STRIP = -s
endif
LFLAGS_ALL = $(LFLAGS_STRIP) $(MY_ARCH_2) $(LDFLAGS) $(FLAGS_FLTO) $(LD_arch) $(OBJS) $(MY_LIBS) $(LIB2)
$(PROGPATH): $(OBJS)
$(CC) -o $(PROGPATH) $(LFLAGS_ALL)
$(PROGPATH_STATIC): $(OBJS)
$(CC) -static -o $(PROGPATH_STATIC) $(LFLAGS_ALL)
ifndef NO_DEFAULT_RES
# old mingw without -FO
# windres.exe $(RFLAGS) resource.rc $O/resource.o
$O/resource.o: resource.rc
$(RC) $(RFLAGS) resource.rc $(O)/resource.o
endif
# windres.exe $(RFLAGS) resource.rc $(O)\resource.o
# windres.exe $(RFLAGS) resource.rc -FO $(O)/resource.o
# $(RC) $(RFLAGS) resource.rc -FO $(O)/resource.o
$O/7zAlloc.o: ../../../C/7zAlloc.c
$(CC) $(CFLAGS) $<
$O/7zArcIn.o: ../../../C/7zArcIn.c
$(CC) $(CFLAGS) $<
$O/7zBuf.o: ../../../C/7zBuf.c
$(CC) $(CFLAGS) $<
$O/7zBuf2.o: ../../../C/7zBuf2.c
$(CC) $(CFLAGS) $<
$O/7zCrc.o: ../../../C/7zCrc.c
$(CC) $(CFLAGS) $<
$O/7zDec.o: ../../../C/7zDec.c
$(CC) $(CFLAGS) $<
$O/7zFile.o: ../../../C/7zFile.c
$(CC) $(CFLAGS) $<
$O/7zStream.o: ../../../C/7zStream.c
$(CC) $(CFLAGS) $<
$O/Aes.o: ../../../C/Aes.c
$(CC) $(CFLAGS) $<
$O/Alloc.o: ../../../C/Alloc.c
$(CC) $(CFLAGS) $<
$O/Bcj2.o: ../../../C/Bcj2.c
$(CC) $(CFLAGS) $<
$O/Bcj2Enc.o: ../../../C/Bcj2Enc.c
$(CC) $(CFLAGS) $<
$O/Blake2s.o: ../../../C/Blake2s.c
$(CC) $(CFLAGS) $<
$O/Bra.o: ../../../C/Bra.c
$(CC) $(CFLAGS) $<
$O/Bra86.o: ../../../C/Bra86.c
$(CC) $(CFLAGS) $<
$O/BraIA64.o: ../../../C/BraIA64.c
$(CC) $(CFLAGS) $<
$O/BwtSort.o: ../../../C/BwtSort.c
$(CC) $(CFLAGS) $<
$O/CpuArch.o: ../../../C/CpuArch.c
$(CC) $(CFLAGS) $<
$O/Delta.o: ../../../C/Delta.c
$(CC) $(CFLAGS) $<
$O/DllSecur.o: ../../../C/DllSecur.c
$(CC) $(CFLAGS) $<
$O/HuffEnc.o: ../../../C/HuffEnc.c
$(CC) $(CFLAGS) $<
$O/LzFind.o: ../../../C/LzFind.c
$(CC) $(CFLAGS) $<
# ifdef MT_FILES
$O/LzFindMt.o: ../../../C/LzFindMt.c
$(CC) $(CFLAGS) $<
$O/LzFindOpt.o: ../../../C/LzFindOpt.c
$(CC) $(CFLAGS) $<
$O/Threads.o: ../../../C/Threads.c
$(CC) $(CFLAGS) $<
# endif
$O/LzmaEnc.o: ../../../C/LzmaEnc.c
$(CC) $(CFLAGS) $<
$O/Lzma86Dec.o: ../../../C/Lzma86Dec.c
$(CC) $(CFLAGS) $<
$O/Lzma86Enc.o: ../../../C/Lzma86Enc.c
$(CC) $(CFLAGS) $<
$O/Lzma2Dec.o: ../../../C/Lzma2Dec.c
$(CC) $(CFLAGS) $<
$O/Lzma2DecMt.o: ../../../C/Lzma2DecMt.c
$(CC) $(CFLAGS) $<
$O/Lzma2Enc.o: ../../../C/Lzma2Enc.c
$(CC) $(CFLAGS) $<
$O/LzmaLib.o: ../../../C/LzmaLib.c
$(CC) $(CFLAGS) $<
$O/MtCoder.o: ../../../C/MtCoder.c
$(CC) $(CFLAGS) $<
$O/MtDec.o: ../../../C/MtDec.c
$(CC) $(CFLAGS) $<
$O/Ppmd7.o: ../../../C/Ppmd7.c
$(CC) $(CFLAGS) $<
$O/Ppmd7aDec.o: ../../../C/Ppmd7aDec.c
$(CC) $(CFLAGS) $<
$O/Ppmd7Dec.o: ../../../C/Ppmd7Dec.c
$(CC) $(CFLAGS) $<
$O/Ppmd7Enc.o: ../../../C/Ppmd7Enc.c
$(CC) $(CFLAGS) $<
$O/Ppmd8.o: ../../../C/Ppmd8.c
$(CC) $(CFLAGS) $<
$O/Ppmd8Dec.o: ../../../C/Ppmd8Dec.c
$(CC) $(CFLAGS) $<
$O/Ppmd8Enc.o: ../../../C/Ppmd8Enc.c
$(CC) $(CFLAGS) $<
$O/Sha1.o: ../../../C/Sha1.c
$(CC) $(CFLAGS) $<
$O/Sha256.o: ../../../C/Sha256.c
$(CC) $(CFLAGS) $<
$O/Sort.o: ../../../C/Sort.c
$(CC) $(CFLAGS) $<
$O/SwapBytes.o: ../../../C/SwapBytes.c
$(CC) $(CFLAGS) $<
$O/Xz.o: ../../../C/Xz.c
$(CC) $(CFLAGS) $<
$O/XzCrc64.o: ../../../C/XzCrc64.c
$(CC) $(CFLAGS) $<
$O/XzDec.o: ../../../C/XzDec.c
$(CC) $(CFLAGS) $<
$O/XzEnc.o: ../../../C/XzEnc.c
$(CC) $(CFLAGS) $<
$O/XzIn.o: ../../../C/XzIn.c
$(CC) $(CFLAGS) $<
ifdef USE_ASM
ifdef IS_X64
USE_X86_ASM=1
else
ifdef IS_X86
USE_X86_ASM=1
endif
endif
endif
ifdef USE_X86_ASM
$O/7zCrcOpt.o: ../../../Asm/x86/7zCrcOpt.asm
$(MY_ASM) $(AFLAGS) $<
$O/XzCrc64Opt.o: ../../../Asm/x86/XzCrc64Opt.asm
$(MY_ASM) $(AFLAGS) $<
$O/AesOpt.o: ../../../Asm/x86/AesOpt.asm
$(MY_ASM) $(AFLAGS) $<
$O/Sha1Opt.o: ../../../Asm/x86/Sha1Opt.asm
$(MY_ASM) $(AFLAGS) $<
$O/Sha256Opt.o: ../../../Asm/x86/Sha256Opt.asm
$(MY_ASM) $(AFLAGS) $<
else
$O/7zCrcOpt.o: ../../7zCrcOpt.c
$(CC) $(CFLAGS) $<
$O/XzCrc64Opt.o: ../../XzCrc64Opt.c
$(CC) $(CFLAGS) $<
$O/Sha1Opt.o: ../../Sha1Opt.c
$(CC) $(CFLAGS) $<
$O/Sha256Opt.o: ../../Sha256Opt.c
$(CC) $(CFLAGS) $<
$O/AesOpt.o: ../../AesOpt.c
$(CC) $(CFLAGS) $<
endif
ifdef USE_LZMA_DEC_ASM
ifdef IS_X64
$O/LzmaDecOpt.o: ../../../Asm/x86/LzmaDecOpt.asm
$(MY_ASM) $(AFLAGS) $<
endif
ifdef IS_ARM64
$O/LzmaDecOpt.o: ../../../Asm/arm64/LzmaDecOpt.S ../../../Asm/arm64/7zAsm.S
$(CC) $(CFLAGS) $<
endif
$O/LzmaDec.o: ../../LzmaDec.c
$(CC) $(CFLAGS) -DZ7_LZMA_DEC_OPT $<
else
$O/LzmaDec.o: ../../LzmaDec.c
$(CC) $(CFLAGS) $<
endif
$O/7zMain.o: ../../../C/Util/7z/7zMain.c
$(CC) $(CFLAGS) $<
$O/7zipInstall.o: ../../../C/Util/7zipInstall/7zipInstall.c
$(CC) $(CFLAGS) $<
$O/7zipUninstall.o: ../../../C/Util/7zipUninstall/7zipUninstall.c
$(CC) $(CFLAGS) $<
$O/LzmaUtil.o: ../../../C/Util/Lzma/LzmaUtil.c
$(CC) $(CFLAGS) $<
$O/XzUtil.o: ../../../C/Util/Xz/XzUtil.c
$(CC) $(CFLAGS) $<
clean:
-$(DEL_OBJ_EXE)

225
C/Aes.c Normal file → Executable file
View File

@@ -1,10 +1,17 @@
/* Aes.c -- AES encryption / decryption
2017-01-24 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Aes.h"
#include "CpuArch.h"
#include "Aes.h"
AES_CODE_FUNC g_AesCbc_Decode;
#ifndef Z7_SFX
AES_CODE_FUNC g_AesCbc_Encode;
AES_CODE_FUNC g_AesCtr_Code;
UInt32 g_Aes_SupportedFunctions_Flags;
#endif
static UInt32 T[256 * 4];
static const Byte Sbox[256] = {
@@ -25,23 +32,10 @@ static const Byte Sbox[256] = {
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
void MY_FAST_CALL AesCbc_Encode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Decode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCtr_Code(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Encode_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Decode_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCtr_Code_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
AES_CODE_FUNC g_AesCbc_Encode;
AES_CODE_FUNC g_AesCbc_Decode;
AES_CODE_FUNC g_AesCtr_Code;
static UInt32 D[256 * 4];
static Byte InvS[256];
static const Byte Rcon[11] = { 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
#define xtime(x) ((((x) << 1) ^ (((x) & 0x80) != 0 ? 0x1B : 0)) & 0xFF)
#define Ui32(a0, a1, a2, a3) ((UInt32)(a0) | ((UInt32)(a1) << 8) | ((UInt32)(a2) << 16) | ((UInt32)(a3) << 24))
@@ -57,6 +51,36 @@ static const Byte Rcon[11] = { 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0
#define DD(x) (D + (x << 8))
// #define Z7_SHOW_AES_STATUS
#ifdef MY_CPU_X86_OR_AMD64
#define USE_HW_AES
#elif defined(MY_CPU_ARM_OR_ARM64) && defined(MY_CPU_LE)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_AES
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_AES
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_AES
#endif
#endif
#endif
#ifdef USE_HW_AES
#ifdef Z7_SHOW_AES_STATUS
#include <stdio.h>
#define PRF(x) x
#else
#define PRF(x)
#endif
#endif
void AesGenTables(void)
{
unsigned i;
@@ -66,23 +90,23 @@ void AesGenTables(void)
for (i = 0; i < 256; i++)
{
{
UInt32 a1 = Sbox[i];
UInt32 a2 = xtime(a1);
UInt32 a3 = a2 ^ a1;
const UInt32 a1 = Sbox[i];
const UInt32 a2 = xtime(a1);
const UInt32 a3 = a2 ^ a1;
TT(0)[i] = Ui32(a2, a1, a1, a3);
TT(1)[i] = Ui32(a3, a2, a1, a1);
TT(2)[i] = Ui32(a1, a3, a2, a1);
TT(3)[i] = Ui32(a1, a1, a3, a2);
}
{
UInt32 a1 = InvS[i];
UInt32 a2 = xtime(a1);
UInt32 a4 = xtime(a2);
UInt32 a8 = xtime(a4);
UInt32 a9 = a8 ^ a1;
UInt32 aB = a8 ^ a2 ^ a1;
UInt32 aD = a8 ^ a4 ^ a1;
UInt32 aE = a8 ^ a4 ^ a2;
const UInt32 a1 = InvS[i];
const UInt32 a2 = xtime(a1);
const UInt32 a4 = xtime(a2);
const UInt32 a8 = xtime(a4);
const UInt32 a9 = a8 ^ a1;
const UInt32 aB = a8 ^ a2 ^ a1;
const UInt32 aD = a8 ^ a4 ^ a1;
const UInt32 aE = a8 ^ a4 ^ a2;
DD(0)[i] = Ui32(aE, a9, aD, aB);
DD(1)[i] = Ui32(aB, aE, a9, aD);
DD(2)[i] = Ui32(aD, aB, aE, a9);
@@ -90,18 +114,48 @@ void AesGenTables(void)
}
}
g_AesCbc_Encode = AesCbc_Encode;
g_AesCbc_Decode = AesCbc_Decode;
g_AesCtr_Code = AesCtr_Code;
#ifdef MY_CPU_X86_OR_AMD64
if (CPU_Is_Aes_Supported())
{
g_AesCbc_Encode = AesCbc_Encode_Intel;
g_AesCbc_Decode = AesCbc_Decode_Intel;
g_AesCtr_Code = AesCtr_Code_Intel;
AES_CODE_FUNC d = AesCbc_Decode;
#ifndef Z7_SFX
AES_CODE_FUNC e = AesCbc_Encode;
AES_CODE_FUNC c = AesCtr_Code;
UInt32 flags = 0;
#endif
#ifdef USE_HW_AES
if (CPU_IsSupported_AES())
{
// #pragma message ("AES HW")
PRF(printf("\n===AES HW\n"));
d = AesCbc_Decode_HW;
#ifndef Z7_SFX
e = AesCbc_Encode_HW;
c = AesCtr_Code_HW;
flags = k_Aes_SupportedFunctions_HW;
#endif
#ifdef MY_CPU_X86_OR_AMD64
if (CPU_IsSupported_VAES_AVX2())
{
PRF(printf("\n===vaes avx2\n"));
d = AesCbc_Decode_HW_256;
#ifndef Z7_SFX
c = AesCtr_Code_HW_256;
flags |= k_Aes_SupportedFunctions_HW_256;
#endif
}
#endif
}
#endif
g_AesCbc_Decode = d;
#ifndef Z7_SFX
g_AesCbc_Encode = e;
g_AesCtr_Code = c;
g_Aes_SupportedFunctions_Flags = flags;
#endif
}
}
@@ -140,10 +194,13 @@ void AesGenTables(void)
#define FD(i, x) InvS[gb(x, m[(i - x) & 3])]
#define FD4(i) dest[i] = Ui32(FD(i, 0), FD(i, 1), FD(i, 2), FD(i, 3)) ^ w[i];
void MY_FAST_CALL Aes_SetKey_Enc(UInt32 *w, const Byte *key, unsigned keySize)
void Z7_FASTCALL Aes_SetKey_Enc(UInt32 *w, const Byte *key, unsigned keySize)
{
unsigned i, wSize;
wSize = keySize + 28;
unsigned i, m;
const UInt32 *wLim;
UInt32 t;
UInt32 rcon = 1;
keySize /= 4;
w[0] = ((UInt32)keySize / 2) + 3;
w += 4;
@@ -151,19 +208,29 @@ void MY_FAST_CALL Aes_SetKey_Enc(UInt32 *w, const Byte *key, unsigned keySize)
for (i = 0; i < keySize; i++, key += 4)
w[i] = GetUi32(key);
for (; i < wSize; i++)
t = w[(size_t)keySize - 1];
wLim = w + (size_t)keySize * 3 + 28;
m = 0;
do
{
UInt32 t = w[(size_t)i - 1];
unsigned rem = i % keySize;
if (rem == 0)
t = Ui32(Sbox[gb1(t)] ^ Rcon[i / keySize], Sbox[gb2(t)], Sbox[gb3(t)], Sbox[gb0(t)]);
else if (keySize > 6 && rem == 4)
if (m == 0)
{
t = Ui32(Sbox[gb1(t)] ^ rcon, Sbox[gb2(t)], Sbox[gb3(t)], Sbox[gb0(t)]);
rcon <<= 1;
if (rcon & 0x100)
rcon = 0x1b;
m = keySize;
}
else if (m == 4 && keySize > 6)
t = Ui32(Sbox[gb0(t)], Sbox[gb1(t)], Sbox[gb2(t)], Sbox[gb3(t)]);
w[i] = w[i - keySize] ^ t;
m--;
t ^= w[0];
w[keySize] = t;
}
while (++w != wLim);
}
void MY_FAST_CALL Aes_SetKey_Dec(UInt32 *w, const Byte *key, unsigned keySize)
void Z7_FASTCALL Aes_SetKey_Dec(UInt32 *w, const Byte *key, unsigned keySize)
{
unsigned i, num;
Aes_SetKey_Enc(w, key, keySize);
@@ -184,6 +251,7 @@ void MY_FAST_CALL Aes_SetKey_Dec(UInt32 *w, const Byte *key, unsigned keySize)
src and dest are pointers to 4 UInt32 words.
src and dest can point to same block */
// Z7_FORCE_INLINE
static void Aes_Encode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
{
UInt32 s[4];
@@ -197,16 +265,20 @@ static void Aes_Encode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
w += 4;
for (;;)
{
HT16(m, s, 0);
HT16(m, s, 0)
if (--numRounds2 == 0)
break;
HT16(s, m, 4);
HT16(s, m, 4)
w += 8;
}
w += 4;
FT4(0); FT4(1); FT4(2); FT4(3);
FT4(0)
FT4(1)
FT4(2)
FT4(3)
}
Z7_FORCE_INLINE
static void Aes_Decode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
{
UInt32 s[4];
@@ -220,12 +292,15 @@ static void Aes_Decode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
for (;;)
{
w -= 8;
HD16(m, s, 4);
HD16(m, s, 4)
if (--numRounds2 == 0)
break;
HD16(s, m, 0);
HD16(s, m, 0)
}
FD4(0); FD4(1); FD4(2); FD4(3);
FD4(0)
FD4(1)
FD4(2)
FD4(3)
}
void AesCbc_Init(UInt32 *p, const Byte *iv)
@@ -235,7 +310,7 @@ void AesCbc_Init(UInt32 *p, const Byte *iv)
p[i] = GetUi32(iv + i * 4);
}
void MY_FAST_CALL AesCbc_Encode(UInt32 *p, Byte *data, size_t numBlocks)
void Z7_FASTCALL AesCbc_Encode(UInt32 *p, Byte *data, size_t numBlocks)
{
for (; numBlocks != 0; numBlocks--, data += AES_BLOCK_SIZE)
{
@@ -246,14 +321,14 @@ void MY_FAST_CALL AesCbc_Encode(UInt32 *p, Byte *data, size_t numBlocks)
Aes_Encode(p + 4, p, p);
SetUi32(data, p[0]);
SetUi32(data + 4, p[1]);
SetUi32(data + 8, p[2]);
SetUi32(data + 12, p[3]);
SetUi32(data, p[0])
SetUi32(data + 4, p[1])
SetUi32(data + 8, p[2])
SetUi32(data + 12, p[3])
}
}
void MY_FAST_CALL AesCbc_Decode(UInt32 *p, Byte *data, size_t numBlocks)
void Z7_FASTCALL AesCbc_Decode(UInt32 *p, Byte *data, size_t numBlocks)
{
UInt32 in[4], out[4];
for (; numBlocks != 0; numBlocks--, data += AES_BLOCK_SIZE)
@@ -265,10 +340,10 @@ void MY_FAST_CALL AesCbc_Decode(UInt32 *p, Byte *data, size_t numBlocks)
Aes_Decode(p + 4, out, in);
SetUi32(data, p[0] ^ out[0]);
SetUi32(data + 4, p[1] ^ out[1]);
SetUi32(data + 8, p[2] ^ out[2]);
SetUi32(data + 12, p[3] ^ out[3]);
SetUi32(data, p[0] ^ out[0])
SetUi32(data + 4, p[1] ^ out[1])
SetUi32(data + 8, p[2] ^ out[2])
SetUi32(data + 12, p[3] ^ out[3])
p[0] = in[0];
p[1] = in[1];
@@ -277,7 +352,7 @@ void MY_FAST_CALL AesCbc_Decode(UInt32 *p, Byte *data, size_t numBlocks)
}
}
void MY_FAST_CALL AesCtr_Code(UInt32 *p, Byte *data, size_t numBlocks)
void Z7_FASTCALL AesCtr_Code(UInt32 *p, Byte *data, size_t numBlocks)
{
for (; numBlocks != 0; numBlocks--)
{
@@ -291,16 +366,28 @@ void MY_FAST_CALL AesCtr_Code(UInt32 *p, Byte *data, size_t numBlocks)
for (i = 0; i < 4; i++, data += 4)
{
UInt32 t = temp[i];
const UInt32 t = temp[i];
#ifdef MY_CPU_LE_UNALIGN
*((UInt32 *)data) ^= t;
*((UInt32 *)(void *)data) ^= t;
#else
data[0] ^= (t & 0xFF);
data[1] ^= ((t >> 8) & 0xFF);
data[2] ^= ((t >> 16) & 0xFF);
data[3] ^= ((t >> 24));
data[0] = (Byte)(data[0] ^ (t & 0xFF));
data[1] = (Byte)(data[1] ^ ((t >> 8) & 0xFF));
data[2] = (Byte)(data[2] ^ ((t >> 16) & 0xFF));
data[3] = (Byte)(data[3] ^ ((t >> 24)));
#endif
}
}
}
#undef xtime
#undef Ui32
#undef gb0
#undef gb1
#undef gb2
#undef gb3
#undef gb
#undef TT
#undef DD
#undef USE_HW_AES
#undef PRF

38
C/Aes.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* Aes.h -- AES encryption / decryption
2013-01-18 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __AES_H
#define __AES_H
#ifndef ZIP7_INC_AES_H
#define ZIP7_INC_AES_H
#include "7zTypes.h"
@@ -20,18 +20,40 @@ void AesGenTables(void);
/* aes - 16-byte aligned pointer to keyMode+roundKeys sequence */
/* keySize = 16 or 24 or 32 (bytes) */
typedef void (MY_FAST_CALL *AES_SET_KEY_FUNC)(UInt32 *aes, const Byte *key, unsigned keySize);
void MY_FAST_CALL Aes_SetKey_Enc(UInt32 *aes, const Byte *key, unsigned keySize);
void MY_FAST_CALL Aes_SetKey_Dec(UInt32 *aes, const Byte *key, unsigned keySize);
typedef void (Z7_FASTCALL *AES_SET_KEY_FUNC)(UInt32 *aes, const Byte *key, unsigned keySize);
void Z7_FASTCALL Aes_SetKey_Enc(UInt32 *aes, const Byte *key, unsigned keySize);
void Z7_FASTCALL Aes_SetKey_Dec(UInt32 *aes, const Byte *key, unsigned keySize);
/* ivAes - 16-byte aligned pointer to iv+keyMode+roundKeys sequence: UInt32[AES_NUM_IVMRK_WORDS] */
void AesCbc_Init(UInt32 *ivAes, const Byte *iv); /* iv size is AES_BLOCK_SIZE */
/* data - 16-byte aligned pointer to data */
/* numBlocks - the number of 16-byte blocks in data array */
typedef void (MY_FAST_CALL *AES_CODE_FUNC)(UInt32 *ivAes, Byte *data, size_t numBlocks);
extern AES_CODE_FUNC g_AesCbc_Encode;
typedef void (Z7_FASTCALL *AES_CODE_FUNC)(UInt32 *ivAes, Byte *data, size_t numBlocks);
extern AES_CODE_FUNC g_AesCbc_Decode;
#ifndef Z7_SFX
extern AES_CODE_FUNC g_AesCbc_Encode;
extern AES_CODE_FUNC g_AesCtr_Code;
#define k_Aes_SupportedFunctions_HW (1 << 2)
#define k_Aes_SupportedFunctions_HW_256 (1 << 3)
extern UInt32 g_Aes_SupportedFunctions_Flags;
#endif
#define Z7_DECLARE_AES_CODE_FUNC(funcName) \
void Z7_FASTCALL funcName(UInt32 *ivAes, Byte *data, size_t numBlocks);
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Encode)
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Decode)
Z7_DECLARE_AES_CODE_FUNC (AesCtr_Code)
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Encode_HW)
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Decode_HW)
Z7_DECLARE_AES_CODE_FUNC (AesCtr_Code_HW)
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Decode_HW_256)
Z7_DECLARE_AES_CODE_FUNC (AesCtr_Code_HW_256)
EXTERN_C_END

878
C/AesOpt.c Normal file → Executable file
View File

@@ -1,184 +1,840 @@
/* AesOpt.c -- Intel's AES
2013-11-12 : Igor Pavlov : Public domain */
/* AesOpt.c -- AES optimized code for x86 AES hardware instructions
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Aes.h"
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#if _MSC_VER >= 1500
#define USE_INTEL_AES
#if defined(__INTEL_COMPILER)
#if (__INTEL_COMPILER >= 1110)
#define USE_INTEL_AES
#if (__INTEL_COMPILER >= 1900)
#define USE_INTEL_VAES
#endif
#endif
#elif defined(__clang__) && (__clang_major__ > 3 || __clang_major__ == 3 && __clang_minor__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4)
#define USE_INTEL_AES
#if !defined(__AES__)
#define ATTRIB_AES __attribute__((__target__("aes")))
#endif
#if defined(__clang__) && (__clang_major__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ >= 8)
#define USE_INTEL_VAES
#if !defined(__AES__) || !defined(__VAES__) || !defined(__AVX__) || !defined(__AVX2__)
#define ATTRIB_VAES __attribute__((__target__("aes,vaes,avx,avx2")))
#endif
#endif
#elif defined(_MSC_VER)
#if (_MSC_VER > 1500) || (_MSC_FULL_VER >= 150030729)
#define USE_INTEL_AES
#if (_MSC_VER >= 1910)
#define USE_INTEL_VAES
#endif
#endif
#endif
#ifndef ATTRIB_AES
#define ATTRIB_AES
#endif
#ifndef ATTRIB_VAES
#define ATTRIB_VAES
#endif
#ifdef USE_INTEL_AES
#include <wmmintrin.h>
void MY_FAST_CALL AesCbc_Encode_Intel(__m128i *p, __m128i *data, size_t numBlocks)
#ifndef USE_INTEL_VAES
#define AES_TYPE_keys UInt32
#define AES_TYPE_data Byte
// #define AES_TYPE_keys __m128i
// #define AES_TYPE_data __m128i
#endif
#define AES_FUNC_START(name) \
void Z7_FASTCALL name(UInt32 *ivAes, Byte *data8, size_t numBlocks)
// void Z7_FASTCALL name(__m128i *p, __m128i *data, size_t numBlocks)
#define AES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_AES \
AES_FUNC_START (name)
#define MM_OP(op, dest, src) dest = op(dest, src);
#define MM_OP_m(op, src) MM_OP(op, m, src)
#define MM_XOR( dest, src) MM_OP(_mm_xor_si128, dest, src)
#define AVX_XOR(dest, src) MM_OP(_mm256_xor_si256, dest, src)
AES_FUNC_START2 (AesCbc_Encode_HW)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i m = *p;
const __m128i k0 = p[2];
const __m128i k1 = p[3];
const UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
for (; numBlocks != 0; numBlocks--, data++)
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
const __m128i *w = p + 3;
m = _mm_xor_si128(m, *data);
m = _mm_xor_si128(m, p[2]);
UInt32 r = numRounds2;
const __m128i *w = p + 4;
__m128i temp = *data;
MM_XOR (temp, k0)
MM_XOR (m, temp)
MM_OP_m (_mm_aesenc_si128, k1)
do
{
m = _mm_aesenc_si128(m, w[0]);
m = _mm_aesenc_si128(m, w[1]);
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenc_si128, w[1])
w += 2;
}
while (--numRounds2 != 0);
m = _mm_aesenc_si128(m, w[0]);
m = _mm_aesenclast_si128(m, w[1]);
while (--r);
MM_OP_m (_mm_aesenclast_si128, w[0])
*data = m;
}
*p = m;
}
#define NUM_WAYS 3
#define AES_OP_W(op, n) { \
const __m128i t = w[n]; \
m0 = op(m0, t); \
m1 = op(m1, t); \
m2 = op(m2, t); \
}
#define WOP_1(op)
#define WOP_2(op) WOP_1 (op) op (m1, 1)
#define WOP_3(op) WOP_2 (op) op (m2, 2)
#define WOP_4(op) WOP_3 (op) op (m3, 3)
#ifdef MY_CPU_AMD64
#define WOP_5(op) WOP_4 (op) op (m4, 4)
#define WOP_6(op) WOP_5 (op) op (m5, 5)
#define WOP_7(op) WOP_6 (op) op (m6, 6)
#define WOP_8(op) WOP_7 (op) op (m7, 7)
#endif
/*
#define WOP_9(op) WOP_8 (op) op (m8, 8);
#define WOP_10(op) WOP_9 (op) op (m9, 9);
#define WOP_11(op) WOP_10(op) op (m10, 10);
#define WOP_12(op) WOP_11(op) op (m11, 11);
#define WOP_13(op) WOP_12(op) op (m12, 12);
#define WOP_14(op) WOP_13(op) op (m13, 13);
*/
#define AES_DEC(n) AES_OP_W(_mm_aesdec_si128, n)
#define AES_DEC_LAST(n) AES_OP_W(_mm_aesdeclast_si128, n)
#define AES_ENC(n) AES_OP_W(_mm_aesenc_si128, n)
#define AES_ENC_LAST(n) AES_OP_W(_mm_aesenclast_si128, n)
#ifdef MY_CPU_AMD64
#define NUM_WAYS 8
#define WOP_M1 WOP_8
#else
#define NUM_WAYS 4
#define WOP_M1 WOP_4
#endif
void MY_FAST_CALL AesCbc_Decode_Intel(__m128i *p, __m128i *data, size_t numBlocks)
#define WOP(op) op (m0, 0) WOP_M1(op)
#define DECLARE_VAR(reg, ii) __m128i reg;
#define LOAD_data( reg, ii) reg = data[ii];
#define STORE_data( reg, ii) data[ii] = reg;
#if (NUM_WAYS > 1)
#define XOR_data_M1(reg, ii) MM_XOR (reg, data[ii- 1])
#endif
#define AVX_DECLARE_VAR(reg, ii) __m256i reg;
#define AVX_LOAD_data( reg, ii) reg = ((const __m256i *)(const void *)data)[ii];
#define AVX_STORE_data( reg, ii) ((__m256i *)(void *)data)[ii] = reg;
#define AVX_XOR_data_M1(reg, ii) AVX_XOR (reg, (((const __m256i *)(const void *)(data - 1))[ii]))
#define MM_OP_key(op, reg) MM_OP(op, reg, key);
#define AES_DEC( reg, ii) MM_OP_key (_mm_aesdec_si128, reg)
#define AES_DEC_LAST( reg, ii) MM_OP_key (_mm_aesdeclast_si128, reg)
#define AES_ENC( reg, ii) MM_OP_key (_mm_aesenc_si128, reg)
#define AES_ENC_LAST( reg, ii) MM_OP_key (_mm_aesenclast_si128, reg)
#define AES_XOR( reg, ii) MM_OP_key (_mm_xor_si128, reg)
#define AVX_AES_DEC( reg, ii) MM_OP_key (_mm256_aesdec_epi128, reg)
#define AVX_AES_DEC_LAST( reg, ii) MM_OP_key (_mm256_aesdeclast_epi128, reg)
#define AVX_AES_ENC( reg, ii) MM_OP_key (_mm256_aesenc_epi128, reg)
#define AVX_AES_ENC_LAST( reg, ii) MM_OP_key (_mm256_aesenclast_epi128, reg)
#define AVX_AES_XOR( reg, ii) MM_OP_key (_mm256_xor_si256, reg)
#define CTR_START(reg, ii) MM_OP (_mm_add_epi64, ctr, one) reg = ctr;
#define CTR_END( reg, ii) MM_XOR (data[ii], reg)
#define AVX_CTR_START(reg, ii) MM_OP (_mm256_add_epi64, ctr2, two) reg = _mm256_xor_si256(ctr2, key);
#define AVX_CTR_END( reg, ii) AVX_XOR (((__m256i *)(void *)data)[ii], reg)
#define WOP_KEY(op, n) { \
const __m128i key = w[n]; \
WOP(op); }
#define AVX_WOP_KEY(op, n) { \
const __m256i key = w[n]; \
WOP(op); }
#define WIDE_LOOP_START \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS) \
{ dataEnd -= NUM_WAYS; do { \
#define WIDE_LOOP_END \
data += NUM_WAYS; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS; } \
#define SINGLE_LOOP \
for (; data < dataEnd; data++)
#define NUM_AES_KEYS_MAX 15
#define WIDE_LOOP_START_AVX(OP) \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS * 2) \
{ __m256i keys[NUM_AES_KEYS_MAX]; \
UInt32 ii; \
OP \
for (ii = 0; ii < numRounds; ii++) \
keys[ii] = _mm256_broadcastsi128_si256(p[ii]); \
dataEnd -= NUM_WAYS * 2; do { \
#define WIDE_LOOP_END_AVX(OP) \
data += NUM_WAYS * 2; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS * 2; \
OP \
_mm256_zeroupper(); \
} \
/* MSVC for x86: If we don't call _mm256_zeroupper(), and -arch:IA32 is not specified,
MSVC still can insert vzeroupper instruction. */
AES_FUNC_START2 (AesCbc_Decode_HW)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i iv = *p;
for (; numBlocks >= NUM_WAYS; numBlocks -= NUM_WAYS, data += NUM_WAYS)
const __m128i *wStart = p + *(const UInt32 *)(p + 1) * 2 + 2 - 1;
const __m128i *dataEnd;
p += 2;
WIDE_LOOP_START
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1);
const __m128i *w = p + numRounds2 * 2;
__m128i m0, m1, m2;
{
const __m128i t = w[2];
m0 = _mm_xor_si128(t, data[0]);
m1 = _mm_xor_si128(t, data[1]);
m2 = _mm_xor_si128(t, data[2]);
}
numRounds2--;
const __m128i *w = wStart;
WOP (DECLARE_VAR)
WOP (LOAD_data)
WOP_KEY (AES_XOR, 1)
do
{
AES_DEC(1)
AES_DEC(0)
w -= 2;
WOP_KEY (AES_DEC, 0)
w--;
}
while (--numRounds2 != 0);
AES_DEC(1)
AES_DEC_LAST(0)
while (w != p);
WOP_KEY (AES_DEC_LAST, 0)
{
__m128i t;
t = _mm_xor_si128(m0, iv); iv = data[0]; data[0] = t;
t = _mm_xor_si128(m1, iv); iv = data[1]; data[1] = t;
t = _mm_xor_si128(m2, iv); iv = data[2]; data[2] = t;
}
MM_XOR (m0, iv)
WOP_M1 (XOR_data_M1)
iv = data[NUM_WAYS - 1];
WOP (STORE_data)
}
for (; numBlocks != 0; numBlocks--, data++)
WIDE_LOOP_END
SINGLE_LOOP
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1);
const __m128i *w = p + numRounds2 * 2;
__m128i m = _mm_xor_si128(w[2], *data);
numRounds2--;
const __m128i *w = wStart - 1;
__m128i m = _mm_xor_si128 (w[2], *data);
do
{
m = _mm_aesdec_si128(m, w[1]);
m = _mm_aesdec_si128(m, w[0]);
MM_OP_m (_mm_aesdec_si128, w[1])
MM_OP_m (_mm_aesdec_si128, w[0])
w -= 2;
}
while (--numRounds2 != 0);
m = _mm_aesdec_si128(m, w[1]);
m = _mm_aesdeclast_si128(m, w[0]);
while (w != p);
MM_OP_m (_mm_aesdec_si128, w[1])
MM_OP_m (_mm_aesdeclast_si128, w[0])
m = _mm_xor_si128(m, iv);
MM_XOR (m, iv)
iv = *data;
*data = m;
}
*p = iv;
p[-2] = iv;
}
void MY_FAST_CALL AesCtr_Code_Intel(__m128i *p, __m128i *data, size_t numBlocks)
AES_FUNC_START2 (AesCtr_Code_HW)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i ctr = *p;
__m128i one;
one.m128i_u64[0] = 1;
one.m128i_u64[1] = 0;
for (; numBlocks >= NUM_WAYS; numBlocks -= NUM_WAYS, data += NUM_WAYS)
UInt32 numRoundsMinus2 = *(const UInt32 *)(p + 1) * 2 - 1;
const __m128i *dataEnd;
__m128i one = _mm_cvtsi32_si128(1);
p += 2;
WIDE_LOOP_START
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
const __m128i *w = p;
__m128i m0, m1, m2;
{
const __m128i t = w[2];
ctr = _mm_add_epi64(ctr, one); m0 = _mm_xor_si128(ctr, t);
ctr = _mm_add_epi64(ctr, one); m1 = _mm_xor_si128(ctr, t);
ctr = _mm_add_epi64(ctr, one); m2 = _mm_xor_si128(ctr, t);
}
w += 3;
UInt32 r = numRoundsMinus2;
WOP (DECLARE_VAR)
WOP (CTR_START)
WOP_KEY (AES_XOR, 0)
w += 1;
do
{
AES_ENC(0)
AES_ENC(1)
w += 2;
WOP_KEY (AES_ENC, 0)
w += 1;
}
while (--numRounds2 != 0);
AES_ENC(0)
AES_ENC_LAST(1)
data[0] = _mm_xor_si128(data[0], m0);
data[1] = _mm_xor_si128(data[1], m1);
data[2] = _mm_xor_si128(data[2], m2);
while (--r);
WOP_KEY (AES_ENC_LAST, 0)
WOP (CTR_END)
}
for (; numBlocks != 0; numBlocks--, data++)
WIDE_LOOP_END
SINGLE_LOOP
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
UInt32 numRounds2 = *(const UInt32 *)(p - 2 + 1) - 1;
const __m128i *w = p;
__m128i m;
ctr = _mm_add_epi64(ctr, one);
m = _mm_xor_si128(ctr, p[2]);
w += 3;
MM_OP (_mm_add_epi64, ctr, one)
m = _mm_xor_si128 (ctr, p[0]);
w += 1;
do
{
m = _mm_aesenc_si128(m, w[0]);
m = _mm_aesenc_si128(m, w[1]);
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenc_si128, w[1])
w += 2;
}
while (--numRounds2 != 0);
m = _mm_aesenc_si128(m, w[0]);
m = _mm_aesenclast_si128(m, w[1]);
*data = _mm_xor_si128(*data, m);
while (--numRounds2);
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenclast_si128, w[1])
MM_XOR (*data, m)
}
*p = ctr;
p[-2] = ctr;
}
#else
void MY_FAST_CALL AesCbc_Encode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Decode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCtr_Code(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Encode_Intel(UInt32 *p, Byte *data, size_t numBlocks)
#ifdef USE_INTEL_VAES
/*
GCC before 2013-Jun:
<immintrin.h>:
#ifdef __AVX__
#include <avxintrin.h>
#endif
GCC after 2013-Jun:
<immintrin.h>:
#include <avxintrin.h>
CLANG 3.8+:
{
AesCbc_Encode(p, data, numBlocks);
<immintrin.h>:
#if !defined(_MSC_VER) || defined(__AVX__)
#include <avxintrin.h>
#endif
if (the compiler is clang for Windows and if global arch is not set for __AVX__)
[ if (defined(_MSC_VER) && !defined(__AVX__)) ]
{
<immintrin.h> doesn't include <avxintrin.h>
and we have 2 ways to fix it:
1) we can define required __AVX__ before <immintrin.h>
or
2) we can include <avxintrin.h> after <immintrin.h>
}
}
void MY_FAST_CALL AesCbc_Decode_Intel(UInt32 *p, Byte *data, size_t numBlocks)
{
AesCbc_Decode(p, data, numBlocks);
}
void MY_FAST_CALL AesCtr_Code_Intel(UInt32 *p, Byte *data, size_t numBlocks)
{
AesCtr_Code(p, data, numBlocks);
}
If we include <avxintrin.h> manually for GCC/CLANG, it's
required that <immintrin.h> must be included before <avxintrin.h>.
*/
/*
#if defined(__clang__) && defined(_MSC_VER)
#define __AVX__
#define __AVX2__
#define __VAES__
#endif
*/
#include <immintrin.h>
#if defined(__clang__) && defined(_MSC_VER)
#if !defined(__AVX__)
#include <avxintrin.h>
#endif
#if !defined(__AVX2__)
#include <avx2intrin.h>
#endif
#if !defined(__VAES__)
#include <vaesintrin.h>
#endif
#endif // __clang__ && _MSC_VER
#define VAES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_VAES \
AES_FUNC_START (name)
VAES_FUNC_START2 (AesCbc_Decode_HW_256)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i iv = *p;
const __m128i *dataEnd;
UInt32 numRounds = *(const UInt32 *)(p + 1) * 2 + 1;
p += 2;
WIDE_LOOP_START_AVX(;)
{
const __m256i *w = keys + numRounds - 2;
WOP (AVX_DECLARE_VAR)
WOP (AVX_LOAD_data)
AVX_WOP_KEY (AVX_AES_XOR, 1)
do
{
AVX_WOP_KEY (AVX_AES_DEC, 0)
w--;
}
while (w != keys);
AVX_WOP_KEY (AVX_AES_DEC_LAST, 0)
AVX_XOR (m0, _mm256_setr_m128i(iv, data[0]))
WOP_M1 (AVX_XOR_data_M1)
iv = data[NUM_WAYS * 2 - 1];
WOP (AVX_STORE_data)
}
WIDE_LOOP_END_AVX(;)
SINGLE_LOOP
{
const __m128i *w = p + *(const UInt32 *)(p + 1 - 2) * 2 + 1 - 3;
__m128i m = _mm_xor_si128 (w[2], *data);
do
{
MM_OP_m (_mm_aesdec_si128, w[1])
MM_OP_m (_mm_aesdec_si128, w[0])
w -= 2;
}
while (w != p);
MM_OP_m (_mm_aesdec_si128, w[1])
MM_OP_m (_mm_aesdeclast_si128, w[0])
MM_XOR (m, iv)
iv = *data;
*data = m;
}
p[-2] = iv;
}
/*
SSE2: _mm_cvtsi32_si128 : movd
AVX: _mm256_setr_m128i : vinsertf128
AVX2: _mm256_add_epi64 : vpaddq ymm, ymm, ymm
_mm256_extracti128_si256 : vextracti128
_mm256_broadcastsi128_si256 : vbroadcasti128
*/
#define AVX_CTR_LOOP_START \
ctr2 = _mm256_setr_m128i(_mm_sub_epi64(ctr, one), ctr); \
two = _mm256_setr_m128i(one, one); \
two = _mm256_add_epi64(two, two); \
// two = _mm256_setr_epi64x(2, 0, 2, 0);
#define AVX_CTR_LOOP_ENC \
ctr = _mm256_extracti128_si256 (ctr2, 1); \
VAES_FUNC_START2 (AesCtr_Code_HW_256)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i ctr = *p;
UInt32 numRounds = *(const UInt32 *)(p + 1) * 2 + 1;
const __m128i *dataEnd;
__m128i one = _mm_cvtsi32_si128(1);
__m256i ctr2, two;
p += 2;
WIDE_LOOP_START_AVX (AVX_CTR_LOOP_START)
{
const __m256i *w = keys;
UInt32 r = numRounds - 2;
WOP (AVX_DECLARE_VAR)
AVX_WOP_KEY (AVX_CTR_START, 0)
w += 1;
do
{
AVX_WOP_KEY (AVX_AES_ENC, 0)
w += 1;
}
while (--r);
AVX_WOP_KEY (AVX_AES_ENC_LAST, 0)
WOP (AVX_CTR_END)
}
WIDE_LOOP_END_AVX (AVX_CTR_LOOP_ENC)
SINGLE_LOOP
{
UInt32 numRounds2 = *(const UInt32 *)(p - 2 + 1) - 1;
const __m128i *w = p;
__m128i m;
MM_OP (_mm_add_epi64, ctr, one)
m = _mm_xor_si128 (ctr, p[0]);
w += 1;
do
{
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenc_si128, w[1])
w += 2;
}
while (--numRounds2);
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenclast_si128, w[1])
MM_XOR (*data, m)
}
p[-2] = ctr;
}
#endif // USE_INTEL_VAES
#else // USE_INTEL_AES
/* no USE_INTEL_AES */
#pragma message("AES HW_SW stub was used")
#define AES_TYPE_keys UInt32
#define AES_TYPE_data Byte
#define AES_FUNC_START(name) \
void Z7_FASTCALL name(UInt32 *p, Byte *data, size_t numBlocks) \
#define AES_COMPAT_STUB(name) \
AES_FUNC_START(name); \
AES_FUNC_START(name ## _HW) \
{ name(p, data, numBlocks); }
AES_COMPAT_STUB (AesCbc_Encode)
AES_COMPAT_STUB (AesCbc_Decode)
AES_COMPAT_STUB (AesCtr_Code)
#endif // USE_INTEL_AES
#ifndef USE_INTEL_VAES
#pragma message("VAES HW_SW stub was used")
#define VAES_COMPAT_STUB(name) \
void Z7_FASTCALL name ## _256(UInt32 *p, Byte *data, size_t numBlocks); \
void Z7_FASTCALL name ## _256(UInt32 *p, Byte *data, size_t numBlocks) \
{ name((AES_TYPE_keys *)(void *)p, (AES_TYPE_data *)(void *)data, numBlocks); }
VAES_COMPAT_STUB (AesCbc_Decode_HW)
VAES_COMPAT_STUB (AesCtr_Code_HW)
#endif // ! USE_INTEL_VAES
#elif defined(MY_CPU_ARM_OR_ARM64) && defined(MY_CPU_LE)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_AES
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_AES
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_AES
#endif
#endif
#ifdef USE_HW_AES
// #pragma message("=== AES HW === ")
#if defined(__clang__) || defined(__GNUC__)
#ifdef MY_CPU_ARM64
#define ATTRIB_AES __attribute__((__target__("+crypto")))
#else
#define ATTRIB_AES __attribute__((__target__("fpu=crypto-neon-fp-armv8")))
#endif
#else
// _MSC_VER
// for arm32
#define _ARM_USE_NEW_NEON_INTRINSICS
#endif
#ifndef ATTRIB_AES
#define ATTRIB_AES
#endif
#if defined(_MSC_VER) && defined(MY_CPU_ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
typedef uint8x16_t v128;
#define AES_FUNC_START(name) \
void Z7_FASTCALL name(UInt32 *ivAes, Byte *data8, size_t numBlocks)
// void Z7_FASTCALL name(v128 *p, v128 *data, size_t numBlocks)
#define AES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_AES \
AES_FUNC_START (name)
#define MM_OP(op, dest, src) dest = op(dest, src);
#define MM_OP_m(op, src) MM_OP(op, m, src)
#define MM_OP1_m(op) m = op(m);
#define MM_XOR( dest, src) MM_OP(veorq_u8, dest, src)
#define MM_XOR_m( src) MM_XOR(m, src)
#define AES_E_m(k) MM_OP_m (vaeseq_u8, k)
#define AES_E_MC_m(k) AES_E_m (k) MM_OP1_m(vaesmcq_u8)
AES_FUNC_START2 (AesCbc_Encode_HW)
{
v128 *p = (v128*)(void*)ivAes;
v128 *data = (v128*)(void*)data8;
v128 m = *p;
const v128 k0 = p[2];
const v128 k1 = p[3];
const v128 k2 = p[4];
const v128 k3 = p[5];
const v128 k4 = p[6];
const v128 k5 = p[7];
const v128 k6 = p[8];
const v128 k7 = p[9];
const v128 k8 = p[10];
const v128 k9 = p[11];
const UInt32 numRounds2 = *(const UInt32 *)(p + 1);
const v128 *w = p + ((size_t)numRounds2 * 2);
const v128 k_z1 = w[1];
const v128 k_z0 = w[2];
for (; numBlocks != 0; numBlocks--, data++)
{
MM_XOR_m (*data);
AES_E_MC_m (k0)
AES_E_MC_m (k1)
AES_E_MC_m (k2)
AES_E_MC_m (k3)
AES_E_MC_m (k4)
AES_E_MC_m (k5)
AES_E_MC_m (k6)
AES_E_MC_m (k7)
AES_E_MC_m (k8)
if (numRounds2 >= 6)
{
AES_E_MC_m (k9)
AES_E_MC_m (p[12])
if (numRounds2 != 6)
{
AES_E_MC_m (p[13])
AES_E_MC_m (p[14])
}
}
AES_E_m (k_z1)
MM_XOR_m (k_z0);
*data = m;
}
*p = m;
}
#define WOP_1(op)
#define WOP_2(op) WOP_1 (op) op (m1, 1)
#define WOP_3(op) WOP_2 (op) op (m2, 2)
#define WOP_4(op) WOP_3 (op) op (m3, 3)
#define WOP_5(op) WOP_4 (op) op (m4, 4)
#define WOP_6(op) WOP_5 (op) op (m5, 5)
#define WOP_7(op) WOP_6 (op) op (m6, 6)
#define WOP_8(op) WOP_7 (op) op (m7, 7)
#define NUM_WAYS 8
#define WOP_M1 WOP_8
#define WOP(op) op (m0, 0) WOP_M1(op)
#define DECLARE_VAR(reg, ii) v128 reg;
#define LOAD_data( reg, ii) reg = data[ii];
#define STORE_data( reg, ii) data[ii] = reg;
#if (NUM_WAYS > 1)
#define XOR_data_M1(reg, ii) MM_XOR (reg, data[ii- 1])
#endif
#define MM_OP_key(op, reg) MM_OP (op, reg, key)
#define AES_D_m(k) MM_OP_m (vaesdq_u8, k)
#define AES_D_IMC_m(k) AES_D_m (k) MM_OP1_m (vaesimcq_u8)
#define AES_XOR( reg, ii) MM_OP_key (veorq_u8, reg)
#define AES_D( reg, ii) MM_OP_key (vaesdq_u8, reg)
#define AES_E( reg, ii) MM_OP_key (vaeseq_u8, reg)
#define AES_D_IMC( reg, ii) AES_D (reg, ii) reg = vaesimcq_u8(reg);
#define AES_E_MC( reg, ii) AES_E (reg, ii) reg = vaesmcq_u8(reg);
#define CTR_START(reg, ii) MM_OP (vaddq_u64, ctr, one) reg = vreinterpretq_u8_u64(ctr);
#define CTR_END( reg, ii) MM_XOR (data[ii], reg)
#define WOP_KEY(op, n) { \
const v128 key = w[n]; \
WOP(op) }
#define WIDE_LOOP_START \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS) \
{ dataEnd -= NUM_WAYS; do { \
#define WIDE_LOOP_END \
data += NUM_WAYS; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS; } \
#define SINGLE_LOOP \
for (; data < dataEnd; data++)
AES_FUNC_START2 (AesCbc_Decode_HW)
{
v128 *p = (v128*)(void*)ivAes;
v128 *data = (v128*)(void*)data8;
v128 iv = *p;
const v128 *wStart = p + ((size_t)*(const UInt32 *)(p + 1)) * 2;
const v128 *dataEnd;
p += 2;
WIDE_LOOP_START
{
const v128 *w = wStart;
WOP (DECLARE_VAR)
WOP (LOAD_data)
WOP_KEY (AES_D_IMC, 2)
do
{
WOP_KEY (AES_D_IMC, 1)
WOP_KEY (AES_D_IMC, 0)
w -= 2;
}
while (w != p);
WOP_KEY (AES_D, 1)
WOP_KEY (AES_XOR, 0)
MM_XOR (m0, iv);
WOP_M1 (XOR_data_M1)
iv = data[NUM_WAYS - 1];
WOP (STORE_data)
}
WIDE_LOOP_END
SINGLE_LOOP
{
const v128 *w = wStart;
v128 m = *data;
AES_D_IMC_m (w[2])
do
{
AES_D_IMC_m (w[1]);
AES_D_IMC_m (w[0]);
w -= 2;
}
while (w != p);
AES_D_m (w[1]);
MM_XOR_m (w[0]);
MM_XOR_m (iv);
iv = *data;
*data = m;
}
p[-2] = iv;
}
AES_FUNC_START2 (AesCtr_Code_HW)
{
v128 *p = (v128*)(void*)ivAes;
v128 *data = (v128*)(void*)data8;
uint64x2_t ctr = vreinterpretq_u64_u8(*p);
const v128 *wEnd = p + ((size_t)*(const UInt32 *)(p + 1)) * 2;
const v128 *dataEnd;
uint64x2_t one = vdupq_n_u64(0);
one = vsetq_lane_u64(1, one, 0);
p += 2;
WIDE_LOOP_START
{
const v128 *w = p;
WOP (DECLARE_VAR)
WOP (CTR_START)
do
{
WOP_KEY (AES_E_MC, 0)
WOP_KEY (AES_E_MC, 1)
w += 2;
}
while (w != wEnd);
WOP_KEY (AES_E_MC, 0)
WOP_KEY (AES_E, 1)
WOP_KEY (AES_XOR, 2)
WOP (CTR_END)
}
WIDE_LOOP_END
SINGLE_LOOP
{
const v128 *w = p;
v128 m;
CTR_START (m, 0);
do
{
AES_E_MC_m (w[0]);
AES_E_MC_m (w[1]);
w += 2;
}
while (w != wEnd);
AES_E_MC_m (w[0])
AES_E_m (w[1])
MM_XOR_m (w[2])
CTR_END (m, 0)
}
p[-2] = vreinterpretq_u8_u64(ctr);
}
#endif // USE_HW_AES
#endif // MY_CPU_ARM_OR_ARM64
#undef NUM_WAYS
#undef WOP_M1
#undef WOP
#undef DECLARE_VAR
#undef LOAD_data
#undef STORE_data
#undef USE_INTEL_AES
#undef USE_HW_AES

527
C/Alloc.c Normal file → Executable file
View File

@@ -1,33 +1,182 @@
/* Alloc.c -- Memory allocation functions
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#ifdef _WIN32
#include <windows.h>
#include "7zWindows.h"
#endif
#include <stdlib.h>
#include "Alloc.h"
/* #define _SZ_ALLOC_DEBUG */
/* use _SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef _SZ_ALLOC_DEBUG
#include <stdio.h>
int g_allocCount = 0;
int g_allocCountMid = 0;
int g_allocCountBig = 0;
#ifdef _WIN32
#ifdef Z7_LARGE_PAGES
#if defined(__clang__) || defined(__GNUC__)
typedef void (*Z7_voidFunction)(void);
#define MY_CAST_FUNC (Z7_voidFunction)
#elif defined(_MSC_VER) && _MSC_VER > 1920
#define MY_CAST_FUNC (void *)
// #pragma warning(disable : 4191) // 'type cast': unsafe conversion from 'FARPROC' to 'void (__cdecl *)()'
#else
#define MY_CAST_FUNC
#endif
#endif // Z7_LARGE_PAGES
#endif // _WIN32
// #define SZ_ALLOC_DEBUG
/* #define SZ_ALLOC_DEBUG */
/* use SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef SZ_ALLOC_DEBUG
#include <string.h>
#include <stdio.h>
static int g_allocCount = 0;
#ifdef _WIN32
static int g_allocCountMid = 0;
static int g_allocCountBig = 0;
#endif
#define CONVERT_INT_TO_STR(charType, tempSize) \
char temp[tempSize]; unsigned i = 0; \
while (val >= 10) { temp[i++] = (char)('0' + (unsigned)(val % 10)); val /= 10; } \
*s++ = (charType)('0' + (unsigned)val); \
while (i != 0) { i--; *s++ = temp[i]; } \
*s = 0;
static void ConvertUInt64ToString(UInt64 val, char *s)
{
CONVERT_INT_TO_STR(char, 24)
}
#define GET_HEX_CHAR(t) ((char)(((t < 10) ? ('0' + t) : ('A' + (t - 10)))))
static void ConvertUInt64ToHex(UInt64 val, char *s)
{
UInt64 v = val;
unsigned i;
for (i = 1;; i++)
{
v >>= 4;
if (v == 0)
break;
}
s[i] = 0;
do
{
unsigned t = (unsigned)(val & 0xF);
val >>= 4;
s[--i] = GET_HEX_CHAR(t);
}
while (i);
}
#define DEBUG_OUT_STREAM stderr
static void Print(const char *s)
{
fputs(s, DEBUG_OUT_STREAM);
}
static void PrintAligned(const char *s, size_t align)
{
size_t len = strlen(s);
for(;;)
{
fputc(' ', DEBUG_OUT_STREAM);
if (len >= align)
break;
++len;
}
Print(s);
}
static void PrintLn(void)
{
Print("\n");
}
static void PrintHex(UInt64 v, size_t align)
{
char s[32];
ConvertUInt64ToHex(v, s);
PrintAligned(s, align);
}
static void PrintDec(int v, size_t align)
{
char s[32];
ConvertUInt64ToString((unsigned)v, s);
PrintAligned(s, align);
}
static void PrintAddr(void *p)
{
PrintHex((UInt64)(size_t)(ptrdiff_t)p, 12);
}
#define PRINT_REALLOC(name, cnt, size, ptr) { \
Print(name " "); \
if (!ptr) PrintDec(cnt++, 10); \
PrintHex(size, 10); \
PrintAddr(ptr); \
PrintLn(); }
#define PRINT_ALLOC(name, cnt, size, ptr) { \
Print(name " "); \
PrintDec(cnt++, 10); \
PrintHex(size, 10); \
PrintAddr(ptr); \
PrintLn(); }
#define PRINT_FREE(name, cnt, ptr) if (ptr) { \
Print(name " "); \
PrintDec(--cnt, 10); \
PrintAddr(ptr); \
PrintLn(); }
#else
#ifdef _WIN32
#define PRINT_ALLOC(name, cnt, size, ptr)
#endif
#define PRINT_FREE(name, cnt, ptr)
#define Print(s)
#define PrintLn()
#define PrintHex(v, align)
#define PrintAddr(p)
#endif
/*
by specification:
malloc(non_NULL, 0) : returns NULL or a unique pointer value that can later be successfully passed to free()
realloc(NULL, size) : the call is equivalent to malloc(size)
realloc(non_NULL, 0) : the call is equivalent to free(ptr)
in main compilers:
malloc(0) : returns non_NULL
realloc(NULL, 0) : returns non_NULL
realloc(non_NULL, 0) : returns NULL
*/
void *MyAlloc(size_t size)
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
return NULL;
// PRINT_ALLOC("Alloc ", g_allocCount, size, NULL)
#ifdef SZ_ALLOC_DEBUG
{
void *p = malloc(size);
fprintf(stderr, "\nAlloc %10d bytes, count = %10d, addr = %8X", size, g_allocCount++, (unsigned)p);
if (p)
{
PRINT_ALLOC("Alloc ", g_allocCount, size, p)
}
return p;
}
#else
@@ -37,100 +186,350 @@ void *MyAlloc(size_t size)
void MyFree(void *address)
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree; count = %10d, addr = %8X", --g_allocCount, (unsigned)address);
#endif
PRINT_FREE("Free ", g_allocCount, address)
free(address);
}
void *MyRealloc(void *address, size_t size)
{
if (size == 0)
{
MyFree(address);
return NULL;
}
// PRINT_REALLOC("Realloc ", g_allocCount, size, address)
#ifdef SZ_ALLOC_DEBUG
{
void *p = realloc(address, size);
if (p)
{
PRINT_REALLOC("Realloc ", g_allocCount, size, address)
}
return p;
}
#else
return realloc(address, size);
#endif
}
#ifdef _WIN32
void *MidAlloc(size_t size)
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_Mid %10d bytes; count = %10d", size, g_allocCountMid++);
return NULL;
#ifdef SZ_ALLOC_DEBUG
{
void *p = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
if (p)
{
PRINT_ALLOC("Alloc-Mid", g_allocCountMid, size, p)
}
return p;
}
#else
return VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
#endif
return VirtualAlloc(0, size, MEM_COMMIT, PAGE_READWRITE);
}
void MidFree(void *address)
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree_Mid; count = %10d", --g_allocCountMid);
#endif
if (address == 0)
PRINT_FREE("Free-Mid", g_allocCountMid, address)
if (!address)
return;
VirtualFree(address, 0, MEM_RELEASE);
}
#ifndef MEM_LARGE_PAGES
#undef _7ZIP_LARGE_PAGES
#ifdef Z7_LARGE_PAGES
#ifdef MEM_LARGE_PAGES
#define MY__MEM_LARGE_PAGES MEM_LARGE_PAGES
#else
#define MY__MEM_LARGE_PAGES 0x20000000
#endif
#ifdef _7ZIP_LARGE_PAGES
extern
SIZE_T g_LargePageSize;
SIZE_T g_LargePageSize = 0;
typedef SIZE_T (WINAPI *GetLargePageMinimumP)();
#endif
typedef SIZE_T (WINAPI *Func_GetLargePageMinimum)(VOID);
void SetLargePageSize()
void SetLargePageSize(void)
{
#ifdef _7ZIP_LARGE_PAGES
SIZE_T size = 0;
GetLargePageMinimumP largePageMinimum = (GetLargePageMinimumP)
GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), "GetLargePageMinimum");
if (largePageMinimum == 0)
#ifdef Z7_LARGE_PAGES
SIZE_T size;
const
Func_GetLargePageMinimum fn =
(Func_GetLargePageMinimum) MY_CAST_FUNC GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")),
"GetLargePageMinimum");
if (!fn)
return;
size = largePageMinimum();
size = fn();
if (size == 0 || (size & (size - 1)) != 0)
return;
g_LargePageSize = size;
#endif
}
#endif // Z7_LARGE_PAGES
void *BigAlloc(size_t size)
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_Big %10d bytes; count = %10d", size, g_allocCountBig++);
#endif
#ifdef _7ZIP_LARGE_PAGES
if (g_LargePageSize != 0 && g_LargePageSize <= (1 << 30) && size >= (1 << 18))
return NULL;
PRINT_ALLOC("Alloc-Big", g_allocCountBig, size, NULL)
#ifdef Z7_LARGE_PAGES
{
void *res = VirtualAlloc(0, (size + g_LargePageSize - 1) & (~(g_LargePageSize - 1)),
MEM_COMMIT | MEM_LARGE_PAGES, PAGE_READWRITE);
if (res != 0)
return res;
SIZE_T ps = g_LargePageSize;
if (ps != 0 && ps <= (1 << 30) && size > (ps / 2))
{
size_t size2;
ps--;
size2 = (size + ps) & ~ps;
if (size2 >= size)
{
void *p = VirtualAlloc(NULL, size2, MEM_COMMIT | MY__MEM_LARGE_PAGES, PAGE_READWRITE);
if (p)
{
PRINT_ALLOC("Alloc-BM ", g_allocCountMid, size2, p)
return p;
}
}
}
}
#endif
return VirtualAlloc(0, size, MEM_COMMIT, PAGE_READWRITE);
return MidAlloc(size);
}
void BigFree(void *address)
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree_Big; count = %10d", --g_allocCountBig);
#endif
if (address == 0)
return;
VirtualFree(address, 0, MEM_RELEASE);
PRINT_FREE("Free-Big", g_allocCountBig, address)
MidFree(address);
}
#endif // _WIN32
static void *SzAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p) return MyAlloc(size); }
static void SzFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p) MyFree(address); }
const ISzAlloc g_Alloc = { SzAlloc, SzFree };
#ifdef _WIN32
static void *SzMidAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p) return MidAlloc(size); }
static void SzMidFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p) MidFree(address); }
static void *SzBigAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p) return BigAlloc(size); }
static void SzBigFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p) BigFree(address); }
const ISzAlloc g_MidAlloc = { SzMidAlloc, SzMidFree };
const ISzAlloc g_BigAlloc = { SzBigAlloc, SzBigFree };
#endif
/*
uintptr_t : <stdint.h> C99 (optional)
: unsupported in VS6
*/
#ifdef _WIN32
typedef UINT_PTR UIntPtr;
#else
/*
typedef uintptr_t UIntPtr;
*/
typedef ptrdiff_t UIntPtr;
#endif
static void *SzAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p); return MyAlloc(size); }
static void SzFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p); MyFree(address); }
ISzAlloc const g_Alloc = { SzAlloc, SzFree };
#define ADJUST_ALLOC_SIZE 0
/*
#define ADJUST_ALLOC_SIZE (sizeof(void *) - 1)
*/
/*
Use (ADJUST_ALLOC_SIZE = (sizeof(void *) - 1)), if
MyAlloc() can return address that is NOT multiple of sizeof(void *).
*/
static void *SzBigAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p); return BigAlloc(size); }
static void SzBigFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p); BigFree(address); }
ISzAlloc const g_BigAlloc = { SzBigAlloc, SzBigFree };
/*
#define MY_ALIGN_PTR_DOWN(p, align) ((void *)((char *)(p) - ((size_t)(UIntPtr)(p) & ((align) - 1))))
*/
#define MY_ALIGN_PTR_DOWN(p, align) ((void *)((((UIntPtr)(p)) & ~((UIntPtr)(align) - 1))))
#if !defined(_WIN32) && defined(_POSIX_C_SOURCE) && (_POSIX_C_SOURCE >= 200112L)
#define USE_posix_memalign
#endif
#ifndef USE_posix_memalign
#define MY_ALIGN_PTR_UP_PLUS(p, align) MY_ALIGN_PTR_DOWN(((char *)(p) + (align) + ADJUST_ALLOC_SIZE), align)
#endif
/*
This posix_memalign() is for test purposes only.
We also need special Free() function instead of free(),
if this posix_memalign() is used.
*/
/*
static int posix_memalign(void **ptr, size_t align, size_t size)
{
size_t newSize = size + align;
void *p;
void *pAligned;
*ptr = NULL;
if (newSize < size)
return 12; // ENOMEM
p = MyAlloc(newSize);
if (!p)
return 12; // ENOMEM
pAligned = MY_ALIGN_PTR_UP_PLUS(p, align);
((void **)pAligned)[-1] = p;
*ptr = pAligned;
return 0;
}
*/
/*
ALLOC_ALIGN_SIZE >= sizeof(void *)
ALLOC_ALIGN_SIZE >= cache_line_size
*/
#define ALLOC_ALIGN_SIZE ((size_t)1 << 7)
static void *SzAlignedAlloc(ISzAllocPtr pp, size_t size)
{
#ifndef USE_posix_memalign
void *p;
void *pAligned;
size_t newSize;
UNUSED_VAR(pp)
/* also we can allocate additional dummy ALLOC_ALIGN_SIZE bytes after aligned
block to prevent cache line sharing with another allocated blocks */
newSize = size + ALLOC_ALIGN_SIZE * 1 + ADJUST_ALLOC_SIZE;
if (newSize < size)
return NULL;
p = MyAlloc(newSize);
if (!p)
return NULL;
pAligned = MY_ALIGN_PTR_UP_PLUS(p, ALLOC_ALIGN_SIZE);
Print(" size="); PrintHex(size, 8);
Print(" a_size="); PrintHex(newSize, 8);
Print(" ptr="); PrintAddr(p);
Print(" a_ptr="); PrintAddr(pAligned);
PrintLn();
((void **)pAligned)[-1] = p;
return pAligned;
#else
void *p;
UNUSED_VAR(pp)
if (posix_memalign(&p, ALLOC_ALIGN_SIZE, size))
return NULL;
Print(" posix_memalign="); PrintAddr(p);
PrintLn();
return p;
#endif
}
static void SzAlignedFree(ISzAllocPtr pp, void *address)
{
UNUSED_VAR(pp)
#ifndef USE_posix_memalign
if (address)
MyFree(((void **)address)[-1]);
#else
free(address);
#endif
}
const ISzAlloc g_AlignedAlloc = { SzAlignedAlloc, SzAlignedFree };
#define MY_ALIGN_PTR_DOWN_1(p) MY_ALIGN_PTR_DOWN(p, sizeof(void *))
/* we align ptr to support cases where CAlignOffsetAlloc::offset is not multiply of sizeof(void *) */
#define REAL_BLOCK_PTR_VAR(p) ((void **)MY_ALIGN_PTR_DOWN_1(p))[-1]
/*
#define REAL_BLOCK_PTR_VAR(p) ((void **)(p))[-1]
*/
static void *AlignOffsetAlloc_Alloc(ISzAllocPtr pp, size_t size)
{
const CAlignOffsetAlloc *p = Z7_CONTAINER_FROM_VTBL_CONST(pp, CAlignOffsetAlloc, vt);
void *adr;
void *pAligned;
size_t newSize;
size_t extra;
size_t alignSize = (size_t)1 << p->numAlignBits;
if (alignSize < sizeof(void *))
alignSize = sizeof(void *);
if (p->offset >= alignSize)
return NULL;
/* also we can allocate additional dummy ALLOC_ALIGN_SIZE bytes after aligned
block to prevent cache line sharing with another allocated blocks */
extra = p->offset & (sizeof(void *) - 1);
newSize = size + alignSize + extra + ADJUST_ALLOC_SIZE;
if (newSize < size)
return NULL;
adr = ISzAlloc_Alloc(p->baseAlloc, newSize);
if (!adr)
return NULL;
pAligned = (char *)MY_ALIGN_PTR_DOWN((char *)adr +
alignSize - p->offset + extra + ADJUST_ALLOC_SIZE, alignSize) + p->offset;
PrintLn();
Print("- Aligned: ");
Print(" size="); PrintHex(size, 8);
Print(" a_size="); PrintHex(newSize, 8);
Print(" ptr="); PrintAddr(adr);
Print(" a_ptr="); PrintAddr(pAligned);
PrintLn();
REAL_BLOCK_PTR_VAR(pAligned) = adr;
return pAligned;
}
static void AlignOffsetAlloc_Free(ISzAllocPtr pp, void *address)
{
if (address)
{
const CAlignOffsetAlloc *p = Z7_CONTAINER_FROM_VTBL_CONST(pp, CAlignOffsetAlloc, vt);
PrintLn();
Print("- Aligned Free: ");
PrintLn();
ISzAlloc_Free(p->baseAlloc, REAL_BLOCK_PTR_VAR(address));
}
}
void AlignOffsetAlloc_CreateVTable(CAlignOffsetAlloc *p)
{
p->vt.Alloc = AlignOffsetAlloc_Alloc;
p->vt.Free = AlignOffsetAlloc_Free;
}

42
C/Alloc.h Normal file → Executable file
View File

@@ -1,19 +1,32 @@
/* Alloc.h -- Memory allocation functions
2017-04-03 : Igor Pavlov : Public domain */
2023-03-04 : Igor Pavlov : Public domain */
#ifndef __COMMON_ALLOC_H
#define __COMMON_ALLOC_H
#ifndef ZIP7_INC_ALLOC_H
#define ZIP7_INC_ALLOC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
MyFree(NULL) : is allowed, as free(NULL)
MyAlloc(0) : returns NULL : but malloc(0) is allowed to return NULL or non_NULL
MyRealloc(NULL, 0) : returns NULL : but realloc(NULL, 0) is allowed to return NULL or non_NULL
MyRealloc() is similar to realloc() for the following cases:
MyRealloc(non_NULL, 0) : returns NULL and always calls MyFree(ptr)
MyRealloc(NULL, non_ZERO) : returns NULL, if allocation failed
MyRealloc(non_NULL, non_ZERO) : returns NULL, if reallocation failed
*/
void *MyAlloc(size_t size);
void MyFree(void *address);
void *MyRealloc(void *address, size_t size);
#ifdef _WIN32
void SetLargePageSize();
#ifdef Z7_LARGE_PAGES
void SetLargePageSize(void);
#endif
void *MidAlloc(size_t size);
void MidFree(void *address);
@@ -30,7 +43,28 @@ void BigFree(void *address);
#endif
extern const ISzAlloc g_Alloc;
#ifdef _WIN32
extern const ISzAlloc g_BigAlloc;
extern const ISzAlloc g_MidAlloc;
#else
#define g_BigAlloc g_AlignedAlloc
#define g_MidAlloc g_AlignedAlloc
#endif
extern const ISzAlloc g_AlignedAlloc;
typedef struct
{
ISzAlloc vt;
ISzAllocPtr baseAlloc;
unsigned numAlignBits; /* ((1 << numAlignBits) >= sizeof(void *)) */
size_t offset; /* (offset == (k * sizeof(void *)) && offset < (1 << numAlignBits) */
} CAlignOffsetAlloc;
void AlignOffsetAlloc_CreateVTable(CAlignOffsetAlloc *p);
EXTERN_C_END

327
C/Bcj2.c Normal file → Executable file
View File

@@ -1,29 +1,24 @@
/* Bcj2.c -- BCJ2 Decoder (Converter for x86 code)
2017-04-03 : Igor Pavlov : Public domain */
2023-03-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bcj2.h"
#include "CpuArch.h"
#define CProb UInt16
#define kTopValue ((UInt32)1 << 24)
#define kNumModelBits 11
#define kBitModelTotal (1 << kNumModelBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define _IF_BIT_0 ttt = *prob; bound = (p->range >> kNumModelBits) * ttt; if (p->code < bound)
#define _UPDATE_0 p->range = bound; *prob = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define _UPDATE_1 p->range -= bound; p->code -= bound; *prob = (CProb)(ttt - (ttt >> kNumMoveBits));
// UInt32 bcj2_stats[256 + 2][2];
void Bcj2Dec_Init(CBcj2Dec *p)
{
unsigned i;
p->state = BCJ2_DEC_STATE_OK;
p->state = BCJ2_STREAM_RC; // BCJ2_DEC_STATE_OK;
p->ip = 0;
p->temp[3] = 0;
p->temp = 0;
p->range = 0;
p->code = 0;
for (i = 0; i < sizeof(p->probs) / sizeof(p->probs[0]); i++)
@@ -32,217 +27,248 @@ void Bcj2Dec_Init(CBcj2Dec *p)
SRes Bcj2Dec_Decode(CBcj2Dec *p)
{
UInt32 v = p->temp;
// const Byte *src;
if (p->range <= 5)
{
p->state = BCJ2_DEC_STATE_OK;
UInt32 code = p->code;
p->state = BCJ2_DEC_STATE_ERROR; /* for case if we return SZ_ERROR_DATA; */
for (; p->range != 5; p->range++)
{
if (p->range == 1 && p->code != 0)
if (p->range == 1 && code != 0)
return SZ_ERROR_DATA;
if (p->bufs[BCJ2_STREAM_RC] == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
return SZ_OK;
}
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
code = (code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
p->code = code;
}
if (p->code == 0xFFFFFFFF)
if (code == 0xffffffff)
return SZ_ERROR_DATA;
p->range = 0xFFFFFFFF;
p->range = 0xffffffff;
}
else if (p->state >= BCJ2_DEC_STATE_ORIG_0)
// else
{
while (p->state <= BCJ2_DEC_STATE_ORIG_3)
unsigned state = p->state;
// we check BCJ2_IS_32BIT_STREAM() here instead of check in the main loop
if (BCJ2_IS_32BIT_STREAM(state))
{
const Byte *cur = p->bufs[state];
if (cur == p->lims[state])
return SZ_OK;
p->bufs[state] = cur + 4;
{
const UInt32 ip = p->ip + 4;
v = GetBe32a(cur) - ip;
p->ip = ip;
}
state = BCJ2_DEC_STATE_ORIG_0;
}
if ((unsigned)(state - BCJ2_DEC_STATE_ORIG_0) < 4)
{
Byte *dest = p->dest;
if (dest == p->destLim)
return SZ_OK;
*dest = p->temp[(size_t)p->state - BCJ2_DEC_STATE_ORIG_0];
p->state++;
p->dest = dest + 1;
}
}
/*
if (BCJ2_IS_32BIT_STREAM(p->state))
{
const Byte *cur = p->bufs[p->state];
if (cur == p->lims[p->state])
return SZ_OK;
p->bufs[p->state] = cur + 4;
{
UInt32 val;
Byte *dest;
SizeT rem;
p->ip += 4;
val = GetBe32(cur) - p->ip;
dest = p->dest;
rem = p->destLim - dest;
if (rem < 4)
for (;;)
{
SizeT i;
SetUi32(p->temp, val);
for (i = 0; i < rem; i++)
dest[i] = p->temp[i];
p->dest = dest + rem;
p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem;
return SZ_OK;
if (dest == p->destLim)
{
p->state = state;
p->temp = v;
return SZ_OK;
}
*dest++ = (Byte)v;
p->dest = dest;
if (++state == BCJ2_DEC_STATE_ORIG_3 + 1)
break;
v >>= 8;
}
SetUi32(dest, val);
p->temp[3] = (Byte)(val >> 24);
p->dest = dest + 4;
p->state = BCJ2_DEC_STATE_OK;
}
}
*/
// src = p->bufs[BCJ2_STREAM_MAIN];
for (;;)
{
/*
if (BCJ2_IS_32BIT_STREAM(p->state))
p->state = BCJ2_DEC_STATE_OK;
else
*/
{
if (p->range < kTopValue)
{
if (p->bufs[BCJ2_STREAM_RC] == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
p->temp = v;
return SZ_OK;
}
p->range <<= 8;
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
{
const Byte *src = p->bufs[BCJ2_STREAM_MAIN];
const Byte *srcLim;
Byte *dest;
SizeT num = p->lims[BCJ2_STREAM_MAIN] - src;
if (num == 0)
Byte *dest = p->dest;
{
p->state = BCJ2_STREAM_MAIN;
return SZ_OK;
const SizeT rem = (SizeT)(p->lims[BCJ2_STREAM_MAIN] - src);
SizeT num = (SizeT)(p->destLim - dest);
if (num >= rem)
num = rem;
#define NUM_ITERS 4
#if (NUM_ITERS & (NUM_ITERS - 1)) == 0
num &= ~((SizeT)NUM_ITERS - 1); // if (NUM_ITERS == (1 << x))
#else
num -= num % NUM_ITERS; // if (NUM_ITERS != (1 << x))
#endif
srcLim = src + num;
}
dest = p->dest;
if (num > (SizeT)(p->destLim - dest))
#define NUM_SHIFT_BITS 24
#define ONE_ITER(indx) { \
const unsigned b = src[indx]; \
*dest++ = (Byte)b; \
v = (v << NUM_SHIFT_BITS) | b; \
if (((b + (0x100 - 0xe8)) & 0xfe) == 0) break; \
if (((v - (((UInt32)0x0f << (NUM_SHIFT_BITS)) + 0x80)) & \
((((UInt32)1 << (4 + NUM_SHIFT_BITS)) - 0x1) << 4)) == 0) break; \
/* ++dest */; /* v = b; */ }
if (src != srcLim)
for (;;)
{
num = p->destLim - dest;
if (num == 0)
/* The dependency chain of 2-cycle for (v) calculation is not big problem here.
But we can remove dependency chain with v = b in the end of loop. */
ONE_ITER(0)
#if (NUM_ITERS > 1)
ONE_ITER(1)
#if (NUM_ITERS > 2)
ONE_ITER(2)
#if (NUM_ITERS > 3)
ONE_ITER(3)
#if (NUM_ITERS > 4)
ONE_ITER(4)
#if (NUM_ITERS > 5)
ONE_ITER(5)
#if (NUM_ITERS > 6)
ONE_ITER(6)
#if (NUM_ITERS > 7)
ONE_ITER(7)
#endif
#endif
#endif
#endif
#endif
#endif
#endif
src += NUM_ITERS;
if (src == srcLim)
break;
}
if (src == srcLim)
#if (NUM_ITERS > 1)
for (;;)
#endif
{
#if (NUM_ITERS > 1)
if (src == p->lims[BCJ2_STREAM_MAIN] || dest == p->destLim)
#endif
{
p->state = BCJ2_DEC_STATE_ORIG;
const SizeT num = (SizeT)(src - p->bufs[BCJ2_STREAM_MAIN]);
p->bufs[BCJ2_STREAM_MAIN] = src;
p->dest = dest;
p->ip += (UInt32)num;
/* state BCJ2_STREAM_MAIN has more priority than BCJ2_STATE_ORIG */
p->state =
src == p->lims[BCJ2_STREAM_MAIN] ?
(unsigned)BCJ2_STREAM_MAIN :
(unsigned)BCJ2_DEC_STATE_ORIG;
p->temp = v;
return SZ_OK;
}
#if (NUM_ITERS > 1)
ONE_ITER(0)
src++;
#endif
}
srcLim = src + num;
if (p->temp[3] == 0x0F && (src[0] & 0xF0) == 0x80)
*dest = src[0];
else for (;;)
{
Byte b = *src;
*dest = b;
if (b != 0x0F)
{
if ((b & 0xFE) == 0xE8)
break;
dest++;
if (++src != srcLim)
continue;
break;
}
dest++;
if (++src == srcLim)
break;
if ((*src & 0xF0) != 0x80)
continue;
*dest = *src;
break;
}
num = src - p->bufs[BCJ2_STREAM_MAIN];
if (src == srcLim)
{
p->temp[3] = src[-1];
p->bufs[BCJ2_STREAM_MAIN] = src;
const SizeT num = (SizeT)(dest - p->dest);
p->dest = dest; // p->dest += num;
p->bufs[BCJ2_STREAM_MAIN] += num; // = src;
p->ip += (UInt32)num;
p->dest += num;
p->state =
p->bufs[BCJ2_STREAM_MAIN] ==
p->lims[BCJ2_STREAM_MAIN] ?
(unsigned)BCJ2_STREAM_MAIN :
(unsigned)BCJ2_DEC_STATE_ORIG;
return SZ_OK;
}
{
UInt32 bound, ttt;
CProb *prob;
Byte b = src[0];
Byte prev = (Byte)(num == 0 ? p->temp[3] : src[-1]);
p->temp[3] = b;
p->bufs[BCJ2_STREAM_MAIN] = src + 1;
num++;
p->ip += (UInt32)num;
p->dest += num;
prob = p->probs + (unsigned)(b == 0xE8 ? 2 + (unsigned)prev : (b == 0xE9 ? 1 : 0));
_IF_BIT_0
CBcj2Prob *prob; // unsigned index;
/*
prob = p->probs + (unsigned)((Byte)v == 0xe8 ?
2 + (Byte)(v >> 8) :
((v >> 5) & 1)); // ((Byte)v < 0xe8 ? 0 : 1));
*/
{
_UPDATE_0
const unsigned c = ((v + 0x17) >> 6) & 1;
prob = p->probs + (unsigned)
(((0 - c) & (Byte)(v >> NUM_SHIFT_BITS)) + c + ((v >> 5) & 1));
// (Byte)
// 8x->0 : e9->1 : xxe8->xx+2
// 8x->0x100 : e9->0x101 : xxe8->xx
// (((0x100 - (e & ~v)) & (0x100 | (v >> 8))) + (e & v));
// (((0x101 + (~e | v)) & (0x100 | (v >> 8))) + (e & v));
}
ttt = *prob;
bound = (p->range >> kNumBitModelTotalBits) * ttt;
if (p->code < bound)
{
// bcj2_stats[prob - p->probs][0]++;
p->range = bound;
*prob = (CBcj2Prob)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
continue;
}
_UPDATE_1
{
// bcj2_stats[prob - p->probs][1]++;
p->range -= bound;
p->code -= bound;
*prob = (CBcj2Prob)(ttt - (ttt >> kNumMoveBits));
}
}
}
}
{
UInt32 val;
unsigned cj = (p->temp[3] == 0xE8) ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP;
/* (v == 0xe8 ? 0 : 1) uses setcc instruction with additional zero register usage in x64 MSVC. */
// const unsigned cj = ((Byte)v == 0xe8) ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP;
const unsigned cj = (((v + 0x57) >> 6) & 1) + BCJ2_STREAM_CALL;
const Byte *cur = p->bufs[cj];
Byte *dest;
SizeT rem;
if (cur == p->lims[cj])
{
p->state = cj;
break;
}
val = GetBe32(cur);
v = GetBe32a(cur);
p->bufs[cj] = cur + 4;
p->ip += 4;
val -= p->ip;
{
const UInt32 ip = p->ip + 4;
v -= ip;
p->ip = ip;
}
dest = p->dest;
rem = p->destLim - dest;
rem = (SizeT)(p->destLim - dest);
if (rem < 4)
{
SizeT i;
SetUi32(p->temp, val);
for (i = 0; i < rem; i++)
dest[i] = p->temp[i];
if ((unsigned)rem > 0) { dest[0] = (Byte)v; v >>= 8;
if ((unsigned)rem > 1) { dest[1] = (Byte)v; v >>= 8;
if ((unsigned)rem > 2) { dest[2] = (Byte)v; v >>= 8; }}}
p->temp = v;
p->dest = dest + rem;
p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem;
break;
}
SetUi32(dest, val);
p->temp[3] = (Byte)(val >> 24);
SetUi32(dest, v)
v >>= 24;
p->dest = dest + 4;
}
}
@@ -252,6 +278,13 @@ SRes Bcj2Dec_Decode(CBcj2Dec *p)
p->range <<= 8;
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
return SZ_OK;
}
#undef NUM_ITERS
#undef ONE_ITER
#undef NUM_SHIFT_BITS
#undef kTopValue
#undef kNumBitModelTotalBits
#undef kBitModelTotal
#undef kNumMoveBits

270
C/Bcj2.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* Bcj2.h -- BCJ2 Converter for x86 code
2014-11-10 : Igor Pavlov : Public domain */
/* Bcj2.h -- BCJ2 converter for x86 code (Branch CALL/JUMP variant2)
2023-03-02 : Igor Pavlov : Public domain */
#ifndef __BCJ2_H
#define __BCJ2_H
#ifndef ZIP7_INC_BCJ2_H
#define ZIP7_INC_BCJ2_H
#include "7zTypes.h"
@@ -26,37 +26,68 @@ enum
BCJ2_DEC_STATE_ORIG_3,
BCJ2_DEC_STATE_ORIG,
BCJ2_DEC_STATE_OK
BCJ2_DEC_STATE_ERROR /* after detected data error */
};
enum
{
BCJ2_ENC_STATE_ORIG = BCJ2_NUM_STREAMS,
BCJ2_ENC_STATE_OK
BCJ2_ENC_STATE_FINISHED /* it's state after fully encoded stream */
};
#define BCJ2_IS_32BIT_STREAM(s) ((s) == BCJ2_STREAM_CALL || (s) == BCJ2_STREAM_JUMP)
/* #define BCJ2_IS_32BIT_STREAM(s) ((s) == BCJ2_STREAM_CALL || (s) == BCJ2_STREAM_JUMP) */
#define BCJ2_IS_32BIT_STREAM(s) ((unsigned)((unsigned)(s) - (unsigned)BCJ2_STREAM_CALL) < 2)
/*
CBcj2Dec / CBcj2Enc
bufs sizes:
BUF_SIZE(n) = lims[n] - bufs[n]
bufs sizes for BCJ2_STREAM_CALL and BCJ2_STREAM_JUMP must be mutliply of 4:
bufs sizes for BCJ2_STREAM_CALL and BCJ2_STREAM_JUMP must be multiply of 4:
(BUF_SIZE(BCJ2_STREAM_CALL) & 3) == 0
(BUF_SIZE(BCJ2_STREAM_JUMP) & 3) == 0
*/
// typedef UInt32 CBcj2Prob;
typedef UInt16 CBcj2Prob;
/*
BCJ2 encoder / decoder internal requirements:
- If last bytes of stream contain marker (e8/e8/0f8x), then
there is also encoded symbol (0 : no conversion) in RC stream.
- One case of overlapped instructions is supported,
if last byte of converted instruction is (0f) and next byte is (8x):
marker [xx xx xx 0f] 8x
then the pair (0f 8x) is treated as marker.
*/
/* ---------- BCJ2 Decoder ---------- */
/*
CBcj2Dec:
dest is allowed to overlap with bufs[BCJ2_STREAM_MAIN], with the following conditions:
(dest) is allowed to overlap with bufs[BCJ2_STREAM_MAIN], with the following conditions:
bufs[BCJ2_STREAM_MAIN] >= dest &&
bufs[BCJ2_STREAM_MAIN] - dest >= tempReserv +
bufs[BCJ2_STREAM_MAIN] - dest >=
BUF_SIZE(BCJ2_STREAM_CALL) +
BUF_SIZE(BCJ2_STREAM_JUMP)
tempReserv = 0 : for first call of Bcj2Dec_Decode
tempReserv = 4 : for any other calls of Bcj2Dec_Decode
overlap with offset = 1 is not allowed
reserve = bufs[BCJ2_STREAM_MAIN] - dest -
( BUF_SIZE(BCJ2_STREAM_CALL) +
BUF_SIZE(BCJ2_STREAM_JUMP) )
and additional conditions:
if (it's first call of Bcj2Dec_Decode() after Bcj2Dec_Init())
{
(reserve != 1) : if (ver < v23.00)
}
else // if there are more than one calls of Bcj2Dec_Decode() after Bcj2Dec_Init())
{
(reserve >= 6) : if (ver < v23.00)
(reserve >= 4) : if (ver >= v23.00)
We need that (reserve) because after first call of Bcj2Dec_Decode(),
CBcj2Dec::temp can contain up to 4 bytes for writing to (dest).
}
(reserve == 0) is allowed, if we decode full stream via single call of Bcj2Dec_Decode().
(reserve == 0) also is allowed in case of multi-call, if we use fixed buffers,
and (reserve) is calculated from full (final) sizes of all streams before first call.
*/
typedef struct
@@ -68,22 +99,66 @@ typedef struct
unsigned state; /* BCJ2_STREAM_MAIN has more priority than BCJ2_STATE_ORIG */
UInt32 ip;
Byte temp[4];
UInt32 ip; /* property of starting base for decoding */
UInt32 temp; /* Byte temp[4]; */
UInt32 range;
UInt32 code;
UInt16 probs[2 + 256];
CBcj2Prob probs[2 + 256];
} CBcj2Dec;
/* Note:
Bcj2Dec_Init() sets (CBcj2Dec::ip = 0)
if (ip != 0) property is required, the caller must set CBcj2Dec::ip after Bcj2Dec_Init()
*/
void Bcj2Dec_Init(CBcj2Dec *p);
/* Returns: SZ_OK or SZ_ERROR_DATA */
/* Bcj2Dec_Decode():
returns:
SZ_OK
SZ_ERROR_DATA : if data in 5 starting bytes of BCJ2_STREAM_RC stream are not correct
*/
SRes Bcj2Dec_Decode(CBcj2Dec *p);
#define Bcj2Dec_IsFinished(_p_) ((_p_)->code == 0)
/* To check that decoding was finished you can compare
sizes of processed streams with sizes known from another sources.
You must do at least one mandatory check from the two following options:
- the check for size of processed output (ORIG) stream.
- the check for size of processed input (MAIN) stream.
additional optional checks:
- the checks for processed sizes of all input streams (MAIN, CALL, JUMP, RC)
- the checks Bcj2Dec_IsMaybeFinished*()
also before actual decoding you can check that the
following condition is met for stream sizes:
( size(ORIG) == size(MAIN) + size(CALL) + size(JUMP) )
*/
/* (state == BCJ2_STREAM_MAIN) means that decoder is ready for
additional input data in BCJ2_STREAM_MAIN stream.
Note that (state == BCJ2_STREAM_MAIN) is allowed for non-finished decoding.
*/
#define Bcj2Dec_IsMaybeFinished_state_MAIN(_p_) ((_p_)->state == BCJ2_STREAM_MAIN)
/* if the stream decoding was finished correctly, then range decoder
part of CBcj2Dec also was finished, and then (CBcj2Dec::code == 0).
Note that (CBcj2Dec::code == 0) is allowed for non-finished decoding.
*/
#define Bcj2Dec_IsMaybeFinished_code(_p_) ((_p_)->code == 0)
/* use Bcj2Dec_IsMaybeFinished() only as additional check
after at least one mandatory check from the two following options:
- the check for size of processed output (ORIG) stream.
- the check for size of processed input (MAIN) stream.
*/
#define Bcj2Dec_IsMaybeFinished(_p_) ( \
Bcj2Dec_IsMaybeFinished_state_MAIN(_p_) && \
Bcj2Dec_IsMaybeFinished_code(_p_))
/* ---------- BCJ2 Encoder ---------- */
typedef enum
{
BCJ2_ENC_FINISH_MODE_CONTINUE,
@@ -91,6 +166,91 @@ typedef enum
BCJ2_ENC_FINISH_MODE_END_STREAM
} EBcj2Enc_FinishMode;
/*
BCJ2_ENC_FINISH_MODE_CONTINUE:
process non finished encoding.
It notifies the encoder that additional further calls
can provide more input data (src) than provided by current call.
In that case the CBcj2Enc encoder still can move (src) pointer
up to (srcLim), but CBcj2Enc encoder can store some of the last
processed bytes (up to 4 bytes) from src to internal CBcj2Enc::temp[] buffer.
at return:
(CBcj2Enc::src will point to position that includes
processed data and data copied to (temp[]) buffer)
That data from (temp[]) buffer will be used in further calls.
BCJ2_ENC_FINISH_MODE_END_BLOCK:
finish encoding of current block (ended at srcLim) without RC flushing.
at return: if (CBcj2Enc::state == BCJ2_ENC_STATE_ORIG) &&
CBcj2Enc::src == CBcj2Enc::srcLim)
: it shows that block encoding was finished. And the encoder is
ready for new (src) data or for stream finish operation.
finished block means
{
CBcj2Enc has completed block encoding up to (srcLim).
(1 + 4 bytes) or (2 + 4 bytes) CALL/JUMP cortages will
not cross block boundary at (srcLim).
temporary CBcj2Enc buffer for (ORIG) src data is empty.
3 output uncompressed streams (MAIN, CALL, JUMP) were flushed.
RC stream was not flushed. And RC stream will cross block boundary.
}
Note: some possible implementation of BCJ2 encoder could
write branch marker (e8/e8/0f8x) in one call of Bcj2Enc_Encode(),
and it could calculate symbol for RC in another call of Bcj2Enc_Encode().
BCJ2 encoder uses ip/fileIp/fileSize/relatLimit values to calculate RC symbol.
And these CBcj2Enc variables can have different values in different Bcj2Enc_Encode() calls.
So caller must finish each block with BCJ2_ENC_FINISH_MODE_END_BLOCK
to ensure that RC symbol is calculated and written in proper block.
BCJ2_ENC_FINISH_MODE_END_STREAM
finish encoding of stream (ended at srcLim) fully including RC flushing.
at return: if (CBcj2Enc::state == BCJ2_ENC_STATE_FINISHED)
: it shows that stream encoding was finished fully,
and all output streams were flushed fully.
also Bcj2Enc_IsFinished() can be called.
*/
/*
32-bit relative offset in JUMP/CALL commands is
- (mod 4 GiB) for 32-bit x86 code
- signed Int32 for 64-bit x86-64 code
BCJ2 encoder also does internal relative to absolute address conversions.
And there are 2 possible ways to do it:
before v23: we used 32-bit variables and (mod 4 GiB) conversion
since v23: we use 64-bit variables and (signed Int32 offset) conversion.
The absolute address condition for conversion in v23:
((UInt64)((Int64)ip64 - (Int64)fileIp64 + 5 + (Int32)offset) < (UInt64)fileSize64)
note that if (fileSize64 > 2 GiB). there is difference between
old (mod 4 GiB) way (v22) and new (signed Int32 offset) way (v23).
And new (v23) way is more suitable to encode 64-bit x86-64 code for (fileSize64 > 2 GiB) cases.
*/
/*
// for old (v22) way for conversion:
typedef UInt32 CBcj2Enc_ip_unsigned;
typedef Int32 CBcj2Enc_ip_signed;
#define BCJ2_ENC_FileSize_MAX ((UInt32)1 << 31)
*/
typedef UInt64 CBcj2Enc_ip_unsigned;
typedef Int64 CBcj2Enc_ip_signed;
/* maximum size of file that can be used for conversion condition */
#define BCJ2_ENC_FileSize_MAX ((CBcj2Enc_ip_unsigned)0 - 2)
/* default value of fileSize64_minus1 variable that means
that absolute address limitation will not be used */
#define BCJ2_ENC_FileSizeField_UNLIMITED ((CBcj2Enc_ip_unsigned)0 - 1)
/* calculate value that later can be set to CBcj2Enc::fileSize64_minus1 */
#define BCJ2_ENC_GET_FileSizeField_VAL_FROM_FileSize(fileSize) \
((CBcj2Enc_ip_unsigned)(fileSize) - 1)
/* set CBcj2Enc::fileSize64_minus1 variable from size of file */
#define Bcj2Enc_SET_FileSize(p, fileSize) \
(p)->fileSize64_minus1 = BCJ2_ENC_GET_FileSizeField_VAL_FROM_FileSize(fileSize);
typedef struct
{
Byte *bufs[BCJ2_NUM_STREAMS];
@@ -101,45 +261,71 @@ typedef struct
unsigned state;
EBcj2Enc_FinishMode finishMode;
Byte prevByte;
Byte context;
Byte flushRem;
Byte isFlushState;
Byte cache;
UInt32 range;
UInt64 low;
UInt64 cacheSize;
// UInt32 context; // for marker version, it can include marker flag.
UInt32 ip;
/* 32-bit ralative offset in JUMP/CALL commands is
- (mod 4 GB) in 32-bit mode
- signed Int32 in 64-bit mode
We use (mod 4 GB) check for fileSize.
Use fileSize up to 2 GB, if you want to support 32-bit and 64-bit code conversion. */
UInt32 fileIp;
UInt32 fileSize; /* (fileSize <= ((UInt32)1 << 31)), 0 means no_limit */
UInt32 relatLimit; /* (relatLimit <= ((UInt32)1 << 31)), 0 means desable_conversion */
/* (ip64) and (fileIp64) correspond to virtual source stream position
that doesn't include data in temp[] */
CBcj2Enc_ip_unsigned ip64; /* current (ip) position */
CBcj2Enc_ip_unsigned fileIp64; /* start (ip) position of current file */
CBcj2Enc_ip_unsigned fileSize64_minus1; /* size of current file (for conversion limitation) */
UInt32 relatLimit; /* (relatLimit <= ((UInt32)1 << 31)) : 0 means disable_conversion */
// UInt32 relatExcludeBits;
UInt32 tempTarget;
unsigned tempPos;
Byte temp[4 * 2];
unsigned flushPos;
UInt16 probs[2 + 256];
unsigned tempPos; /* the number of bytes that were copied to temp[] buffer
(tempPos <= 4) outside of Bcj2Enc_Encode() */
// Byte temp[4]; // for marker version
Byte temp[8];
CBcj2Prob probs[2 + 256];
} CBcj2Enc;
void Bcj2Enc_Init(CBcj2Enc *p);
/*
Bcj2Enc_Encode(): at exit:
p->State < BCJ2_NUM_STREAMS : we need more buffer space for output stream
(bufs[p->State] == lims[p->State])
p->State == BCJ2_ENC_STATE_ORIG : we need more data in input src stream
(src == srcLim)
p->State == BCJ2_ENC_STATE_FINISHED : after fully encoded stream
*/
void Bcj2Enc_Encode(CBcj2Enc *p);
#define Bcj2Enc_Get_InputData_Size(p) ((SizeT)((p)->srcLim - (p)->src) + (p)->tempPos)
#define Bcj2Enc_IsFinished(p) ((p)->flushPos == 5)
/* Bcj2Enc encoder can look ahead for up 4 bytes of source stream.
CBcj2Enc::tempPos : is the number of bytes that were copied from input stream to temp[] buffer.
(CBcj2Enc::src) after Bcj2Enc_Encode() is starting position after
fully processed data and after data copied to temp buffer.
So if the caller needs to get real number of fully processed input
bytes (without look ahead data in temp buffer),
the caller must subtruct (CBcj2Enc::tempPos) value from processed size
value that is calculated based on current (CBcj2Enc::src):
cur_processed_pos = Calc_Big_Processed_Pos(enc.src)) -
Bcj2Enc_Get_AvailInputSize_in_Temp(&enc);
*/
/* get the size of input data that was stored in temp[] buffer: */
#define Bcj2Enc_Get_AvailInputSize_in_Temp(p) ((p)->tempPos)
#define Bcj2Enc_IsFinished(p) ((p)->flushRem == 0)
#define BCJ2_RELAT_LIMIT_NUM_BITS 26
#define BCJ2_RELAT_LIMIT ((UInt32)1 << BCJ2_RELAT_LIMIT_NUM_BITS)
/* limit for CBcj2Enc::fileSize variable */
#define BCJ2_FileSize_MAX ((UInt32)1 << 31)
/* Note : the decoder supports overlapping of marker (0f 80).
But we can eliminate such overlapping cases by setting
the limit for relative offset conversion as
CBcj2Enc::relatLimit <= (0x0f << 24) == (240 MiB)
*/
/* default value for CBcj2Enc::relatLimit */
#define BCJ2_ENC_RELAT_LIMIT_DEFAULT ((UInt32)0x0f << 24)
#define BCJ2_ENC_RELAT_LIMIT_MAX ((UInt32)1 << 31)
// #define BCJ2_RELAT_EXCLUDE_NUM_BITS 5
EXTERN_C_END

572
C/Bcj2Enc.c Normal file → Executable file
View File

@@ -1,61 +1,62 @@
/* Bcj2Enc.c -- BCJ2 Encoder (Converter for x86 code)
2017-04-03 : Igor Pavlov : Public domain */
/* Bcj2Enc.c -- BCJ2 Encoder converter for x86 code (Branch CALL/JUMP variant2)
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
/* #define SHOW_STAT */
#ifdef SHOW_STAT
#include <stdio.h>
#define PRF(x) x
#define PRF2(s) printf("%s ip=%8x tempPos=%d src= %8x\n", s, (unsigned)p->ip64, p->tempPos, (unsigned)(p->srcLim - p->src));
#else
#define PRF(x)
#define PRF2(s)
#endif
#include <windows.h>
#include <string.h>
#include "Bcj2.h"
#include "CpuArch.h"
#define CProb UInt16
#define kTopValue ((UInt32)1 << 24)
#define kNumModelBits 11
#define kBitModelTotal (1 << kNumModelBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
void Bcj2Enc_Init(CBcj2Enc *p)
{
unsigned i;
p->state = BCJ2_ENC_STATE_OK;
p->state = BCJ2_ENC_STATE_ORIG;
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
p->prevByte = 0;
p->context = 0;
p->flushRem = 5;
p->isFlushState = 0;
p->cache = 0;
p->range = 0xFFFFFFFF;
p->range = 0xffffffff;
p->low = 0;
p->cacheSize = 1;
p->ip = 0;
p->fileIp = 0;
p->fileSize = 0;
p->relatLimit = BCJ2_RELAT_LIMIT;
p->ip64 = 0;
p->fileIp64 = 0;
p->fileSize64_minus1 = BCJ2_ENC_FileSizeField_UNLIMITED;
p->relatLimit = BCJ2_ENC_RELAT_LIMIT_DEFAULT;
// p->relatExcludeBits = 0;
p->tempPos = 0;
p->flushPos = 0;
for (i = 0; i < sizeof(p->probs) / sizeof(p->probs[0]); i++)
p->probs[i] = kBitModelTotal >> 1;
}
static Bool MY_FAST_CALL RangeEnc_ShiftLow(CBcj2Enc *p)
// Z7_NO_INLINE
Z7_FORCE_INLINE
static BoolInt Bcj2_RangeEnc_ShiftLow(CBcj2Enc *p)
{
if ((UInt32)p->low < (UInt32)0xFF000000 || (UInt32)(p->low >> 32) != 0)
const UInt32 low = (UInt32)p->low;
const unsigned high = (unsigned)
#if defined(Z7_MSC_VER_ORIGINAL) \
&& defined(MY_CPU_X86) \
&& defined(MY_CPU_LE) \
&& !defined(MY_CPU_64BIT)
// we try to rid of __aullshr() call in MSVS-x86
(((const UInt32 *)&p->low)[1]); // [1] : for little-endian only
#else
(p->low >> 32);
#endif
if (low < (UInt32)0xff000000 || high != 0)
{
Byte *buf = p->bufs[BCJ2_STREAM_RC];
do
@@ -66,247 +67,440 @@ static Bool MY_FAST_CALL RangeEnc_ShiftLow(CBcj2Enc *p)
p->bufs[BCJ2_STREAM_RC] = buf;
return True;
}
*buf++ = (Byte)(p->cache + (Byte)(p->low >> 32));
p->cache = 0xFF;
*buf++ = (Byte)(p->cache + high);
p->cache = 0xff;
}
while (--p->cacheSize);
p->bufs[BCJ2_STREAM_RC] = buf;
p->cache = (Byte)((UInt32)p->low >> 24);
p->cache = (Byte)(low >> 24);
}
p->cacheSize++;
p->low = (UInt32)p->low << 8;
p->low = low << 8;
return False;
}
/*
We can use 2 alternative versions of code:
1) non-marker version:
Byte CBcj2Enc::context
Byte temp[8];
Last byte of marker (e8/e9/[0f]8x) can be written to temp[] buffer.
Encoder writes last byte of marker (e8/e9/[0f]8x) to dest, only in conjunction
with writing branch symbol to range coder in same Bcj2Enc_Encode_2() call.
2) marker version:
UInt32 CBcj2Enc::context
Byte CBcj2Enc::temp[4];
MARKER_FLAG in CBcj2Enc::context shows that CBcj2Enc::context contains finded marker.
it's allowed that
one call of Bcj2Enc_Encode_2() writes last byte of marker (e8/e9/[0f]8x) to dest,
and another call of Bcj2Enc_Encode_2() does offset conversion.
So different values of (fileIp) and (fileSize) are possible
in these different Bcj2Enc_Encode_2() calls.
Also marker version requires additional if((v & MARKER_FLAG) == 0) check in main loop.
So we use non-marker version.
*/
/*
Corner cases with overlap in multi-block.
before v23: there was one corner case, where converted instruction
could start in one sub-stream and finish in next sub-stream.
If multi-block (solid) encoding is used,
and BCJ2_ENC_FINISH_MODE_END_BLOCK is used for each sub-stream.
and (0f) is last byte of previous sub-stream
and (8x) is first byte of current sub-stream
then (0f 8x) pair is treated as marker by BCJ2 encoder and decoder.
BCJ2 encoder can converts 32-bit offset for that (0f 8x) cortage,
if that offset meets limit requirements.
If encoder allows 32-bit offset conversion for such overlap case,
then the data in 3 uncompressed BCJ2 streams for some sub-stream
can depend from data of previous sub-stream.
That corner case is not big problem, and it's rare case.
Since v23.00 we do additional check to prevent conversions in such overlap cases.
*/
/*
Bcj2Enc_Encode_2() output variables at exit:
{
if (Bcj2Enc_Encode_2() exits with (p->state == BCJ2_ENC_STATE_ORIG))
{
it means that encoder needs more input data.
if (p->srcLim == p->src) at exit, then
{
(p->finishMode != BCJ2_ENC_FINISH_MODE_END_STREAM)
all input data were read and processed, and we are ready for
new input data.
}
else
{
(p->srcLim != p->src)
(p->finishMode == BCJ2_ENC_FINISH_MODE_CONTINUE)
The encoder have found e8/e9/0f_8x marker,
and p->src points to last byte of that marker,
Bcj2Enc_Encode_2() needs more input data to get totally
5 bytes (last byte of marker and 32-bit branch offset)
as continuous array starting from p->src.
(p->srcLim - p->src < 5) requirement is met after exit.
So non-processed resedue from p->src to p->srcLim is always less than 5 bytes.
}
}
}
*/
Z7_NO_INLINE
static void Bcj2Enc_Encode_2(CBcj2Enc *p)
{
if (BCJ2_IS_32BIT_STREAM(p->state))
if (!p->isFlushState)
{
Byte *cur = p->bufs[p->state];
if (cur == p->lims[p->state])
return;
SetBe32(cur, p->tempTarget);
p->bufs[p->state] = cur + 4;
}
p->state = BCJ2_ENC_STATE_ORIG;
for (;;)
{
if (p->range < kTopValue)
{
if (RangeEnc_ShiftLow(p))
return;
p->range <<= 8;
}
const Byte *src;
UInt32 v;
{
const unsigned state = p->state;
if (BCJ2_IS_32BIT_STREAM(state))
{
Byte *cur = p->bufs[state];
if (cur == p->lims[state])
return;
SetBe32a(cur, p->tempTarget)
p->bufs[state] = cur + 4;
}
}
p->state = BCJ2_ENC_STATE_ORIG; // for main reason of exit
src = p->src;
v = p->context;
// #define WRITE_CONTEXT p->context = v; // for marker version
#define WRITE_CONTEXT p->context = (Byte)v;
#define WRITE_CONTEXT_AND_SRC p->src = src; WRITE_CONTEXT
for (;;)
{
// const Byte *src;
// UInt32 v;
CBcj2Enc_ip_unsigned ip;
if (p->range < kTopValue)
{
// to reduce register pressure and code size: we save and restore local variables.
WRITE_CONTEXT_AND_SRC
if (Bcj2_RangeEnc_ShiftLow(p))
return;
p->range <<= 8;
src = p->src;
v = p->context;
}
// src = p->src;
// #define MARKER_FLAG ((UInt32)1 << 17)
// if ((v & MARKER_FLAG) == 0) // for marker version
{
const Byte *src = p->src;
const Byte *srcLim;
Byte *dest;
SizeT num = p->srcLim - src;
if (p->finishMode == BCJ2_ENC_FINISH_MODE_CONTINUE)
Byte *dest = p->bufs[BCJ2_STREAM_MAIN];
{
if (num <= 4)
return;
num -= 4;
const SizeT remSrc = (SizeT)(p->srcLim - src);
SizeT rem = (SizeT)(p->lims[BCJ2_STREAM_MAIN] - dest);
if (rem >= remSrc)
rem = remSrc;
srcLim = src + rem;
}
else if (num == 0)
break;
/* p->context contains context of previous byte:
bits [0 : 7] : src[-1], if (src) was changed in this call
bits [8 : 31] : are undefined for non-marker version
*/
// v = p->context;
#define NUM_SHIFT_BITS 24
#define CONV_FLAG ((UInt32)1 << 16)
#define ONE_ITER { \
b = src[0]; \
*dest++ = (Byte)b; \
v = (v << NUM_SHIFT_BITS) | b; \
if (((b + (0x100 - 0xe8)) & 0xfe) == 0) break; \
if (((v - (((UInt32)0x0f << (NUM_SHIFT_BITS)) + 0x80)) & \
((((UInt32)1 << (4 + NUM_SHIFT_BITS)) - 0x1) << 4)) == 0) break; \
src++; if (src == srcLim) { break; } }
dest = p->bufs[BCJ2_STREAM_MAIN];
if (num > (SizeT)(p->lims[BCJ2_STREAM_MAIN] - dest))
if (src != srcLim)
for (;;)
{
num = p->lims[BCJ2_STREAM_MAIN] - dest;
if (num == 0)
/* clang can generate ineffective code with setne instead of two jcc instructions.
we can use 2 iterations and external (unsigned b) to avoid that ineffective code genaration. */
unsigned b;
ONE_ITER
ONE_ITER
}
ip = p->ip64 + (CBcj2Enc_ip_unsigned)(SizeT)(dest - p->bufs[BCJ2_STREAM_MAIN]);
p->bufs[BCJ2_STREAM_MAIN] = dest;
p->ip64 = ip;
if (src == srcLim)
{
WRITE_CONTEXT_AND_SRC
if (src != p->srcLim)
{
p->state = BCJ2_STREAM_MAIN;
return;
}
}
srcLim = src + num;
if (p->prevByte == 0x0F && (src[0] & 0xF0) == 0x80)
*dest = src[0];
else for (;;)
{
Byte b = *src;
*dest = b;
if (b != 0x0F)
{
if ((b & 0xFE) == 0xE8)
break;
dest++;
if (++src != srcLim)
continue;
break;
}
dest++;
if (++src == srcLim)
break;
if ((*src & 0xF0) != 0x80)
continue;
*dest = *src;
/* (p->src == p->srcLim)
(p->state == BCJ2_ENC_STATE_ORIG) */
if (p->finishMode != BCJ2_ENC_FINISH_MODE_END_STREAM)
return;
/* (p->finishMode == BCJ2_ENC_FINISH_MODE_END_STREAM */
// (p->flushRem == 5);
p->isFlushState = 1;
break;
}
num = src - p->src;
if (src == srcLim)
src++;
// p->src = src;
}
// ip = p->ip; // for marker version
/* marker was found */
/* (v) contains marker that was found:
bits [NUM_SHIFT_BITS : NUM_SHIFT_BITS + 7]
: value of src[-2] : xx/xx/0f
bits [0 : 7] : value of src[-1] : e8/e9/8x
*/
{
{
p->prevByte = src[-1];
p->bufs[BCJ2_STREAM_MAIN] = dest;
p->src = src;
p->ip += (UInt32)num;
continue;
}
{
Byte context = (Byte)(num == 0 ? p->prevByte : src[-1]);
Bool needConvert;
p->bufs[BCJ2_STREAM_MAIN] = dest + 1;
p->ip += (UInt32)num + 1;
src++;
needConvert = False;
#if NUM_SHIFT_BITS != 24
v &= ~(UInt32)CONV_FLAG;
#endif
// UInt32 relat = 0;
if ((SizeT)(p->srcLim - src) >= 4)
{
UInt32 relatVal = GetUi32(src);
if ((p->fileSize == 0 || (UInt32)(p->ip + 4 + relatVal - p->fileIp) < p->fileSize)
&& ((relatVal + p->relatLimit) >> 1) < p->relatLimit)
needConvert = True;
}
{
UInt32 bound;
unsigned ttt;
Byte b = src[-1];
CProb *prob = p->probs + (unsigned)(b == 0xE8 ? 2 + (unsigned)context : (b == 0xE9 ? 1 : 0));
ttt = *prob;
bound = (p->range >> kNumModelBits) * ttt;
if (!needConvert)
/*
if (relat != 0 || (Byte)v != 0xe8)
BoolInt isBigOffset = True;
*/
const UInt32 relat = GetUi32(src);
/*
#define EXCLUDE_FLAG ((UInt32)1 << 4)
#define NEED_CONVERT(rel) ((((rel) + EXCLUDE_FLAG) & (0 - EXCLUDE_FLAG * 2)) != 0)
if (p->relatExcludeBits != 0)
{
const UInt32 flag = (UInt32)1 << (p->relatExcludeBits - 1);
isBigOffset = (((relat + flag) & (0 - flag * 2)) != 0);
}
// isBigOffset = False; // for debug
*/
ip -= p->fileIp64;
// Use the following if check, if (ip) is 64-bit:
if (ip > (((v + 0x20) >> 5) & 1)) // 23.00 : we eliminate milti-block overlap for (Of 80) and (e8/e9)
if ((CBcj2Enc_ip_unsigned)((CBcj2Enc_ip_signed)ip + 4 + (Int32)relat) <= p->fileSize64_minus1)
if (((UInt32)(relat + p->relatLimit) >> 1) < p->relatLimit)
v |= CONV_FLAG;
}
else if (p->finishMode == BCJ2_ENC_FINISH_MODE_CONTINUE)
{
// (p->srcLim - src < 4)
// /*
// for non-marker version
p->ip64--; // p->ip = ip - 1;
p->bufs[BCJ2_STREAM_MAIN]--;
src--;
v >>= NUM_SHIFT_BITS;
// (0 < p->srcLim - p->src <= 4)
// */
// v |= MARKER_FLAG; // for marker version
/* (p->state == BCJ2_ENC_STATE_ORIG) */
WRITE_CONTEXT_AND_SRC
return;
}
{
const unsigned c = ((v + 0x17) >> 6) & 1;
CBcj2Prob *prob = p->probs + (unsigned)
(((0 - c) & (Byte)(v >> NUM_SHIFT_BITS)) + c + ((v >> 5) & 1));
/*
((Byte)v == 0xe8 ? 2 + ((Byte)(v >> 8)) :
((Byte)v < 0xe8 ? 0 : 1)); // ((v >> 5) & 1));
*/
const unsigned ttt = *prob;
const UInt32 bound = (p->range >> kNumBitModelTotalBits) * ttt;
if ((v & CONV_FLAG) == 0)
{
// static int yyy = 0; yyy++; printf("\n!needConvert = %d\n", yyy);
// v = (Byte)v; // for marker version
p->range = bound;
*prob = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
p->src = src;
p->prevByte = b;
*prob = (CBcj2Prob)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
// WRITE_CONTEXT_AND_SRC
continue;
}
p->low += bound;
p->range -= bound;
*prob = (CProb)(ttt - (ttt >> kNumMoveBits));
*prob = (CBcj2Prob)(ttt - (ttt >> kNumMoveBits));
}
// p->context = src[3];
{
// const unsigned cj = ((Byte)v == 0xe8 ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP);
const unsigned cj = (((v + 0x57) >> 6) & 1) + BCJ2_STREAM_CALL;
ip = p->ip64;
v = GetUi32(src); // relat
ip += 4;
p->ip64 = ip;
src += 4;
// p->src = src;
{
UInt32 relatVal = GetUi32(src);
UInt32 absVal;
p->ip += 4;
absVal = p->ip + relatVal;
p->prevByte = src[3];
src += 4;
p->src = src;
const UInt32 absol = (UInt32)ip + v;
Byte *cur = p->bufs[cj];
v >>= 24;
// WRITE_CONTEXT
if (cur == p->lims[cj])
{
unsigned cj = (b == 0xE8) ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP;
Byte *cur = p->bufs[cj];
if (cur == p->lims[cj])
{
p->state = cj;
p->tempTarget = absVal;
return;
}
SetBe32(cur, absVal);
p->bufs[cj] = cur + 4;
p->state = cj;
p->tempTarget = absol;
WRITE_CONTEXT_AND_SRC
return;
}
SetBe32a(cur, absol)
p->bufs[cj] = cur + 4;
}
}
}
}
}
} // end of loop
}
if (p->finishMode != BCJ2_ENC_FINISH_MODE_END_STREAM)
return;
for (; p->flushPos < 5; p->flushPos++)
if (RangeEnc_ShiftLow(p))
for (; p->flushRem != 0; p->flushRem--)
if (Bcj2_RangeEnc_ShiftLow(p))
return;
p->state = BCJ2_ENC_STATE_OK;
p->state = BCJ2_ENC_STATE_FINISHED;
}
/*
BCJ2 encoder needs look ahead for up to 4 bytes in (src) buffer.
So base function Bcj2Enc_Encode_2()
in BCJ2_ENC_FINISH_MODE_CONTINUE mode can return with
(p->state == BCJ2_ENC_STATE_ORIG && p->src < p->srcLim)
Bcj2Enc_Encode() solves that look ahead problem by using p->temp[] buffer.
so if (p->state == BCJ2_ENC_STATE_ORIG) after Bcj2Enc_Encode(),
then (p->src == p->srcLim).
And the caller's code is simpler with Bcj2Enc_Encode().
*/
Z7_NO_INLINE
void Bcj2Enc_Encode(CBcj2Enc *p)
{
PRF(printf("\n"));
PRF(printf("---- ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
PRF2("\n----")
if (p->tempPos != 0)
{
/* extra: number of bytes that were copied from (src) to (temp) buffer in this call */
unsigned extra = 0;
/* We will touch only minimal required number of bytes in input (src) stream.
So we will add input bytes from (src) stream to temp[] with step of 1 byte.
We don't add new bytes to temp[] before Bcj2Enc_Encode_2() call
in first loop iteration because
- previous call of Bcj2Enc_Encode() could use another (finishMode),
- previous call could finish with (p->state != BCJ2_ENC_STATE_ORIG).
the case with full temp[] buffer (p->tempPos == 4) is possible here.
*/
for (;;)
{
// (0 < p->tempPos <= 5) // in non-marker version
/* p->src : the current src data position including extra bytes
that were copied to temp[] buffer in this call */
const Byte *src = p->src;
const Byte *srcLim = p->srcLim;
unsigned finishMode = p->finishMode;
const EBcj2Enc_FinishMode finishMode = p->finishMode;
if (src != srcLim)
{
/* if there are some src data after the data copied to temp[],
then we use MODE_CONTINUE for temp data */
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
}
p->src = p->temp;
p->srcLim = p->temp + p->tempPos;
if (src != srcLim)
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
PRF(printf(" ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
PRF2(" ")
Bcj2Enc_Encode_2(p);
{
unsigned num = (unsigned)(p->src - p->temp);
unsigned tempPos = p->tempPos - num;
const unsigned num = (unsigned)(p->src - p->temp);
const unsigned tempPos = p->tempPos - num;
unsigned i;
p->tempPos = tempPos;
for (i = 0; i < tempPos; i++)
p->temp[i] = p->temp[(size_t)i + num];
p->temp[i] = p->temp[(SizeT)i + num];
// tempPos : number of bytes in temp buffer
p->src = src;
p->srcLim = srcLim;
p->finishMode = finishMode;
if (p->state != BCJ2_ENC_STATE_ORIG || src == srcLim)
if (p->state != BCJ2_ENC_STATE_ORIG)
{
// (p->tempPos <= 4) // in non-marker version
/* if (the reason of exit from Bcj2Enc_Encode_2()
is not BCJ2_ENC_STATE_ORIG),
then we exit from Bcj2Enc_Encode() with same reason */
// optional code begin : we rollback (src) and tempPos, if it's possible:
if (extra >= tempPos)
extra = tempPos;
p->src = src - extra;
p->tempPos = tempPos - extra;
// optional code end : rollback of (src) and tempPos
return;
}
/* (p->tempPos <= 4)
(p->state == BCJ2_ENC_STATE_ORIG)
so encoder needs more data than in temp[] */
if (src == srcLim)
return; // src buffer has no more input data.
/* (src != srcLim)
so we can provide more input data from src for Bcj2Enc_Encode_2() */
if (extra >= tempPos)
{
p->src = src - tempPos;
/* (extra >= tempPos) means that temp buffer contains
only data from src buffer of this call.
So now we can encode without temp buffer */
p->src = src - tempPos; // rollback (src)
p->tempPos = 0;
break;
}
p->temp[tempPos] = src[0];
// we append one additional extra byte from (src) to temp[] buffer:
p->temp[tempPos] = *src;
p->tempPos = tempPos + 1;
// (0 < p->tempPos <= 5) // in non-marker version
p->src = src + 1;
extra++;
}
}
}
PRF(printf("++++ ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
PRF2("++++")
// (p->tempPos == 0)
Bcj2Enc_Encode_2(p);
PRF2("====")
if (p->state == BCJ2_ENC_STATE_ORIG)
{
const Byte *src = p->src;
unsigned rem = (unsigned)(p->srcLim - src);
unsigned i;
for (i = 0; i < rem; i++)
p->temp[i] = src[i];
p->tempPos = rem;
p->src = src + rem;
const Byte *srcLim = p->srcLim;
const unsigned rem = (unsigned)(srcLim - src);
/* (rem <= 4) here.
if (p->src != p->srcLim), then
- we copy non-processed bytes from (p->src) to temp[] buffer,
- we set p->src equal to p->srcLim.
*/
if (rem)
{
unsigned i = 0;
p->src = srcLim;
p->tempPos = rem;
// (0 < p->tempPos <= 4)
do
p->temp[i] = src[i];
while (++i != rem);
}
// (p->tempPos <= 4)
// (p->src == p->srcLim)
}
}
#undef PRF2
#undef CONV_FLAG
#undef MARKER_FLAG
#undef WRITE_CONTEXT
#undef WRITE_CONTEXT_AND_SRC
#undef ONE_ITER
#undef NUM_SHIFT_BITS
#undef kTopValue
#undef kNumBitModelTotalBits
#undef kBitModelTotal
#undef kNumMoveBits

6
C/Blake2.h Normal file → Executable file
View File

@@ -1,9 +1,9 @@
/* Blake2.h -- BLAKE2 Hash
2015-06-30 : Igor Pavlov : Public domain
2023-03-04 : Igor Pavlov : Public domain
2015 : Samuel Neves : Public domain */
#ifndef __BLAKE2_H
#define __BLAKE2_H
#ifndef ZIP7_INC_BLAKE2_H
#define ZIP7_INC_BLAKE2_H
#include "7zTypes.h"

36
C/Blake2s.c Normal file → Executable file
View File

@@ -1,7 +1,9 @@
/* Blake2s.c -- BLAKE2s and BLAKE2sp Hash
2015-06-30 : Igor Pavlov : Public domain
2023-03-04 : Igor Pavlov : Public domain
2015 : Samuel Neves : Public domain */
#include "Precomp.h"
#include <string.h>
#include "Blake2.h"
@@ -34,7 +36,7 @@ static const Byte k_Blake2s_Sigma[BLAKE2S_NUM_ROUNDS][16] =
};
void Blake2s_Init0(CBlake2s *p)
static void Blake2s_Init0(CBlake2s *p)
{
unsigned i;
for (i = 0; i < 8; i++)
@@ -78,21 +80,21 @@ static void Blake2s_Compress(CBlake2s *p)
a += b + m[sigma[2*i+1]]; d ^= a; d = rotr32(d, 8); c += d; b ^= c; b = rotr32(b, 7); \
#define R(r) \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]) \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]) \
G(r,2,v[ 2],v[ 6],v[10],v[14]) \
G(r,3,v[ 3],v[ 7],v[11],v[15]) \
G(r,4,v[ 0],v[ 5],v[10],v[15]) \
G(r,5,v[ 1],v[ 6],v[11],v[12]) \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]) \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]) \
{
unsigned r;
for (r = 0; r < BLAKE2S_NUM_ROUNDS; r++)
{
const Byte *sigma = k_Blake2s_Sigma[r];
R(r);
R(r)
}
/* R(0); R(1); R(2); R(3); R(4); R(5); R(6); R(7); R(8); R(9); */
}
@@ -130,7 +132,7 @@ static void Blake2s_Update(CBlake2s *p, const Byte *data, size_t size)
}
memcpy(p->buf + pos, data, rem);
Blake2s_Increment_Counter(S, BLAKE2S_BLOCK_SIZE);
Blake2s_Increment_Counter(S, BLAKE2S_BLOCK_SIZE)
Blake2s_Compress(p);
p->bufPos = 0;
data += rem;
@@ -143,13 +145,15 @@ static void Blake2s_Final(CBlake2s *p, Byte *digest)
{
unsigned i;
Blake2s_Increment_Counter(S, (UInt32)p->bufPos);
Blake2s_Set_LastBlock(p);
Blake2s_Increment_Counter(S, (UInt32)p->bufPos)
Blake2s_Set_LastBlock(p)
memset(p->buf + p->bufPos, 0, BLAKE2S_BLOCK_SIZE - p->bufPos);
Blake2s_Compress(p);
for (i = 0; i < 8; i++)
SetUi32(digest + sizeof(p->h[i]) * i, p->h[i]);
{
SetUi32(digest + sizeof(p->h[i]) * i, p->h[i])
}
}
@@ -242,3 +246,5 @@ void Blake2sp_Final(CBlake2sp *p, Byte *digest)
Blake2s_Final(&R, digest);
}
#undef rotr32

528
C/Bra.c Normal file → Executable file
View File

@@ -1,230 +1,420 @@
/* Bra.c -- Converters for RISC code
2017-04-04 : Igor Pavlov : Public domain */
/* Bra.c -- Branch converters for RISC code
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#include "Bra.h"
#include "CpuArch.h"
#include "RotateDefs.h"
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
#if defined(MY_CPU_SIZEOF_POINTER) \
&& ( MY_CPU_SIZEOF_POINTER == 4 \
|| MY_CPU_SIZEOF_POINTER == 8)
#define BR_CONV_USE_OPT_PC_PTR
#endif
#ifdef BR_CONV_USE_OPT_PC_PTR
#define BR_PC_INIT pc -= (UInt32)(SizeT)p;
#define BR_PC_GET (pc + (UInt32)(SizeT)p)
#else
#define BR_PC_INIT pc += (UInt32)size;
#define BR_PC_GET (pc - (UInt32)(SizeT)(lim - p))
// #define BR_PC_INIT
// #define BR_PC_GET (pc + (UInt32)(SizeT)(p - data))
#endif
#define BR_CONVERT_VAL(v, c) if (encoding) v += c; else v -= c;
// #define BR_CONVERT_VAL(v, c) if (!encoding) c = (UInt32)0 - c; v += c;
#define Z7_BRANCH_CONV(name) z7_BranchConv_ ## name
#define Z7_BRANCH_FUNC_MAIN(name) \
static \
Z7_FORCE_INLINE \
Z7_ATTRIB_NO_VECTOR \
Byte *Z7_BRANCH_CONV(name)(Byte *p, SizeT size, UInt32 pc, int encoding)
#define Z7_BRANCH_FUNC_IMP(name, m, encoding) \
Z7_NO_INLINE \
Z7_ATTRIB_NO_VECTOR \
Byte *m(name)(Byte *data, SizeT size, UInt32 pc) \
{ return Z7_BRANCH_CONV(name)(data, size, pc, encoding); } \
#ifdef Z7_EXTRACT_ONLY
#define Z7_BRANCH_FUNCS_IMP(name) \
Z7_BRANCH_FUNC_IMP(name, Z7_BRANCH_CONV_DEC, 0)
#else
#define Z7_BRANCH_FUNCS_IMP(name) \
Z7_BRANCH_FUNC_IMP(name, Z7_BRANCH_CONV_DEC, 0) \
Z7_BRANCH_FUNC_IMP(name, Z7_BRANCH_CONV_ENC, 1)
#endif
#if defined(__clang__)
#define BR_EXTERNAL_FOR
#define BR_NEXT_ITERATION continue;
#else
#define BR_EXTERNAL_FOR for (;;)
#define BR_NEXT_ITERATION break;
#endif
#if defined(__clang__) && (__clang_major__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ >= 1000) \
// GCC is not good for __builtin_expect() here
/* || defined(_MSC_VER) && (_MSC_VER >= 1920) */
// #define Z7_unlikely [[unlikely]]
// #define Z7_LIKELY(x) (__builtin_expect((x), 1))
#define Z7_UNLIKELY(x) (__builtin_expect((x), 0))
// #define Z7_likely [[likely]]
#else
// #define Z7_LIKELY(x) (x)
#define Z7_UNLIKELY(x) (x)
// #define Z7_likely
#endif
Z7_BRANCH_FUNC_MAIN(ARM64)
{
Byte *p;
// Byte *p = data;
const Byte *lim;
size &= ~(size_t)3;
ip += 4;
p = data;
lim = data + size;
if (encoding)
for (;;)
const UInt32 flag = (UInt32)1 << (24 - 4);
const UInt32 mask = ((UInt32)1 << 24) - (flag << 1);
size &= ~(SizeT)3;
// if (size == 0) return p;
lim = p + size;
BR_PC_INIT
pc -= 4; // because (p) will point to next instruction
BR_EXTERNAL_FOR
{
// Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
for (;;)
{
if (p >= lim)
return p - data;
UInt32 v;
if Z7_UNLIKELY(p == lim)
return p;
v = GetUi32a(p);
p += 4;
if (p[-1] == 0xEB)
break;
}
{
UInt32 v = GetUi32(p - 4);
v <<= 2;
v += ip + (UInt32)(p - data);
v >>= 2;
v &= 0x00FFFFFF;
v |= 0xEB000000;
SetUi32(p - 4, v);
}
}
for (;;)
{
for (;;)
{
if (p >= lim)
return p - data;
p += 4;
if (p[-1] == 0xEB)
break;
}
{
UInt32 v = GetUi32(p - 4);
v <<= 2;
v -= ip + (UInt32)(p - data);
v >>= 2;
v &= 0x00FFFFFF;
v |= 0xEB000000;
SetUi32(p - 4, v);
if Z7_UNLIKELY(((v - 0x94000000) & 0xfc000000) == 0)
{
UInt32 c = BR_PC_GET >> 2;
BR_CONVERT_VAL(v, c)
v &= 0x03ffffff;
v |= 0x94000000;
SetUi32a(p - 4, v)
BR_NEXT_ITERATION
}
// v = rotlFixed(v, 8); v += (flag << 8) - 0x90; if Z7_UNLIKELY((v & ((mask << 8) + 0x9f)) == 0)
v -= 0x90000000; if Z7_UNLIKELY((v & 0x9f000000) == 0)
{
UInt32 z, c;
// v = rotrFixed(v, 8);
v += flag; if Z7_UNLIKELY(v & mask) continue;
z = (v & 0xffffffe0) | (v >> 26);
c = (BR_PC_GET >> (12 - 3)) & ~(UInt32)7;
BR_CONVERT_VAL(z, c)
v &= 0x1f;
v |= 0x90000000;
v |= z << 26;
v |= 0x00ffffe0 & ((z & (((flag << 1) - 1))) - flag);
SetUi32a(p - 4, v)
}
}
}
}
Z7_BRANCH_FUNCS_IMP(ARM64)
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
Z7_BRANCH_FUNC_MAIN(ARM)
{
Byte *p;
// Byte *p = data;
const Byte *lim;
size &= ~(size_t)1;
p = data;
lim = data + size - 4;
if (encoding)
size &= ~(SizeT)3;
lim = p + size;
BR_PC_INIT
/* in ARM: branch offset is relative to the +2 instructions from current instruction.
(p) will point to next instruction */
pc += 8 - 4;
for (;;)
{
UInt32 b1;
for (;;)
{
UInt32 b3;
if (p > lim)
return p - data;
b1 = p[1];
b3 = p[3];
p += 2;
b1 ^= 8;
if ((b3 & b1) >= 0xF8)
break;
if Z7_UNLIKELY(p >= lim) { return p; } p += 4; if Z7_UNLIKELY(p[-1] == 0xeb) break;
if Z7_UNLIKELY(p >= lim) { return p; } p += 4; if Z7_UNLIKELY(p[-1] == 0xeb) break;
}
{
UInt32 v =
((UInt32)b1 << 19)
+ (((UInt32)p[1] & 0x7) << 8)
+ (((UInt32)p[-2] << 11))
+ (p[0]);
p += 2;
{
UInt32 cur = (ip + (UInt32)(p - data)) >> 1;
v += cur;
}
p[-4] = (Byte)(v >> 11);
p[-3] = (Byte)(0xF0 | ((v >> 19) & 0x7));
p[-2] = (Byte)v;
p[-1] = (Byte)(0xF8 | (v >> 8));
}
}
for (;;)
{
UInt32 b1;
for (;;)
{
UInt32 b3;
if (p > lim)
return p - data;
b1 = p[1];
b3 = p[3];
p += 2;
b1 ^= 8;
if ((b3 & b1) >= 0xF8)
break;
}
{
UInt32 v =
((UInt32)b1 << 19)
+ (((UInt32)p[1] & 0x7) << 8)
+ (((UInt32)p[-2] << 11))
+ (p[0]);
p += 2;
{
UInt32 cur = (ip + (UInt32)(p - data)) >> 1;
v -= cur;
}
/*
SetUi16(p - 4, (UInt16)(((v >> 11) & 0x7FF) | 0xF000));
SetUi16(p - 2, (UInt16)(v | 0xF800));
*/
p[-4] = (Byte)(v >> 11);
p[-3] = (Byte)(0xF0 | ((v >> 19) & 0x7));
p[-2] = (Byte)v;
p[-1] = (Byte)(0xF8 | (v >> 8));
UInt32 v = GetUi32a(p - 4);
UInt32 c = BR_PC_GET >> 2;
BR_CONVERT_VAL(v, c)
v &= 0x00ffffff;
v |= 0xeb000000;
SetUi32a(p - 4, v)
}
}
}
Z7_BRANCH_FUNCS_IMP(ARM)
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
Z7_BRANCH_FUNC_MAIN(PPC)
{
Byte *p;
// Byte *p = data;
const Byte *lim;
size &= ~(size_t)3;
ip -= 4;
p = data;
lim = data + size;
size &= ~(SizeT)3;
lim = p + size;
BR_PC_INIT
pc -= 4; // because (p) will point to next instruction
for (;;)
{
UInt32 v;
for (;;)
{
if (p >= lim)
return p - data;
if Z7_UNLIKELY(p == lim)
return p;
// v = GetBe32a(p);
v = *(UInt32 *)(void *)p;
p += 4;
/* if ((v & 0xFC000003) == 0x48000001) */
if ((p[-4] & 0xFC) == 0x48 && (p[-1] & 3) == 1)
break;
// if ((v & 0xfc000003) == 0x48000001) break;
// if ((p[-4] & 0xFC) == 0x48 && (p[-1] & 3) == 1) break;
if Z7_UNLIKELY(
((v - Z7_CONV_BE_TO_NATIVE_CONST32(0x48000001))
& Z7_CONV_BE_TO_NATIVE_CONST32(0xfc000003)) == 0) break;
}
{
UInt32 v = GetBe32(p - 4);
if (encoding)
v += ip + (UInt32)(p - data);
else
v -= ip + (UInt32)(p - data);
v &= 0x03FFFFFF;
v = Z7_CONV_NATIVE_TO_BE_32(v);
{
UInt32 c = BR_PC_GET;
BR_CONVERT_VAL(v, c)
}
v &= 0x03ffffff;
v |= 0x48000000;
SetBe32(p - 4, v);
SetBe32a(p - 4, v)
}
}
}
Z7_BRANCH_FUNCS_IMP(PPC)
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
#ifdef Z7_CPU_FAST_ROTATE_SUPPORTED
#define BR_SPARC_USE_ROTATE
#endif
Z7_BRANCH_FUNC_MAIN(SPARC)
{
Byte *p;
// Byte *p = data;
const Byte *lim;
size &= ~(size_t)3;
ip -= 4;
p = data;
lim = data + size;
const UInt32 flag = (UInt32)1 << 22;
size &= ~(SizeT)3;
lim = p + size;
BR_PC_INIT
pc -= 4; // because (p) will point to next instruction
for (;;)
{
UInt32 v;
for (;;)
{
if (p >= lim)
return p - data;
/*
v = GetBe32(p);
p += 4;
m = v + ((UInt32)5 << 29);
m ^= (UInt32)7 << 29;
m += (UInt32)1 << 22;
if ((m & ((UInt32)0x1FF << 23)) == 0)
break;
if Z7_UNLIKELY(p == lim)
return p;
/* // the code without GetBe32a():
{ const UInt32 v = GetUi16a(p) & 0xc0ff; p += 4; if (v == 0x40 || v == 0xc07f) break; }
*/
v = GetBe32a(p);
p += 4;
if ((p[-4] == 0x40 && (p[-3] & 0xC0) == 0) ||
(p[-4] == 0x7F && (p[-3] >= 0xC0)))
#ifdef BR_SPARC_USE_ROTATE
v = rotlFixed(v, 2);
v += (flag << 2) - 1;
if Z7_UNLIKELY((v & (3 - (flag << 3))) == 0)
#else
v += (UInt32)5 << 29;
v ^= (UInt32)7 << 29;
v += flag;
if Z7_UNLIKELY((v & (0 - (flag << 1))) == 0)
#endif
break;
}
{
UInt32 v = GetBe32(p - 4);
// UInt32 v = GetBe32a(p - 4);
#ifndef BR_SPARC_USE_ROTATE
v <<= 2;
if (encoding)
v += ip + (UInt32)(p - data);
else
v -= ip + (UInt32)(p - data);
v &= 0x01FFFFFF;
v -= (UInt32)1 << 24;
v ^= 0xFF000000;
#endif
{
UInt32 c = BR_PC_GET;
BR_CONVERT_VAL(v, c)
}
v &= (flag << 3) - 1;
#ifdef BR_SPARC_USE_ROTATE
v -= (flag << 2) - 1;
v = rotrFixed(v, 2);
#else
v -= (flag << 2);
v >>= 2;
v |= 0x40000000;
SetBe32(p - 4, v);
v |= (UInt32)1 << 30;
#endif
SetBe32a(p - 4, v)
}
}
}
Z7_BRANCH_FUNCS_IMP(SPARC)
Z7_BRANCH_FUNC_MAIN(ARMT)
{
// Byte *p = data;
Byte *lim;
size &= ~(SizeT)1;
// if (size == 0) return p;
if (size <= 2) return p;
size -= 2;
lim = p + size;
BR_PC_INIT
/* in ARM: branch offset is relative to the +2 instructions from current instruction.
(p) will point to the +2 instructions from current instruction */
// pc += 4 - 4;
// if (encoding) pc -= 0xf800 << 1; else pc += 0xf800 << 1;
// #define ARMT_TAIL_PROC { goto armt_tail; }
#define ARMT_TAIL_PROC { return p; }
do
{
/* in MSVC 32-bit x86 compilers:
UInt32 version : it loads value from memory with movzx
Byte version : it loads value to 8-bit register (AL/CL)
movzx version is slightly faster in some cpus
*/
unsigned b1;
// Byte / unsigned
b1 = p[1];
// optimized version to reduce one (p >= lim) check:
// unsigned a1 = p[1]; b1 = p[3]; p += 2; if Z7_LIKELY((b1 & (a1 ^ 8)) < 0xf8)
for (;;)
{
unsigned b3; // Byte / UInt32
/* (Byte)(b3) normalization can use low byte computations in MSVC.
It gives smaller code, and no loss of speed in some compilers/cpus.
But new MSVC 32-bit x86 compilers use more slow load
from memory to low byte register in that case.
So we try to use full 32-bit computations for faster code.
*/
// if (p >= lim) { ARMT_TAIL_PROC } b3 = b1 + 8; b1 = p[3]; p += 2; if ((b3 & b1) >= 0xf8) break;
if Z7_UNLIKELY(p >= lim) { ARMT_TAIL_PROC } b3 = p[3]; p += 2; if Z7_UNLIKELY((b3 & (b1 ^ 8)) >= 0xf8) break;
if Z7_UNLIKELY(p >= lim) { ARMT_TAIL_PROC } b1 = p[3]; p += 2; if Z7_UNLIKELY((b1 & (b3 ^ 8)) >= 0xf8) break;
}
{
/* we can adjust pc for (0xf800) to rid of (& 0x7FF) operation.
But gcc/clang for arm64 can use bfi instruction for full code here */
UInt32 v =
((UInt32)GetUi16a(p - 2) << 11) |
((UInt32)GetUi16a(p) & 0x7FF);
/*
UInt32 v =
((UInt32)p[1 - 2] << 19)
+ (((UInt32)p[1] & 0x7) << 8)
+ (((UInt32)p[-2] << 11))
+ (p[0]);
*/
p += 2;
{
UInt32 c = BR_PC_GET >> 1;
BR_CONVERT_VAL(v, c)
}
SetUi16a(p - 4, (UInt16)(((v >> 11) & 0x7ff) | 0xf000))
SetUi16a(p - 2, (UInt16)(v | 0xf800))
/*
p[-4] = (Byte)(v >> 11);
p[-3] = (Byte)(0xf0 | ((v >> 19) & 0x7));
p[-2] = (Byte)v;
p[-1] = (Byte)(0xf8 | (v >> 8));
*/
}
}
while (p < lim);
return p;
// armt_tail:
// if ((Byte)((lim[1] & 0xf8)) != 0xf0) { lim += 2; } return lim;
// return (Byte *)(lim + ((Byte)((lim[1] ^ 0xf0) & 0xf8) == 0 ? 0 : 2));
// return (Byte *)(lim + (((lim[1] ^ ~0xfu) & ~7u) == 0 ? 0 : 2));
// return (Byte *)(lim + 2 - (((((unsigned)lim[1] ^ 8) + 8) >> 7) & 2));
}
Z7_BRANCH_FUNCS_IMP(ARMT)
// #define BR_IA64_NO_INLINE
Z7_BRANCH_FUNC_MAIN(IA64)
{
// Byte *p = data;
const Byte *lim;
size &= ~(SizeT)15;
lim = p + size;
pc -= 1 << 4;
pc >>= 4 - 1;
// pc -= 1 << 1;
for (;;)
{
unsigned m;
for (;;)
{
if Z7_UNLIKELY(p == lim)
return p;
m = (unsigned)((UInt32)0x334b0000 >> (*p & 0x1e));
p += 16;
pc += 1 << 1;
if (m &= 3)
break;
}
{
p += (ptrdiff_t)m * 5 - 20; // negative value is expected here.
do
{
const UInt32 t =
#if defined(MY_CPU_X86_OR_AMD64)
// we use 32-bit load here to reduce code size on x86:
GetUi32(p);
#else
GetUi16(p);
#endif
UInt32 z = GetUi32(p + 1) >> m;
p += 5;
if (((t >> m) & (0x70 << 1)) == 0
&& ((z - (0x5000000 << 1)) & (0xf000000 << 1)) == 0)
{
UInt32 v = (UInt32)((0x8fffff << 1) | 1) & z;
z ^= v;
#ifdef BR_IA64_NO_INLINE
v |= (v & ((UInt32)1 << (23 + 1))) >> 3;
{
UInt32 c = pc;
BR_CONVERT_VAL(v, c)
}
v &= (0x1fffff << 1) | 1;
#else
{
if (encoding)
{
// pc &= ~(0xc00000 << 1); // we just need to clear at least 2 bits
pc &= (0x1fffff << 1) | 1;
v += pc;
}
else
{
// pc |= 0xc00000 << 1; // we need to set at least 2 bits
pc |= ~(UInt32)((0x1fffff << 1) | 1);
v -= pc;
}
}
v &= ~(UInt32)(0x600000 << 1);
#endif
v += (0x700000 << 1);
v &= (0x8fffff << 1) | 1;
z |= v;
z <<= m;
SetUi32(p + 1 - 5, z)
}
m++;
}
while (m &= 3); // while (m < 4);
}
}
}
Z7_BRANCH_FUNCS_IMP(IA64)

117
C/Bra.h Normal file → Executable file
View File

@@ -1,64 +1,99 @@
/* Bra.h -- Branch converters for executables
2013-01-18 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __BRA_H
#define __BRA_H
#ifndef ZIP7_INC_BRA_H
#define ZIP7_INC_BRA_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
These functions convert relative addresses to absolute addresses
in CALL instructions to increase the compression ratio.
In:
data - data buffer
size - size of data
ip - current virtual Instruction Pinter (IP) value
state - state variable for x86 converter
encoding - 0 (for decoding), 1 (for encoding)
Out:
state - state variable for x86 converter
#define Z7_BRANCH_CONV_DEC(name) z7_BranchConv_ ## name ## _Dec
#define Z7_BRANCH_CONV_ENC(name) z7_BranchConv_ ## name ## _Enc
#define Z7_BRANCH_CONV_ST_DEC(name) z7_BranchConvSt_ ## name ## _Dec
#define Z7_BRANCH_CONV_ST_ENC(name) z7_BranchConvSt_ ## name ## _Enc
Returns:
The number of processed bytes. If you call these functions with multiple calls,
you must start next call with first byte after block of processed bytes.
#define Z7_BRANCH_CONV_DECL(name) Byte * name(Byte *data, SizeT size, UInt32 pc)
#define Z7_BRANCH_CONV_ST_DECL(name) Byte * name(Byte *data, SizeT size, UInt32 pc, UInt32 *state)
typedef Z7_BRANCH_CONV_DECL( (*z7_Func_BranchConv));
typedef Z7_BRANCH_CONV_ST_DECL((*z7_Func_BranchConvSt));
#define Z7_BRANCH_CONV_ST_X86_STATE_INIT_VAL 0
Z7_BRANCH_CONV_ST_DECL(Z7_BRANCH_CONV_ST_DEC(X86));
Z7_BRANCH_CONV_ST_DECL(Z7_BRANCH_CONV_ST_ENC(X86));
#define Z7_BRANCH_FUNCS_DECL(name) \
Z7_BRANCH_CONV_DECL(Z7_BRANCH_CONV_DEC(name)); \
Z7_BRANCH_CONV_DECL(Z7_BRANCH_CONV_ENC(name));
Z7_BRANCH_FUNCS_DECL(ARM64)
Z7_BRANCH_FUNCS_DECL(ARM)
Z7_BRANCH_FUNCS_DECL(ARMT)
Z7_BRANCH_FUNCS_DECL(PPC)
Z7_BRANCH_FUNCS_DECL(SPARC)
Z7_BRANCH_FUNCS_DECL(IA64)
/*
These functions convert data that contain CPU instructions.
Each such function converts relative addresses to absolute addresses in some
branch instructions: CALL (in all converters) and JUMP (X86 converter only).
Such conversion allows to increase compression ratio, if we compress that data.
There are 2 types of converters:
Byte * Conv_RISC (Byte *data, SizeT size, UInt32 pc);
Byte * ConvSt_X86(Byte *data, SizeT size, UInt32 pc, UInt32 *state);
Each Converter supports 2 versions: one for encoding
and one for decoding (_Enc/_Dec postfixes in function name).
In params:
data : data buffer
size : size of data
pc : current virtual Program Counter (Instruction Pinter) value
In/Out param:
state : pointer to state variable (for X86 converter only)
Return:
The pointer to position in (data) buffer after last byte that was processed.
If the caller calls converter again, it must call it starting with that position.
But the caller is allowed to move data in buffer. so pointer to
current processed position also will be changed for next call.
Also the caller must increase internal (pc) value for next call.
Each converter has some characteristics: Endian, Alignment, LookAhead.
Type Endian Alignment LookAhead
x86 little 1 4
X86 little 1 4
ARMT little 2 2
ARM little 4 0
ARM64 little 4 0
PPC big 4 0
SPARC big 4 0
IA64 little 16 0
size must be >= Alignment + LookAhead, if it's not last block.
If (size < Alignment + LookAhead), converter returns 0.
(data) must be aligned for (Alignment).
processed size can be calculated as:
SizeT processed = Conv(data, size, pc) - data;
if (processed == 0)
it means that converter needs more data for processing.
If (size < Alignment + LookAhead)
then (processed == 0) is allowed.
Example:
UInt32 ip = 0;
for ()
{
; size must be >= Alignment + LookAhead, if it's not last block
SizeT processed = Convert(data, size, ip, 1);
data += processed;
size -= processed;
ip += processed;
}
Example code for conversion in loop:
UInt32 pc = 0;
size = 0;
for (;;)
{
size += Load_more_input_data(data + size);
SizeT processed = Conv(data, size, pc) - data;
if (processed == 0 && no_more_input_data_after_size)
break; // we stop convert loop
data += processed;
size -= processed;
pc += processed;
}
*/
#define x86_Convert_Init(state) { state = 0; }
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding);
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT IA64_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
EXTERN_C_END
#endif

221
C/Bra86.c Normal file → Executable file
View File

@@ -1,82 +1,187 @@
/* Bra86.c -- Converter for x86 code (BCJ)
2017-04-03 : Igor Pavlov : Public domain */
/* Bra86.c -- Branch converter for X86 code (BCJ)
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bra.h"
#include "CpuArch.h"
#define Test86MSByte(b) ((((b) + 1) & 0xFE) == 0)
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding)
#if defined(MY_CPU_SIZEOF_POINTER) \
&& ( MY_CPU_SIZEOF_POINTER == 4 \
|| MY_CPU_SIZEOF_POINTER == 8)
#define BR_CONV_USE_OPT_PC_PTR
#endif
#ifdef BR_CONV_USE_OPT_PC_PTR
#define BR_PC_INIT pc -= (UInt32)(SizeT)p; // (MY_uintptr_t)
#define BR_PC_GET (pc + (UInt32)(SizeT)p)
#else
#define BR_PC_INIT pc += (UInt32)size;
#define BR_PC_GET (pc - (UInt32)(SizeT)(lim - p))
// #define BR_PC_INIT
// #define BR_PC_GET (pc + (UInt32)(SizeT)(p - data))
#endif
#define BR_CONVERT_VAL(v, c) if (encoding) v += c; else v -= c;
// #define BR_CONVERT_VAL(v, c) if (!encoding) c = (UInt32)0 - c; v += c;
#define Z7_BRANCH_CONV_ST(name) z7_BranchConvSt_ ## name
#define BR86_NEED_CONV_FOR_MS_BYTE(b) ((((b) + 1) & 0xfe) == 0)
#ifdef MY_CPU_LE_UNALIGN
#define BR86_PREPARE_BCJ_SCAN const UInt32 v = GetUi32(p) ^ 0xe8e8e8e8;
#define BR86_IS_BCJ_BYTE(n) ((v & ((UInt32)0xfe << (n) * 8)) == 0)
#else
#define BR86_PREPARE_BCJ_SCAN
// bad for MSVC X86 (partial write to byte reg):
#define BR86_IS_BCJ_BYTE(n) ((p[n - 4] & 0xfe) == 0xe8)
// bad for old MSVC (partial write to byte reg):
// #define BR86_IS_BCJ_BYTE(n) (((*p ^ 0xe8) & 0xfe) == 0)
#endif
static
Z7_FORCE_INLINE
Z7_ATTRIB_NO_VECTOR
Byte *Z7_BRANCH_CONV_ST(X86)(Byte *p, SizeT size, UInt32 pc, UInt32 *state, int encoding)
{
SizeT pos = 0;
UInt32 mask = *state & 7;
if (size < 5)
return 0;
size -= 4;
ip += 5;
return p;
{
// Byte *p = data;
const Byte *lim = p + size - 4;
unsigned mask = (unsigned)*state; // & 7;
#ifdef BR_CONV_USE_OPT_PC_PTR
/* if BR_CONV_USE_OPT_PC_PTR is defined: we need to adjust (pc) for (+4),
because call/jump offset is relative to the next instruction.
if BR_CONV_USE_OPT_PC_PTR is not defined : we don't need to adjust (pc) for (+4),
because BR_PC_GET uses (pc - (lim - p)), and lim was adjusted for (-4) before.
*/
pc += 4;
#endif
BR_PC_INIT
goto start;
for (;;)
for (;; mask |= 4)
{
Byte *p = data + pos;
const Byte *limit = data + size;
for (; p < limit; p++)
if ((*p & 0xFE) == 0xE8)
break;
// cont: mask |= 4;
start:
if (p >= lim)
goto fin;
{
SizeT d = (SizeT)(p - data - pos);
pos = (SizeT)(p - data);
if (p >= limit)
{
*state = (d > 2 ? 0 : mask >> (unsigned)d);
return pos;
}
if (d > 2)
mask = 0;
else
{
mask >>= (unsigned)d;
if (mask != 0 && (mask > 4 || mask == 3 || Test86MSByte(p[(size_t)(mask >> 1) + 1])))
{
mask = (mask >> 1) | 4;
pos++;
continue;
}
}
BR86_PREPARE_BCJ_SCAN
p += 4;
if (BR86_IS_BCJ_BYTE(0)) { goto m0; } mask >>= 1;
if (BR86_IS_BCJ_BYTE(1)) { goto m1; } mask >>= 1;
if (BR86_IS_BCJ_BYTE(2)) { goto m2; } mask = 0;
if (BR86_IS_BCJ_BYTE(3)) { goto a3; }
}
goto main_loop;
if (Test86MSByte(p[4]))
m0: p--;
m1: p--;
m2: p--;
if (mask == 0)
goto a3;
if (p > lim)
goto fin_p;
// if (((0x17u >> mask) & 1) == 0)
if (mask > 4 || mask == 3)
{
UInt32 v = ((UInt32)p[4] << 24) | ((UInt32)p[3] << 16) | ((UInt32)p[2] << 8) | ((UInt32)p[1]);
UInt32 cur = ip + (UInt32)pos;
pos += 5;
if (encoding)
v += cur;
else
v -= cur;
if (mask != 0)
mask >>= 1;
continue; // goto cont;
}
mask >>= 1;
if (BR86_NEED_CONV_FOR_MS_BYTE(p[mask]))
continue; // goto cont;
// if (!BR86_NEED_CONV_FOR_MS_BYTE(p[3])) continue; // goto cont;
{
UInt32 v = GetUi32(p);
UInt32 c;
v += (1 << 24); if (v & 0xfe000000) continue; // goto cont;
c = BR_PC_GET;
BR_CONVERT_VAL(v, c)
{
unsigned sh = (mask & 6) << 2;
if (Test86MSByte((Byte)(v >> sh)))
mask <<= 3;
if (BR86_NEED_CONV_FOR_MS_BYTE(v >> mask))
{
v ^= (((UInt32)0x100 << sh) - 1);
if (encoding)
v += cur;
else
v -= cur;
v ^= (((UInt32)0x100 << mask) - 1);
#ifdef MY_CPU_X86
// for X86 : we can recalculate (c) to reduce register pressure
c = BR_PC_GET;
#endif
BR_CONVERT_VAL(v, c)
}
mask = 0;
}
p[1] = (Byte)v;
p[2] = (Byte)(v >> 8);
p[3] = (Byte)(v >> 16);
p[4] = (Byte)(0 - ((v >> 24) & 1));
// v = (v & ((1 << 24) - 1)) - (v & (1 << 24));
v &= (1 << 25) - 1; v -= (1 << 24);
SetUi32(p, v)
p += 4;
goto main_loop;
}
else
main_loop:
if (p >= lim)
goto fin;
for (;;)
{
mask = (mask >> 1) | 4;
pos++;
BR86_PREPARE_BCJ_SCAN
p += 4;
if (BR86_IS_BCJ_BYTE(0)) { goto a0; }
if (BR86_IS_BCJ_BYTE(1)) { goto a1; }
if (BR86_IS_BCJ_BYTE(2)) { goto a2; }
if (BR86_IS_BCJ_BYTE(3)) { goto a3; }
if (p >= lim)
goto fin;
}
a0: p--;
a1: p--;
a2: p--;
a3:
if (p > lim)
goto fin_p;
// if (!BR86_NEED_CONV_FOR_MS_BYTE(p[3])) continue; // goto cont;
{
UInt32 v = GetUi32(p);
UInt32 c;
v += (1 << 24); if (v & 0xfe000000) continue; // goto cont;
c = BR_PC_GET;
BR_CONVERT_VAL(v, c)
// v = (v & ((1 << 24) - 1)) - (v & (1 << 24));
v &= (1 << 25) - 1; v -= (1 << 24);
SetUi32(p, v)
p += 4;
goto main_loop;
}
}
fin_p:
p--;
fin:
// the following processing for tail is optional and can be commented
/*
lim += 4;
for (; p < lim; p++, mask >>= 1)
if ((*p & 0xfe) == 0xe8)
break;
*/
*state = (UInt32)mask;
return p;
}
}
#define Z7_BRANCH_CONV_ST_FUNC_IMP(name, m, encoding) \
Z7_NO_INLINE \
Z7_ATTRIB_NO_VECTOR \
Byte *m(name)(Byte *data, SizeT size, UInt32 pc, UInt32 *state) \
{ return Z7_BRANCH_CONV_ST(name)(data, size, pc, state, encoding); }
Z7_BRANCH_CONV_ST_FUNC_IMP(X86, Z7_BRANCH_CONV_ST_DEC, 0)
#ifndef Z7_EXTRACT_ONLY
Z7_BRANCH_CONV_ST_FUNC_IMP(X86, Z7_BRANCH_CONV_ST_ENC, 1)
#endif

57
C/BraIA64.c Normal file → Executable file
View File

@@ -1,53 +1,14 @@
/* BraIA64.c -- Converter for IA-64 code
2017-01-26 : Igor Pavlov : Public domain */
2023-02-20 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#include "Bra.h"
// the code was moved to Bra.c
SizeT IA64_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 16)
return 0;
size -= 16;
i = 0;
do
{
unsigned m = ((UInt32)0x334B0000 >> (data[i] & 0x1E)) & 3;
if (m)
{
m++;
do
{
Byte *p = data + (i + (size_t)m * 5 - 8);
if (((p[3] >> m) & 15) == 5
&& (((p[-1] | ((UInt32)p[0] << 8)) >> m) & 0x70) == 0)
{
unsigned raw = GetUi32(p);
unsigned v = raw >> m;
v = (v & 0xFFFFF) | ((v & (1 << 23)) >> 3);
v <<= 4;
if (encoding)
v += ip + (UInt32)i;
else
v -= ip + (UInt32)i;
v >>= 4;
v &= 0x1FFFFF;
v += 0x700000;
v &= 0x8FFFFF;
raw &= ~((UInt32)0x8FFFFF << m);
raw |= (v << m);
SetUi32(p, raw);
}
}
while (++m <= 4);
}
i += 16;
}
while (i <= size);
return i;
}
#ifdef _MSC_VER
#pragma warning(disable : 4206) // nonstandard extension used : translation unit is empty
#endif
#if defined(__clang__)
#pragma GCC diagnostic ignored "-Wempty-translation-unit"
#endif

17
C/BwtSort.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* BwtSort.c -- BWT block sorting
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -8,8 +8,6 @@
/* #define BLOCK_SORT_USE_HEAP_SORT */
#define NO_INLINE MY_FAST_CALL
/* Don't change it !!! */
#define kNumHashBytes 2
#define kNumHashValues (1 << (kNumHashBytes * 8))
@@ -60,7 +58,10 @@ SortGroup - is recursive Range-Sort function with HeapSort optimization for smal
returns: 1 - if there are groups, 0 - no more groups
*/
UInt32 NO_INLINE SortGroup(UInt32 BlockSize, UInt32 NumSortedBytes, UInt32 groupOffset, UInt32 groupSize, int NumRefBits, UInt32 *Indices
static
UInt32
Z7_FASTCALL
SortGroup(UInt32 BlockSize, UInt32 NumSortedBytes, UInt32 groupOffset, UInt32 groupSize, int NumRefBits, UInt32 *Indices
#ifndef BLOCK_SORT_USE_HEAP_SORT
, UInt32 left, UInt32 range
#endif
@@ -72,7 +73,7 @@ UInt32 NO_INLINE SortGroup(UInt32 BlockSize, UInt32 NumSortedBytes, UInt32 group
{
/*
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetFinishedGroupSize(ind2, 1);
SetFinishedGroupSize(ind2, 1)
#endif
*/
return 0;
@@ -116,7 +117,7 @@ UInt32 NO_INLINE SortGroup(UInt32 BlockSize, UInt32 NumSortedBytes, UInt32 group
}
HeapSort(temp, groupSize);
mask = ((1 << NumRefBits) - 1);
mask = (((UInt32)1 << NumRefBits) - 1);
thereAreGroups = 0;
group = groupOffset;
@@ -448,7 +449,7 @@ UInt32 BlockSort(UInt32 *Indices, const Byte *data, UInt32 blockSize)
groupSize = ((Indices[i] & ~0xC0000000) >> kNumBitsMax);
{
Bool finishedGroup = ((Indices[i] & 0x80000000) == 0);
BoolInt finishedGroup = ((Indices[i] & 0x80000000) == 0);
if ((Indices[i] & 0x40000000) != 0)
{
groupSize += ((Indices[(size_t)i + 1] >> kNumBitsMax) << kNumExtra0Bits);
@@ -463,7 +464,7 @@ UInt32 BlockSort(UInt32 *Indices, const Byte *data, UInt32 blockSize)
Indices[(size_t)(i - finishedGroupSize) + 1] &= kIndexMask;
{
UInt32 newGroupSize = groupSize + finishedGroupSize;
SetFinishedGroupSize(Indices + i - finishedGroupSize, newGroupSize);
SetFinishedGroupSize(Indices + i - finishedGroupSize, newGroupSize)
finishedGroupSize = newGroupSize;
}
i += groupSize;

6
C/BwtSort.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* BwtSort.h -- BWT block sorting
2013-01-18 : Igor Pavlov : Public domain */
2023-03-03 : Igor Pavlov : Public domain */
#ifndef __BWT_SORT_H
#define __BWT_SORT_H
#ifndef ZIP7_INC_BWT_SORT_H
#define ZIP7_INC_BWT_SORT_H
#include "7zTypes.h"

158
C/Compiler.h Normal file → Executable file
View File

@@ -1,8 +1,37 @@
/* Compiler.h
2017-04-03 : Igor Pavlov : Public domain */
/* Compiler.h : Compiler specific defines and pragmas
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_COMPILER_H
#define ZIP7_INC_COMPILER_H
#if defined(__clang__)
# define Z7_CLANG_VERSION (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__)
#endif
#if defined(__clang__) && defined(__apple_build_version__)
# define Z7_APPLE_CLANG_VERSION Z7_CLANG_VERSION
#elif defined(__clang__)
# define Z7_LLVM_CLANG_VERSION Z7_CLANG_VERSION
#elif defined(__GNUC__)
# define Z7_GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#endif
#ifdef _MSC_VER
#if !defined(__clang__) && !defined(__GNUC__)
#define Z7_MSC_VER_ORIGINAL _MSC_VER
#endif
#endif
#if defined(__MINGW32__) || defined(__MINGW64__)
#define Z7_MINGW
#endif
// #pragma GCC diagnostic ignored "-Wunknown-pragmas"
#ifdef __clang__
// padding size of '' with 4 bytes to alignment boundary
#pragma GCC diagnostic ignored "-Wpadded"
#endif
#ifndef __7Z_COMPILER_H
#define __7Z_COMPILER_H
#ifdef _MSC_VER
@@ -13,18 +42,117 @@
#pragma warning(disable : 4214) // nonstandard extension used : bit field types other than int
#endif
#if _MSC_VER >= 1300
#pragma warning(disable : 4996) // This function or variable may be unsafe
#else
#pragma warning(disable : 4511) // copy constructor could not be generated
#pragma warning(disable : 4512) // assignment operator could not be generated
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#pragma warning(disable : 4702) // unreachable code
#pragma warning(disable : 4710) // not inlined
#pragma warning(disable : 4714) // function marked as __forceinline not inlined
#pragma warning(disable : 4786) // identifier was truncated to '255' characters in the debug information
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1800
#pragma warning(disable : 4464) // relative include path contains '..'
#endif
// == 1200 : -O1 : for __forceinline
// >= 1900 : -O1 : for printf
#pragma warning(disable : 4710) // function not inlined
#if _MSC_VER < 1900
// winnt.h: 'Int64ShllMod32'
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#endif
#if _MSC_VER < 1300
// #pragma warning(disable : 4702) // unreachable code
// Bra.c : -O1:
#pragma warning(disable : 4714) // function marked as __forceinline not inlined
#endif
/*
#if _MSC_VER > 1400 && _MSC_VER <= 1900
// strcat: This function or variable may be unsafe
// sysinfoapi.h: kit10: GetVersion was declared deprecated
#pragma warning(disable : 4996)
#endif
*/
#pragma warning(disable : 4255)
#if _MSC_VER > 1200
// -Wall warnings
#pragma warning(disable : 4711) // function selected for automatic inline expansion
#pragma warning(disable : 4820) // '2' bytes padding added after data member
#if _MSC_VER >= 1400 && _MSC_VER < 1920
// 1400: string.h: _DBG_MEMCPY_INLINE_
// 1600 - 191x : smmintrin.h __cplusplus'
// is not defined as a preprocessor macro, replacing with '0' for '#if/#elif'
#pragma warning(disable : 4668)
// 1400 - 1600 : WinDef.h : 'FARPROC' :
// 1900 - 191x : immintrin.h: _readfsbase_u32
// no function prototype given : converting '()' to '(void)'
#pragma warning(disable : 4255)
#endif
#if _MSC_VER >= 1914
// Compiler will insert Spectre mitigation for memory load if /Qspectre switch specified
#pragma warning(disable : 5045)
#endif
#endif // _MSC_VER > 1200
#endif // _MSC_VER
#if defined(__clang__) && (__clang_major__ >= 4)
#define Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE \
_Pragma("clang loop unroll(disable)") \
_Pragma("clang loop vectorize(disable)")
#define Z7_ATTRIB_NO_VECTORIZE
#elif defined(__GNUC__) && (__GNUC__ >= 5)
#define Z7_ATTRIB_NO_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
// __attribute__((optimize("no-unroll-loops")));
#define Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
#elif defined(_MSC_VER) && (_MSC_VER >= 1920)
#define Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE \
_Pragma("loop( no_vector )")
#define Z7_ATTRIB_NO_VECTORIZE
#else
#define Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
#define Z7_ATTRIB_NO_VECTORIZE
#endif
#if defined(MY_CPU_X86_OR_AMD64) && ( \
defined(__clang__) && (__clang_major__ >= 4) \
|| defined(__GNUC__) && (__GNUC__ >= 5))
#define Z7_ATTRIB_NO_SSE __attribute__((__target__("no-sse")))
#else
#define Z7_ATTRIB_NO_SSE
#endif
#define Z7_ATTRIB_NO_VECTOR \
Z7_ATTRIB_NO_VECTORIZE \
Z7_ATTRIB_NO_SSE
#if defined(__clang__) && (__clang_major__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ >= 1000) \
/* || defined(_MSC_VER) && (_MSC_VER >= 1920) */
// GCC is not good for __builtin_expect()
#define Z7_LIKELY(x) (__builtin_expect((x), 1))
#define Z7_UNLIKELY(x) (__builtin_expect((x), 0))
// #define Z7_unlikely [[unlikely]]
// #define Z7_likely [[likely]]
#else
#define Z7_LIKELY(x) (x)
#define Z7_UNLIKELY(x) (x)
// #define Z7_likely
#endif
#if (defined(Z7_CLANG_VERSION) && (Z7_CLANG_VERSION >= 36000))
#define Z7_DIAGNOSCTIC_IGNORE_BEGIN_RESERVED_MACRO_IDENTIFIER \
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wreserved-macro-identifier\"")
#define Z7_DIAGNOSCTIC_IGNORE_END_RESERVED_MACRO_IDENTIFIER \
_Pragma("GCC diagnostic pop")
#else
#define Z7_DIAGNOSCTIC_IGNORE_BEGIN_RESERVED_MACRO_IDENTIFIER
#define Z7_DIAGNOSCTIC_IGNORE_END_RESERVED_MACRO_IDENTIFIER
#endif
#define UNUSED_VAR(x) (void)x;

893
C/CpuArch.c Normal file → Executable file
View File

@@ -1,200 +1,823 @@
/* CpuArch.c -- CPU specific code
2016-02-25: Igor Pavlov : Public domain */
2023-05-18 : Igor Pavlov : Public domain */
#include "Precomp.h"
// #include <stdio.h>
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#if (defined(_MSC_VER) && !defined(MY_CPU_AMD64)) || defined(__GNUC__)
#define USE_ASM
#undef NEED_CHECK_FOR_CPUID
#if !defined(MY_CPU_AMD64)
#define NEED_CHECK_FOR_CPUID
#endif
#if !defined(USE_ASM) && _MSC_VER >= 1500
#include <intrin.h>
/*
cpuid instruction supports (subFunction) parameter in ECX,
that is used only with some specific (function) parameter values.
But we always use only (subFunction==0).
*/
/*
__cpuid(): MSVC and GCC/CLANG use same function/macro name
but parameters are different.
We use MSVC __cpuid() parameters style for our z7_x86_cpuid() function.
*/
#if defined(__GNUC__) /* && (__GNUC__ >= 10) */ \
|| defined(__clang__) /* && (__clang_major__ >= 10) */
/* there was some CLANG/GCC compilers that have issues with
rbx(ebx) handling in asm blocks in -fPIC mode (__PIC__ is defined).
compiler's <cpuid.h> contains the macro __cpuid() that is similar to our code.
The history of __cpuid() changes in CLANG/GCC:
GCC:
2007: it preserved ebx for (__PIC__ && __i386__)
2013: it preserved rbx and ebx for __PIC__
2014: it doesn't preserves rbx and ebx anymore
we suppose that (__GNUC__ >= 5) fixed that __PIC__ ebx/rbx problem.
CLANG:
2014+: it preserves rbx, but only for 64-bit code. No __PIC__ check.
Why CLANG cares about 64-bit mode only, and doesn't care about ebx (in 32-bit)?
Do we need __PIC__ test for CLANG or we must care about rbx even if
__PIC__ is not defined?
*/
#define ASM_LN "\n"
#if defined(MY_CPU_AMD64) && defined(__PIC__) \
&& ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__))
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "mov %%rbx, %q1" \
ASM_LN "cpuid" \
ASM_LN "xchg %%rbx, %q1" \
: "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
/* "=&r" selects free register. It can select even rbx, if that register is free.
"=&D" for (RDI) also works, but the code can be larger with "=&D"
"2"(0) means (subFunction = 0),
2 is (zero-based) index in the output constraint list "=c" (ECX). */
#elif defined(MY_CPU_X86) && defined(__PIC__) \
&& ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__))
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "mov %%ebx, %k1" \
ASM_LN "cpuid" \
ASM_LN "xchg %%ebx, %k1" \
: "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
#else
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "cpuid" \
: "=a" ((p)[0]), "=b" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
#endif
#if defined(USE_ASM) && !defined(MY_CPU_AMD64)
static UInt32 CheckFlag(UInt32 flag)
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
#ifdef _MSC_VER
__asm pushfd;
__asm pop EAX;
__asm mov EDX, EAX;
__asm xor EAX, flag;
__asm push EAX;
__asm popfd;
__asm pushfd;
__asm pop EAX;
__asm xor EAX, EDX;
__asm push EDX;
__asm popfd;
__asm and flag, EAX;
#else
__asm__ __volatile__ (
"pushf\n\t"
"pop %%EAX\n\t"
"movl %%EAX,%%EDX\n\t"
"xorl %0,%%EAX\n\t"
"push %%EAX\n\t"
"popf\n\t"
"pushf\n\t"
"pop %%EAX\n\t"
"xorl %%EDX,%%EAX\n\t"
"push %%EDX\n\t"
"popf\n\t"
"andl %%EAX, %0\n\t":
"=c" (flag) : "c" (flag) :
"%eax", "%edx");
#endif
return flag;
x86_cpuid_MACRO(p, func)
}
#define CHECK_CPUID_IS_SUPPORTED if (CheckFlag(1 << 18) == 0 || CheckFlag(1 << 21) == 0) return False;
Z7_NO_INLINE
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
#if defined(NEED_CHECK_FOR_CPUID)
#define EFALGS_CPUID_BIT 21
UInt32 a;
__asm__ __volatile__ (
ASM_LN "pushf"
ASM_LN "pushf"
ASM_LN "pop %0"
// ASM_LN "movl %0, %1"
// ASM_LN "xorl $0x200000, %0"
ASM_LN "btc %1, %0"
ASM_LN "push %0"
ASM_LN "popf"
ASM_LN "pushf"
ASM_LN "pop %0"
ASM_LN "xorl (%%esp), %0"
ASM_LN "popf"
ASM_LN
: "=&r" (a) // "=a"
: "i" (EFALGS_CPUID_BIT)
);
if ((a & (1 << EFALGS_CPUID_BIT)) == 0)
return 0;
#endif
{
UInt32 p[4];
x86_cpuid_MACRO(p, 0)
return p[0];
}
}
#undef ASM_LN
#elif !defined(_MSC_VER)
/*
// for gcc/clang and other: we can try to use __cpuid macro:
#include <cpuid.h>
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
__cpuid(func, p[0], p[1], p[2], p[3]);
}
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
return (UInt32)__get_cpuid_max(0, NULL);
}
*/
// for unsupported cpuid:
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
UNUSED_VAR(func)
p[0] = p[1] = p[2] = p[3] = 0;
}
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
return 0;
}
#else // _MSC_VER
#if !defined(MY_CPU_AMD64)
UInt32 __declspec(naked) Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
#if defined(NEED_CHECK_FOR_CPUID)
#define EFALGS_CPUID_BIT 21
__asm pushfd
__asm pushfd
/*
__asm pop eax
// __asm mov edx, eax
__asm btc eax, EFALGS_CPUID_BIT
__asm push eax
*/
__asm btc dword ptr [esp], EFALGS_CPUID_BIT
__asm popfd
__asm pushfd
__asm pop eax
// __asm xor eax, edx
__asm xor eax, [esp]
// __asm push edx
__asm popfd
__asm and eax, (1 shl EFALGS_CPUID_BIT)
__asm jz end_func
#endif
__asm push ebx
__asm xor eax, eax // func
__asm xor ecx, ecx // subFunction (optional) for (func == 0)
__asm cpuid
__asm pop ebx
#if defined(NEED_CHECK_FOR_CPUID)
end_func:
#endif
__asm ret 0
}
void __declspec(naked) Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
UNUSED_VAR(p)
UNUSED_VAR(func)
__asm push ebx
__asm push edi
__asm mov edi, ecx // p
__asm mov eax, edx // func
__asm xor ecx, ecx // subfunction (optional) for (func == 0)
__asm cpuid
__asm mov [edi ], eax
__asm mov [edi + 4], ebx
__asm mov [edi + 8], ecx
__asm mov [edi + 12], edx
__asm pop edi
__asm pop ebx
__asm ret 0
}
#else // MY_CPU_AMD64
#if _MSC_VER >= 1600
#include <intrin.h>
#define MY_cpuidex __cpuidex
#else
/*
__cpuid (func == (0 or 7)) requires subfunction number in ECX.
MSDN: The __cpuid intrinsic clears the ECX register before calling the cpuid instruction.
__cpuid() in new MSVC clears ECX.
__cpuid() in old MSVC (14.00) x64 doesn't clear ECX
We still can use __cpuid for low (func) values that don't require ECX,
but __cpuid() in old MSVC will be incorrect for some func values: (func == 7).
So here we use the hack for old MSVC to send (subFunction) in ECX register to cpuid instruction,
where ECX value is first parameter for FASTCALL / NO_INLINE func,
So the caller of MY_cpuidex_HACK() sets ECX as subFunction, and
old MSVC for __cpuid() doesn't change ECX and cpuid instruction gets (subFunction) value.
DON'T remove Z7_NO_INLINE and Z7_FASTCALL for MY_cpuidex_HACK(): !!!
*/
static
Z7_NO_INLINE void Z7_FASTCALL MY_cpuidex_HACK(UInt32 subFunction, UInt32 func, int *CPUInfo)
{
UNUSED_VAR(subFunction)
__cpuid(CPUInfo, func);
}
#define MY_cpuidex(info, func, func2) MY_cpuidex_HACK(func2, func, info)
#pragma message("======== MY_cpuidex_HACK WAS USED ========")
#endif // _MSC_VER >= 1600
#if !defined(MY_CPU_AMD64)
/* inlining for __cpuid() in MSVC x86 (32-bit) produces big ineffective code,
so we disable inlining here */
Z7_NO_INLINE
#endif
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
MY_cpuidex((int *)p, (int)func, 0);
}
Z7_NO_INLINE
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
int a[4];
MY_cpuidex(a, 0, 0);
return a[0];
}
#endif // MY_CPU_AMD64
#endif // _MSC_VER
#if defined(NEED_CHECK_FOR_CPUID)
#define CHECK_CPUID_IS_SUPPORTED { if (z7_x86_cpuid_GetMaxFunc() == 0) return 0; }
#else
#define CHECK_CPUID_IS_SUPPORTED
#endif
#undef NEED_CHECK_FOR_CPUID
void MyCPUID(UInt32 function, UInt32 *a, UInt32 *b, UInt32 *c, UInt32 *d)
{
#ifdef USE_ASM
#ifdef _MSC_VER
UInt32 a2, b2, c2, d2;
__asm xor EBX, EBX;
__asm xor ECX, ECX;
__asm xor EDX, EDX;
__asm mov EAX, function;
__asm cpuid;
__asm mov a2, EAX;
__asm mov b2, EBX;
__asm mov c2, ECX;
__asm mov d2, EDX;
*a = a2;
*b = b2;
*c = c2;
*d = d2;
#else
__asm__ __volatile__ (
#if defined(MY_CPU_AMD64) && defined(__PIC__)
"mov %%rbx, %%rdi;"
"cpuid;"
"xchg %%rbx, %%rdi;"
: "=a" (*a) ,
"=D" (*b) ,
#elif defined(MY_CPU_X86) && defined(__PIC__)
"mov %%ebx, %%edi;"
"cpuid;"
"xchgl %%ebx, %%edi;"
: "=a" (*a) ,
"=D" (*b) ,
#else
"cpuid"
: "=a" (*a) ,
"=b" (*b) ,
#endif
"=c" (*c) ,
"=d" (*d)
: "0" (function)) ;
#endif
#else
int CPUInfo[4];
__cpuid(CPUInfo, function);
*a = CPUInfo[0];
*b = CPUInfo[1];
*c = CPUInfo[2];
*d = CPUInfo[3];
#endif
}
Bool x86cpuid_CheckAndRead(Cx86cpuid *p)
static
BoolInt x86cpuid_Func_1(UInt32 *p)
{
CHECK_CPUID_IS_SUPPORTED
MyCPUID(0, &p->maxFunc, &p->vendor[0], &p->vendor[2], &p->vendor[1]);
MyCPUID(1, &p->ver, &p->b, &p->c, &p->d);
z7_x86_cpuid(p, 1);
return True;
}
static const UInt32 kVendors[][3] =
/*
static const UInt32 kVendors[][1] =
{
{ 0x756E6547, 0x49656E69, 0x6C65746E},
{ 0x68747541, 0x69746E65, 0x444D4163},
{ 0x746E6543, 0x48727561, 0x736C7561}
{ 0x756E6547 }, // , 0x49656E69, 0x6C65746E },
{ 0x68747541 }, // , 0x69746E65, 0x444D4163 },
{ 0x746E6543 } // , 0x48727561, 0x736C7561 }
};
*/
/*
typedef struct
{
UInt32 maxFunc;
UInt32 vendor[3];
UInt32 ver;
UInt32 b;
UInt32 c;
UInt32 d;
} Cx86cpuid;
enum
{
CPU_FIRM_INTEL,
CPU_FIRM_AMD,
CPU_FIRM_VIA
};
int x86cpuid_GetFirm(const Cx86cpuid *p);
#define x86cpuid_ver_GetFamily(ver) (((ver >> 16) & 0xff0) | ((ver >> 8) & 0xf))
#define x86cpuid_ver_GetModel(ver) (((ver >> 12) & 0xf0) | ((ver >> 4) & 0xf))
#define x86cpuid_ver_GetStepping(ver) (ver & 0xf)
int x86cpuid_GetFirm(const Cx86cpuid *p)
{
unsigned i;
for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[i]); i++)
for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[0]); i++)
{
const UInt32 *v = kVendors[i];
if (v[0] == p->vendor[0] &&
v[1] == p->vendor[1] &&
v[2] == p->vendor[2])
if (v[0] == p->vendor[0]
// && v[1] == p->vendor[1]
// && v[2] == p->vendor[2]
)
return (int)i;
}
return -1;
}
Bool CPU_Is_InOrder()
BoolInt CPU_Is_InOrder()
{
Cx86cpuid p;
int firm;
UInt32 family, model;
if (!x86cpuid_CheckAndRead(&p))
return True;
family = x86cpuid_GetFamily(p.ver);
model = x86cpuid_GetModel(p.ver);
firm = x86cpuid_GetFirm(&p);
family = x86cpuid_ver_GetFamily(p.ver);
model = x86cpuid_ver_GetModel(p.ver);
switch (firm)
switch (x86cpuid_GetFirm(&p))
{
case CPU_FIRM_INTEL: return (family < 6 || (family == 6 && (
/* In-Order Atom CPU */
model == 0x1C /* 45 nm, N4xx, D4xx, N5xx, D5xx, 230, 330 */
|| model == 0x26 /* 45 nm, Z6xx */
|| model == 0x27 /* 32 nm, Z2460 */
|| model == 0x35 /* 32 nm, Z2760 */
|| model == 0x36 /* 32 nm, N2xxx, D2xxx */
// In-Order Atom CPU
model == 0x1C // 45 nm, N4xx, D4xx, N5xx, D5xx, 230, 330
|| model == 0x26 // 45 nm, Z6xx
|| model == 0x27 // 32 nm, Z2460
|| model == 0x35 // 32 nm, Z2760
|| model == 0x36 // 32 nm, N2xxx, D2xxx
)));
case CPU_FIRM_AMD: return (family < 5 || (family == 5 && (model < 6 || model == 0xA)));
case CPU_FIRM_VIA: return (family < 6 || (family == 6 && model < 0xF));
}
return True;
return False; // v23 : unknown processors are not In-Order
}
*/
#ifdef _WIN32
#include "7zWindows.h"
#endif
#if !defined(MY_CPU_AMD64) && defined(_WIN32)
#include <windows.h>
static Bool CPU_Sys_Is_SSE_Supported()
/* for legacy SSE ia32: there is no user-space cpu instruction to check
that OS supports SSE register storing/restoring on context switches.
So we need some OS-specific function to check that it's safe to use SSE registers.
*/
Z7_FORCE_INLINE
static BoolInt CPU_Sys_Is_SSE_Supported(void)
{
OSVERSIONINFO vi;
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionEx(&vi))
return False;
return (vi.dwMajorVersion >= 5);
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4996) // `GetVersion': was declared deprecated
#endif
/* low byte is major version of Windows
We suppose that any Windows version since
Windows2000 (major == 5) supports SSE registers */
return (Byte)GetVersion() >= 5;
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
}
#define CHECK_SYS_SSE_SUPPORT if (!CPU_Sys_Is_SSE_Supported()) return False;
#else
#define CHECK_SYS_SSE_SUPPORT
#endif
Bool CPU_Is_Aes_Supported()
#if !defined(MY_CPU_AMD64)
BoolInt CPU_IsSupported_CMOV(void)
{
Cx86cpuid p;
UInt32 a[4];
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 15) & 1;
}
BoolInt CPU_IsSupported_SSE(void)
{
UInt32 a[4];
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_CheckAndRead(&p))
return False;
return (p.c >> 25) & 1;
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 25) & 1;
}
BoolInt CPU_IsSupported_SSE2(void)
{
UInt32 a[4];
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 26) & 1;
}
#endif
static UInt32 x86cpuid_Func_1_ECX(void)
{
UInt32 a[4];
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_Func_1(&a[0]))
return 0;
return a[2];
}
BoolInt CPU_IsSupported_AES(void)
{
return (x86cpuid_Func_1_ECX() >> 25) & 1;
}
BoolInt CPU_IsSupported_SSSE3(void)
{
return (x86cpuid_Func_1_ECX() >> 9) & 1;
}
BoolInt CPU_IsSupported_SSE41(void)
{
return (x86cpuid_Func_1_ECX() >> 19) & 1;
}
BoolInt CPU_IsSupported_SHA(void)
{
CHECK_SYS_SSE_SUPPORT
if (z7_x86_cpuid_GetMaxFunc() < 7)
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
return (d[1] >> 29) & 1;
}
}
/*
MSVC: _xgetbv() intrinsic is available since VS2010SP1.
MSVC also defines (_XCR_XFEATURE_ENABLED_MASK) macro in
<immintrin.h> that we can use or check.
For any 32-bit x86 we can use asm code in MSVC,
but MSVC asm code is huge after compilation.
So _xgetbv() is better
ICC: _xgetbv() intrinsic is available (in what version of ICC?)
ICC defines (__GNUC___) and it supports gnu assembler
also ICC supports MASM style code with -use-msasm switch.
but ICC doesn't support __attribute__((__target__))
GCC/CLANG 9:
_xgetbv() is macro that works via __builtin_ia32_xgetbv()
and we need __attribute__((__target__("xsave")).
But with __target__("xsave") the function will be not
inlined to function that has no __target__("xsave") attribute.
If we want _xgetbv() call inlining, then we should use asm version
instead of calling _xgetbv().
Note:intrinsic is broke before GCC 8.2:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85684
*/
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1100) \
|| defined(_MSC_VER) && (_MSC_VER >= 1600) && (_MSC_FULL_VER >= 160040219) \
|| defined(__GNUC__) && (__GNUC__ >= 9) \
|| defined(__clang__) && (__clang_major__ >= 9)
// we define ATTRIB_XGETBV, if we want to use predefined _xgetbv() from compiler
#if defined(__INTEL_COMPILER)
#define ATTRIB_XGETBV
#elif defined(__GNUC__) || defined(__clang__)
// we don't define ATTRIB_XGETBV here, because asm version is better for inlining.
// #define ATTRIB_XGETBV __attribute__((__target__("xsave")))
#else
#define ATTRIB_XGETBV
#endif
#endif
#if defined(ATTRIB_XGETBV)
#include <immintrin.h>
#endif
// XFEATURE_ENABLED_MASK/XCR0
#define MY_XCR_XFEATURE_ENABLED_MASK 0
#if defined(ATTRIB_XGETBV)
ATTRIB_XGETBV
#endif
static UInt64 x86_xgetbv_0(UInt32 num)
{
#if defined(ATTRIB_XGETBV)
{
return
#if (defined(_MSC_VER))
_xgetbv(num);
#else
__builtin_ia32_xgetbv(
#if !defined(__clang__)
(int)
#endif
num);
#endif
}
#elif defined(__GNUC__) || defined(__clang__) || defined(__SUNPRO_CC)
UInt32 a, d;
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
__asm__
(
"xgetbv"
: "=a"(a), "=d"(d) : "c"(num) : "cc"
);
#else // is old gcc
__asm__
(
".byte 0x0f, 0x01, 0xd0" "\n\t"
: "=a"(a), "=d"(d) : "c"(num) : "cc"
);
#endif
return ((UInt64)d << 32) | a;
// return a;
#elif defined(_MSC_VER) && !defined(MY_CPU_AMD64)
UInt32 a, d;
__asm {
push eax
push edx
push ecx
mov ecx, num;
// xor ecx, ecx // = MY_XCR_XFEATURE_ENABLED_MASK
_emit 0x0f
_emit 0x01
_emit 0xd0
mov a, eax
mov d, edx
pop ecx
pop edx
pop eax
}
return ((UInt64)d << 32) | a;
// return a;
#else // it's unknown compiler
// #error "Need xgetbv function"
UNUSED_VAR(num)
// for MSVC-X64 we could call external function from external file.
/* Actually we had checked OSXSAVE/AVX in cpuid before.
So it's expected that OS supports at least AVX and below. */
// if (num != MY_XCR_XFEATURE_ENABLED_MASK) return 0; // if not XCR0
return
// (1 << 0) | // x87
(1 << 1) // SSE
| (1 << 2); // AVX
#endif
}
#ifdef _WIN32
/*
Windows versions do not know about new ISA extensions that
can be introduced. But we still can use new extensions,
even if Windows doesn't report about supporting them,
But we can use new extensions, only if Windows knows about new ISA extension
that changes the number or size of registers: SSE, AVX/XSAVE, AVX512
So it's enough to check
MY_PF_AVX_INSTRUCTIONS_AVAILABLE
instead of
MY_PF_AVX2_INSTRUCTIONS_AVAILABLE
*/
#define MY_PF_XSAVE_ENABLED 17
// #define MY_PF_SSSE3_INSTRUCTIONS_AVAILABLE 36
// #define MY_PF_SSE4_1_INSTRUCTIONS_AVAILABLE 37
// #define MY_PF_SSE4_2_INSTRUCTIONS_AVAILABLE 38
// #define MY_PF_AVX_INSTRUCTIONS_AVAILABLE 39
// #define MY_PF_AVX2_INSTRUCTIONS_AVAILABLE 40
// #define MY_PF_AVX512F_INSTRUCTIONS_AVAILABLE 41
#endif
BoolInt CPU_IsSupported_AVX(void)
{
#ifdef _WIN32
if (!IsProcessorFeaturePresent(MY_PF_XSAVE_ENABLED))
return False;
/* PF_AVX_INSTRUCTIONS_AVAILABLE probably is supported starting from
some latest Win10 revisions. But we need AVX in older Windows also.
So we don't use the following check: */
/*
if (!IsProcessorFeaturePresent(MY_PF_AVX_INSTRUCTIONS_AVAILABLE))
return False;
*/
#endif
/*
OS must use new special XSAVE/XRSTOR instructions to save
AVX registers when it required for context switching.
At OS statring:
OS sets CR4.OSXSAVE flag to signal the processor that OS supports the XSAVE extensions.
Also OS sets bitmask in XCR0 register that defines what
registers will be processed by XSAVE instruction:
XCR0.SSE[bit 0] - x87 registers and state
XCR0.SSE[bit 1] - SSE registers and state
XCR0.AVX[bit 2] - AVX registers and state
CR4.OSXSAVE is reflected to CPUID.1:ECX.OSXSAVE[bit 27].
So we can read that bit in user-space.
XCR0 is available for reading in user-space by new XGETBV instruction.
*/
{
const UInt32 c = x86cpuid_Func_1_ECX();
if (0 == (1
& (c >> 28) // AVX instructions are supported by hardware
& (c >> 27))) // OSXSAVE bit: XSAVE and related instructions are enabled by OS.
return False;
}
/* also we can check
CPUID.1:ECX.XSAVE [bit 26] : that shows that
XSAVE, XRESTOR, XSETBV, XGETBV instructions are supported by hardware.
But that check is redundant, because if OSXSAVE bit is set, then XSAVE is also set */
/* If OS have enabled XSAVE extension instructions (OSXSAVE == 1),
in most cases we expect that OS also will support storing/restoring
for AVX and SSE states at least.
But to be ensure for that we call user-space instruction
XGETBV(0) to get XCR0 value that contains bitmask that defines
what exact states(registers) OS have enabled for storing/restoring.
*/
{
const UInt32 bm = (UInt32)x86_xgetbv_0(MY_XCR_XFEATURE_ENABLED_MASK);
// printf("\n=== XGetBV=%d\n", bm);
return 1
& (bm >> 1) // SSE state is supported (set by OS) for storing/restoring
& (bm >> 2); // AVX state is supported (set by OS) for storing/restoring
}
// since Win7SP1: we can use GetEnabledXStateFeatures();
}
BoolInt CPU_IsSupported_AVX2(void)
{
if (!CPU_IsSupported_AVX())
return False;
if (z7_x86_cpuid_GetMaxFunc() < 7)
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
// printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]);
return 1
& (d[1] >> 5); // avx2
}
}
BoolInt CPU_IsSupported_VAES_AVX2(void)
{
if (!CPU_IsSupported_AVX())
return False;
if (z7_x86_cpuid_GetMaxFunc() < 7)
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
// printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]);
return 1
& (d[1] >> 5) // avx2
// & (d[1] >> 31) // avx512vl
& (d[2] >> 9); // vaes // VEX-256/EVEX
}
}
BoolInt CPU_IsSupported_PageGB(void)
{
CHECK_CPUID_IS_SUPPORTED
{
UInt32 d[4];
z7_x86_cpuid(d, 0x80000000);
if (d[0] < 0x80000001)
return False;
z7_x86_cpuid(d, 0x80000001);
return (d[3] >> 26) & 1;
}
}
#elif defined(MY_CPU_ARM_OR_ARM64)
#ifdef _WIN32
#include "7zWindows.h"
BoolInt CPU_IsSupported_CRC32(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
BoolInt CPU_IsSupported_CRYPTO(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
BoolInt CPU_IsSupported_NEON(void) { return IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
#else
#if defined(__APPLE__)
/*
#include <stdio.h>
#include <string.h>
static void Print_sysctlbyname(const char *name)
{
size_t bufSize = 256;
char buf[256];
int res = sysctlbyname(name, &buf, &bufSize, NULL, 0);
{
int i;
printf("\nres = %d : %s : '%s' : bufSize = %d, numeric", res, name, buf, (unsigned)bufSize);
for (i = 0; i < 20; i++)
printf(" %2x", (unsigned)(Byte)buf[i]);
}
}
*/
/*
Print_sysctlbyname("hw.pagesize");
Print_sysctlbyname("machdep.cpu.brand_string");
*/
static BoolInt z7_sysctlbyname_Get_BoolInt(const char *name)
{
UInt32 val = 0;
if (z7_sysctlbyname_Get_UInt32(name, &val) == 0 && val == 1)
return 1;
return 0;
}
BoolInt CPU_IsSupported_CRC32(void)
{
return z7_sysctlbyname_Get_BoolInt("hw.optional.armv8_crc32");
}
BoolInt CPU_IsSupported_NEON(void)
{
return z7_sysctlbyname_Get_BoolInt("hw.optional.neon");
}
#ifdef MY_CPU_ARM64
#define APPLE_CRYPTO_SUPPORT_VAL 1
#else
#define APPLE_CRYPTO_SUPPORT_VAL 0
#endif
BoolInt CPU_IsSupported_SHA1(void) { return APPLE_CRYPTO_SUPPORT_VAL; }
BoolInt CPU_IsSupported_SHA2(void) { return APPLE_CRYPTO_SUPPORT_VAL; }
BoolInt CPU_IsSupported_AES (void) { return APPLE_CRYPTO_SUPPORT_VAL; }
#else // __APPLE__
#include <sys/auxv.h>
#define USE_HWCAP
#ifdef USE_HWCAP
#include <asm/hwcap.h>
#define MY_HWCAP_CHECK_FUNC_2(name1, name2) \
BoolInt CPU_IsSupported_ ## name1() { return (getauxval(AT_HWCAP) & (HWCAP_ ## name2)) ? 1 : 0; }
#ifdef MY_CPU_ARM64
#define MY_HWCAP_CHECK_FUNC(name) \
MY_HWCAP_CHECK_FUNC_2(name, name)
MY_HWCAP_CHECK_FUNC_2(NEON, ASIMD)
// MY_HWCAP_CHECK_FUNC (ASIMD)
#elif defined(MY_CPU_ARM)
#define MY_HWCAP_CHECK_FUNC(name) \
BoolInt CPU_IsSupported_ ## name() { return (getauxval(AT_HWCAP2) & (HWCAP2_ ## name)) ? 1 : 0; }
MY_HWCAP_CHECK_FUNC_2(NEON, NEON)
#endif
#else // USE_HWCAP
#define MY_HWCAP_CHECK_FUNC(name) \
BoolInt CPU_IsSupported_ ## name() { return 0; }
MY_HWCAP_CHECK_FUNC(NEON)
#endif // USE_HWCAP
MY_HWCAP_CHECK_FUNC (CRC32)
MY_HWCAP_CHECK_FUNC (SHA1)
MY_HWCAP_CHECK_FUNC (SHA2)
MY_HWCAP_CHECK_FUNC (AES)
#endif // __APPLE__
#endif // _WIN32
#endif // MY_CPU_ARM_OR_ARM64
#ifdef __APPLE__
#include <sys/sysctl.h>
int z7_sysctlbyname_Get(const char *name, void *buf, size_t *bufSize)
{
return sysctlbyname(name, buf, bufSize, NULL, 0);
}
int z7_sysctlbyname_Get_UInt32(const char *name, UInt32 *val)
{
size_t bufSize = sizeof(*val);
const int res = z7_sysctlbyname_Get(name, val, &bufSize);
if (res == 0 && bufSize != sizeof(*val))
return EFAULT;
return res;
}
#endif

340
C/CpuArch.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* CpuArch.h -- CPU specific code
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __CPU_ARCH_H
#define __CPU_ARCH_H
#ifndef ZIP7_INC_CPU_ARCH_H
#define ZIP7_INC_CPU_ARCH_H
#include "7zTypes.h"
@@ -14,6 +14,10 @@ MY_CPU_BE means that CPU is BIG ENDIAN.
If MY_CPU_LE and MY_CPU_BE are not defined, we don't know about ENDIANNESS of platform.
MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned memory accesses.
MY_CPU_64BIT means that processor can work with 64-bit registers.
MY_CPU_64BIT can be used to select fast code branch
MY_CPU_64BIT doesn't mean that (sizeof(void *) == 8)
*/
#if defined(_M_X64) \
@@ -24,8 +28,10 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
#define MY_CPU_AMD64
#ifdef __ILP32__
#define MY_CPU_NAME "x32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "x64"
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#endif
@@ -35,7 +41,8 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
|| defined(__i386__)
#define MY_CPU_X86
#define MY_CPU_NAME "x86"
#define MY_CPU_32BIT
/* #define MY_CPU_32BIT */
#define MY_CPU_SIZEOF_POINTER 4
#endif
@@ -44,7 +51,13 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
|| defined(__AARCH64EB__) \
|| defined(__aarch64__)
#define MY_CPU_ARM64
#define MY_CPU_NAME "arm64"
#ifdef __ILP32__
#define MY_CPU_NAME "arm64-32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "arm64"
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#endif
@@ -59,8 +72,16 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
|| defined(__THUMBEL__) \
|| defined(__THUMBEB__)
#define MY_CPU_ARM
#define MY_CPU_NAME "arm"
#define MY_CPU_32BIT
#if defined(__thumb__) || defined(__THUMBEL__) || defined(_M_ARMT)
#define MY_CPU_ARMT
#define MY_CPU_NAME "armt"
#else
#define MY_CPU_ARM32
#define MY_CPU_NAME "arm"
#endif
/* #define MY_CPU_32BIT */
#define MY_CPU_SIZEOF_POINTER 4
#endif
@@ -84,26 +105,43 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
#if defined(__ppc64__) \
|| defined(__powerpc64__)
|| defined(__powerpc64__) \
|| defined(__ppc__) \
|| defined(__powerpc__) \
|| defined(__PPC__) \
|| defined(_POWER)
#define MY_CPU_PPC_OR_PPC64
#if defined(__ppc64__) \
|| defined(__powerpc64__) \
|| defined(_LP64) \
|| defined(__64BIT__)
#ifdef __ILP32__
#define MY_CPU_NAME "ppc64-32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "ppc64"
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#elif defined(__ppc__) \
|| defined(__powerpc__)
#else
#define MY_CPU_NAME "ppc"
#define MY_CPU_32BIT
#define MY_CPU_SIZEOF_POINTER 4
/* #define MY_CPU_32BIT */
#endif
#endif
#if defined(__sparc64__)
#define MY_CPU_NAME "sparc64"
#define MY_CPU_64BIT
#elif defined(__sparc__)
#define MY_CPU_NAME "sparc"
/* #define MY_CPU_32BIT */
#if defined(__riscv) \
|| defined(__riscv__)
#if __riscv_xlen == 32
#define MY_CPU_NAME "riscv32"
#elif __riscv_xlen == 64
#define MY_CPU_NAME "riscv64"
#else
#define MY_CPU_NAME "riscv"
#endif
#endif
@@ -111,6 +149,10 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
#define MY_CPU_X86_OR_AMD64
#endif
#if defined(MY_CPU_ARM) || defined(MY_CPU_ARM64)
#define MY_CPU_ARM_OR_ARM64
#endif
#ifdef _WIN32
@@ -165,16 +207,53 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
#error Stop_Compiling_Bad_Endian
#endif
#if !defined(MY_CPU_LE) && !defined(MY_CPU_BE)
#error Stop_Compiling_CPU_ENDIAN_must_be_detected_at_compile_time
#endif
#if defined(MY_CPU_32BIT) && defined(MY_CPU_64BIT)
#error Stop_Compiling_Bad_32_64_BIT
#endif
#ifdef __SIZEOF_POINTER__
#ifdef MY_CPU_SIZEOF_POINTER
#if MY_CPU_SIZEOF_POINTER != __SIZEOF_POINTER__
#error Stop_Compiling_Bad_MY_CPU_PTR_SIZE
#endif
#else
#define MY_CPU_SIZEOF_POINTER __SIZEOF_POINTER__
#endif
#endif
#if defined(MY_CPU_SIZEOF_POINTER) && (MY_CPU_SIZEOF_POINTER == 4)
#if defined (_LP64)
#error Stop_Compiling_Bad_MY_CPU_PTR_SIZE
#endif
#endif
#ifdef _MSC_VER
#if _MSC_VER >= 1300
#define MY_CPU_pragma_pack_push_1 __pragma(pack(push, 1))
#define MY_CPU_pragma_pop __pragma(pack(pop))
#else
#define MY_CPU_pragma_pack_push_1
#define MY_CPU_pragma_pop
#endif
#else
#ifdef __xlC__
#define MY_CPU_pragma_pack_push_1 _Pragma("pack(1)")
#define MY_CPU_pragma_pop _Pragma("pack()")
#else
#define MY_CPU_pragma_pack_push_1 _Pragma("pack(push, 1)")
#define MY_CPU_pragma_pop _Pragma("pack(pop)")
#endif
#endif
#ifndef MY_CPU_NAME
#ifdef MY_CPU_LE
#define MY_CPU_NAME "LE"
#elif MY_CPU_BE
#elif defined(MY_CPU_BE)
#define MY_CPU_NAME "BE"
#else
/*
@@ -187,11 +266,75 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
#ifdef __has_builtin
#define Z7_has_builtin(x) __has_builtin(x)
#else
#define Z7_has_builtin(x) 0
#endif
#define Z7_BSWAP32_CONST(v) \
( (((UInt32)(v) << 24) ) \
| (((UInt32)(v) << 8) & (UInt32)0xff0000) \
| (((UInt32)(v) >> 8) & (UInt32)0xff00 ) \
| (((UInt32)(v) >> 24) ))
#if defined(_MSC_VER) && (_MSC_VER >= 1300)
#include <stdlib.h>
/* Note: these macros will use bswap instruction (486), that is unsupported in 386 cpu */
#pragma intrinsic(_byteswap_ushort)
#pragma intrinsic(_byteswap_ulong)
#pragma intrinsic(_byteswap_uint64)
#define Z7_BSWAP16(v) _byteswap_ushort(v)
#define Z7_BSWAP32(v) _byteswap_ulong (v)
#define Z7_BSWAP64(v) _byteswap_uint64(v)
#define Z7_CPU_FAST_BSWAP_SUPPORTED
#elif (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))) \
|| (defined(__clang__) && Z7_has_builtin(__builtin_bswap16))
#define Z7_BSWAP16(v) __builtin_bswap16(v)
#define Z7_BSWAP32(v) __builtin_bswap32(v)
#define Z7_BSWAP64(v) __builtin_bswap64(v)
#define Z7_CPU_FAST_BSWAP_SUPPORTED
#else
#define Z7_BSWAP16(v) ((UInt16) \
( ((UInt32)(v) << 8) \
| ((UInt32)(v) >> 8) \
))
#define Z7_BSWAP32(v) Z7_BSWAP32_CONST(v)
#define Z7_BSWAP64(v) \
( ( ( (UInt64)(v) ) << 8 * 7 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 1) ) << 8 * 5 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 2) ) << 8 * 3 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 3) ) << 8 * 1 ) \
| ( ( (UInt64)(v) >> 8 * 1 ) & ((UInt32)0xff << 8 * 3) ) \
| ( ( (UInt64)(v) >> 8 * 3 ) & ((UInt32)0xff << 8 * 2) ) \
| ( ( (UInt64)(v) >> 8 * 5 ) & ((UInt32)0xff << 8 * 1) ) \
| ( ( (UInt64)(v) >> 8 * 7 ) ) \
)
#endif
#ifdef MY_CPU_LE
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM64) \
|| defined(__ARM_FEATURE_UNALIGNED) \
|| defined(__AARCH64EL__)
|| defined(MY_CPU_ARM64)
#define MY_CPU_LE_UNALIGN
#define MY_CPU_LE_UNALIGN_64
#elif defined(__ARM_FEATURE_UNALIGNED)
/* gcc9 for 32-bit arm can use LDRD instruction that requires 32-bit alignment.
So we can't use unaligned 64-bit operations. */
#define MY_CPU_LE_UNALIGN
#endif
#endif
@@ -201,11 +344,13 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
#define GetUi16(p) (*(const UInt16 *)(const void *)(p))
#define GetUi32(p) (*(const UInt32 *)(const void *)(p))
#ifdef MY_CPU_LE_UNALIGN_64
#define GetUi64(p) (*(const UInt64 *)(const void *)(p))
#define SetUi64(p, v) { *(UInt64 *)(void *)(p) = (v); }
#endif
#define SetUi16(p, v) { *(UInt16 *)(p) = (v); }
#define SetUi32(p, v) { *(UInt32 *)(p) = (v); }
#define SetUi64(p, v) { *(UInt64 *)(p) = (v); }
#define SetUi16(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define SetUi32(p, v) { *(UInt32 *)(void *)(p) = (v); }
#else
@@ -219,8 +364,6 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
((UInt32)((const Byte *)(p))[2] << 16) | \
((UInt32)((const Byte *)(p))[3] << 24))
#define GetUi64(p) (GetUi32(p) | ((UInt64)GetUi32(((const Byte *)(p)) + 4) << 32))
#define SetUi16(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); }
@@ -231,32 +374,28 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
_ppp_[2] = (Byte)(_vvv_ >> 16); \
_ppp_[3] = (Byte)(_vvv_ >> 24); }
#define SetUi64(p, v) { Byte *_ppp2_ = (Byte *)(p); UInt64 _vvv2_ = (v); \
SetUi32(_ppp2_ , (UInt32)_vvv2_); \
SetUi32(_ppp2_ + 4, (UInt32)(_vvv2_ >> 32)); }
#endif
#if defined(MY_CPU_LE_UNALIGN) && /* defined(_WIN64) && */ (_MSC_VER >= 1300)
#ifndef GetUi64
#define GetUi64(p) (GetUi32(p) | ((UInt64)GetUi32(((const Byte *)(p)) + 4) << 32))
#endif
/* Note: we use bswap instruction, that is unsupported in 386 cpu */
#ifndef SetUi64
#define SetUi64(p, v) { Byte *_ppp2_ = (Byte *)(p); UInt64 _vvv2_ = (v); \
SetUi32(_ppp2_ , (UInt32)_vvv2_) \
SetUi32(_ppp2_ + 4, (UInt32)(_vvv2_ >> 32)) }
#endif
#include <stdlib.h>
#pragma intrinsic(_byteswap_ulong)
#pragma intrinsic(_byteswap_uint64)
#define GetBe32(p) _byteswap_ulong(*(const UInt32 *)(const Byte *)(p))
#define GetBe64(p) _byteswap_uint64(*(const UInt64 *)(const Byte *)(p))
#if defined(MY_CPU_LE_UNALIGN) && defined(Z7_CPU_FAST_BSWAP_SUPPORTED)
#define SetBe32(p, v) (*(UInt32 *)(void *)(p)) = _byteswap_ulong(v)
#define GetBe32(p) Z7_BSWAP32 (*(const UInt32 *)(const void *)(p))
#define SetBe32(p, v) { (*(UInt32 *)(void *)(p)) = Z7_BSWAP32(v); }
#elif defined(MY_CPU_LE_UNALIGN) && defined (__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
#define GetBe32(p) __builtin_bswap32(*(const UInt32 *)(const Byte *)(p))
#define GetBe64(p) __builtin_bswap64(*(const UInt64 *)(const Byte *)(p))
#define SetBe32(p, v) (*(UInt32 *)(void *)(p)) = __builtin_bswap32(v)
#if defined(MY_CPU_LE_UNALIGN_64)
#define GetBe64(p) Z7_BSWAP64 (*(const UInt64 *)(const void *)(p))
#endif
#else
@@ -266,8 +405,6 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
((UInt32)((const Byte *)(p))[2] << 8) | \
((const Byte *)(p))[3] )
#define GetBe64(p) (((UInt64)GetBe32(p) << 32) | GetBe32(((const Byte *)(p)) + 4))
#define SetBe32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)(_vvv_ >> 24); \
_ppp_[1] = (Byte)(_vvv_ >> 16); \
@@ -276,44 +413,109 @@ MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned mem
#endif
#ifndef GetBe64
#define GetBe64(p) (((UInt64)GetBe32(p) << 32) | GetBe32(((const Byte *)(p)) + 4))
#endif
#ifndef GetBe16
#define GetBe16(p) ( (UInt16) ( \
((UInt16)((const Byte *)(p))[0] << 8) | \
((const Byte *)(p))[1] ))
#endif
#if defined(MY_CPU_BE)
#define Z7_CONV_BE_TO_NATIVE_CONST32(v) (v)
#define Z7_CONV_LE_TO_NATIVE_CONST32(v) Z7_BSWAP32_CONST(v)
#define Z7_CONV_NATIVE_TO_BE_32(v) (v)
#elif defined(MY_CPU_LE)
#define Z7_CONV_BE_TO_NATIVE_CONST32(v) Z7_BSWAP32_CONST(v)
#define Z7_CONV_LE_TO_NATIVE_CONST32(v) (v)
#define Z7_CONV_NATIVE_TO_BE_32(v) Z7_BSWAP32(v)
#else
#error Stop_Compiling_Unknown_Endian_CONV
#endif
#if defined(MY_CPU_BE)
#define GetBe32a(p) (*(const UInt32 *)(const void *)(p))
#define GetBe16a(p) (*(const UInt16 *)(const void *)(p))
#define SetBe32a(p, v) { *(UInt32 *)(void *)(p) = (v); }
#define SetBe16a(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define GetUi32a(p) GetUi32(p)
#define GetUi16a(p) GetUi16(p)
#define SetUi32a(p, v) SetUi32(p, v)
#define SetUi16a(p, v) SetUi16(p, v)
#elif defined(MY_CPU_LE)
#define GetUi32a(p) (*(const UInt32 *)(const void *)(p))
#define GetUi16a(p) (*(const UInt16 *)(const void *)(p))
#define SetUi32a(p, v) { *(UInt32 *)(void *)(p) = (v); }
#define SetUi16a(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define GetBe32a(p) GetBe32(p)
#define GetBe16a(p) GetBe16(p)
#define SetBe32a(p, v) SetBe32(p, v)
#define SetBe16a(p, v) SetBe16(p, v)
#else
#error Stop_Compiling_Unknown_Endian_CPU_a
#endif
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM_OR_ARM64) \
|| defined(MY_CPU_PPC_OR_PPC64)
#define Z7_CPU_FAST_ROTATE_SUPPORTED
#endif
#ifdef MY_CPU_X86_OR_AMD64
typedef struct
{
UInt32 maxFunc;
UInt32 vendor[3];
UInt32 ver;
UInt32 b;
UInt32 c;
UInt32 d;
} Cx86cpuid;
void Z7_FASTCALL z7_x86_cpuid(UInt32 a[4], UInt32 function);
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void);
#if defined(MY_CPU_AMD64)
#define Z7_IF_X86_CPUID_SUPPORTED
#else
#define Z7_IF_X86_CPUID_SUPPORTED if (z7_x86_cpuid_GetMaxFunc())
#endif
enum
{
CPU_FIRM_INTEL,
CPU_FIRM_AMD,
CPU_FIRM_VIA
};
BoolInt CPU_IsSupported_AES(void);
BoolInt CPU_IsSupported_AVX(void);
BoolInt CPU_IsSupported_AVX2(void);
BoolInt CPU_IsSupported_VAES_AVX2(void);
BoolInt CPU_IsSupported_CMOV(void);
BoolInt CPU_IsSupported_SSE(void);
BoolInt CPU_IsSupported_SSE2(void);
BoolInt CPU_IsSupported_SSSE3(void);
BoolInt CPU_IsSupported_SSE41(void);
BoolInt CPU_IsSupported_SHA(void);
BoolInt CPU_IsSupported_PageGB(void);
void MyCPUID(UInt32 function, UInt32 *a, UInt32 *b, UInt32 *c, UInt32 *d);
#elif defined(MY_CPU_ARM_OR_ARM64)
Bool x86cpuid_CheckAndRead(Cx86cpuid *p);
int x86cpuid_GetFirm(const Cx86cpuid *p);
BoolInt CPU_IsSupported_CRC32(void);
BoolInt CPU_IsSupported_NEON(void);
#define x86cpuid_GetFamily(ver) (((ver >> 16) & 0xFF0) | ((ver >> 8) & 0xF))
#define x86cpuid_GetModel(ver) (((ver >> 12) & 0xF0) | ((ver >> 4) & 0xF))
#define x86cpuid_GetStepping(ver) (ver & 0xF)
#if defined(_WIN32)
BoolInt CPU_IsSupported_CRYPTO(void);
#define CPU_IsSupported_SHA1 CPU_IsSupported_CRYPTO
#define CPU_IsSupported_SHA2 CPU_IsSupported_CRYPTO
#define CPU_IsSupported_AES CPU_IsSupported_CRYPTO
#else
BoolInt CPU_IsSupported_SHA1(void);
BoolInt CPU_IsSupported_SHA2(void);
BoolInt CPU_IsSupported_AES(void);
#endif
Bool CPU_Is_InOrder();
Bool CPU_Is_Aes_Supported();
#endif
#if defined(__APPLE__)
int z7_sysctlbyname_Get(const char *name, void *buf, size_t *bufSize);
int z7_sysctlbyname_Get_UInt32(const char *name, UInt32 *val);
#endif
EXTERN_C_END

167
C/Delta.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* Delta.c -- Delta converter
2009-05-26 : Igor Pavlov : Public domain */
2021-02-09 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -12,53 +12,158 @@ void Delta_Init(Byte *state)
state[i] = 0;
}
static void MyMemCpy(Byte *dest, const Byte *src, unsigned size)
{
unsigned i;
for (i = 0; i < size; i++)
dest[i] = src[i];
}
void Delta_Encode(Byte *state, unsigned delta, Byte *data, SizeT size)
{
Byte buf[DELTA_STATE_SIZE];
unsigned j = 0;
MyMemCpy(buf, state, delta);
Byte temp[DELTA_STATE_SIZE];
if (size == 0)
return;
{
SizeT i;
for (i = 0; i < size;)
unsigned i = 0;
do
temp[i] = state[i];
while (++i != delta);
}
if (size <= delta)
{
unsigned i = 0, k;
do
{
for (j = 0; j < delta && i < size; i++, j++)
Byte b = *data;
*data++ = (Byte)(b - temp[i]);
temp[i] = b;
}
while (++i != size);
k = 0;
do
{
if (i == delta)
i = 0;
state[k] = temp[i++];
}
while (++k != delta);
return;
}
{
Byte *p = data + size - delta;
{
unsigned i = 0;
do
state[i] = *p++;
while (++i != delta);
}
{
const Byte *lim = data + delta;
ptrdiff_t dif = -(ptrdiff_t)delta;
if (((ptrdiff_t)size + dif) & 1)
{
Byte b = data[i];
data[i] = (Byte)(b - buf[j]);
buf[j] = b;
--p; *p = (Byte)(*p - p[dif]);
}
while (p != lim)
{
--p; *p = (Byte)(*p - p[dif]);
--p; *p = (Byte)(*p - p[dif]);
}
dif = -dif;
do
{
--p; *p = (Byte)(*p - temp[--dif]);
}
while (dif != 0);
}
}
if (j == delta)
j = 0;
MyMemCpy(state, buf + j, delta - j);
MyMemCpy(state + delta - j, buf, j);
}
void Delta_Decode(Byte *state, unsigned delta, Byte *data, SizeT size)
{
Byte buf[DELTA_STATE_SIZE];
unsigned j = 0;
MyMemCpy(buf, state, delta);
unsigned i;
const Byte *lim;
if (size == 0)
return;
i = 0;
lim = data + size;
if (size <= delta)
{
SizeT i;
for (i = 0; i < size;)
do
*data = (Byte)(*data + state[i++]);
while (++data != lim);
for (; delta != i; state++, delta--)
*state = state[i];
data -= i;
}
else
{
/*
#define B(n) b ## n
#define I(n) Byte B(n) = state[n];
#define U(n) { B(n) = (Byte)((B(n)) + *data++); data[-1] = (B(n)); }
#define F(n) if (data != lim) { U(n) }
if (delta == 1)
{
for (j = 0; j < delta && i < size; i++, j++)
I(0)
if ((lim - data) & 1) { U(0) }
while (data != lim) { U(0) U(0) }
data -= 1;
}
else if (delta == 2)
{
I(0) I(1)
lim -= 1; while (data < lim) { U(0) U(1) }
lim += 1; F(0)
data -= 2;
}
else if (delta == 3)
{
I(0) I(1) I(2)
lim -= 2; while (data < lim) { U(0) U(1) U(2) }
lim += 2; F(0) F(1)
data -= 3;
}
else if (delta == 4)
{
I(0) I(1) I(2) I(3)
lim -= 3; while (data < lim) { U(0) U(1) U(2) U(3) }
lim += 3; F(0) F(1) F(2)
data -= 4;
}
else
*/
{
do
{
buf[j] = data[i] = (Byte)(buf[j] + data[i]);
*data = (Byte)(*data + state[i++]);
data++;
}
while (i != delta);
{
ptrdiff_t dif = -(ptrdiff_t)delta;
do
*data = (Byte)(*data + data[dif]);
while (++data != lim);
data += dif;
}
}
}
if (j == delta)
j = 0;
MyMemCpy(state, buf + j, delta - j);
MyMemCpy(state + delta - j, buf, j);
do
*state++ = *data;
while (++data != lim);
}

6
C/Delta.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* Delta.h -- Delta converter
2013-01-18 : Igor Pavlov : Public domain */
2023-03-03 : Igor Pavlov : Public domain */
#ifndef __DELTA_H
#define __DELTA_H
#ifndef ZIP7_INC_DELTA_H
#define ZIP7_INC_DELTA_H
#include "7zTypes.h"

144
C/DllSecur.c Normal file → Executable file
View File

@@ -1,87 +1,111 @@
/* DllSecur.c -- DLL loading security
2016-10-04 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#ifdef _WIN32
#include <windows.h>
#include "7zWindows.h"
#include "DllSecur.h"
#ifndef UNDER_CE
#if (defined(__GNUC__) && (__GNUC__ >= 8)) || defined(__clang__)
// #pragma GCC diagnostic ignored "-Wcast-function-type"
#endif
#if defined(__clang__) || defined(__GNUC__)
typedef void (*Z7_voidFunction)(void);
#define MY_CAST_FUNC (Z7_voidFunction)
#elif defined(_MSC_VER) && _MSC_VER > 1920
#define MY_CAST_FUNC (void *)
// #pragma warning(disable : 4191) // 'type cast': unsafe conversion from 'FARPROC' to 'void (__cdecl *)()'
#else
#define MY_CAST_FUNC
#endif
typedef BOOL (WINAPI *Func_SetDefaultDllDirectories)(DWORD DirectoryFlags);
#define MY_LOAD_LIBRARY_SEARCH_USER_DIRS 0x400
#define MY_LOAD_LIBRARY_SEARCH_SYSTEM32 0x800
#define DELIM "\0"
static const char * const g_Dlls =
"userenv"
DELIM "setupapi"
DELIM "apphelp"
DELIM "propsys"
DELIM "dwmapi"
DELIM "cryptbase"
DELIM "oleacc"
DELIM "clbcatq"
DELIM "version"
#ifndef _CONSOLE
"UXTHEME\0"
DELIM "uxtheme"
#endif
"USERENV\0"
"SETUPAPI\0"
"APPHELP\0"
"PROPSYS\0"
"DWMAPI\0"
"CRYPTBASE\0"
"OLEACC\0"
"CLBCATQ\0"
;
DELIM;
#endif
void LoadSecurityDlls()
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#if defined (_MSC_VER) && _MSC_VER >= 1900
// sysinfoapi.h: kit10: GetVersion was declared deprecated
#pragma warning(disable : 4996)
#endif
#define IF_NON_VISTA_SET_DLL_DIRS_AND_RETURN \
if ((UInt16)GetVersion() != 6) { \
const \
Func_SetDefaultDllDirectories setDllDirs = \
(Func_SetDefaultDllDirectories) MY_CAST_FUNC GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), \
"SetDefaultDllDirectories"); \
if (setDllDirs) if (setDllDirs(MY_LOAD_LIBRARY_SEARCH_SYSTEM32 | MY_LOAD_LIBRARY_SEARCH_USER_DIRS)) return; }
void My_SetDefaultDllDirectories(void)
{
#ifndef UNDER_CE
wchar_t buf[MAX_PATH + 100];
{
// at Vista (ver 6.0) : CoCreateInstance(CLSID_ShellLink, ...) doesn't work after SetDefaultDllDirectories() : Check it ???
OSVERSIONINFO vi;
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionEx(&vi) || vi.dwMajorVersion != 6 || vi.dwMinorVersion != 0)
{
Func_SetDefaultDllDirectories setDllDirs = (Func_SetDefaultDllDirectories)
GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), "SetDefaultDllDirectories");
if (setDllDirs)
if (setDllDirs(MY_LOAD_LIBRARY_SEARCH_SYSTEM32 | MY_LOAD_LIBRARY_SEARCH_USER_DIRS))
return;
}
}
{
unsigned len = GetSystemDirectoryW(buf, MAX_PATH + 2);
if (len == 0 || len > MAX_PATH)
return;
}
{
const char *dll;
unsigned pos = (unsigned)lstrlenW(buf);
if (buf[pos - 1] != '\\')
buf[pos++] = '\\';
for (dll = g_Dlls; dll[0] != 0;)
{
unsigned k = 0;
for (;;)
{
char c = *dll++;
buf[pos + k] = c;
k++;
if (c == 0)
break;
}
lstrcatW(buf, L".dll");
LoadLibraryExW(buf, NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
}
}
IF_NON_VISTA_SET_DLL_DIRS_AND_RETURN
#endif
}
#endif
void LoadSecurityDlls(void)
{
#ifndef UNDER_CE
// at Vista (ver 6.0) : CoCreateInstance(CLSID_ShellLink, ...) doesn't work after SetDefaultDllDirectories() : Check it ???
IF_NON_VISTA_SET_DLL_DIRS_AND_RETURN
{
wchar_t buf[MAX_PATH + 100];
const char *dll;
unsigned pos = GetSystemDirectoryW(buf, MAX_PATH + 2);
if (pos == 0 || pos > MAX_PATH)
return;
if (buf[pos - 1] != '\\')
buf[pos++] = '\\';
for (dll = g_Dlls; *dll != 0;)
{
wchar_t *dest = &buf[pos];
for (;;)
{
const char c = *dll++;
if (c == 0)
break;
*dest++ = (Byte)c;
}
dest[0] = '.';
dest[1] = 'd';
dest[2] = 'l';
dest[3] = 'l';
dest[4] = 0;
// lstrcatW(buf, L".dll");
LoadLibraryExW(buf, NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
}
}
#endif
}
#endif // _WIN32

9
C/DllSecur.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* DllSecur.h -- DLL loading for security
2016-06-08 : Igor Pavlov : Public domain */
2023-03-03 : Igor Pavlov : Public domain */
#ifndef __DLL_SECUR_H
#define __DLL_SECUR_H
#ifndef ZIP7_INC_DLL_SECUR_H
#define ZIP7_INC_DLL_SECUR_H
#include "7zTypes.h"
@@ -10,7 +10,8 @@ EXTERN_C_BEGIN
#ifdef _WIN32
void LoadSecurityDlls();
void My_SetDefaultDllDirectories(void);
void LoadSecurityDlls(void);
#endif

12
C/HuffEnc.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* HuffEnc.c -- functions for Huffman encoding
2017-04-03 : Igor Pavlov : Public domain */
2023-03-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -8,7 +8,7 @@
#define kMaxLen 16
#define NUM_BITS 10
#define MASK ((1 << NUM_BITS) - 1)
#define MASK (((unsigned)1 << NUM_BITS) - 1)
#define NUM_COUNTERS 64
@@ -106,7 +106,7 @@ void Huffman_Generate(const UInt32 *freqs, UInt32 *p, Byte *lens, UInt32 numSymb
p[--e] &= MASK;
lenCounters[1] = 2;
while (e > 0)
while (e != 0)
{
UInt32 len = (p[p[--e] >> NUM_BITS] >> NUM_BITS) + 1;
p[e] = (p[e] & MASK) | (len << NUM_BITS);
@@ -146,3 +146,9 @@ void Huffman_Generate(const UInt32 *freqs, UInt32 *p, Byte *lens, UInt32 numSymb
}
}
}
#undef kMaxLen
#undef NUM_BITS
#undef MASK
#undef NUM_COUNTERS
#undef HUFFMAN_SPEED_OPT

6
C/HuffEnc.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* HuffEnc.h -- Huffman encoding
2013-01-18 : Igor Pavlov : Public domain */
2023-03-05 : Igor Pavlov : Public domain */
#ifndef __HUFF_ENC_H
#define __HUFF_ENC_H
#ifndef ZIP7_INC_HUFF_ENC_H
#define ZIP7_INC_HUFF_ENC_H
#include "7zTypes.h"

1671
C/LzFind.c Normal file → Executable file
View File

File diff suppressed because it is too large Load Diff

90
C/LzFind.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* LzFind.h -- Match finder for LZ algorithms
2017-04-03 : Igor Pavlov : Public domain */
2023-03-04 : Igor Pavlov : Public domain */
#ifndef __LZ_FIND_H
#define __LZ_FIND_H
#ifndef ZIP7_INC_LZ_FIND_H
#define ZIP7_INC_LZ_FIND_H
#include "7zTypes.h"
@@ -10,12 +10,12 @@ EXTERN_C_BEGIN
typedef UInt32 CLzRef;
typedef struct _CMatchFinder
typedef struct
{
Byte *buffer;
const Byte *buffer;
UInt32 pos;
UInt32 posLimit;
UInt32 streamPos;
UInt32 streamPos; /* wrap over Zero is allowed (streamPos < pos). Use (UInt32)(streamPos - pos) */
UInt32 lenLimit;
UInt32 cyclicBufferPos;
@@ -32,8 +32,8 @@ typedef struct _CMatchFinder
UInt32 hashMask;
UInt32 cutValue;
Byte *bufferBase;
ISeqInStream *stream;
Byte *bufBase;
ISeqInStreamPtr stream;
UInt32 blockSize;
UInt32 keepSizeBefore;
@@ -43,41 +43,79 @@ typedef struct _CMatchFinder
size_t directInputRem;
UInt32 historySize;
UInt32 fixedHashSize;
UInt32 hashSizeSum;
Byte numHashBytes_Min;
Byte numHashOutBits;
Byte _pad2_[2];
SRes result;
UInt32 crc[256];
size_t numRefs;
UInt64 expectedDataSize;
} CMatchFinder;
#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((const Byte *)(p)->buffer)
#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
#define Inline_MatchFinder_GetNumAvailableBytes(p) ((UInt32)((p)->streamPos - (p)->pos))
/*
#define Inline_MatchFinder_IsFinishedOK(p) \
((p)->streamEndWasReached \
&& (p)->streamPos == (p)->pos \
&& (!(p)->directInput || (p)->directInputRem == 0))
*/
int MatchFinder_NeedMove(CMatchFinder *p);
Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
/* Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p); */
void MatchFinder_MoveBlock(CMatchFinder *p);
void MatchFinder_ReadIfRequired(CMatchFinder *p);
void MatchFinder_Construct(CMatchFinder *p);
/* Conditions:
historySize <= 3 GB
keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
/* (directInput = 0) is default value.
It's required to provide correct (directInput) value
before calling MatchFinder_Create().
You can set (directInput) by any of the following calls:
- MatchFinder_SET_DIRECT_INPUT_BUF()
- MatchFinder_SET_STREAM()
- MatchFinder_SET_STREAM_MODE()
*/
#define MatchFinder_SET_DIRECT_INPUT_BUF(p, _src_, _srcLen_) { \
(p)->stream = NULL; \
(p)->directInput = 1; \
(p)->buffer = (_src_); \
(p)->directInputRem = (_srcLen_); }
/*
#define MatchFinder_SET_STREAM_MODE(p) { \
(p)->directInput = 0; }
*/
#define MatchFinder_SET_STREAM(p, _stream_) { \
(p)->stream = _stream_; \
(p)->directInput = 0; }
int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
ISzAllocPtr alloc);
void MatchFinder_Free(CMatchFinder *p, ISzAllocPtr alloc);
void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, size_t numItems);
void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
/*
#define MatchFinder_INIT_POS(p, val) \
(p)->pos = (val); \
(p)->streamPos = (val);
*/
// void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
#define MatchFinder_REDUCE_OFFSETS(p, subValue) \
(p)->pos -= (subValue); \
(p)->streamPos -= (subValue);
UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
UInt32 *distances, UInt32 maxLen);
/*
@@ -89,29 +127,33 @@ Conditions:
typedef void (*Mf_Init_Func)(void *object);
typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
typedef UInt32 * (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
typedef void (*Mf_Skip_Func)(void *object, UInt32);
typedef struct _IMatchFinder
typedef struct
{
Mf_Init_Func Init;
Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
Mf_GetMatches_Func GetMatches;
Mf_Skip_Func Skip;
} IMatchFinder;
} IMatchFinder2;
void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder2 *vTable);
void MatchFinder_Init_2(CMatchFinder *p, int readData);
void MatchFinder_Init_LowHash(CMatchFinder *p);
void MatchFinder_Init_HighHash(CMatchFinder *p);
void MatchFinder_Init_4(CMatchFinder *p);
void MatchFinder_Init(CMatchFinder *p);
UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
UInt32* Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
UInt32* Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
void LzFindPrepare(void);
EXTERN_C_END
#endif

1341
C/LzFindMt.c Normal file → Executable file
View File

File diff suppressed because it is too large Load Diff

62
C/LzFindMt.h Normal file → Executable file
View File

@@ -1,39 +1,34 @@
/* LzFindMt.h -- multithreaded Match finder for LZ algorithms
2017-04-03 : Igor Pavlov : Public domain */
2023-03-05 : Igor Pavlov : Public domain */
#ifndef __LZ_FIND_MT_H
#define __LZ_FIND_MT_H
#ifndef ZIP7_INC_LZ_FIND_MT_H
#define ZIP7_INC_LZ_FIND_MT_H
#include "LzFind.h"
#include "Threads.h"
EXTERN_C_BEGIN
#define kMtHashBlockSize (1 << 13)
#define kMtHashNumBlocks (1 << 3)
#define kMtHashNumBlocksMask (kMtHashNumBlocks - 1)
#define kMtBtBlockSize (1 << 14)
#define kMtBtNumBlocks (1 << 6)
#define kMtBtNumBlocksMask (kMtBtNumBlocks - 1)
typedef struct _CMtSync
typedef struct
{
Bool wasCreated;
Bool needStart;
Bool exit;
Bool stopWriting;
UInt32 numProcessedBlocks;
CThread thread;
UInt64 affinity;
BoolInt wasCreated;
BoolInt needStart;
BoolInt csWasInitialized;
BoolInt csWasEntered;
BoolInt exit;
BoolInt stopWriting;
CAutoResetEvent canStart;
CAutoResetEvent wasStarted;
CAutoResetEvent wasStopped;
CSemaphore freeSemaphore;
CSemaphore filledSemaphore;
Bool csWasInitialized;
Bool csWasEntered;
CCriticalSection cs;
UInt32 numProcessedBlocks;
// UInt32 numBlocks_Sent;
} CMtSync;
typedef UInt32 * (*Mf_Mix_Matches)(void *p, UInt32 matchMinPos, UInt32 *distances);
@@ -44,23 +39,28 @@ typedef UInt32 * (*Mf_Mix_Matches)(void *p, UInt32 matchMinPos, UInt32 *distance
typedef void (*Mf_GetHeads)(const Byte *buffer, UInt32 pos,
UInt32 *hash, UInt32 hashMask, UInt32 *heads, UInt32 numHeads, const UInt32 *crc);
typedef struct _CMatchFinderMt
typedef struct
{
/* LZ */
const Byte *pointerToCurPos;
UInt32 *btBuf;
UInt32 btBufPos;
UInt32 btBufPosLimit;
const UInt32 *btBufPos;
const UInt32 *btBufPosLimit;
UInt32 lzPos;
UInt32 btNumAvailBytes;
UInt32 *hash;
UInt32 fixedHashSize;
// UInt32 hash4Mask;
UInt32 historySize;
const UInt32 *crc;
Mf_Mix_Matches MixMatchesFunc;
UInt32 failure_LZ_BT; // failure in BT transfered to LZ
// UInt32 failure_LZ_LZ; // failure in LZ tables
UInt32 failureBuf[1];
// UInt32 crc[256];
/* LZ + BT */
CMtSync btSync;
Byte btDummy[kMtCacheLineDummy];
@@ -70,6 +70,8 @@ typedef struct _CMatchFinderMt
UInt32 hashBufPos;
UInt32 hashBufPosLimit;
UInt32 hashNumAvail;
UInt32 failure_BT;
CLzRef *son;
UInt32 matchMaxLen;
@@ -77,7 +79,7 @@ typedef struct _CMatchFinderMt
UInt32 pos;
const Byte *buffer;
UInt32 cyclicBufferPos;
UInt32 cyclicBufferSize; /* it must be historySize + 1 */
UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
UInt32 cutValue;
/* BT + Hash */
@@ -87,13 +89,19 @@ typedef struct _CMatchFinderMt
/* Hash */
Mf_GetHeads GetHeadsFunc;
CMatchFinder *MatchFinder;
// CMatchFinder MatchFinder;
} CMatchFinderMt;
// only for Mt part
void MatchFinderMt_Construct(CMatchFinderMt *p);
void MatchFinderMt_Destruct(CMatchFinderMt *p, ISzAllocPtr alloc);
SRes MatchFinderMt_Create(CMatchFinderMt *p, UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter, ISzAllocPtr alloc);
void MatchFinderMt_CreateVTable(CMatchFinderMt *p, IMatchFinder *vTable);
void MatchFinderMt_CreateVTable(CMatchFinderMt *p, IMatchFinder2 *vTable);
/* call MatchFinderMt_InitMt() before IMatchFinder::Init() */
SRes MatchFinderMt_InitMt(CMatchFinderMt *p);
void MatchFinderMt_ReleaseStream(CMatchFinderMt *p);
EXTERN_C_END

578
C/LzFindOpt.c Executable file
View File

@@ -0,0 +1,578 @@
/* LzFindOpt.c -- multithreaded Match finder for LZ algorithms
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#include "LzFind.h"
// #include "LzFindMt.h"
// #define LOG_ITERS
// #define LOG_THREAD
#ifdef LOG_THREAD
#include <stdio.h>
#define PRF(x) x
#else
// #define PRF(x)
#endif
#ifdef LOG_ITERS
#include <stdio.h>
UInt64 g_NumIters_Tree;
UInt64 g_NumIters_Loop;
UInt64 g_NumIters_Bytes;
#define LOG_ITER(x) x
#else
#define LOG_ITER(x)
#endif
// ---------- BT THREAD ----------
#define USE_SON_PREFETCH
#define USE_LONG_MATCH_OPT
#define kEmptyHashValue 0
// #define CYC_TO_POS_OFFSET 0
// #define CYC_TO_POS_OFFSET 1 // for debug
/*
Z7_NO_INLINE
UInt32 * Z7_FASTCALL GetMatchesSpecN_1(const Byte *lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, size_t _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size, UInt32 *posRes)
{
do
{
UInt32 delta;
if (hash == size)
break;
delta = *hash++;
if (delta == 0 || delta > (UInt32)pos)
return NULL;
lenLimit++;
if (delta == (UInt32)pos)
{
CLzRef *ptr1 = son + ((size_t)pos << 1) - CYC_TO_POS_OFFSET * 2;
*d++ = 0;
ptr1[0] = kEmptyHashValue;
ptr1[1] = kEmptyHashValue;
}
else
{
UInt32 *_distances = ++d;
CLzRef *ptr0 = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2 + 1;
CLzRef *ptr1 = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2;
const Byte *len0 = cur, *len1 = cur;
UInt32 cutValue = _cutValue;
const Byte *maxLen = cur + _maxLen;
for (LOG_ITER(g_NumIters_Tree++);;)
{
LOG_ITER(g_NumIters_Loop++);
{
const ptrdiff_t diff = (ptrdiff_t)0 - (ptrdiff_t)delta;
CLzRef *pair = son + ((size_t)(((ptrdiff_t)pos - CYC_TO_POS_OFFSET) + diff) << 1);
const Byte *len = (len0 < len1 ? len0 : len1);
#ifdef USE_SON_PREFETCH
const UInt32 pair0 = *pair;
#endif
if (len[diff] == len[0])
{
if (++len != lenLimit && len[diff] == len[0])
while (++len != lenLimit)
{
LOG_ITER(g_NumIters_Bytes++);
if (len[diff] != len[0])
break;
}
if (maxLen < len)
{
maxLen = len;
*d++ = (UInt32)(len - cur);
*d++ = delta - 1;
if (len == lenLimit)
{
const UInt32 pair1 = pair[1];
*ptr1 =
#ifdef USE_SON_PREFETCH
pair0;
#else
pair[0];
#endif
*ptr0 = pair1;
_distances[-1] = (UInt32)(d - _distances);
#ifdef USE_LONG_MATCH_OPT
if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
break;
{
for (;;)
{
hash++;
pos++;
cur++;
lenLimit++;
{
CLzRef *ptr = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2;
#if 0
*(UInt64 *)(void *)ptr = ((const UInt64 *)(const void *)ptr)[diff];
#else
const UInt32 p0 = ptr[0 + (diff * 2)];
const UInt32 p1 = ptr[1 + (diff * 2)];
ptr[0] = p0;
ptr[1] = p1;
// ptr[0] = ptr[0 + (diff * 2)];
// ptr[1] = ptr[1 + (diff * 2)];
#endif
}
// PrintSon(son + 2, pos - 1);
// printf("\npos = %x delta = %x\n", pos, delta);
len++;
*d++ = 2;
*d++ = (UInt32)(len - cur);
*d++ = delta - 1;
if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
break;
}
}
#endif
break;
}
}
}
{
const UInt32 curMatch = (UInt32)pos - delta; // (UInt32)(pos + diff);
if (len[diff] < len[0])
{
delta = pair[1];
if (delta >= curMatch)
return NULL;
*ptr1 = curMatch;
ptr1 = pair + 1;
len1 = len;
}
else
{
delta = *pair;
if (delta >= curMatch)
return NULL;
*ptr0 = curMatch;
ptr0 = pair;
len0 = len;
}
delta = (UInt32)pos - delta;
if (--cutValue == 0 || delta >= pos)
{
*ptr0 = *ptr1 = kEmptyHashValue;
_distances[-1] = (UInt32)(d - _distances);
break;
}
}
}
} // for (tree iterations)
}
pos++;
cur++;
}
while (d < limit);
*posRes = (UInt32)pos;
return d;
}
*/
/* define cbs if you use 2 functions.
GetMatchesSpecN_1() : (pos < _cyclicBufferSize)
GetMatchesSpecN_2() : (pos >= _cyclicBufferSize)
do not define cbs if you use 1 function:
GetMatchesSpecN_2()
*/
// #define cbs _cyclicBufferSize
/*
we use size_t for (pos) and (_cyclicBufferPos_ instead of UInt32
to eliminate "movsx" BUG in old MSVC x64 compiler.
*/
UInt32 * Z7_FASTCALL GetMatchesSpecN_2(const Byte *lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, size_t _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize,
UInt32 *posRes);
Z7_NO_INLINE
UInt32 * Z7_FASTCALL GetMatchesSpecN_2(const Byte *lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, size_t _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize,
UInt32 *posRes)
{
do // while (hash != size)
{
UInt32 delta;
#ifndef cbs
UInt32 cbs;
#endif
if (hash == size)
break;
delta = *hash++;
if (delta == 0)
return NULL;
lenLimit++;
#ifndef cbs
cbs = _cyclicBufferSize;
if ((UInt32)pos < cbs)
{
if (delta > (UInt32)pos)
return NULL;
cbs = (UInt32)pos;
}
#endif
if (delta >= cbs)
{
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
*d++ = 0;
ptr1[0] = kEmptyHashValue;
ptr1[1] = kEmptyHashValue;
}
else
{
UInt32 *_distances = ++d;
CLzRef *ptr0 = son + ((size_t)_cyclicBufferPos << 1) + 1;
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
UInt32 cutValue = _cutValue;
const Byte *len0 = cur, *len1 = cur;
const Byte *maxLen = cur + _maxLen;
// if (cutValue == 0) { *ptr0 = *ptr1 = kEmptyHashValue; } else
for (LOG_ITER(g_NumIters_Tree++);;)
{
LOG_ITER(g_NumIters_Loop++);
{
// SPEC code
CLzRef *pair = son + ((size_t)((ptrdiff_t)_cyclicBufferPos - (ptrdiff_t)delta
+ (ptrdiff_t)(UInt32)(_cyclicBufferPos < delta ? cbs : 0)
) << 1);
const ptrdiff_t diff = (ptrdiff_t)0 - (ptrdiff_t)delta;
const Byte *len = (len0 < len1 ? len0 : len1);
#ifdef USE_SON_PREFETCH
const UInt32 pair0 = *pair;
#endif
if (len[diff] == len[0])
{
if (++len != lenLimit && len[diff] == len[0])
while (++len != lenLimit)
{
LOG_ITER(g_NumIters_Bytes++);
if (len[diff] != len[0])
break;
}
if (maxLen < len)
{
maxLen = len;
*d++ = (UInt32)(len - cur);
*d++ = delta - 1;
if (len == lenLimit)
{
const UInt32 pair1 = pair[1];
*ptr1 =
#ifdef USE_SON_PREFETCH
pair0;
#else
pair[0];
#endif
*ptr0 = pair1;
_distances[-1] = (UInt32)(d - _distances);
#ifdef USE_LONG_MATCH_OPT
if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
break;
{
for (;;)
{
*d++ = 2;
*d++ = (UInt32)(lenLimit - cur);
*d++ = delta - 1;
cur++;
lenLimit++;
// SPEC
_cyclicBufferPos++;
{
// SPEC code
CLzRef *dest = son + ((size_t)(_cyclicBufferPos) << 1);
const CLzRef *src = dest + ((diff
+ (ptrdiff_t)(UInt32)((_cyclicBufferPos < delta) ? cbs : 0)) << 1);
// CLzRef *ptr = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2;
#if 0
*(UInt64 *)(void *)dest = *((const UInt64 *)(const void *)src);
#else
const UInt32 p0 = src[0];
const UInt32 p1 = src[1];
dest[0] = p0;
dest[1] = p1;
#endif
}
pos++;
hash++;
if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
break;
} // for() end for long matches
}
#endif
break; // break from TREE iterations
}
}
}
{
const UInt32 curMatch = (UInt32)pos - delta; // (UInt32)(pos + diff);
if (len[diff] < len[0])
{
delta = pair[1];
*ptr1 = curMatch;
ptr1 = pair + 1;
len1 = len;
if (delta >= curMatch)
return NULL;
}
else
{
delta = *pair;
*ptr0 = curMatch;
ptr0 = pair;
len0 = len;
if (delta >= curMatch)
return NULL;
}
delta = (UInt32)pos - delta;
if (--cutValue == 0 || delta >= cbs)
{
*ptr0 = *ptr1 = kEmptyHashValue;
_distances[-1] = (UInt32)(d - _distances);
break;
}
}
}
} // for (tree iterations)
}
pos++;
_cyclicBufferPos++;
cur++;
}
while (d < limit);
*posRes = (UInt32)pos;
return d;
}
/*
typedef UInt32 uint32plus; // size_t
UInt32 * Z7_FASTCALL GetMatchesSpecN_3(uint32plus lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, uint32plus _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize,
UInt32 *posRes)
{
do // while (hash != size)
{
UInt32 delta;
#ifndef cbs
UInt32 cbs;
#endif
if (hash == size)
break;
delta = *hash++;
if (delta == 0)
return NULL;
#ifndef cbs
cbs = _cyclicBufferSize;
if ((UInt32)pos < cbs)
{
if (delta > (UInt32)pos)
return NULL;
cbs = (UInt32)pos;
}
#endif
if (delta >= cbs)
{
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
*d++ = 0;
ptr1[0] = kEmptyHashValue;
ptr1[1] = kEmptyHashValue;
}
else
{
CLzRef *ptr0 = son + ((size_t)_cyclicBufferPos << 1) + 1;
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
UInt32 *_distances = ++d;
uint32plus len0 = 0, len1 = 0;
UInt32 cutValue = _cutValue;
uint32plus maxLen = _maxLen;
// lenLimit++; // const Byte *lenLimit = cur + _lenLimit;
for (LOG_ITER(g_NumIters_Tree++);;)
{
LOG_ITER(g_NumIters_Loop++);
{
// const ptrdiff_t diff = (ptrdiff_t)0 - (ptrdiff_t)delta;
CLzRef *pair = son + ((size_t)((ptrdiff_t)_cyclicBufferPos - delta
+ (ptrdiff_t)(UInt32)(_cyclicBufferPos < delta ? cbs : 0)
) << 1);
const Byte *pb = cur - delta;
uint32plus len = (len0 < len1 ? len0 : len1);
#ifdef USE_SON_PREFETCH
const UInt32 pair0 = *pair;
#endif
if (pb[len] == cur[len])
{
if (++len != lenLimit && pb[len] == cur[len])
while (++len != lenLimit)
if (pb[len] != cur[len])
break;
if (maxLen < len)
{
maxLen = len;
*d++ = (UInt32)len;
*d++ = delta - 1;
if (len == lenLimit)
{
{
const UInt32 pair1 = pair[1];
*ptr0 = pair1;
*ptr1 =
#ifdef USE_SON_PREFETCH
pair0;
#else
pair[0];
#endif
}
_distances[-1] = (UInt32)(d - _distances);
#ifdef USE_LONG_MATCH_OPT
if (hash == size || *hash != delta || pb[lenLimit] != cur[lenLimit] || d >= limit)
break;
{
const ptrdiff_t diff = (ptrdiff_t)0 - (ptrdiff_t)delta;
for (;;)
{
*d++ = 2;
*d++ = (UInt32)lenLimit;
*d++ = delta - 1;
_cyclicBufferPos++;
{
CLzRef *dest = son + ((size_t)_cyclicBufferPos << 1);
const CLzRef *src = dest + ((diff +
(ptrdiff_t)(UInt32)(_cyclicBufferPos < delta ? cbs : 0)) << 1);
#if 0
*(UInt64 *)(void *)dest = *((const UInt64 *)(const void *)src);
#else
const UInt32 p0 = src[0];
const UInt32 p1 = src[1];
dest[0] = p0;
dest[1] = p1;
#endif
}
hash++;
pos++;
cur++;
pb++;
if (hash == size || *hash != delta || pb[lenLimit] != cur[lenLimit] || d >= limit)
break;
}
}
#endif
break;
}
}
}
{
const UInt32 curMatch = (UInt32)pos - delta;
if (pb[len] < cur[len])
{
delta = pair[1];
*ptr1 = curMatch;
ptr1 = pair + 1;
len1 = len;
}
else
{
delta = *pair;
*ptr0 = curMatch;
ptr0 = pair;
len0 = len;
}
{
if (delta >= curMatch)
return NULL;
delta = (UInt32)pos - delta;
if (delta >= cbs
// delta >= _cyclicBufferSize || delta >= pos
|| --cutValue == 0)
{
*ptr0 = *ptr1 = kEmptyHashValue;
_distances[-1] = (UInt32)(d - _distances);
break;
}
}
}
}
} // for (tree iterations)
}
pos++;
_cyclicBufferPos++;
cur++;
}
while (d < limit);
*posRes = (UInt32)pos;
return d;
}
*/

69
C/LzHash.h Normal file → Executable file
View File

@@ -1,57 +1,34 @@
/* LzHash.h -- HASH functions for LZ algorithms
2015-04-12 : Igor Pavlov : Public domain */
/* LzHash.h -- HASH constants for LZ algorithms
2023-03-05 : Igor Pavlov : Public domain */
#ifndef __LZ_HASH_H
#define __LZ_HASH_H
#ifndef ZIP7_INC_LZ_HASH_H
#define ZIP7_INC_LZ_HASH_H
/*
(kHash2Size >= (1 << 8)) : Required
(kHash3Size >= (1 << 16)) : Required
*/
#define kHash2Size (1 << 10)
#define kHash3Size (1 << 16)
#define kHash4Size (1 << 20)
// #define kHash4Size (1 << 20)
#define kFix3HashSize (kHash2Size)
#define kFix4HashSize (kHash2Size + kHash3Size)
#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
// #define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
#define HASH2_CALC hv = cur[0] | ((UInt32)cur[1] << 8);
/*
We use up to 3 crc values for hash:
crc0
crc1 << Shift_1
crc2 << Shift_2
(Shift_1 = 5) and (Shift_2 = 10) is good tradeoff.
Small values for Shift are not good for collision rate.
Big value for Shift_2 increases the minimum size
of hash table, that will be slow for small files.
*/
#define HASH3_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
hv = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
#define HASH4_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
hv = (temp ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
#define HASH5_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
temp ^= (p->crc[cur[3]] << 5); \
h4 = temp & (kHash4Size - 1); \
hv = (temp ^ (p->crc[cur[4]] << 3)) & p->hashMask; }
/* #define HASH_ZIP_CALC hv = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
#define HASH_ZIP_CALC hv = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
#define MT_HASH2_CALC \
h2 = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
#define MT_HASH3_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
h3 = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
#define MT_HASH4_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
h4 = (temp ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
#define kLzHash_CrcShift_1 5
#define kLzHash_CrcShift_2 10
#endif

223
C/Lzma2Dec.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* Lzma2Dec.c -- LZMA2 Decoder
2017-04-03 : Igor Pavlov : Public domain */
2023-03-03 : Igor Pavlov : Public domain */
/* #define SHOW_DEBUG_INFO */
@@ -14,28 +14,22 @@
#include "Lzma2Dec.h"
/*
00000000 - EOS
00000001 U U - Uncompressed Reset Dic
00000010 U U - Uncompressed No Reset
100uuuuu U U P P - LZMA no reset
101uuuuu U U P P - LZMA reset state
110uuuuu U U P P S - LZMA reset state + new prop
111uuuuu U U P P S - LZMA reset state + new prop + reset dic
00000000 - End of data
00000001 U U - Uncompressed, reset dic, need reset state and set new prop
00000010 U U - Uncompressed, no reset
100uuuuu U U P P - LZMA, no reset
101uuuuu U U P P - LZMA, reset state
110uuuuu U U P P S - LZMA, reset state + set new prop
111uuuuu U U P P S - LZMA, reset state + set new prop, reset dic
u, U - Unpack Size
P - Pack Size
S - Props
*/
#define LZMA2_CONTROL_LZMA (1 << 7)
#define LZMA2_CONTROL_COPY_NO_RESET 2
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_CONTROL_EOF 0
#define LZMA2_IS_UNCOMPRESSED_STATE(p) (((p)->control & LZMA2_CONTROL_LZMA) == 0)
#define LZMA2_GET_LZMA_MODE(p) (((p)->control >> 5) & 3)
#define LZMA2_IS_THERE_PROP(mode) ((mode) >= 2)
#define LZMA2_IS_UNCOMPRESSED_STATE(p) (((p)->control & (1 << 7)) == 0)
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
@@ -77,44 +71,54 @@ static SRes Lzma2Dec_GetOldProps(Byte prop, Byte *props)
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
RINOK(Lzma2Dec_GetOldProps(prop, props))
return LzmaDec_AllocateProbs(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
RINOK(Lzma2Dec_GetOldProps(prop, props))
return LzmaDec_Allocate(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
void Lzma2Dec_Init(CLzma2Dec *p)
{
p->state = LZMA2_STATE_CONTROL;
p->needInitDic = True;
p->needInitState = True;
p->needInitProp = True;
p->needInitLevel = 0xE0;
p->isExtraMode = False;
p->unpackSize = 0;
// p->decoder.dicPos = 0; // we can use it instead of full init
LzmaDec_Init(&p->decoder);
}
static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
// ELzma2State
static unsigned Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
{
switch (p->state)
{
case LZMA2_STATE_CONTROL:
p->isExtraMode = False;
p->control = b;
PRF(printf("\n %4X ", (unsigned)p->decoder.dicPos));
PRF(printf(" %2X", (unsigned)b));
PRF(printf("\n %8X", (unsigned)p->decoder.dicPos));
PRF(printf(" %02X", (unsigned)b));
if (b == 0)
return LZMA2_STATE_FINISHED;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (b > 2)
if (b == LZMA2_CONTROL_COPY_RESET_DIC)
p->needInitLevel = 0xC0;
else if (b > 2 || p->needInitLevel == 0xE0)
return LZMA2_STATE_ERROR;
p->unpackSize = 0;
}
else
{
if (b < p->needInitLevel)
return LZMA2_STATE_ERROR;
p->needInitLevel = 0;
p->unpackSize = (UInt32)(b & 0x1F) << 16;
}
return LZMA2_STATE_UNPACK0;
case LZMA2_STATE_UNPACK0:
@@ -124,8 +128,8 @@ static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
case LZMA2_STATE_UNPACK1:
p->unpackSize |= (UInt32)b;
p->unpackSize++;
PRF(printf(" %8u", (unsigned)p->unpackSize));
return (LZMA2_IS_UNCOMPRESSED_STATE(p)) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
PRF(printf(" %7u", (unsigned)p->unpackSize));
return LZMA2_IS_UNCOMPRESSED_STATE(p) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
case LZMA2_STATE_PACK0:
p->packSize = (UInt32)b << 8;
@@ -134,9 +138,9 @@ static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
case LZMA2_STATE_PACK1:
p->packSize |= (UInt32)b;
p->packSize++;
PRF(printf(" %8u", (unsigned)p->packSize));
return LZMA2_IS_THERE_PROP(LZMA2_GET_LZMA_MODE(p)) ? LZMA2_STATE_PROP:
(p->needInitProp ? LZMA2_STATE_ERROR : LZMA2_STATE_DATA);
// if (p->packSize < 5) return LZMA2_STATE_ERROR;
PRF(printf(" %5u", (unsigned)p->packSize));
return (p->control & 0x40) ? LZMA2_STATE_PROP : LZMA2_STATE_DATA;
case LZMA2_STATE_PROP:
{
@@ -145,13 +149,12 @@ static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
return LZMA2_STATE_ERROR;
lc = b % 9;
b /= 9;
p->decoder.prop.pb = b / 5;
p->decoder.prop.pb = (Byte)(b / 5);
lp = b % 5;
if (lc + lp > LZMA2_LCLP_MAX)
return LZMA2_STATE_ERROR;
p->decoder.prop.lc = lc;
p->decoder.prop.lp = lp;
p->needInitProp = False;
p->decoder.prop.lc = (Byte)lc;
p->decoder.prop.lp = (Byte)lp;
return LZMA2_STATE_DATA;
}
}
@@ -167,7 +170,7 @@ static void LzmaDec_UpdateWithUncompressed(CLzmaDec *p, const Byte *src, SizeT s
p->processedPos += (UInt32)size;
}
void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState);
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
@@ -230,12 +233,7 @@ SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
if (p->state == LZMA2_STATE_DATA)
{
Bool initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
if (initDic)
p->needInitProp = p->needInitState = True;
else if (p->needInitDic)
break;
p->needInitDic = False;
BoolInt initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
LzmaDec_InitDicAndState(&p->decoder, initDic, False);
}
@@ -257,23 +255,17 @@ SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
if (p->state == LZMA2_STATE_DATA)
{
unsigned mode = LZMA2_GET_LZMA_MODE(p);
Bool initDic = (mode == 3);
Bool initState = (mode != 0);
if ((!initDic && p->needInitDic) || (!initState && p->needInitState))
break;
BoolInt initDic = (p->control >= 0xE0);
BoolInt initState = (p->control >= 0xA0);
LzmaDec_InitDicAndState(&p->decoder, initDic, initState);
p->needInitDic = False;
p->needInitState = False;
p->state = LZMA2_STATE_DATA_CONT;
}
if (inCur > p->packSize)
inCur = (SizeT)p->packSize;
res = LzmaDec_DecodeToDic(&p->decoder, dicPos + outCur, src, &inCur, curFinishMode, status);
res = LzmaDec_DecodeToDic(&p->decoder, dicPos + outCur, src, &inCur, curFinishMode, status);
src += inCur;
*srcLen += inCur;
p->packSize -= (UInt32)inCur;
@@ -310,6 +302,129 @@ SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
}
ELzma2ParseStatus Lzma2Dec_Parse(CLzma2Dec *p,
SizeT outSize,
const Byte *src, SizeT *srcLen,
int checkFinishBlock)
{
SizeT inSize = *srcLen;
*srcLen = 0;
while (p->state != LZMA2_STATE_ERROR)
{
if (p->state == LZMA2_STATE_FINISHED)
return (ELzma2ParseStatus)LZMA_STATUS_FINISHED_WITH_MARK;
if (outSize == 0 && !checkFinishBlock)
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
if (p->state == LZMA2_STATE_UNPACK0)
{
// if (p->decoder.dicPos != 0)
if (p->control == LZMA2_CONTROL_COPY_RESET_DIC || p->control >= 0xE0)
return LZMA2_PARSE_STATUS_NEW_BLOCK;
// if (outSize == 0) return LZMA_STATUS_NOT_FINISHED;
}
// The following code can be commented.
// It's not big problem, if we read additional input bytes.
// It will be stopped later in LZMA2_STATE_DATA / LZMA2_STATE_DATA_CONT state.
if (outSize == 0 && p->state != LZMA2_STATE_FINISHED)
{
// checkFinishBlock is true. So we expect that block must be finished,
// We can return LZMA_STATUS_NOT_SPECIFIED or LZMA_STATUS_NOT_FINISHED here
// break;
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
}
if (p->state == LZMA2_STATE_DATA)
return LZMA2_PARSE_STATUS_NEW_CHUNK;
continue;
}
if (outSize == 0)
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
{
SizeT inCur = inSize - *srcLen;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (inCur == 0)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
if (inCur > p->unpackSize)
inCur = p->unpackSize;
if (inCur > outSize)
inCur = outSize;
p->decoder.dicPos += inCur;
src += inCur;
*srcLen += inCur;
outSize -= inCur;
p->unpackSize -= (UInt32)inCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
p->isExtraMode = True;
if (inCur == 0)
{
if (p->packSize != 0)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
}
else if (p->state == LZMA2_STATE_DATA)
{
p->state = LZMA2_STATE_DATA_CONT;
if (*src != 0)
{
// first byte of lzma chunk must be Zero
*srcLen += 1;
p->packSize--;
break;
}
}
if (inCur > p->packSize)
inCur = (SizeT)p->packSize;
src += inCur;
*srcLen += inCur;
p->packSize -= (UInt32)inCur;
if (p->packSize == 0)
{
SizeT rem = outSize;
if (rem > p->unpackSize)
rem = p->unpackSize;
p->decoder.dicPos += rem;
p->unpackSize -= (UInt32)rem;
outSize -= rem;
if (p->unpackSize == 0)
p->state = LZMA2_STATE_CONTROL;
}
}
}
}
p->state = LZMA2_STATE_ERROR;
return (ELzma2ParseStatus)LZMA_STATUS_NOT_SPECIFIED;
}
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen, inSize = *srcLen;
@@ -359,8 +474,8 @@ SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
SizeT outSize = *destLen, inSize = *srcLen;
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
Lzma2Dec_Construct(&p);
RINOK(Lzma2Dec_AllocateProbs(&p, prop, alloc));
Lzma2Dec_CONSTRUCT(&p)
RINOK(Lzma2Dec_AllocateProbs(&p, prop, alloc))
p.decoder.dic = dest;
p.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&p);
@@ -372,3 +487,5 @@ SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Lzma2Dec_FreeProbs(&p, alloc);
return res;
}
#undef PRF

67
C/Lzma2Dec.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* Lzma2Dec.h -- LZMA2 Decoder
2017-04-03 : Igor Pavlov : Public domain */
2023-03-03 : Igor Pavlov : Public domain */
#ifndef __LZMA2_DEC_H
#define __LZMA2_DEC_H
#ifndef ZIP7_INC_LZMA2_DEC_H
#define ZIP7_INC_LZMA2_DEC_H
#include "LzmaDec.h"
@@ -12,25 +12,25 @@ EXTERN_C_BEGIN
typedef struct
{
CLzmaDec decoder;
UInt32 packSize;
UInt32 unpackSize;
unsigned state;
Byte control;
Bool needInitDic;
Bool needInitState;
Bool needInitProp;
Byte needInitLevel;
Byte isExtraMode;
Byte _pad_;
UInt32 packSize;
UInt32 unpackSize;
CLzmaDec decoder;
} CLzma2Dec;
#define Lzma2Dec_Construct(p) LzmaDec_Construct(&(p)->decoder)
#define Lzma2Dec_FreeProbs(p, alloc) LzmaDec_FreeProbs(&(p)->decoder, alloc);
#define Lzma2Dec_Free(p, alloc) LzmaDec_Free(&(p)->decoder, alloc);
#define Lzma2Dec_CONSTRUCT(p) LzmaDec_CONSTRUCT(&(p)->decoder)
#define Lzma2Dec_Construct(p) Lzma2Dec_CONSTRUCT(p)
#define Lzma2Dec_FreeProbs(p, alloc) LzmaDec_FreeProbs(&(p)->decoder, alloc)
#define Lzma2Dec_Free(p, alloc) LzmaDec_Free(&(p)->decoder, alloc)
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc);
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc);
void Lzma2Dec_Init(CLzma2Dec *p);
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen or dicLimit).
@@ -53,6 +53,47 @@ SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- LZMA2 block and chunk parsing ---------- */
/*
Lzma2Dec_Parse() parses compressed data stream up to next independent block or next chunk data.
It can return LZMA_STATUS_* code or LZMA2_PARSE_STATUS_* code:
- LZMA2_PARSE_STATUS_NEW_BLOCK - there is new block, and 1 additional byte (control byte of next block header) was read from input.
- LZMA2_PARSE_STATUS_NEW_CHUNK - there is new chunk, and only lzma2 header of new chunk was read.
CLzma2Dec::unpackSize contains unpack size of that chunk
*/
typedef enum
{
/*
LZMA_STATUS_NOT_SPECIFIED // data error
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED //
LZMA_STATUS_NEEDS_MORE_INPUT
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK // unused
*/
LZMA2_PARSE_STATUS_NEW_BLOCK = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK + 1,
LZMA2_PARSE_STATUS_NEW_CHUNK
} ELzma2ParseStatus;
ELzma2ParseStatus Lzma2Dec_Parse(CLzma2Dec *p,
SizeT outSize, // output size
const Byte *src, SizeT *srcLen,
int checkFinishBlock // set (checkFinishBlock = 1), if it must read full input data, if decoder.dicPos reaches blockMax position.
);
/*
LZMA2 parser doesn't decode LZMA chunks, so we must read
full input LZMA chunk to decode some part of LZMA chunk.
Lzma2Dec_GetUnpackExtra() returns the value that shows
max possible number of output bytes that can be output by decoder
at current input positon.
*/
#define Lzma2Dec_GetUnpackExtra(p) ((p)->isExtraMode ? (p)->unpackSize : 0)
/* ---------- One Call Interface ---------- */
/*

1095
C/Lzma2DecMt.c Executable file
View File

File diff suppressed because it is too large Load Diff

81
C/Lzma2DecMt.h Executable file
View File

@@ -0,0 +1,81 @@
/* Lzma2DecMt.h -- LZMA2 Decoder Multi-thread
2023-04-13 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZMA2_DEC_MT_H
#define ZIP7_INC_LZMA2_DEC_MT_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef struct
{
size_t inBufSize_ST;
size_t outStep_ST;
#ifndef Z7_ST
unsigned numThreads;
size_t inBufSize_MT;
size_t outBlockMax;
size_t inBlockMax;
#endif
} CLzma2DecMtProps;
/* init to single-thread mode */
void Lzma2DecMtProps_Init(CLzma2DecMtProps *p);
/* ---------- CLzma2DecMtHandle Interface ---------- */
/* Lzma2DecMt_ * functions can return the following exit codes:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - ISeqOutStream write callback error
// SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef struct CLzma2DecMt CLzma2DecMt;
typedef CLzma2DecMt * CLzma2DecMtHandle;
// Z7_DECLARE_HANDLE(CLzma2DecMtHandle)
CLzma2DecMtHandle Lzma2DecMt_Create(ISzAllocPtr alloc, ISzAllocPtr allocMid);
void Lzma2DecMt_Destroy(CLzma2DecMtHandle p);
SRes Lzma2DecMt_Decode(CLzma2DecMtHandle p,
Byte prop,
const CLzma2DecMtProps *props,
ISeqOutStreamPtr outStream,
const UInt64 *outDataSize, // NULL means undefined
int finishMode, // 0 - partial unpacking is allowed, 1 - if lzma2 stream must be finished
// Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
// const Byte *inData, size_t inDataSize,
// out variables:
UInt64 *inProcessed,
int *isMT, /* out: (*isMT == 0), if single thread decoding was used */
// UInt64 *outProcessed,
ICompressProgressPtr progress);
/* ---------- Read from CLzma2DecMtHandle Interface ---------- */
SRes Lzma2DecMt_Init(CLzma2DecMtHandle pp,
Byte prop,
const CLzma2DecMtProps *props,
const UInt64 *outDataSize, int finishMode,
ISeqInStreamPtr inStream);
SRes Lzma2DecMt_Read(CLzma2DecMtHandle pp,
Byte *data, size_t *outSize,
UInt64 *inStreamProcessed);
EXTERN_C_END
#endif

739
C/Lzma2Enc.c Normal file → Executable file
View File

@@ -1,19 +1,18 @@
/* Lzma2Enc.c -- LZMA2 Encoder
2017-04-03 : Igor Pavlov : Public domain */
2023-04-13 : Igor Pavlov : Public domain */
#include "Precomp.h"
/* #include <stdio.h> */
#include <string.h>
/* #define _7ZIP_ST */
/* #define Z7_ST */
#include "Lzma2Enc.h"
#ifndef _7ZIP_ST
#ifndef Z7_ST
#include "MtCoder.h"
#else
#define NUM_MT_CODER_THREADS_MAX 1
#define MTCODER_THREADS_MAX 1
#endif
#define LZMA2_CONTROL_LZMA (1 << 7)
@@ -35,50 +34,106 @@
#define PRF(x) /* x */
/* ---------- CLimitedSeqInStream ---------- */
typedef struct
{
ISeqInStream vt;
ISeqInStreamPtr realStream;
UInt64 limit;
UInt64 processed;
int finished;
} CLimitedSeqInStream;
static void LimitedSeqInStream_Init(CLimitedSeqInStream *p)
{
p->limit = (UInt64)(Int64)-1;
p->processed = 0;
p->finished = 0;
}
static SRes LimitedSeqInStream_Read(ISeqInStreamPtr pp, void *data, size_t *size)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CLimitedSeqInStream)
size_t size2 = *size;
SRes res = SZ_OK;
if (p->limit != (UInt64)(Int64)-1)
{
const UInt64 rem = p->limit - p->processed;
if (size2 > rem)
size2 = (size_t)rem;
}
if (size2 != 0)
{
res = ISeqInStream_Read(p->realStream, data, &size2);
p->finished = (size2 == 0 ? 1 : 0);
p->processed += size2;
}
*size = size2;
return res;
}
/* ---------- CLzma2EncInt ---------- */
typedef struct
{
CLzmaEncHandle enc;
Byte propsAreSet;
Byte propsByte;
Byte needInitState;
Byte needInitProp;
UInt64 srcPos;
Byte props;
Bool needInitState;
Bool needInitProp;
} CLzma2EncInt;
static SRes Lzma2EncInt_Init(CLzma2EncInt *p, const CLzma2EncProps *props)
static SRes Lzma2EncInt_InitStream(CLzma2EncInt *p, const CLzma2EncProps *props)
{
Byte propsEncoded[LZMA_PROPS_SIZE];
SizeT propsSize = LZMA_PROPS_SIZE;
RINOK(LzmaEnc_SetProps(p->enc, &props->lzmaProps));
RINOK(LzmaEnc_WriteProperties(p->enc, propsEncoded, &propsSize));
p->srcPos = 0;
p->props = propsEncoded[0];
p->needInitState = True;
p->needInitProp = True;
if (!p->propsAreSet)
{
SizeT propsSize = LZMA_PROPS_SIZE;
Byte propsEncoded[LZMA_PROPS_SIZE];
RINOK(LzmaEnc_SetProps(p->enc, &props->lzmaProps))
RINOK(LzmaEnc_WriteProperties(p->enc, propsEncoded, &propsSize))
p->propsByte = propsEncoded[0];
p->propsAreSet = True;
}
return SZ_OK;
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp, ISeqInStream *inStream, UInt32 keepWindowSize,
ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize);
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp);
void LzmaEnc_Finish(CLzmaEncHandle pp);
void LzmaEnc_SaveState(CLzmaEncHandle pp);
void LzmaEnc_RestoreState(CLzmaEncHandle pp);
static void Lzma2EncInt_InitBlock(CLzma2EncInt *p)
{
p->srcPos = 0;
p->needInitState = True;
p->needInitProp = True;
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle p, ISeqInStreamPtr inStream, UInt32 keepWindowSize,
ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemPrepare(CLzmaEncHandle p, const Byte *src, SizeT srcLen,
UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle p, BoolInt reInit,
Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize);
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle p);
void LzmaEnc_Finish(CLzmaEncHandle p);
void LzmaEnc_SaveState(CLzmaEncHandle p);
void LzmaEnc_RestoreState(CLzmaEncHandle p);
/*
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle p);
*/
static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
size_t *packSizeRes, ISeqOutStream *outStream)
size_t *packSizeRes, ISeqOutStreamPtr outStream)
{
size_t packSizeLimit = *packSizeRes;
size_t packSize = packSizeLimit;
UInt32 unpackSize = LZMA2_UNPACK_SIZE_MAX;
unsigned lzHeaderSize = 5 + (p->needInitProp ? 1 : 0);
Bool useCopyBlock;
BoolInt useCopyBlock;
SRes res;
*packSizeRes = 0;
@@ -112,7 +167,7 @@ static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
while (unpackSize > 0)
{
UInt32 u = (unpackSize < LZMA2_COPY_CHUNK_SIZE) ? unpackSize : LZMA2_COPY_CHUNK_SIZE;
const UInt32 u = (unpackSize < LZMA2_COPY_CHUNK_SIZE) ? unpackSize : LZMA2_COPY_CHUNK_SIZE;
if (packSizeLimit - destPos < u + 3)
return SZ_ERROR_OUTPUT_EOF;
outBuf[destPos++] = (Byte)(p->srcPos == 0 ? LZMA2_CONTROL_COPY_RESET_DIC : LZMA2_CONTROL_COPY_NO_RESET);
@@ -141,9 +196,9 @@ static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
{
size_t destPos = 0;
UInt32 u = unpackSize - 1;
UInt32 pm = (UInt32)(packSize - 1);
unsigned mode = (p->srcPos == 0) ? 3 : (p->needInitState ? (p->needInitProp ? 2 : 1) : 0);
const UInt32 u = unpackSize - 1;
const UInt32 pm = (UInt32)(packSize - 1);
const unsigned mode = (p->srcPos == 0) ? 3 : (p->needInitState ? (p->needInitProp ? 2 : 1) : 0);
PRF(printf(" "));
@@ -154,7 +209,7 @@ static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
outBuf[destPos++] = (Byte)pm;
if (p->needInitProp)
outBuf[destPos++] = p->props;
outBuf[destPos++] = p->propsByte;
p->needInitProp = False;
p->needInitState = False;
@@ -176,14 +231,16 @@ static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
void Lzma2EncProps_Init(CLzma2EncProps *p)
{
LzmaEncProps_Init(&p->lzmaProps);
p->blockSize = LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO;
p->numBlockThreads_Reduced = -1;
p->numBlockThreads_Max = -1;
p->numTotalThreads = -1;
p->numBlockThreads = -1;
p->blockSize = 0;
}
void Lzma2EncProps_Normalize(CLzma2EncProps *p)
{
int t1, t1n, t2, t3;
UInt64 fileSize;
int t1, t1n, t2, t2r, t3;
{
CLzmaEncProps lzmaProps = p->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
@@ -191,11 +248,11 @@ void Lzma2EncProps_Normalize(CLzma2EncProps *p)
}
t1 = p->lzmaProps.numThreads;
t2 = p->numBlockThreads;
t2 = p->numBlockThreads_Max;
t3 = p->numTotalThreads;
if (t2 > NUM_MT_CODER_THREADS_MAX)
t2 = NUM_MT_CODER_THREADS_MAX;
if (t2 > MTCODER_THREADS_MAX)
t2 = MTCODER_THREADS_MAX;
if (t3 <= 0)
{
@@ -211,8 +268,8 @@ void Lzma2EncProps_Normalize(CLzma2EncProps *p)
t1 = 1;
t2 = t3;
}
if (t2 > NUM_MT_CODER_THREADS_MAX)
t2 = NUM_MT_CODER_THREADS_MAX;
if (t2 > MTCODER_THREADS_MAX)
t2 = MTCODER_THREADS_MAX;
}
else if (t1 <= 0)
{
@@ -225,44 +282,69 @@ void Lzma2EncProps_Normalize(CLzma2EncProps *p)
p->lzmaProps.numThreads = t1;
t2r = t2;
fileSize = p->lzmaProps.reduceSize;
if ( p->blockSize != LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID
&& p->blockSize != LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO
&& (p->blockSize < fileSize || fileSize == (UInt64)(Int64)-1))
p->lzmaProps.reduceSize = p->blockSize;
LzmaEncProps_Normalize(&p->lzmaProps);
p->lzmaProps.reduceSize = fileSize;
t1 = p->lzmaProps.numThreads;
if (p->blockSize == 0)
if (p->blockSize == LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID)
{
UInt32 dictSize = p->lzmaProps.dictSize;
UInt64 blockSize = (UInt64)dictSize << 2;
const UInt32 kMinSize = (UInt32)1 << 20;
const UInt32 kMaxSize = (UInt32)1 << 28;
if (blockSize < kMinSize) blockSize = kMinSize;
if (blockSize > kMaxSize) blockSize = kMaxSize;
if (blockSize < dictSize) blockSize = dictSize;
p->blockSize = (size_t)blockSize;
t2r = t2 = 1;
t3 = t1;
}
if (t2 > 1 && p->lzmaProps.reduceSize != (UInt64)(Int64)-1)
else if (p->blockSize == LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO && t2 <= 1)
{
UInt64 temp = p->lzmaProps.reduceSize + p->blockSize - 1;
if (temp > p->lzmaProps.reduceSize)
/* if there is no block multi-threading, we use SOLID block */
p->blockSize = LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID;
}
else
{
if (p->blockSize == LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO)
{
UInt64 numBlocks = temp / p->blockSize;
const UInt32 kMinSize = (UInt32)1 << 20;
const UInt32 kMaxSize = (UInt32)1 << 28;
const UInt32 dictSize = p->lzmaProps.dictSize;
UInt64 blockSize = (UInt64)dictSize << 2;
if (blockSize < kMinSize) blockSize = kMinSize;
if (blockSize > kMaxSize) blockSize = kMaxSize;
if (blockSize < dictSize) blockSize = dictSize;
blockSize += (kMinSize - 1);
blockSize &= ~(UInt64)(kMinSize - 1);
p->blockSize = blockSize;
}
if (t2 > 1 && fileSize != (UInt64)(Int64)-1)
{
UInt64 numBlocks = fileSize / p->blockSize;
if (numBlocks * p->blockSize != fileSize)
numBlocks++;
if (numBlocks < (unsigned)t2)
{
t2 = (unsigned)numBlocks;
if (t2 == 0)
t2 = 1;
t3 = t1 * t2;
t2r = (int)numBlocks;
if (t2r == 0)
t2r = 1;
t3 = t1 * t2r;
}
}
}
p->numBlockThreads = t2;
p->numBlockThreads_Max = t2;
p->numBlockThreads_Reduced = t2r;
p->numTotalThreads = t3;
}
static SRes Progress(ICompressProgress *p, UInt64 inSize, UInt64 outSize)
static SRes Progress(ICompressProgressPtr p, UInt64 inSize, UInt64 outSize)
{
return (p && ICompressProgress_Progress(p, inSize, outSize) != SZ_OK) ? SZ_ERROR_PROGRESS : SZ_OK;
}
@@ -270,138 +352,35 @@ static SRes Progress(ICompressProgress *p, UInt64 inSize, UInt64 outSize)
/* ---------- Lzma2 ---------- */
typedef struct
struct CLzma2Enc
{
Byte propEncoded;
CLzma2EncProps props;
UInt64 expectedDataSize;
Byte *outBuf;
Byte *tempBufLzma;
ISzAllocPtr alloc;
ISzAllocPtr allocBig;
CLzma2EncInt coders[NUM_MT_CODER_THREADS_MAX];
CLzma2EncInt coders[MTCODER_THREADS_MAX];
#ifndef _7ZIP_ST
#ifndef Z7_ST
ISeqOutStreamPtr outStream;
Byte *outBuf;
size_t outBuf_Rem; /* remainder in outBuf */
size_t outBufSize; /* size of allocated outBufs[i] */
size_t outBufsDataSizes[MTCODER_BLOCKS_MAX];
BoolInt mtCoder_WasConstructed;
CMtCoder mtCoder;
Byte *outBufs[MTCODER_BLOCKS_MAX];
#endif
} CLzma2Enc;
};
/* ---------- Lzma2EncThread ---------- */
static SRes Lzma2Enc_EncodeMt1(CLzma2EncInt *p, CLzma2Enc *mainEncoder,
ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress)
{
UInt64 packTotal = 0;
SRes res = SZ_OK;
if (!mainEncoder->outBuf)
{
mainEncoder->outBuf = (Byte *)ISzAlloc_Alloc(mainEncoder->alloc, LZMA2_CHUNK_SIZE_COMPRESSED_MAX);
if (!mainEncoder->outBuf)
return SZ_ERROR_MEM;
}
RINOK(Lzma2EncInt_Init(p, &mainEncoder->props));
RINOK(LzmaEnc_PrepareForLzma2(p->enc, inStream, LZMA2_KEEP_WINDOW_SIZE,
mainEncoder->alloc, mainEncoder->allocBig));
for (;;)
{
size_t packSize = LZMA2_CHUNK_SIZE_COMPRESSED_MAX;
res = Lzma2EncInt_EncodeSubblock(p, mainEncoder->outBuf, &packSize, outStream);
if (res != SZ_OK)
break;
packTotal += packSize;
res = Progress(progress, p->srcPos, packTotal);
if (res != SZ_OK)
break;
if (packSize == 0)
break;
}
LzmaEnc_Finish(p->enc);
if (res == SZ_OK)
{
Byte b = 0;
if (ISeqOutStream_Write(outStream, &b, 1) != 1)
return SZ_ERROR_WRITE;
}
return res;
}
#ifndef _7ZIP_ST
typedef struct
{
IMtCoderCallback funcTable;
CLzma2Enc *lzma2Enc;
} CMtCallbackImp;
static SRes MtCallbackImp_Code(const IMtCoderCallback *pp, unsigned index, Byte *dest, size_t *destSize,
const Byte *src, size_t srcSize, int finished)
{
CMtCallbackImp *imp = CONTAINER_FROM_VTBL(pp, CMtCallbackImp, funcTable);
CLzma2Enc *mainEncoder = imp->lzma2Enc;
CLzma2EncInt *p = &mainEncoder->coders[index];
SRes res = SZ_OK;
{
size_t destLim = *destSize;
*destSize = 0;
if (srcSize != 0)
{
RINOK(Lzma2EncInt_Init(p, &mainEncoder->props));
RINOK(LzmaEnc_MemPrepare(p->enc, src, srcSize, LZMA2_KEEP_WINDOW_SIZE,
mainEncoder->alloc, mainEncoder->allocBig));
while (p->srcPos < srcSize)
{
size_t packSize = destLim - *destSize;
res = Lzma2EncInt_EncodeSubblock(p, dest + *destSize, &packSize, NULL);
if (res != SZ_OK)
break;
*destSize += packSize;
if (packSize == 0)
{
res = SZ_ERROR_FAIL;
break;
}
if (MtProgress_Set(&mainEncoder->mtCoder.mtProgress, index, p->srcPos, *destSize) != SZ_OK)
{
res = SZ_ERROR_PROGRESS;
break;
}
}
LzmaEnc_Finish(p->enc);
if (res != SZ_OK)
return res;
}
if (finished)
{
if (*destSize == destLim)
return SZ_ERROR_OUTPUT_EOF;
dest[(*destSize)++] = 0;
}
}
return res;
}
#endif
/* ---------- Lzma2Enc ---------- */
CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
@@ -410,47 +389,82 @@ CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig)
return NULL;
Lzma2EncProps_Init(&p->props);
Lzma2EncProps_Normalize(&p->props);
p->outBuf = 0;
p->expectedDataSize = (UInt64)(Int64)-1;
p->tempBufLzma = NULL;
p->alloc = alloc;
p->allocBig = allocBig;
{
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
p->coders[i].enc = 0;
for (i = 0; i < MTCODER_THREADS_MAX; i++)
p->coders[i].enc = NULL;
}
#ifndef _7ZIP_ST
MtCoder_Construct(&p->mtCoder);
#ifndef Z7_ST
p->mtCoder_WasConstructed = False;
{
unsigned i;
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
p->outBufs[i] = NULL;
p->outBufSize = 0;
}
#endif
return p;
return (CLzma2EncHandle)p;
}
void Lzma2Enc_Destroy(CLzma2EncHandle pp)
#ifndef Z7_ST
static void Lzma2Enc_FreeOutBufs(CLzma2Enc *p)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
if (p->outBufs[i])
{
ISzAlloc_Free(p->alloc, p->outBufs[i]);
p->outBufs[i] = NULL;
}
p->outBufSize = 0;
}
#endif
// #define GET_CLzma2Enc_p CLzma2Enc *p = (CLzma2Enc *)(void *)p;
void Lzma2Enc_Destroy(CLzma2EncHandle p)
{
// GET_CLzma2Enc_p
unsigned i;
for (i = 0; i < MTCODER_THREADS_MAX; i++)
{
CLzma2EncInt *t = &p->coders[i];
if (t->enc)
{
LzmaEnc_Destroy(t->enc, p->alloc, p->allocBig);
t->enc = 0;
t->enc = NULL;
}
}
#ifndef _7ZIP_ST
MtCoder_Destruct(&p->mtCoder);
#ifndef Z7_ST
if (p->mtCoder_WasConstructed)
{
MtCoder_Destruct(&p->mtCoder);
p->mtCoder_WasConstructed = False;
}
Lzma2Enc_FreeOutBufs(p);
#endif
ISzAlloc_Free(p->alloc, p->outBuf);
ISzAlloc_Free(p->alloc, pp);
ISzAlloc_Free(p->alloc, p->tempBufLzma);
p->tempBufLzma = NULL;
ISzAlloc_Free(p->alloc, p);
}
SRes Lzma2Enc_SetProps(CLzma2EncHandle pp, const CLzma2EncProps *props)
SRes Lzma2Enc_SetProps(CLzma2EncHandle p, const CLzma2EncProps *props)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
// GET_CLzma2Enc_p
CLzmaEncProps lzmaProps = props->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
if (lzmaProps.lc + lzmaProps.lp > LZMA2_LCLP_MAX)
@@ -460,9 +474,17 @@ SRes Lzma2Enc_SetProps(CLzma2EncHandle pp, const CLzma2EncProps *props)
return SZ_OK;
}
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle pp)
void Lzma2Enc_SetDataSize(CLzma2EncHandle p, UInt64 expectedDataSiize)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
// GET_CLzma2Enc_p
p->expectedDataSize = expectedDataSiize;
}
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle p)
{
// GET_CLzma2Enc_p
unsigned i;
UInt32 dicSize = LzmaEncProps_GetDictSize(&p->props.lzmaProps);
for (i = 0; i < 40; i++)
@@ -471,50 +493,313 @@ Byte Lzma2Enc_WriteProperties(CLzma2EncHandle pp)
return (Byte)i;
}
SRes Lzma2Enc_Encode(CLzma2EncHandle pp,
ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
int i;
for (i = 0; i < p->props.numBlockThreads; i++)
static SRes Lzma2Enc_EncodeMt1(
CLzma2Enc *me,
CLzma2EncInt *p,
ISeqOutStreamPtr outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
const Byte *inData, size_t inDataSize,
int finished,
ICompressProgressPtr progress)
{
UInt64 unpackTotal = 0;
UInt64 packTotal = 0;
size_t outLim = 0;
CLimitedSeqInStream limitedInStream;
if (outBuf)
{
CLzma2EncInt *t = &p->coders[(unsigned)i];
if (!t->enc)
outLim = *outBufSize;
*outBufSize = 0;
}
if (!p->enc)
{
p->propsAreSet = False;
p->enc = LzmaEnc_Create(me->alloc);
if (!p->enc)
return SZ_ERROR_MEM;
}
limitedInStream.realStream = inStream;
if (inStream)
{
limitedInStream.vt.Read = LimitedSeqInStream_Read;
}
if (!outBuf)
{
// outStream version works only in one thread. So we use CLzma2Enc::tempBufLzma
if (!me->tempBufLzma)
{
t->enc = LzmaEnc_Create(p->alloc);
if (!t->enc)
me->tempBufLzma = (Byte *)ISzAlloc_Alloc(me->alloc, LZMA2_CHUNK_SIZE_COMPRESSED_MAX);
if (!me->tempBufLzma)
return SZ_ERROR_MEM;
}
}
#ifndef _7ZIP_ST
if (p->props.numBlockThreads > 1)
{
CMtCallbackImp mtCallback;
RINOK(Lzma2EncInt_InitStream(p, &me->props))
mtCallback.funcTable.Code = MtCallbackImp_Code;
mtCallback.lzma2Enc = p;
for (;;)
{
SRes res = SZ_OK;
SizeT inSizeCur = 0;
Lzma2EncInt_InitBlock(p);
LimitedSeqInStream_Init(&limitedInStream);
limitedInStream.limit = me->props.blockSize;
if (inStream)
{
UInt64 expected = (UInt64)(Int64)-1;
// inStream version works only in one thread. So we use CLzma2Enc::expectedDataSize
if (me->expectedDataSize != (UInt64)(Int64)-1
&& me->expectedDataSize >= unpackTotal)
expected = me->expectedDataSize - unpackTotal;
if (me->props.blockSize != LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID
&& expected > me->props.blockSize)
expected = (size_t)me->props.blockSize;
LzmaEnc_SetDataSize(p->enc, expected);
RINOK(LzmaEnc_PrepareForLzma2(p->enc,
&limitedInStream.vt,
LZMA2_KEEP_WINDOW_SIZE,
me->alloc,
me->allocBig))
}
else
{
inSizeCur = (SizeT)(inDataSize - (size_t)unpackTotal);
if (me->props.blockSize != LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID
&& inSizeCur > me->props.blockSize)
inSizeCur = (SizeT)(size_t)me->props.blockSize;
// LzmaEnc_SetDataSize(p->enc, inSizeCur);
RINOK(LzmaEnc_MemPrepare(p->enc,
inData + (size_t)unpackTotal, inSizeCur,
LZMA2_KEEP_WINDOW_SIZE,
me->alloc,
me->allocBig))
}
for (;;)
{
size_t packSize = LZMA2_CHUNK_SIZE_COMPRESSED_MAX;
if (outBuf)
packSize = outLim - (size_t)packTotal;
res = Lzma2EncInt_EncodeSubblock(p,
outBuf ? outBuf + (size_t)packTotal : me->tempBufLzma, &packSize,
outBuf ? NULL : outStream);
if (res != SZ_OK)
break;
packTotal += packSize;
if (outBuf)
*outBufSize = (size_t)packTotal;
res = Progress(progress, unpackTotal + p->srcPos, packTotal);
if (res != SZ_OK)
break;
/*
if (LzmaEnc_GetNumAvailableBytes(p->enc) == 0)
break;
*/
if (packSize == 0)
break;
}
LzmaEnc_Finish(p->enc);
unpackTotal += p->srcPos;
RINOK(res)
if (p->srcPos != (inStream ? limitedInStream.processed : inSizeCur))
return SZ_ERROR_FAIL;
if (inStream ? limitedInStream.finished : (unpackTotal == inDataSize))
{
if (finished)
{
if (outBuf)
{
const size_t destPos = *outBufSize;
if (destPos >= outLim)
return SZ_ERROR_OUTPUT_EOF;
outBuf[destPos] = LZMA2_CONTROL_EOF; // 0
*outBufSize = destPos + 1;
}
else
{
const Byte b = LZMA2_CONTROL_EOF; // 0;
if (ISeqOutStream_Write(outStream, &b, 1) != 1)
return SZ_ERROR_WRITE;
}
}
return SZ_OK;
}
}
}
#ifndef Z7_ST
static SRes Lzma2Enc_MtCallback_Code(void *p, unsigned coderIndex, unsigned outBufIndex,
const Byte *src, size_t srcSize, int finished)
{
CLzma2Enc *me = (CLzma2Enc *)p;
size_t destSize = me->outBufSize;
SRes res;
CMtProgressThunk progressThunk;
Byte *dest = me->outBufs[outBufIndex];
me->outBufsDataSizes[outBufIndex] = 0;
if (!dest)
{
dest = (Byte *)ISzAlloc_Alloc(me->alloc, me->outBufSize);
if (!dest)
return SZ_ERROR_MEM;
me->outBufs[outBufIndex] = dest;
}
MtProgressThunk_CreateVTable(&progressThunk);
progressThunk.mtProgress = &me->mtCoder.mtProgress;
progressThunk.inSize = 0;
progressThunk.outSize = 0;
res = Lzma2Enc_EncodeMt1(me,
&me->coders[coderIndex],
NULL, dest, &destSize,
NULL, src, srcSize,
finished,
&progressThunk.vt);
me->outBufsDataSizes[outBufIndex] = destSize;
return res;
}
static SRes Lzma2Enc_MtCallback_Write(void *p, unsigned outBufIndex)
{
CLzma2Enc *me = (CLzma2Enc *)p;
size_t size = me->outBufsDataSizes[outBufIndex];
const Byte *data = me->outBufs[outBufIndex];
if (me->outStream)
return ISeqOutStream_Write(me->outStream, data, size) == size ? SZ_OK : SZ_ERROR_WRITE;
if (size > me->outBuf_Rem)
return SZ_ERROR_OUTPUT_EOF;
memcpy(me->outBuf, data, size);
me->outBuf_Rem -= size;
me->outBuf += size;
return SZ_OK;
}
#endif
SRes Lzma2Enc_Encode2(CLzma2EncHandle p,
ISeqOutStreamPtr outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
const Byte *inData, size_t inDataSize,
ICompressProgressPtr progress)
{
// GET_CLzma2Enc_p
if (inStream && inData)
return SZ_ERROR_PARAM;
if (outStream && outBuf)
return SZ_ERROR_PARAM;
{
unsigned i;
for (i = 0; i < MTCODER_THREADS_MAX; i++)
p->coders[i].propsAreSet = False;
}
#ifndef Z7_ST
if (p->props.numBlockThreads_Reduced > 1)
{
IMtCoderCallback2 vt;
if (!p->mtCoder_WasConstructed)
{
p->mtCoder_WasConstructed = True;
MtCoder_Construct(&p->mtCoder);
}
vt.Code = Lzma2Enc_MtCallback_Code;
vt.Write = Lzma2Enc_MtCallback_Write;
p->outStream = outStream;
p->outBuf = NULL;
p->outBuf_Rem = 0;
if (!outStream)
{
p->outBuf = outBuf;
p->outBuf_Rem = *outBufSize;
*outBufSize = 0;
}
p->mtCoder.allocBig = p->allocBig;
p->mtCoder.progress = progress;
p->mtCoder.inStream = inStream;
p->mtCoder.outStream = outStream;
p->mtCoder.alloc = p->alloc;
p->mtCoder.mtCallback = &mtCallback.funcTable;
p->mtCoder.inData = inData;
p->mtCoder.inDataSize = inDataSize;
p->mtCoder.mtCallback = &vt;
p->mtCoder.mtCallbackObject = p;
p->mtCoder.blockSize = (size_t)p->props.blockSize;
if (p->mtCoder.blockSize != p->props.blockSize)
return SZ_ERROR_PARAM; /* SZ_ERROR_MEM */
p->mtCoder.blockSize = p->props.blockSize;
p->mtCoder.destBlockSize = p->props.blockSize + (p->props.blockSize >> 10) + 16;
if (p->mtCoder.destBlockSize < p->props.blockSize)
{
p->mtCoder.destBlockSize = (size_t)0 - 1;
if (p->mtCoder.destBlockSize < p->props.blockSize)
return SZ_ERROR_FAIL;
const size_t destBlockSize = p->mtCoder.blockSize + (p->mtCoder.blockSize >> 10) + 16;
if (destBlockSize < p->mtCoder.blockSize)
return SZ_ERROR_PARAM;
if (p->outBufSize != destBlockSize)
Lzma2Enc_FreeOutBufs(p);
p->outBufSize = destBlockSize;
}
p->mtCoder.numThreads = p->props.numBlockThreads;
p->mtCoder.numThreadsMax = (unsigned)p->props.numBlockThreads_Max;
p->mtCoder.expectedDataSize = p->expectedDataSize;
return MtCoder_Code(&p->mtCoder);
{
const SRes res = MtCoder_Code(&p->mtCoder);
if (!outStream)
*outBufSize = (size_t)(p->outBuf - outBuf);
return res;
}
}
#endif
return Lzma2Enc_EncodeMt1(&p->coders[0], p, outStream, inStream, progress);
return Lzma2Enc_EncodeMt1(p,
&p->coders[0],
outStream, outBuf, outBufSize,
inStream, inData, inDataSize,
True, /* finished */
progress);
}
#undef PRF

51
C/Lzma2Enc.h Normal file → Executable file
View File

@@ -1,18 +1,22 @@
/* Lzma2Enc.h -- LZMA2 Encoder
2017-04-03 : Igor Pavlov : Public domain */
2023-04-13 : Igor Pavlov : Public domain */
#ifndef __LZMA2_ENC_H
#define __LZMA2_ENC_H
#ifndef ZIP7_INC_LZMA2_ENC_H
#define ZIP7_INC_LZMA2_ENC_H
#include "LzmaEnc.h"
EXTERN_C_BEGIN
#define LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO 0
#define LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID ((UInt64)(Int64)-1)
typedef struct
{
CLzmaEncProps lzmaProps;
size_t blockSize;
int numBlockThreads;
UInt64 blockSize;
int numBlockThreads_Reduced;
int numBlockThreads_Max;
int numTotalThreads;
} CLzma2EncProps;
@@ -22,40 +26,31 @@ void Lzma2EncProps_Normalize(CLzma2EncProps *p);
/* ---------- CLzmaEnc2Handle Interface ---------- */
/* Lzma2Enc_* functions can return the following exit codes:
Returns:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - Write callback error
SZ_ERROR_WRITE - ISeqOutStream write callback error
SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef void * CLzma2EncHandle;
typedef struct CLzma2Enc CLzma2Enc;
typedef CLzma2Enc * CLzma2EncHandle;
// Z7_DECLARE_HANDLE(CLzma2EncHandle)
CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig);
void Lzma2Enc_Destroy(CLzma2EncHandle p);
SRes Lzma2Enc_SetProps(CLzma2EncHandle p, const CLzma2EncProps *props);
void Lzma2Enc_SetDataSize(CLzma2EncHandle p, UInt64 expectedDataSiize);
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle p);
SRes Lzma2Enc_Encode(CLzma2EncHandle p,
ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress);
/* ---------- One Call Interface ---------- */
/* Lzma2Encode
Return code:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
/*
SRes Lzma2Encode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, int writeEndMark,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
*/
SRes Lzma2Enc_Encode2(CLzma2EncHandle p,
ISeqOutStreamPtr outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
const Byte *inData, size_t inDataSize,
ICompressProgressPtr progress);
EXTERN_C_END

6
C/Lzma86.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* Lzma86.h -- LZMA + x86 (BCJ) Filter
2013-01-18 : Igor Pavlov : Public domain */
2023-03-03 : Igor Pavlov : Public domain */
#ifndef __LZMA86_H
#define __LZMA86_H
#ifndef ZIP7_INC_LZMA86_H
#define ZIP7_INC_LZMA86_H
#include "7zTypes.h"

7
C/Lzma86Dec.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* Lzma86Dec.c -- LZMA + x86 (BCJ) Filter Decoder
2016-05-16 : Igor Pavlov : Public domain */
2023-03-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -46,9 +46,8 @@ SRes Lzma86_Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen)
return res;
if (useFilter == 1)
{
UInt32 x86State;
x86_Convert_Init(x86State);
x86_Convert(dest, *destLen, 0, &x86State, 0);
UInt32 x86State = Z7_BRANCH_CONV_ST_X86_STATE_INIT_VAL;
z7_BranchConvSt_X86_Dec(dest, *destLen, 0, &x86State);
}
return SZ_OK;
}

15
C/Lzma86Enc.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* Lzma86Enc.c -- LZMA + x86 (BCJ) Filter Encoder
2016-05-16 : Igor Pavlov : Public domain */
2023-03-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
@@ -11,14 +11,12 @@
#include "Bra.h"
#include "LzmaEnc.h"
#define SZE_OUT_OVERFLOW SZE_DATA_ERROR
int Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
int level, UInt32 dictSize, int filterMode)
{
size_t outSize2 = *destLen;
Byte *filteredStream;
Bool useFilter;
BoolInt useFilter;
int mainResult = SZ_ERROR_OUTPUT_EOF;
CLzmaEncProps props;
LzmaEncProps_Init(&props);
@@ -48,15 +46,14 @@ int Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
memcpy(filteredStream, src, srcLen);
}
{
UInt32 x86State;
x86_Convert_Init(x86State);
x86_Convert(filteredStream, srcLen, 0, &x86State, 1);
UInt32 x86State = Z7_BRANCH_CONV_ST_X86_STATE_INIT_VAL;
z7_BranchConvSt_X86_Enc(filteredStream, srcLen, 0, &x86State);
}
}
{
size_t minSize = 0;
Bool bestIsFiltered = False;
BoolInt bestIsFiltered = False;
/* passes for SZ_FILTER_AUTO:
0 - BCJ + LZMA
@@ -71,7 +68,7 @@ int Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
size_t outSizeProcessed = outSize2 - LZMA86_HEADER_SIZE;
size_t outPropsSize = 5;
SRes curRes;
Bool curModeIsFiltered = (numPasses > 1 && i == numPasses - 1);
BoolInt curModeIsFiltered = (numPasses > 1 && i == numPasses - 1);
if (curModeIsFiltered && !bestIsFiltered)
break;
if (useFilter && i == 0)

923
C/LzmaDec.c Normal file → Executable file
View File

File diff suppressed because it is too large Load Diff

56
C/LzmaDec.h Normal file → Executable file
View File

@@ -1,31 +1,36 @@
/* LzmaDec.h -- LZMA Decoder
2017-04-03 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __LZMA_DEC_H
#define __LZMA_DEC_H
#ifndef ZIP7_INC_LZMA_DEC_H
#define ZIP7_INC_LZMA_DEC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/* #define _LZMA_PROB32 */
/* _LZMA_PROB32 can increase the speed on some CPUs,
/* #define Z7_LZMA_PROB32 */
/* Z7_LZMA_PROB32 can increase the speed on some CPUs,
but memory usage for CLzmaDec::probs will be doubled in that case */
#ifdef _LZMA_PROB32
#define CLzmaProb UInt32
typedef
#ifdef Z7_LZMA_PROB32
UInt32
#else
#define CLzmaProb UInt16
UInt16
#endif
CLzmaProb;
/* ---------- LZMA Properties ---------- */
#define LZMA_PROPS_SIZE 5
typedef struct _CLzmaProps
typedef struct
{
unsigned lc, lp, pb;
Byte lc;
Byte lp;
Byte pb;
Byte _pad_;
UInt32 dicSize;
} CLzmaProps;
@@ -47,32 +52,35 @@ SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
typedef struct
{
/* Don't change this structure. ASM code can use it. */
CLzmaProps prop;
CLzmaProb *probs;
CLzmaProb *probs_1664;
Byte *dic;
const Byte *buf;
UInt32 range, code;
SizeT dicPos;
SizeT dicBufSize;
SizeT dicPos;
const Byte *buf;
UInt32 range;
UInt32 code;
UInt32 processedPos;
UInt32 checkDicSize;
unsigned state;
UInt32 reps[4];
unsigned remainLen;
int needFlush;
int needInitState;
UInt32 state;
UInt32 remainLen;
UInt32 numProbs;
unsigned tempBufSize;
Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
} CLzmaDec;
#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
#define LzmaDec_CONSTRUCT(p) { (p)->dic = NULL; (p)->probs = NULL; }
#define LzmaDec_Construct(p) LzmaDec_CONSTRUCT(p)
void LzmaDec_Init(CLzmaDec *p);
/* There are two types of LZMA streams:
0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
- Stream with end mark. That end mark adds about 6 bytes to compressed size.
- Stream without end mark. You must know exact uncompressed size to decompress such stream. */
typedef enum
{
@@ -132,8 +140,8 @@ LzmaDec_Allocate* can return:
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc);
SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_Free(CLzmaDec *state, ISzAllocPtr alloc);
SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc);
/* ---------- Dictionary Interface ---------- */
@@ -142,7 +150,7 @@ void LzmaDec_Free(CLzmaDec *state, ISzAllocPtr alloc);
You must work with CLzmaDec variables directly in this interface.
STEPS:
LzmaDec_Constr()
LzmaDec_Construct()
LzmaDec_Allocate()
for (each new stream)
{
@@ -174,6 +182,7 @@ Returns:
LZMA_STATUS_NEEDS_MORE_INPUT
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
SZ_ERROR_DATA - Data error
SZ_ERROR_FAIL - Some unexpected error: internal error of code, memory corruption or hardware failure
*/
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
@@ -216,6 +225,7 @@ Returns:
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
SZ_ERROR_FAIL - Some unexpected error: internal error of code, memory corruption or hardware failure
*/
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,

3129
C/LzmaEnc.c Normal file → Executable file
View File

File diff suppressed because it is too large Load Diff

60
C/LzmaEnc.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* LzmaEnc.h -- LZMA Encoder
2017-04-03 : Igor Pavlov : Public domain */
2023-04-13 : Igor Pavlov : Public domain */
#ifndef __LZMA_ENC_H
#define __LZMA_ENC_H
#ifndef ZIP7_INC_LZMA_ENC_H
#define ZIP7_INC_LZMA_ENC_H
#include "7zTypes.h"
@@ -10,14 +10,12 @@ EXTERN_C_BEGIN
#define LZMA_PROPS_SIZE 5
typedef struct _CLzmaEncProps
typedef struct
{
int level; /* 0 <= level <= 9 */
int level; /* 0 <= level <= 9 */
UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
(1 << 12) <= dictSize <= (1 << 30) for 64-bit version
default = (1 << 24) */
UInt64 reduceSize; /* estimated size of data that will be compressed. default = 0xFFFFFFFF.
Encoder uses this value to reduce dictionary size */
(1 << 12) <= dictSize <= (3 << 29) for 64-bit version
default = (1 << 24) */
int lc; /* 0 <= lc <= 8, default = 3 */
int lp; /* 0 <= lp <= 4, default = 0 */
int pb; /* 0 <= pb <= 4, default = 2 */
@@ -25,9 +23,17 @@ typedef struct _CLzmaEncProps
int fb; /* 5 <= fb <= 273, default = 32 */
int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
int numHashBytes; /* 2, 3 or 4, default = 4 */
UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
unsigned numHashOutBits; /* default = ? */
UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
int numThreads; /* 1 or 2, default = 2 */
// int _pad;
UInt64 reduceSize; /* estimated size of data that will be compressed. default = (UInt64)(Int64)-1.
Encoder uses this value to reduce dictionary size */
UInt64 affinity;
} CLzmaEncProps;
void LzmaEncProps_Init(CLzmaEncProps *p);
@@ -37,42 +43,40 @@ UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
/* ---------- CLzmaEncHandle Interface ---------- */
/* LzmaEnc_* functions can return the following exit codes:
Returns:
/* LzmaEnc* functions can return the following exit codes:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - Write callback error.
SZ_ERROR_WRITE - ISeqOutStream write callback error
SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef void * CLzmaEncHandle;
typedef struct CLzmaEnc CLzmaEnc;
typedef CLzmaEnc * CLzmaEncHandle;
// Z7_DECLARE_HANDLE(CLzmaEncHandle)
CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc);
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
void LzmaEnc_SetDataSize(CLzmaEncHandle p, UInt64 expectedDataSiize);
SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle p);
SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStreamPtr outStream, ISeqInStreamPtr inStream,
ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
int writeEndMark, ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
int writeEndMark, ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
/* ---------- One Call Interface ---------- */
/* LzmaEncode
Return code:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
EXTERN_C_END

8
C/LzmaLib.c Normal file → Executable file
View File

@@ -1,12 +1,14 @@
/* LzmaLib.c -- LZMA library wrapper
2015-06-13 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Alloc.h"
#include "LzmaDec.h"
#include "LzmaEnc.h"
#include "LzmaLib.h"
MY_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t srcLen,
Z7_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t srcLen,
unsigned char *outProps, size_t *outPropsSize,
int level, /* 0 <= level <= 9, default = 5 */
unsigned dictSize, /* use (1 << N) or (3 << N). 4 KB < dictSize <= 128 MB */
@@ -32,7 +34,7 @@ MY_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char
}
MY_STDAPI LzmaUncompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t *srcLen,
Z7_STDAPI LzmaUncompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t *srcLen,
const unsigned char *props, size_t propsSize)
{
ELzmaStatus status;

35
C/LzmaLib.h Normal file → Executable file
View File

@@ -1,14 +1,14 @@
/* LzmaLib.h -- LZMA library interface
2013-01-18 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __LZMA_LIB_H
#define __LZMA_LIB_H
#ifndef ZIP7_INC_LZMA_LIB_H
#define ZIP7_INC_LZMA_LIB_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define MY_STDAPI int MY_STD_CALL
#define Z7_STDAPI int Z7_STDCALL
#define LZMA_PROPS_SIZE 5
@@ -40,14 +40,16 @@ outPropsSize -
level - compression level: 0 <= level <= 9;
level dictSize algo fb
0: 16 KB 0 32
1: 64 KB 0 32
2: 256 KB 0 32
3: 1 MB 0 32
4: 4 MB 0 32
0: 64 KB 0 32
1: 256 KB 0 32
2: 1 MB 0 32
3: 4 MB 0 32
4: 16 MB 0 32
5: 16 MB 1 32
6: 32 MB 1 32
7+: 64 MB 1 64
7: 32 MB 1 64
8: 64 MB 1 64
9: 64 MB 1 64
The default value for "level" is 5.
@@ -83,6 +85,11 @@ fb - Word size (the number of fast bytes).
numThreads - The number of thereads. 1 or 2. The default value is 2.
Fast mode (algo = 0) can use only 1 thread.
In:
dest - output data buffer
destLen - output data buffer size
src - input data
srcLen - input data size
Out:
destLen - processed output size
Returns:
@@ -93,7 +100,7 @@ Returns:
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
MY_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t srcLen,
Z7_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t srcLen,
unsigned char *outProps, size_t *outPropsSize, /* *outPropsSize must be = 5 */
int level, /* 0 <= level <= 9, default = 5 */
unsigned dictSize, /* default = (1 << 24) */
@@ -108,8 +115,8 @@ MY_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char
LzmaUncompress
--------------
In:
dest - output data
destLen - output data size
dest - output data buffer
destLen - output data buffer size
src - input data
srcLen - input data size
Out:
@@ -123,7 +130,7 @@ Returns:
SZ_ERROR_INPUT_EOF - it needs more bytes in input buffer (src)
*/
MY_STDAPI LzmaUncompress(unsigned char *dest, size_t *destLen, const unsigned char *src, SizeT *srcLen,
Z7_STDAPI LzmaUncompress(unsigned char *dest, size_t *destLen, const unsigned char *src, SizeT *srcLen,
const unsigned char *props, size_t propsSize);
EXTERN_C_END

742
C/MtCoder.c Normal file → Executable file
View File

@@ -1,327 +1,571 @@
/* MtCoder.c -- Multi-thread Coder
2017-04-03 : Igor Pavlov : Public domain */
2023-04-13 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "MtCoder.h"
void LoopThread_Construct(CLoopThread *p)
{
Thread_Construct(&p->thread);
Event_Construct(&p->startEvent);
Event_Construct(&p->finishedEvent);
}
#ifndef Z7_ST
void LoopThread_Close(CLoopThread *p)
static SRes MtProgressThunk_Progress(ICompressProgressPtr pp, UInt64 inSize, UInt64 outSize)
{
Thread_Close(&p->thread);
Event_Close(&p->startEvent);
Event_Close(&p->finishedEvent);
}
static THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE LoopThreadFunc(void *pp)
{
CLoopThread *p = (CLoopThread *)pp;
for (;;)
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CMtProgressThunk)
UInt64 inSize2 = 0;
UInt64 outSize2 = 0;
if (inSize != (UInt64)(Int64)-1)
{
if (Event_Wait(&p->startEvent) != 0)
return SZ_ERROR_THREAD;
if (p->stop)
return 0;
p->res = p->func(p->param);
if (Event_Set(&p->finishedEvent) != 0)
return SZ_ERROR_THREAD;
inSize2 = inSize - p->inSize;
p->inSize = inSize;
}
if (outSize != (UInt64)(Int64)-1)
{
outSize2 = outSize - p->outSize;
p->outSize = outSize;
}
return MtProgress_ProgressAdd(p->mtProgress, inSize2, outSize2);
}
WRes LoopThread_Create(CLoopThread *p)
void MtProgressThunk_CreateVTable(CMtProgressThunk *p)
{
p->stop = 0;
RINOK(AutoResetEvent_CreateNotSignaled(&p->startEvent));
RINOK(AutoResetEvent_CreateNotSignaled(&p->finishedEvent));
return Thread_Create(&p->thread, LoopThreadFunc, p);
p->vt.Progress = MtProgressThunk_Progress;
}
WRes LoopThread_StopAndWait(CLoopThread *p)
{
p->stop = 1;
if (Event_Set(&p->startEvent) != 0)
return SZ_ERROR_THREAD;
return Thread_Wait(&p->thread);
}
WRes LoopThread_StartSubThread(CLoopThread *p) { return Event_Set(&p->startEvent); }
WRes LoopThread_WaitSubThread(CLoopThread *p) { return Event_Wait(&p->finishedEvent); }
static SRes Progress(ICompressProgress *p, UInt64 inSize, UInt64 outSize)
{
return (p && ICompressProgress_Progress(p, inSize, outSize) != SZ_OK) ? SZ_ERROR_PROGRESS : SZ_OK;
}
static void MtProgress_Init(CMtProgress *p, ICompressProgress *progress)
{
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
p->inSizes[i] = p->outSizes[i] = 0;
p->totalInSize = p->totalOutSize = 0;
p->progress = progress;
p->res = SZ_OK;
}
static void MtProgress_Reinit(CMtProgress *p, unsigned index)
{
p->inSizes[index] = 0;
p->outSizes[index] = 0;
}
#define UPDATE_PROGRESS(size, prev, total) \
if (size != (UInt64)(Int64)-1) { total += size - prev; prev = size; }
SRes MtProgress_Set(CMtProgress *p, unsigned index, UInt64 inSize, UInt64 outSize)
{
SRes res;
CriticalSection_Enter(&p->cs);
UPDATE_PROGRESS(inSize, p->inSizes[index], p->totalInSize)
UPDATE_PROGRESS(outSize, p->outSizes[index], p->totalOutSize)
if (p->res == SZ_OK)
p->res = Progress(p->progress, p->totalInSize, p->totalOutSize);
res = p->res;
CriticalSection_Leave(&p->cs);
return res;
}
static void MtProgress_SetError(CMtProgress *p, SRes res)
{
CriticalSection_Enter(&p->cs);
if (p->res == SZ_OK)
p->res = res;
CriticalSection_Leave(&p->cs);
}
static void MtCoder_SetError(CMtCoder* p, SRes res)
{
CriticalSection_Enter(&p->cs);
if (p->res == SZ_OK)
p->res = res;
CriticalSection_Leave(&p->cs);
}
/* ---------- MtThread ---------- */
void CMtThread_Construct(CMtThread *p, CMtCoder *mtCoder)
{
p->mtCoder = mtCoder;
p->outBuf = 0;
p->inBuf = 0;
Event_Construct(&p->canRead);
Event_Construct(&p->canWrite);
LoopThread_Construct(&p->thread);
}
#define RINOK_THREAD(x) { if ((x) != 0) return SZ_ERROR_THREAD; }
static void CMtThread_CloseEvents(CMtThread *p)
static THREAD_FUNC_DECL ThreadFunc(void *pp);
static SRes MtCoderThread_CreateAndStart(CMtCoderThread *t)
{
Event_Close(&p->canRead);
Event_Close(&p->canWrite);
WRes wres = AutoResetEvent_OptCreate_And_Reset(&t->startEvent);
if (wres == 0)
{
t->stop = False;
if (!Thread_WasCreated(&t->thread))
wres = Thread_Create(&t->thread, ThreadFunc, t);
if (wres == 0)
wres = Event_Set(&t->startEvent);
}
if (wres == 0)
return SZ_OK;
return MY_SRes_HRESULT_FROM_WRes(wres);
}
static void CMtThread_Destruct(CMtThread *p)
{
CMtThread_CloseEvents(p);
if (Thread_WasCreated(&p->thread.thread))
static void MtCoderThread_Destruct(CMtCoderThread *t)
{
if (Thread_WasCreated(&t->thread))
{
LoopThread_StopAndWait(&p->thread);
LoopThread_Close(&p->thread);
t->stop = 1;
Event_Set(&t->startEvent);
Thread_Wait_Close(&t->thread);
}
if (p->mtCoder->alloc)
ISzAlloc_Free(p->mtCoder->alloc, p->outBuf);
p->outBuf = 0;
Event_Close(&t->startEvent);
if (p->mtCoder->alloc)
ISzAlloc_Free(p->mtCoder->alloc, p->inBuf);
p->inBuf = 0;
}
#define MY_BUF_ALLOC(buf, size, newSize) \
if (buf == 0 || size != newSize) \
{ ISzAlloc_Free(p->mtCoder->alloc, buf); \
size = newSize; buf = (Byte *)ISzAlloc_Alloc(p->mtCoder->alloc, size); \
if (buf == 0) return SZ_ERROR_MEM; }
static SRes CMtThread_Prepare(CMtThread *p)
{
MY_BUF_ALLOC(p->inBuf, p->inBufSize, p->mtCoder->blockSize)
MY_BUF_ALLOC(p->outBuf, p->outBufSize, p->mtCoder->destBlockSize)
p->stopReading = False;
p->stopWriting = False;
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->canRead));
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->canWrite));
return SZ_OK;
}
static SRes FullRead(ISeqInStream *stream, Byte *data, size_t *processedSize)
{
size_t size = *processedSize;
*processedSize = 0;
while (size != 0)
if (t->inBuf)
{
size_t curSize = size;
SRes res = ISeqInStream_Read(stream, data, &curSize);
*processedSize += curSize;
data += curSize;
size -= curSize;
RINOK(res);
if (curSize == 0)
return SZ_OK;
}
return SZ_OK;
}
#define GET_NEXT_THREAD(p) &p->mtCoder->threads[p->index == p->mtCoder->numThreads - 1 ? 0 : p->index + 1]
static SRes MtThread_Process(CMtThread *p, Bool *stop)
{
CMtThread *next;
*stop = True;
if (Event_Wait(&p->canRead) != 0)
return SZ_ERROR_THREAD;
next = GET_NEXT_THREAD(p);
if (p->stopReading)
{
next->stopReading = True;
return Event_Set(&next->canRead) == 0 ? SZ_OK : SZ_ERROR_THREAD;
}
{
size_t size = p->mtCoder->blockSize;
size_t destSize = p->outBufSize;
RINOK(FullRead(p->mtCoder->inStream, p->inBuf, &size));
next->stopReading = *stop = (size != p->mtCoder->blockSize);
if (Event_Set(&next->canRead) != 0)
return SZ_ERROR_THREAD;
RINOK(IMtCoderCallback_Code(p->mtCoder->mtCallback, p->index,
p->outBuf, &destSize, p->inBuf, size, *stop));
MtProgress_Reinit(&p->mtCoder->mtProgress, p->index);
if (Event_Wait(&p->canWrite) != 0)
return SZ_ERROR_THREAD;
if (p->stopWriting)
return SZ_ERROR_FAIL;
if (ISeqOutStream_Write(p->mtCoder->outStream, p->outBuf, destSize) != destSize)
return SZ_ERROR_WRITE;
return Event_Set(&next->canWrite) == 0 ? SZ_OK : SZ_ERROR_THREAD;
ISzAlloc_Free(t->mtCoder->allocBig, t->inBuf);
t->inBuf = NULL;
}
}
static THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE ThreadFunc(void *pp)
/*
ThreadFunc2() returns:
SZ_OK - in all normal cases (even for stream error or memory allocation error)
SZ_ERROR_THREAD - in case of failure in system synch function
*/
static SRes ThreadFunc2(CMtCoderThread *t)
{
CMtThread *p = (CMtThread *)pp;
CMtCoder *mtc = t->mtCoder;
for (;;)
{
Bool stop;
CMtThread *next = GET_NEXT_THREAD(p);
SRes res = MtThread_Process(p, &stop);
if (res != SZ_OK)
unsigned bi;
SRes res;
SRes res2;
BoolInt finished;
unsigned bufIndex;
size_t size;
const Byte *inData;
UInt64 readProcessed = 0;
RINOK_THREAD(Event_Wait(&mtc->readEvent))
/* after Event_Wait(&mtc->readEvent) we must call Event_Set(&mtc->readEvent) in any case to unlock another threads */
if (mtc->stopReading)
{
MtCoder_SetError(p->mtCoder, res);
MtProgress_SetError(&p->mtCoder->mtProgress, res);
next->stopReading = True;
next->stopWriting = True;
Event_Set(&next->canRead);
Event_Set(&next->canWrite);
return res;
return Event_Set(&mtc->readEvent) == 0 ? SZ_OK : SZ_ERROR_THREAD;
}
if (stop)
res = MtProgress_GetError(&mtc->mtProgress);
size = 0;
inData = NULL;
finished = True;
if (res == SZ_OK)
{
size = mtc->blockSize;
if (mtc->inStream)
{
if (!t->inBuf)
{
t->inBuf = (Byte *)ISzAlloc_Alloc(mtc->allocBig, mtc->blockSize);
if (!t->inBuf)
res = SZ_ERROR_MEM;
}
if (res == SZ_OK)
{
res = SeqInStream_ReadMax(mtc->inStream, t->inBuf, &size);
readProcessed = mtc->readProcessed + size;
mtc->readProcessed = readProcessed;
}
if (res != SZ_OK)
{
mtc->readRes = res;
/* after reading error - we can stop encoding of previous blocks */
MtProgress_SetError(&mtc->mtProgress, res);
}
else
finished = (size != mtc->blockSize);
}
else
{
size_t rem;
readProcessed = mtc->readProcessed;
rem = mtc->inDataSize - (size_t)readProcessed;
if (size > rem)
size = rem;
inData = mtc->inData + (size_t)readProcessed;
readProcessed += size;
mtc->readProcessed = readProcessed;
finished = (mtc->inDataSize == (size_t)readProcessed);
}
}
/* we must get some block from blocksSemaphore before Event_Set(&mtc->readEvent) */
res2 = SZ_OK;
if (Semaphore_Wait(&mtc->blocksSemaphore) != 0)
{
res2 = SZ_ERROR_THREAD;
if (res == SZ_OK)
{
res = res2;
// MtProgress_SetError(&mtc->mtProgress, res);
}
}
bi = mtc->blockIndex;
if (++mtc->blockIndex >= mtc->numBlocksMax)
mtc->blockIndex = 0;
bufIndex = (unsigned)(int)-1;
if (res == SZ_OK)
res = MtProgress_GetError(&mtc->mtProgress);
if (res != SZ_OK)
finished = True;
if (!finished)
{
if (mtc->numStartedThreads < mtc->numStartedThreadsLimit
&& mtc->expectedDataSize != readProcessed)
{
res = MtCoderThread_CreateAndStart(&mtc->threads[mtc->numStartedThreads]);
if (res == SZ_OK)
mtc->numStartedThreads++;
else
{
MtProgress_SetError(&mtc->mtProgress, res);
finished = True;
}
}
}
if (finished)
mtc->stopReading = True;
RINOK_THREAD(Event_Set(&mtc->readEvent))
if (res2 != SZ_OK)
return res2;
if (res == SZ_OK)
{
CriticalSection_Enter(&mtc->cs);
bufIndex = mtc->freeBlockHead;
mtc->freeBlockHead = mtc->freeBlockList[bufIndex];
CriticalSection_Leave(&mtc->cs);
res = mtc->mtCallback->Code(mtc->mtCallbackObject, t->index, bufIndex,
mtc->inStream ? t->inBuf : inData, size, finished);
// MtProgress_Reinit(&mtc->mtProgress, t->index);
if (res != SZ_OK)
MtProgress_SetError(&mtc->mtProgress, res);
}
{
CMtCoderBlock *block = &mtc->blocks[bi];
block->res = res;
block->bufIndex = bufIndex;
block->finished = finished;
}
#ifdef MTCODER_USE_WRITE_THREAD
RINOK_THREAD(Event_Set(&mtc->writeEvents[bi]))
#else
{
unsigned wi;
{
CriticalSection_Enter(&mtc->cs);
wi = mtc->writeIndex;
if (wi == bi)
mtc->writeIndex = (unsigned)(int)-1;
else
mtc->ReadyBlocks[bi] = True;
CriticalSection_Leave(&mtc->cs);
}
if (wi != bi)
{
if (res != SZ_OK || finished)
return 0;
continue;
}
if (mtc->writeRes != SZ_OK)
res = mtc->writeRes;
for (;;)
{
if (res == SZ_OK && bufIndex != (unsigned)(int)-1)
{
res = mtc->mtCallback->Write(mtc->mtCallbackObject, bufIndex);
if (res != SZ_OK)
{
mtc->writeRes = res;
MtProgress_SetError(&mtc->mtProgress, res);
}
}
if (++wi >= mtc->numBlocksMax)
wi = 0;
{
BoolInt isReady;
CriticalSection_Enter(&mtc->cs);
if (bufIndex != (unsigned)(int)-1)
{
mtc->freeBlockList[bufIndex] = mtc->freeBlockHead;
mtc->freeBlockHead = bufIndex;
}
isReady = mtc->ReadyBlocks[wi];
if (isReady)
mtc->ReadyBlocks[wi] = False;
else
mtc->writeIndex = wi;
CriticalSection_Leave(&mtc->cs);
RINOK_THREAD(Semaphore_Release1(&mtc->blocksSemaphore))
if (!isReady)
break;
}
{
CMtCoderBlock *block = &mtc->blocks[wi];
if (res == SZ_OK && block->res != SZ_OK)
res = block->res;
bufIndex = block->bufIndex;
finished = block->finished;
}
}
}
#endif
if (finished || res != SZ_OK)
return 0;
}
}
void MtCoder_Construct(CMtCoder* p)
static THREAD_FUNC_DECL ThreadFunc(void *pp)
{
CMtCoderThread *t = (CMtCoderThread *)pp;
for (;;)
{
if (Event_Wait(&t->startEvent) != 0)
return (THREAD_FUNC_RET_TYPE)SZ_ERROR_THREAD;
if (t->stop)
return 0;
{
SRes res = ThreadFunc2(t);
CMtCoder *mtc = t->mtCoder;
if (res != SZ_OK)
{
MtProgress_SetError(&mtc->mtProgress, res);
}
#ifndef MTCODER_USE_WRITE_THREAD
{
unsigned numFinished = (unsigned)InterlockedIncrement(&mtc->numFinishedThreads);
if (numFinished == mtc->numStartedThreads)
if (Event_Set(&mtc->finishedEvent) != 0)
return (THREAD_FUNC_RET_TYPE)SZ_ERROR_THREAD;
}
#endif
}
}
}
void MtCoder_Construct(CMtCoder *p)
{
unsigned i;
p->alloc = 0;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
p->blockSize = 0;
p->numThreadsMax = 0;
p->expectedDataSize = (UInt64)(Int64)-1;
p->inStream = NULL;
p->inData = NULL;
p->inDataSize = 0;
p->progress = NULL;
p->allocBig = NULL;
p->mtCallback = NULL;
p->mtCallbackObject = NULL;
p->allocatedBufsSize = 0;
Event_Construct(&p->readEvent);
Semaphore_Construct(&p->blocksSemaphore);
for (i = 0; i < MTCODER_THREADS_MAX; i++)
{
CMtThread *t = &p->threads[i];
CMtCoderThread *t = &p->threads[i];
t->mtCoder = p;
t->index = i;
CMtThread_Construct(t, p);
t->inBuf = NULL;
t->stop = False;
Event_Construct(&t->startEvent);
Thread_CONSTRUCT(&t->thread)
}
#ifdef MTCODER_USE_WRITE_THREAD
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
Event_Construct(&p->writeEvents[i]);
#else
Event_Construct(&p->finishedEvent);
#endif
CriticalSection_Init(&p->cs);
CriticalSection_Init(&p->mtProgress.cs);
}
void MtCoder_Destruct(CMtCoder* p)
static void MtCoder_Free(CMtCoder *p)
{
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
CMtThread_Destruct(&p->threads[i]);
/*
p->stopReading = True;
if (Event_IsCreated(&p->readEvent))
Event_Set(&p->readEvent);
*/
for (i = 0; i < MTCODER_THREADS_MAX; i++)
MtCoderThread_Destruct(&p->threads[i]);
Event_Close(&p->readEvent);
Semaphore_Close(&p->blocksSemaphore);
#ifdef MTCODER_USE_WRITE_THREAD
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
Event_Close(&p->writeEvents[i]);
#else
Event_Close(&p->finishedEvent);
#endif
}
void MtCoder_Destruct(CMtCoder *p)
{
MtCoder_Free(p);
CriticalSection_Delete(&p->cs);
CriticalSection_Delete(&p->mtProgress.cs);
}
SRes MtCoder_Code(CMtCoder *p)
{
unsigned i, numThreads = p->numThreads;
unsigned numThreads = p->numThreadsMax;
unsigned numBlocksMax;
unsigned i;
SRes res = SZ_OK;
p->res = SZ_OK;
if (numThreads > MTCODER_THREADS_MAX)
numThreads = MTCODER_THREADS_MAX;
numBlocksMax = MTCODER_GET_NUM_BLOCKS_FROM_THREADS(numThreads);
if (p->blockSize < ((UInt32)1 << 26)) numBlocksMax++;
if (p->blockSize < ((UInt32)1 << 24)) numBlocksMax++;
if (p->blockSize < ((UInt32)1 << 22)) numBlocksMax++;
if (numBlocksMax > MTCODER_BLOCKS_MAX)
numBlocksMax = MTCODER_BLOCKS_MAX;
if (p->blockSize != p->allocatedBufsSize)
{
for (i = 0; i < MTCODER_THREADS_MAX; i++)
{
CMtCoderThread *t = &p->threads[i];
if (t->inBuf)
{
ISzAlloc_Free(p->allocBig, t->inBuf);
t->inBuf = NULL;
}
}
p->allocatedBufsSize = p->blockSize;
}
p->readRes = SZ_OK;
MtProgress_Init(&p->mtProgress, p->progress);
for (i = 0; i < numThreads; i++)
#ifdef MTCODER_USE_WRITE_THREAD
for (i = 0; i < numBlocksMax; i++)
{
RINOK_THREAD(AutoResetEvent_OptCreate_And_Reset(&p->writeEvents[i]))
}
#else
RINOK_THREAD(AutoResetEvent_OptCreate_And_Reset(&p->finishedEvent))
#endif
{
RINOK(CMtThread_Prepare(&p->threads[i]));
RINOK_THREAD(AutoResetEvent_OptCreate_And_Reset(&p->readEvent))
RINOK_THREAD(Semaphore_OptCreateInit(&p->blocksSemaphore, numBlocksMax, numBlocksMax))
}
for (i = 0; i < numThreads; i++)
for (i = 0; i < MTCODER_BLOCKS_MAX - 1; i++)
p->freeBlockList[i] = i + 1;
p->freeBlockList[MTCODER_BLOCKS_MAX - 1] = (unsigned)(int)-1;
p->freeBlockHead = 0;
p->readProcessed = 0;
p->blockIndex = 0;
p->numBlocksMax = numBlocksMax;
p->stopReading = False;
#ifndef MTCODER_USE_WRITE_THREAD
p->writeIndex = 0;
p->writeRes = SZ_OK;
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
p->ReadyBlocks[i] = False;
p->numFinishedThreads = 0;
#endif
p->numStartedThreadsLimit = numThreads;
p->numStartedThreads = 0;
// for (i = 0; i < numThreads; i++)
{
CMtThread *t = &p->threads[i];
CLoopThread *lt = &t->thread;
CMtCoderThread *nextThread = &p->threads[p->numStartedThreads++];
RINOK(MtCoderThread_CreateAndStart(nextThread))
}
if (!Thread_WasCreated(&lt->thread))
RINOK_THREAD(Event_Set(&p->readEvent))
#ifdef MTCODER_USE_WRITE_THREAD
{
unsigned bi = 0;
for (;; bi++)
{
lt->func = ThreadFunc;
lt->param = t;
if (bi >= numBlocksMax)
bi = 0;
RINOK_THREAD(Event_Wait(&p->writeEvents[bi]))
if (LoopThread_Create(lt) != SZ_OK)
{
res = SZ_ERROR_THREAD;
break;
const CMtCoderBlock *block = &p->blocks[bi];
unsigned bufIndex = block->bufIndex;
BoolInt finished = block->finished;
if (res == SZ_OK && block->res != SZ_OK)
res = block->res;
if (bufIndex != (unsigned)(int)-1)
{
if (res == SZ_OK)
{
res = p->mtCallback->Write(p->mtCallbackObject, bufIndex);
if (res != SZ_OK)
MtProgress_SetError(&p->mtProgress, res);
}
CriticalSection_Enter(&p->cs);
{
p->freeBlockList[bufIndex] = p->freeBlockHead;
p->freeBlockHead = bufIndex;
}
CriticalSection_Leave(&p->cs);
}
RINOK_THREAD(Semaphore_Release1(&p->blocksSemaphore))
if (finished)
break;
}
}
}
#else
{
WRes wres = Event_Wait(&p->finishedEvent);
res = MY_SRes_HRESULT_FROM_WRes(wres);
}
#endif
if (res == SZ_OK)
{
unsigned j;
for (i = 0; i < numThreads; i++)
{
CMtThread *t = &p->threads[i];
if (LoopThread_StartSubThread(&t->thread) != SZ_OK)
{
res = SZ_ERROR_THREAD;
p->threads[0].stopReading = True;
break;
}
}
res = p->readRes;
Event_Set(&p->threads[0].canWrite);
Event_Set(&p->threads[0].canRead);
if (res == SZ_OK)
res = p->mtProgress.res;
for (j = 0; j < i; j++)
LoopThread_WaitSubThread(&p->threads[j].thread);
}
#ifndef MTCODER_USE_WRITE_THREAD
if (res == SZ_OK)
res = p->writeRes;
#endif
for (i = 0; i < numThreads; i++)
CMtThread_CloseEvents(&p->threads[i]);
return (res == SZ_OK) ? p->res : res;
if (res != SZ_OK)
MtCoder_Free(p);
return res;
}
#endif
#undef RINOK_THREAD

175
C/MtCoder.h Normal file → Executable file
View File

@@ -1,102 +1,141 @@
/* MtCoder.h -- Multi-thread Coder
2017-04-03 : Igor Pavlov : Public domain */
2023-04-13 : Igor Pavlov : Public domain */
#ifndef __MT_CODER_H
#define __MT_CODER_H
#ifndef ZIP7_INC_MT_CODER_H
#define ZIP7_INC_MT_CODER_H
#include "Threads.h"
#include "MtDec.h"
EXTERN_C_BEGIN
typedef struct
{
CThread thread;
CAutoResetEvent startEvent;
CAutoResetEvent finishedEvent;
int stop;
THREAD_FUNC_TYPE func;
LPVOID param;
THREAD_FUNC_RET_TYPE res;
} CLoopThread;
/*
if ( defined MTCODER_USE_WRITE_THREAD) : main thread writes all data blocks to output stream
if (not defined MTCODER_USE_WRITE_THREAD) : any coder thread can write data blocks to output stream
*/
/* #define MTCODER_USE_WRITE_THREAD */
void LoopThread_Construct(CLoopThread *p);
void LoopThread_Close(CLoopThread *p);
WRes LoopThread_Create(CLoopThread *p);
WRes LoopThread_StopAndWait(CLoopThread *p);
WRes LoopThread_StartSubThread(CLoopThread *p);
WRes LoopThread_WaitSubThread(CLoopThread *p);
#ifndef _7ZIP_ST
#define NUM_MT_CODER_THREADS_MAX 32
#ifndef Z7_ST
#define MTCODER_GET_NUM_BLOCKS_FROM_THREADS(numThreads) ((numThreads) + (numThreads) / 8 + 1)
#define MTCODER_THREADS_MAX 64
#define MTCODER_BLOCKS_MAX (MTCODER_GET_NUM_BLOCKS_FROM_THREADS(MTCODER_THREADS_MAX) + 3)
#else
#define NUM_MT_CODER_THREADS_MAX 1
#define MTCODER_THREADS_MAX 1
#define MTCODER_BLOCKS_MAX 1
#endif
typedef struct
{
UInt64 totalInSize;
UInt64 totalOutSize;
ICompressProgress *progress;
SRes res;
CCriticalSection cs;
UInt64 inSizes[NUM_MT_CODER_THREADS_MAX];
UInt64 outSizes[NUM_MT_CODER_THREADS_MAX];
} CMtProgress;
SRes MtProgress_Set(CMtProgress *p, unsigned index, UInt64 inSize, UInt64 outSize);
#ifndef Z7_ST
struct _CMtCoder;
typedef struct
{
struct _CMtCoder *mtCoder;
Byte *outBuf;
size_t outBufSize;
Byte *inBuf;
size_t inBufSize;
ICompressProgress vt;
CMtProgress *mtProgress;
UInt64 inSize;
UInt64 outSize;
} CMtProgressThunk;
void MtProgressThunk_CreateVTable(CMtProgressThunk *p);
#define MtProgressThunk_INIT(p) { (p)->inSize = 0; (p)->outSize = 0; }
struct CMtCoder_;
typedef struct
{
struct CMtCoder_ *mtCoder;
unsigned index;
CLoopThread thread;
int stop;
Byte *inBuf;
Bool stopReading;
Bool stopWriting;
CAutoResetEvent canRead;
CAutoResetEvent canWrite;
} CMtThread;
CAutoResetEvent startEvent;
CThread thread;
} CMtCoderThread;
typedef struct IMtCoderCallback IMtCoderCallback;
struct IMtCoderCallback
typedef struct
{
SRes (*Code)(const IMtCoderCallback *p, unsigned index, Byte *dest, size_t *destSize,
SRes (*Code)(void *p, unsigned coderIndex, unsigned outBufIndex,
const Byte *src, size_t srcSize, int finished);
};
#define IMtCoderCallback_Code(p, index, dest, destSize, src, srcSize, finished) (p)->Code(p, index, dest, destSize, src, srcSize, finished)
SRes (*Write)(void *p, unsigned outBufIndex);
} IMtCoderCallback2;
typedef struct _CMtCoder
typedef struct
{
size_t blockSize;
size_t destBlockSize;
unsigned numThreads;
ISeqInStream *inStream;
ISeqOutStream *outStream;
ICompressProgress *progress;
ISzAllocPtr alloc;
IMtCoderCallback *mtCallback;
CCriticalSection cs;
SRes res;
unsigned bufIndex;
BoolInt finished;
} CMtCoderBlock;
typedef struct CMtCoder_
{
/* input variables */
size_t blockSize; /* size of input block */
unsigned numThreadsMax;
UInt64 expectedDataSize;
ISeqInStreamPtr inStream;
const Byte *inData;
size_t inDataSize;
ICompressProgressPtr progress;
ISzAllocPtr allocBig;
IMtCoderCallback2 *mtCallback;
void *mtCallbackObject;
/* internal variables */
size_t allocatedBufsSize;
CAutoResetEvent readEvent;
CSemaphore blocksSemaphore;
BoolInt stopReading;
SRes readRes;
#ifdef MTCODER_USE_WRITE_THREAD
CAutoResetEvent writeEvents[MTCODER_BLOCKS_MAX];
#else
CAutoResetEvent finishedEvent;
SRes writeRes;
unsigned writeIndex;
Byte ReadyBlocks[MTCODER_BLOCKS_MAX];
LONG numFinishedThreads;
#endif
unsigned numStartedThreadsLimit;
unsigned numStartedThreads;
unsigned numBlocksMax;
unsigned blockIndex;
UInt64 readProcessed;
CCriticalSection cs;
unsigned freeBlockHead;
unsigned freeBlockList[MTCODER_BLOCKS_MAX];
CMtProgress mtProgress;
CMtThread threads[NUM_MT_CODER_THREADS_MAX];
CMtCoderBlock blocks[MTCODER_BLOCKS_MAX];
CMtCoderThread threads[MTCODER_THREADS_MAX];
} CMtCoder;
void MtCoder_Construct(CMtCoder* p);
void MtCoder_Destruct(CMtCoder* p);
void MtCoder_Construct(CMtCoder *p);
void MtCoder_Destruct(CMtCoder *p);
SRes MtCoder_Code(CMtCoder *p);
#endif
EXTERN_C_END
#endif

1114
C/MtDec.c Executable file
View File

File diff suppressed because it is too large Load Diff

202
C/MtDec.h Executable file
View File

@@ -0,0 +1,202 @@
/* MtDec.h -- Multi-thread Decoder
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_MT_DEC_H
#define ZIP7_INC_MT_DEC_H
#include "7zTypes.h"
#ifndef Z7_ST
#include "Threads.h"
#endif
EXTERN_C_BEGIN
#ifndef Z7_ST
#ifndef Z7_ST
#define MTDEC_THREADS_MAX 32
#else
#define MTDEC_THREADS_MAX 1
#endif
typedef struct
{
ICompressProgressPtr progress;
SRes res;
UInt64 totalInSize;
UInt64 totalOutSize;
CCriticalSection cs;
} CMtProgress;
void MtProgress_Init(CMtProgress *p, ICompressProgressPtr progress);
SRes MtProgress_Progress_ST(CMtProgress *p);
SRes MtProgress_ProgressAdd(CMtProgress *p, UInt64 inSize, UInt64 outSize);
SRes MtProgress_GetError(CMtProgress *p);
void MtProgress_SetError(CMtProgress *p, SRes res);
struct CMtDec;
typedef struct
{
struct CMtDec_ *mtDec;
unsigned index;
void *inBuf;
size_t inDataSize_Start; // size of input data in start block
UInt64 inDataSize; // total size of input data in all blocks
CThread thread;
CAutoResetEvent canRead;
CAutoResetEvent canWrite;
void *allocaPtr;
} CMtDecThread;
void MtDecThread_FreeInBufs(CMtDecThread *t);
typedef enum
{
MTDEC_PARSE_CONTINUE, // continue this block with more input data
MTDEC_PARSE_OVERFLOW, // MT buffers overflow, need switch to single-thread
MTDEC_PARSE_NEW, // new block
MTDEC_PARSE_END // end of block threading. But we still can return to threading after Write(&needContinue)
} EMtDecParseState;
typedef struct
{
// in
int startCall;
const Byte *src;
size_t srcSize;
// in : (srcSize == 0) is allowed
// out : it's allowed to return less that actually was used ?
int srcFinished;
// out
EMtDecParseState state;
BoolInt canCreateNewThread;
UInt64 outPos; // check it (size_t)
} CMtDecCallbackInfo;
typedef struct
{
void (*Parse)(void *p, unsigned coderIndex, CMtDecCallbackInfo *ci);
// PreCode() and Code():
// (SRes_return_result != SZ_OK) means stop decoding, no need another blocks
SRes (*PreCode)(void *p, unsigned coderIndex);
SRes (*Code)(void *p, unsigned coderIndex,
const Byte *src, size_t srcSize, int srcFinished,
UInt64 *inCodePos, UInt64 *outCodePos, int *stop);
// stop - means stop another Code calls
/* Write() must be called, if Parse() was called
set (needWrite) if
{
&& (was not interrupted by progress)
&& (was not interrupted in previous block)
}
out:
if (*needContinue), decoder still need to continue decoding with new iteration,
even after MTDEC_PARSE_END
if (*canRecode), we didn't flush current block data, so we still can decode current block later.
*/
SRes (*Write)(void *p, unsigned coderIndex,
BoolInt needWriteToStream,
const Byte *src, size_t srcSize, BoolInt isCross,
// int srcFinished,
BoolInt *needContinue,
BoolInt *canRecode);
} IMtDecCallback2;
typedef struct CMtDec_
{
/* input variables */
size_t inBufSize; /* size of input block */
unsigned numThreadsMax;
// size_t inBlockMax;
unsigned numThreadsMax_2;
ISeqInStreamPtr inStream;
// const Byte *inData;
// size_t inDataSize;
ICompressProgressPtr progress;
ISzAllocPtr alloc;
IMtDecCallback2 *mtCallback;
void *mtCallbackObject;
/* internal variables */
size_t allocatedBufsSize;
BoolInt exitThread;
WRes exitThreadWRes;
UInt64 blockIndex;
BoolInt isAllocError;
BoolInt overflow;
SRes threadingErrorSRes;
BoolInt needContinue;
// CAutoResetEvent finishedEvent;
SRes readRes;
SRes codeRes;
BoolInt wasInterrupted;
unsigned numStartedThreads_Limit;
unsigned numStartedThreads;
Byte *crossBlock;
size_t crossStart;
size_t crossEnd;
UInt64 readProcessed;
BoolInt readWasFinished;
UInt64 inProcessed;
unsigned filledThreadStart;
unsigned numFilledThreads;
#ifndef Z7_ST
BoolInt needInterrupt;
UInt64 interruptIndex;
CMtProgress mtProgress;
CMtDecThread threads[MTDEC_THREADS_MAX];
#endif
} CMtDec;
void MtDec_Construct(CMtDec *p);
void MtDec_Destruct(CMtDec *p);
/*
MtDec_Code() returns:
SZ_OK - in most cases
MY_SRes_HRESULT_FROM_WRes(WRes_error) - in case of unexpected error in threading function
*/
SRes MtDec_Code(CMtDec *p);
Byte *MtDec_GetCrossBuff(CMtDec *p);
int MtDec_PrepareRead(CMtDec *p);
const Byte *MtDec_Read(CMtDec *p, size_t *inLim);
#endif
EXTERN_C_END
#endif

146
C/Ppmd.h Normal file → Executable file
View File

@@ -1,15 +1,24 @@
/* Ppmd.h -- PPMD codec common code
2017-04-03 : Igor Pavlov : Public domain
2023-03-05 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#ifndef __PPMD_H
#define __PPMD_H
#ifndef ZIP7_INC_PPMD_H
#define ZIP7_INC_PPMD_H
#include "CpuArch.h"
EXTERN_C_BEGIN
#ifdef MY_CPU_32BIT
#if defined(MY_CPU_SIZEOF_POINTER) && (MY_CPU_SIZEOF_POINTER == 4)
/*
PPMD code always uses 32-bit internal fields in PPMD structures to store internal references in main block.
if (PPMD_32BIT is defined), the PPMD code stores internal pointers to 32-bit reference fields.
if (PPMD_32BIT is NOT defined), the PPMD code stores internal UInt32 offsets to reference fields.
if (pointer size is 64-bit), then (PPMD_32BIT) mode is not allowed,
if (pointer size is 32-bit), then (PPMD_32BIT) mode is optional,
and it's allowed to disable PPMD_32BIT mode even if pointer is 32-bit.
PPMD code works slightly faster in (PPMD_32BIT) mode.
*/
#define PPMD_32BIT
#endif
@@ -28,7 +37,7 @@ EXTERN_C_BEGIN
#define PPMD_N4 ((128 + 3 - 1 * PPMD_N1 - 2 * PPMD_N2 - 3 * PPMD_N3) / 4)
#define PPMD_NUM_INDEXES (PPMD_N1 + PPMD_N2 + PPMD_N3 + PPMD_N4)
#pragma pack(push, 1)
MY_CPU_pragma_pack_push_1
/* Most compilers works OK here even without #pragma pack(push, 1), but some GCC compilers need it. */
/* SEE-contexts for PPM-contexts with masked symbols */
@@ -39,42 +48,117 @@ typedef struct
Byte Count; /* Count to next change of Shift */
} CPpmd_See;
#define Ppmd_See_Update(p) if ((p)->Shift < PPMD_PERIOD_BITS && --(p)->Count == 0) \
{ (p)->Summ <<= 1; (p)->Count = (Byte)(3 << (p)->Shift++); }
#define Ppmd_See_UPDATE(p) \
{ if ((p)->Shift < PPMD_PERIOD_BITS && --(p)->Count == 0) \
{ (p)->Summ = (UInt16)((p)->Summ << 1); \
(p)->Count = (Byte)(3 << (p)->Shift++); }}
typedef struct
{
Byte Symbol;
Byte Freq;
UInt16 SuccessorLow;
UInt16 SuccessorHigh;
UInt16 Successor_0;
UInt16 Successor_1;
} CPpmd_State;
#pragma pack(pop)
typedef struct CPpmd_State2_
{
Byte Symbol;
Byte Freq;
} CPpmd_State2;
typedef
#ifdef PPMD_32BIT
CPpmd_State *
#else
UInt32
#endif
CPpmd_State_Ref;
typedef struct CPpmd_State4_
{
UInt16 Successor_0;
UInt16 Successor_1;
} CPpmd_State4;
typedef
#ifdef PPMD_32BIT
void *
#else
UInt32
#endif
CPpmd_Void_Ref;
MY_CPU_pragma_pop
/*
PPMD code can write full CPpmd_State structure data to CPpmd*_Context
at (byte offset = 2) instead of some fields of original CPpmd*_Context structure.
If we use pointers to different types, but that point to shared
memory space, we can have aliasing problem (strict aliasing).
XLC compiler in -O2 mode can change the order of memory write instructions
in relation to read instructions, if we have use pointers to different types.
To solve that aliasing problem we use combined CPpmd*_Context structure
with unions that contain the fields from both structures:
the original CPpmd*_Context and CPpmd_State.
So we can access the fields from both structures via one pointer,
and the compiler doesn't change the order of write instructions
in relation to read instructions.
If we don't use memory write instructions to shared memory in
some local code, and we use only reading instructions (read only),
then probably it's safe to use pointers to different types for reading.
*/
#ifdef PPMD_32BIT
#define Ppmd_Ref_Type(type) type *
#define Ppmd_GetRef(p, ptr) (ptr)
#define Ppmd_GetPtr(p, ptr) (ptr)
#define Ppmd_GetPtr_Type(p, ptr, note_type) (ptr)
#else
#define Ppmd_Ref_Type(type) UInt32
#define Ppmd_GetRef(p, ptr) ((UInt32)((Byte *)(ptr) - (p)->Base))
#define Ppmd_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd_GetPtr_Type(p, offs, type) ((type *)Ppmd_GetPtr(p, offs))
#endif // PPMD_32BIT
typedef Ppmd_Ref_Type(CPpmd_State) CPpmd_State_Ref;
typedef Ppmd_Ref_Type(void) CPpmd_Void_Ref;
typedef Ppmd_Ref_Type(Byte) CPpmd_Byte_Ref;
/*
#ifdef MY_CPU_LE_UNALIGN
// the unaligned 32-bit access latency can be too large, if the data is not in L1 cache.
#define Ppmd_GET_SUCCESSOR(p) ((CPpmd_Void_Ref)*(const UInt32 *)(const void *)&(p)->Successor_0)
#define Ppmd_SET_SUCCESSOR(p, v) *(UInt32 *)(void *)(void *)&(p)->Successor_0 = (UInt32)(v)
#else
*/
/*
We can write 16-bit halves to 32-bit (Successor) field in any selected order.
But the native order is more consistent way.
So we use the native order, if LE/BE order can be detected here at compile time.
*/
#ifdef MY_CPU_BE
#define Ppmd_GET_SUCCESSOR(p) \
( (CPpmd_Void_Ref) (((UInt32)(p)->Successor_0 << 16) | (p)->Successor_1) )
#define Ppmd_SET_SUCCESSOR(p, v) { \
(p)->Successor_0 = (UInt16)(((UInt32)(v) >> 16) /* & 0xFFFF */); \
(p)->Successor_1 = (UInt16)((UInt32)(v) /* & 0xFFFF */); }
#else
#define Ppmd_GET_SUCCESSOR(p) \
( (CPpmd_Void_Ref) ((p)->Successor_0 | ((UInt32)(p)->Successor_1 << 16)) )
#define Ppmd_SET_SUCCESSOR(p, v) { \
(p)->Successor_0 = (UInt16)((UInt32)(v) /* & 0xFFFF */); \
(p)->Successor_1 = (UInt16)(((UInt32)(v) >> 16) /* & 0xFFFF */); }
#endif
// #endif
typedef
#ifdef PPMD_32BIT
Byte *
#else
UInt32
#endif
CPpmd_Byte_Ref;
#define PPMD_SetAllBitsIn256Bytes(p) \
{ size_t z; for (z = 0; z < 256 / sizeof(p[0]); z += 8) { \

1010
C/Ppmd7.c Normal file → Executable file
View File

File diff suppressed because it is too large Load Diff

181
C/Ppmd7.h Normal file → Executable file
View File

@@ -1,13 +1,11 @@
/* Ppmd7.h -- PPMdH compression codec
2017-04-03 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* Ppmd7.h -- Ppmd7 (PPMdH) compression codec
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* This code supports virtual RangeDecoder and includes the implementation
of RangeCoder from 7z, instead of RangeCoder from original PPMd var.H.
If you need the compatibility with original PPMd var.H, you can use external RangeDecoder */
#ifndef __PPMD7_H
#define __PPMD7_H
#ifndef ZIP7_INC_PPMD7_H
#define ZIP7_INC_PPMD7_H
#include "Ppmd.h"
@@ -21,23 +19,56 @@ EXTERN_C_BEGIN
struct CPpmd7_Context_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Context_ *
#else
UInt32
#endif
CPpmd7_Context_Ref;
typedef Ppmd_Ref_Type(struct CPpmd7_Context_) CPpmd7_Context_Ref;
// MY_CPU_pragma_pack_push_1
typedef struct CPpmd7_Context_
{
UInt16 NumStats;
UInt16 SummFreq;
CPpmd_State_Ref Stats;
union
{
UInt16 SummFreq;
CPpmd_State2 State2;
} Union2;
union
{
CPpmd_State_Ref Stats;
CPpmd_State4 State4;
} Union4;
CPpmd7_Context_Ref Suffix;
} CPpmd7_Context;
#define Ppmd7Context_OneState(p) ((CPpmd_State *)&(p)->SummFreq)
// MY_CPU_pragma_pop
#define Ppmd7Context_OneState(p) ((CPpmd_State *)&(p)->Union2)
typedef struct
{
UInt32 Range;
UInt32 Code;
UInt32 Low;
IByteInPtr Stream;
} CPpmd7_RangeDec;
typedef struct
{
UInt32 Range;
Byte Cache;
// Byte _dummy_[3];
UInt64 Low;
UInt64 CacheSize;
IByteOutPtr Stream;
} CPpmd7z_RangeEnc;
typedef struct
{
@@ -48,19 +79,32 @@ typedef struct
UInt32 Size;
UInt32 GlueCount;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 AlignOffset;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
Byte Indx2Units[PPMD_NUM_INDEXES];
union
{
CPpmd7_RangeDec dec;
CPpmd7z_RangeEnc enc;
} rc;
Byte Indx2Units[PPMD_NUM_INDEXES + 2]; // +2 for alignment
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
Byte NS2Indx[256], NS2BSIndx[256], HB2Flag[256];
Byte NS2BSIndx[256], NS2Indx[256];
Byte ExpEscape[16];
CPpmd_See DummySee, See[25][16];
UInt16 BinSumm[128][64];
// int LastSymbol;
} CPpmd7;
void Ppmd7_Construct(CPpmd7 *p);
Bool Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAllocPtr alloc);
BoolInt Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAllocPtr alloc);
void Ppmd7_Free(CPpmd7 *p, ISzAllocPtr alloc);
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder);
#define Ppmd7_WasAllocated(p) ((p)->Base != NULL)
@@ -68,74 +112,69 @@ void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder);
/* ---------- Internal Functions ---------- */
extern const Byte PPMD7_kExpEscape[16];
#ifdef PPMD_32BIT
#define Ppmd7_GetPtr(p, ptr) (ptr)
#define Ppmd7_GetContext(p, ptr) (ptr)
#define Ppmd7_GetStats(p, ctx) ((ctx)->Stats)
#else
#define Ppmd7_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd7_GetContext(p, offs) ((CPpmd7_Context *)Ppmd7_GetPtr((p), (offs)))
#define Ppmd7_GetStats(p, ctx) ((CPpmd_State *)Ppmd7_GetPtr((p), ((ctx)->Stats)))
#endif
#define Ppmd7_GetPtr(p, ptr) Ppmd_GetPtr(p, ptr)
#define Ppmd7_GetContext(p, ptr) Ppmd_GetPtr_Type(p, ptr, CPpmd7_Context)
#define Ppmd7_GetStats(p, ctx) Ppmd_GetPtr_Type(p, (ctx)->Union4.Stats, CPpmd_State)
void Ppmd7_Update1(CPpmd7 *p);
void Ppmd7_Update1_0(CPpmd7 *p);
void Ppmd7_Update2(CPpmd7 *p);
void Ppmd7_UpdateBin(CPpmd7 *p);
#define PPMD7_HiBitsFlag_3(sym) ((((unsigned)sym + 0xC0) >> (8 - 3)) & (1 << 3))
#define PPMD7_HiBitsFlag_4(sym) ((((unsigned)sym + 0xC0) >> (8 - 4)) & (1 << 4))
// #define PPMD7_HiBitsFlag_3(sym) ((sym) < 0x40 ? 0 : (1 << 3))
// #define PPMD7_HiBitsFlag_4(sym) ((sym) < 0x40 ? 0 : (1 << 4))
#define Ppmd7_GetBinSumm(p) \
&p->BinSumm[(size_t)(unsigned)Ppmd7Context_OneState(p->MinContext)->Freq - 1][p->PrevSuccess + \
p->NS2BSIndx[(size_t)Ppmd7_GetContext(p, p->MinContext->Suffix)->NumStats - 1] + \
(p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol]) + \
2 * p->HB2Flag[(unsigned)Ppmd7Context_OneState(p->MinContext)->Symbol] + \
((p->RunLength >> 26) & 0x20)]
&p->BinSumm[(size_t)(unsigned)Ppmd7Context_OneState(p->MinContext)->Freq - 1] \
[ p->PrevSuccess + ((p->RunLength >> 26) & 0x20) \
+ p->NS2BSIndx[(size_t)Ppmd7_GetContext(p, p->MinContext->Suffix)->NumStats - 1] \
+ PPMD7_HiBitsFlag_4(Ppmd7Context_OneState(p->MinContext)->Symbol) \
+ (p->HiBitsFlag = PPMD7_HiBitsFlag_3(p->FoundState->Symbol)) ]
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *scale);
/*
We support two versions of Ppmd7 (PPMdH) methods that use same CPpmd7 structure:
1) Ppmd7a_*: original PPMdH
2) Ppmd7z_*: modified PPMdH with 7z Range Coder
Ppmd7_*: the structures and functions that are common for both versions of PPMd7 (PPMdH)
*/
/* ---------- Decode ---------- */
typedef struct IPpmd7_RangeDec IPpmd7_RangeDec;
#define PPMD7_SYM_END (-1)
#define PPMD7_SYM_ERROR (-2)
struct IPpmd7_RangeDec
{
UInt32 (*GetThreshold)(const IPpmd7_RangeDec *p, UInt32 total);
void (*Decode)(const IPpmd7_RangeDec *p, UInt32 start, UInt32 size);
UInt32 (*DecodeBit)(const IPpmd7_RangeDec *p, UInt32 size0);
};
/*
You must set (CPpmd7::rc.dec.Stream) before Ppmd7*_RangeDec_Init()
typedef struct
{
IPpmd7_RangeDec vt;
UInt32 Range;
UInt32 Code;
IByteIn *Stream;
} CPpmd7z_RangeDec;
Ppmd7*_DecodeSymbol()
out:
>= 0 : decoded byte
-1 : PPMD7_SYM_END : End of payload marker
-2 : PPMD7_SYM_ERROR : Data error
*/
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p);
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p);
/* Ppmd7a_* : original PPMdH */
BoolInt Ppmd7a_RangeDec_Init(CPpmd7_RangeDec *p);
#define Ppmd7a_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7a_DecodeSymbol(CPpmd7 *p);
/* Ppmd7z_* : modified PPMdH with 7z Range Coder */
BoolInt Ppmd7z_RangeDec_Init(CPpmd7_RangeDec *p);
#define Ppmd7z_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7_DecodeSymbol(CPpmd7 *p, const IPpmd7_RangeDec *rc);
int Ppmd7z_DecodeSymbol(CPpmd7 *p);
// Byte *Ppmd7z_DecodeSymbols(CPpmd7 *p, Byte *buf, const Byte *lim);
/* ---------- Encode ---------- */
typedef struct
{
UInt64 Low;
UInt32 Range;
Byte Cache;
UInt64 CacheSize;
IByteOut *Stream;
} CPpmd7z_RangeEnc;
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p);
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p);
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol);
void Ppmd7z_Init_RangeEnc(CPpmd7 *p);
void Ppmd7z_Flush_RangeEnc(CPpmd7 *p);
// void Ppmd7z_EncodeSymbol(CPpmd7 *p, int symbol);
void Ppmd7z_EncodeSymbols(CPpmd7 *p, const Byte *buf, const Byte *lim);
EXTERN_C_END

361
C/Ppmd7Dec.c Normal file → Executable file
View File

@@ -1,191 +1,312 @@
/* Ppmd7Dec.c -- PPMdH Decoder
2017-04-03 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* Ppmd7Dec.c -- Ppmd7z (PPMdH with 7z Range Coder) Decoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTopValue (1 << 24)
#define kTopValue ((UInt32)1 << 24)
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p)
#define READ_BYTE(p) IByteIn_Read((p)->Stream)
BoolInt Ppmd7z_RangeDec_Init(CPpmd7_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
if (IByteIn_Read(p->Stream) != 0)
if (READ_BYTE(p) != 0)
return False;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | IByteIn_Read(p->Stream);
p->Code = (p->Code << 8) | READ_BYTE(p);
return (p->Code < 0xFFFFFFFF);
}
#define GET_Ppmd7z_RangeDec CPpmd7z_RangeDec *p = CONTAINER_FROM_VTBL(pp, CPpmd7z_RangeDec, vt);
static UInt32 Range_GetThreshold(const IPpmd7_RangeDec *pp, UInt32 total)
#define RC_NORM_BASE(p) if ((p)->Range < kTopValue) \
{ (p)->Code = ((p)->Code << 8) | READ_BYTE(p); (p)->Range <<= 8;
#define RC_NORM_1(p) RC_NORM_BASE(p) }
#define RC_NORM(p) RC_NORM_BASE(p) RC_NORM_BASE(p) }}
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
#define R (&p->rc.dec)
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd7z_RD_Decode(CPpmd7 *p, UInt32 start, UInt32 size)
{
GET_Ppmd7z_RangeDec
return p->Code / (p->Range /= total);
R->Code -= start * R->Range;
R->Range *= size;
RC_NORM_LOCAL(R)
}
static void Range_Normalize(CPpmd7z_RangeDec *p)
{
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | IByteIn_Read(p->Stream);
p->Range <<= 8;
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | IByteIn_Read(p->Stream);
p->Range <<= 8;
}
}
}
static void Range_Decode(const IPpmd7_RangeDec *pp, UInt32 start, UInt32 size)
{
GET_Ppmd7z_RangeDec
p->Code -= start * p->Range;
p->Range *= size;
Range_Normalize(p);
}
static UInt32 Range_DecodeBit(const IPpmd7_RangeDec *pp, UInt32 size0)
{
GET_Ppmd7z_RangeDec
UInt32 newBound = (p->Range >> 14) * size0;
UInt32 symbol;
if (p->Code < newBound)
{
symbol = 0;
p->Range = newBound;
}
else
{
symbol = 1;
p->Code -= newBound;
p->Range -= newBound;
}
Range_Normalize(p);
return symbol;
}
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p)
{
p->vt.GetThreshold = Range_GetThreshold;
p->vt.Decode = Range_Decode;
p->vt.DecodeBit = Range_DecodeBit;
}
#define RC_Decode(start, size) Ppmd7z_RD_Decode(p, start, size);
#define RC_DecodeFinal(start, size) RC_Decode(start, size) RC_NORM_REMOTE(R)
#define RC_GetThreshold(total) (R->Code / (R->Range /= (total)))
#define MASK(sym) ((signed char *)charMask)[sym]
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
// typedef CPpmd7_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd7_UpdateModel(CPpmd7 *p);
int Ppmd7_DecodeSymbol(CPpmd7 *p, const IPpmd7_RangeDec *rc)
#define MASK(sym) ((unsigned char *)charMask)[sym]
// Z7_FORCE_INLINE
// static
int Ppmd7z_DecodeSymbol(CPpmd7 *p)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
if ((count = rc->GetThreshold(rc, p->MinContext->SummFreq)) < (hiCnt = s->Freq))
const UInt32 summFreq = p->MinContext->Union2.SummFreq;
count = RC_GetThreshold(summFreq);
hiCnt = count;
if ((Int32)(count -= s->Freq) < 0)
{
Byte symbol;
rc->Decode(rc, 0, s->Freq);
Byte sym;
RC_DecodeFinal(0, s->Freq)
p->FoundState = s;
symbol = s->Symbol;
sym = s->Symbol;
Ppmd7_Update1_0(p);
return symbol;
return sym;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats - 1;
i = (unsigned)p->MinContext->NumStats - 1;
do
{
if ((hiCnt += (++s)->Freq) > count)
if ((Int32)(count -= (++s)->Freq) < 0)
{
Byte symbol;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
Byte sym;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
p->FoundState = s;
symbol = s->Symbol;
sym = s->Symbol;
Ppmd7_Update1(p);
return symbol;
return sym;
}
}
while (--i);
if (count >= p->MinContext->SummFreq)
return -2;
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
rc->Decode(rc, hiCnt, p->MinContext->SummFreq - hiCnt);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do { MASK((--s)->Symbol) = 0; } while (--i);
if (hiCnt >= summFreq)
return PPMD7_SYM_ERROR;
hiCnt -= count;
RC_Decode(hiCnt, summFreq - hiCnt)
p->HiBitsFlag = PPMD7_HiBitsFlag_3(p->FoundState->Symbol);
PPMD_SetAllBitsIn256Bytes(charMask)
// i = p->MinContext->NumStats - 1;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd7_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
CPpmd_State *s = Ppmd7Context_OneState(p->MinContext);
UInt16 *prob = Ppmd7_GetBinSumm(p);
if (rc->DecodeBit(rc, *prob) == 0)
UInt32 pr = *prob;
UInt32 size0 = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (R->Code < size0)
{
Byte symbol;
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
symbol = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
Ppmd7_UpdateBin(p);
return symbol;
Byte sym;
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeDec_DecodeBit0(size0);
R->Range = size0;
RC_NORM_1(R)
/* we can use single byte normalization here because of
(min(BinSumm[][]) = 95) > (1 << (14 - 8)) */
// sym = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
// Ppmd7_UpdateBin(p);
{
unsigned freq = s->Freq;
CPpmd7_Context *c = CTX(SUCCESSOR(s));
sym = s->Symbol;
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 128));
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c > p->Text)
p->MaxContext = p->MinContext = c;
else
Ppmd7_UpdateModel(p);
}
return sym;
}
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeDec_DecodeBit1(size0);
R->Code -= size0;
R->Range -= size0;
RC_NORM_LOCAL(R)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *ps[256], *s;
CPpmd_State *s, *s2;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
unsigned i, num, numMasked = p->MinContext->NumStats;
CPpmd7_Context *mc;
unsigned numMasked;
RC_NORM_REMOTE(R)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return -1;
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
if (!mc->Suffix)
return PPMD7_SYM_END;
mc = Ppmd7_GetContext(p, mc->Suffix);
}
while (p->MinContext->NumStats == numMasked);
hiCnt = 0;
s = Ppmd7_GetStats(p, p->MinContext);
i = 0;
num = p->MinContext->NumStats - numMasked;
do
{
int k = (int)(MASK(s->Symbol));
hiCnt += (s->Freq & k);
ps[i] = s++;
i -= k;
}
while (i != num);
while (mc->NumStats == numMasked);
s = Ppmd7_GetStats(p, mc);
{
unsigned num = mc->NumStats;
unsigned num2 = num / 2;
num &= 1;
hiCnt = (s->Freq & (unsigned)(MASK(s->Symbol))) & (0 - (UInt32)num);
s += num;
p->MinContext = mc;
do
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
hiCnt += (s[-2].Freq & (unsigned)(MASK(sym0)));
hiCnt += (s[-1].Freq & (unsigned)(MASK(sym1)));
}
while (--num2);
}
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = rc->GetThreshold(rc, freqSum);
count = RC_GetThreshold(freqSum);
if (count < hiCnt)
{
Byte symbol;
CPpmd_State **pps = ps;
for (hiCnt = 0; (hiCnt += (*pps)->Freq) <= count; pps++);
s = *pps;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
Ppmd_See_Update(see);
Byte sym;
s = Ppmd7_GetStats(p, p->MinContext);
hiCnt = count;
// count -= s->Freq & (unsigned)(MASK(s->Symbol));
// if ((Int32)count >= 0)
{
for (;;)
{
count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
// count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
}
}
s--;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
// new (see->Summ) value can overflow over 16-bits in some rare cases
Ppmd_See_UPDATE(see)
p->FoundState = s;
symbol = s->Symbol;
sym = s->Symbol;
Ppmd7_Update2(p);
return symbol;
return sym;
}
if (count >= freqSum)
return -2;
rc->Decode(rc, hiCnt, freqSum - hiCnt);
return PPMD7_SYM_ERROR;
RC_Decode(hiCnt, freqSum - hiCnt)
// We increase (see->Summ) for sum of Freqs of all non_Masked symbols.
// new (see->Summ) value can overflow over 16-bits in some rare cases
see->Summ = (UInt16)(see->Summ + freqSum);
do { MASK(ps[--i]->Symbol) = 0; } while (i != 0);
s = Ppmd7_GetStats(p, p->MinContext);
s2 = s + p->MinContext->NumStats;
do
{
MASK(s->Symbol) = 0;
s++;
}
while (s != s2);
}
}
/*
Byte *Ppmd7z_DecodeSymbols(CPpmd7 *p, Byte *buf, const Byte *lim)
{
int sym = 0;
if (buf != lim)
do
{
sym = Ppmd7z_DecodeSymbol(p);
if (sym < 0)
break;
*buf = (Byte)sym;
}
while (++buf < lim);
p->LastSymbol = sym;
return buf;
}
*/
#undef kTopValue
#undef READ_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Decode
#undef RC_DecodeFinal
#undef RC_GetThreshold
#undef CTX
#undef SUCCESSOR
#undef MASK

345
C/Ppmd7Enc.c Normal file → Executable file
View File

@@ -1,104 +1,123 @@
/* Ppmd7Enc.c -- PPMdH Encoder
2017-04-03 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* Ppmd7Enc.c -- Ppmd7z (PPMdH with 7z Range Coder) Encoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTopValue (1 << 24)
#define kTopValue ((UInt32)1 << 24)
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p)
#define R (&p->rc.enc)
void Ppmd7z_Init_RangeEnc(CPpmd7 *p)
{
p->Low = 0;
p->Range = 0xFFFFFFFF;
p->Cache = 0;
p->CacheSize = 1;
R->Low = 0;
R->Range = 0xFFFFFFFF;
R->Cache = 0;
R->CacheSize = 1;
}
static void RangeEnc_ShiftLow(CPpmd7z_RangeEnc *p)
Z7_NO_INLINE
static void Ppmd7z_RangeEnc_ShiftLow(CPpmd7 *p)
{
if ((UInt32)p->Low < (UInt32)0xFF000000 || (unsigned)(p->Low >> 32) != 0)
if ((UInt32)R->Low < (UInt32)0xFF000000 || (unsigned)(R->Low >> 32) != 0)
{
Byte temp = p->Cache;
Byte temp = R->Cache;
do
{
IByteOut_Write(p->Stream, (Byte)(temp + (Byte)(p->Low >> 32)));
IByteOut_Write(R->Stream, (Byte)(temp + (Byte)(R->Low >> 32)));
temp = 0xFF;
}
while (--p->CacheSize != 0);
p->Cache = (Byte)((UInt32)p->Low >> 24);
while (--R->CacheSize != 0);
R->Cache = (Byte)((UInt32)R->Low >> 24);
}
p->CacheSize++;
p->Low = (UInt32)p->Low << 8;
R->CacheSize++;
R->Low = (UInt32)((UInt32)R->Low << 8);
}
static void RangeEnc_Encode(CPpmd7z_RangeEnc *p, UInt32 start, UInt32 size, UInt32 total)
#define RC_NORM_BASE(p) if (R->Range < kTopValue) { R->Range <<= 8; Ppmd7z_RangeEnc_ShiftLow(p);
#define RC_NORM_1(p) RC_NORM_BASE(p) }
#define RC_NORM(p) RC_NORM_BASE(p) RC_NORM_BASE(p) }}
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
/*
#define Ppmd7z_RangeEnc_Encode(p, start, _size_) \
{ UInt32 size = _size_; \
R->Low += start * R->Range; \
R->Range *= size; \
RC_NORM_LOCAL(p); }
*/
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd7z_RangeEnc_Encode(CPpmd7 *p, UInt32 start, UInt32 size)
{
p->Low += start * (p->Range /= total);
p->Range *= size;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
R->Low += start * R->Range;
R->Range *= size;
RC_NORM_LOCAL(p)
}
static void RangeEnc_EncodeBit_0(CPpmd7z_RangeEnc *p, UInt32 size0)
{
p->Range = (p->Range >> 14) * size0;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
}
static void RangeEnc_EncodeBit_1(CPpmd7z_RangeEnc *p, UInt32 size0)
{
UInt32 newBound = (p->Range >> 14) * size0;
p->Low += newBound;
p->Range -= newBound;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
}
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p)
void Ppmd7z_Flush_RangeEnc(CPpmd7 *p)
{
unsigned i;
for (i = 0; i < 5; i++)
RangeEnc_ShiftLow(p);
Ppmd7z_RangeEnc_ShiftLow(p);
}
#define MASK(sym) ((signed char *)charMask)[sym]
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol)
#define RC_Encode(start, size) Ppmd7z_RangeEnc_Encode(p, start, size);
#define RC_EncodeFinal(start, size) RC_Encode(start, size) RC_NORM_REMOTE(p)
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
#define SUFFIX(ctx) CTX((ctx)->Suffix)
// typedef CPpmd7_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd7_UpdateModel(CPpmd7 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
Z7_FORCE_INLINE
static
void Ppmd7z_EncodeSymbol(CPpmd7 *p, int symbol)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
UInt32 sum;
unsigned i;
R->Range /= p->MinContext->Union2.SummFreq;
if (s->Symbol == symbol)
{
RangeEnc_Encode(rc, 0, s->Freq, p->MinContext->SummFreq);
// R->Range /= p->MinContext->Union2.SummFreq;
RC_EncodeFinal(0, s->Freq)
p->FoundState = s;
Ppmd7_Update1_0(p);
return;
}
p->PrevSuccess = 0;
sum = s->Freq;
i = p->MinContext->NumStats - 1;
i = (unsigned)p->MinContext->NumStats - 1;
do
{
if ((++s)->Symbol == symbol)
{
RangeEnc_Encode(rc, sum, s->Freq, p->MinContext->SummFreq);
// R->Range /= p->MinContext->Union2.SummFreq;
RC_EncodeFinal(sum, s->Freq)
p->FoundState = s;
Ppmd7_Update1(p);
return;
@@ -106,82 +125,214 @@ void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol)
sum += s->Freq;
}
while (--i);
// R->Range /= p->MinContext->Union2.SummFreq;
RC_Encode(sum, p->MinContext->Union2.SummFreq - sum)
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do { MASK((--s)->Symbol) = 0; } while (--i);
RangeEnc_Encode(rc, sum, p->MinContext->SummFreq - sum, p->MinContext->SummFreq);
p->HiBitsFlag = PPMD7_HiBitsFlag_3(p->FoundState->Symbol);
PPMD_SetAllBitsIn256Bytes(charMask)
// MASK(s->Symbol) = 0;
// i = p->MinContext->NumStats - 1;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd7_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
UInt16 *prob = Ppmd7_GetBinSumm(p);
CPpmd_State *s = Ppmd7Context_OneState(p->MinContext);
UInt32 pr = *prob;
const UInt32 bound = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (s->Symbol == symbol)
{
RangeEnc_EncodeBit_0(rc, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
p->FoundState = s;
Ppmd7_UpdateBin(p);
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeEnc_EncodeBit_0(p, bound);
R->Range = bound;
RC_NORM_1(p)
// p->FoundState = s;
// Ppmd7_UpdateBin(p);
{
const unsigned freq = s->Freq;
CPpmd7_Context *c = CTX(SUCCESSOR(s));
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 128));
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c > p->Text)
p->MaxContext = p->MinContext = c;
else
Ppmd7_UpdateModel(p);
}
return;
}
else
{
RangeEnc_EncodeBit_1(rc, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeEnc_EncodeBit_1(p, bound);
R->Low += bound;
R->Range -= bound;
RC_NORM_LOCAL(p)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
UInt32 escFreq;
CPpmd_See *see;
CPpmd_State *s;
UInt32 sum;
unsigned i, numMasked = p->MinContext->NumStats;
UInt32 sum, escFreq;
CPpmd7_Context *mc;
unsigned i, numMasked;
RC_NORM_REMOTE(p)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
if (!mc->Suffix)
return; /* EndMarker (symbol = -1) */
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
mc = Ppmd7_GetContext(p, mc->Suffix);
i = mc->NumStats;
}
while (p->MinContext->NumStats == numMasked);
while (i == numMasked);
p->MinContext = mc;
see = Ppmd7_MakeEscFreq(p, numMasked, &escFreq);
s = Ppmd7_GetStats(p, p->MinContext);
// see = Ppmd7_MakeEscFreq(p, numMasked, &escFreq);
{
if (i != 256)
{
unsigned nonMasked = i - numMasked;
see = p->See[(unsigned)p->NS2Indx[(size_t)nonMasked - 1]]
+ p->HiBitsFlag
+ (nonMasked < (unsigned)SUFFIX(mc)->NumStats - i)
+ 2 * (unsigned)(mc->Union2.SummFreq < 11 * i)
+ 4 * (unsigned)(numMasked > nonMasked);
{
// if (see->Summ) field is larger than 16-bit, we need only low 16 bits of Summ
unsigned summ = (UInt16)see->Summ; // & 0xFFFF
unsigned r = (summ >> see->Shift);
see->Summ = (UInt16)(summ - r);
escFreq = r + (r == 0);
}
}
else
{
see = &p->DummySee;
escFreq = 1;
}
}
s = Ppmd7_GetStats(p, mc);
sum = 0;
i = p->MinContext->NumStats;
// i = mc->NumStats;
do
{
int cur = s->Symbol;
if (cur == symbol)
const unsigned cur = s->Symbol;
if ((int)cur == symbol)
{
UInt32 low = sum;
CPpmd_State *s1 = s;
do
const UInt32 low = sum;
const UInt32 freq = s->Freq;
unsigned num2;
Ppmd_See_UPDATE(see)
p->FoundState = s;
sum += escFreq;
num2 = i / 2;
i &= 1;
sum += freq & (0 - (UInt32)i);
if (num2 != 0)
{
sum += (s->Freq & (int)(MASK(s->Symbol)));
s++;
s += i;
for (;;)
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
sum += (s[-2].Freq & (unsigned)(MASK(sym0)));
sum += (s[-1].Freq & (unsigned)(MASK(sym1)));
if (--num2 == 0)
break;
}
}
while (--i);
RangeEnc_Encode(rc, low, s1->Freq, sum + escFreq);
Ppmd_See_Update(see);
p->FoundState = s1;
R->Range /= sum;
RC_EncodeFinal(low, freq)
Ppmd7_Update2(p);
return;
}
sum += (s->Freq & (int)(MASK(cur)));
MASK(cur) = 0;
sum += (s->Freq & (unsigned)(MASK(cur)));
s++;
}
while (--i);
RangeEnc_Encode(rc, sum, escFreq, sum + escFreq);
see->Summ = (UInt16)(see->Summ + sum + escFreq);
{
const UInt32 total = sum + escFreq;
see->Summ = (UInt16)(see->Summ + total);
R->Range /= total;
RC_Encode(sum, escFreq)
}
{
const CPpmd_State *s2 = Ppmd7_GetStats(p, p->MinContext);
s--;
MASK(s->Symbol) = 0;
do
{
const unsigned sym0 = s2[0].Symbol;
const unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
}
void Ppmd7z_EncodeSymbols(CPpmd7 *p, const Byte *buf, const Byte *lim)
{
for (; buf < lim; buf++)
{
Ppmd7z_EncodeSymbol(p, *buf);
}
}
#undef kTopValue
#undef WRITE_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Encode
#undef RC_EncodeFinal
#undef SUFFIX
#undef CTX
#undef SUCCESSOR
#undef MASK

295
C/Ppmd7aDec.c Executable file
View File

@@ -0,0 +1,295 @@
/* Ppmd7aDec.c -- PPMd7a (PPMdH) Decoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.H (2001): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTop ((UInt32)1 << 24)
#define kBot ((UInt32)1 << 15)
#define READ_BYTE(p) IByteIn_Read((p)->Stream)
BoolInt Ppmd7a_RangeDec_Init(CPpmd7_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
p->Low = 0;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | READ_BYTE(p);
return (p->Code < 0xFFFFFFFF);
}
#define RC_NORM(p) \
while ((p->Low ^ (p->Low + p->Range)) < kTop \
|| (p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1))) { \
p->Code = (p->Code << 8) | READ_BYTE(p); \
p->Range <<= 8; p->Low <<= 8; }
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
#define R (&p->rc.dec)
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd7a_RD_Decode(CPpmd7 *p, UInt32 start, UInt32 size)
{
start *= R->Range;
R->Low += start;
R->Code -= start;
R->Range *= size;
RC_NORM_LOCAL(R)
}
#define RC_Decode(start, size) Ppmd7a_RD_Decode(p, start, size);
#define RC_DecodeFinal(start, size) RC_Decode(start, size) RC_NORM_REMOTE(R)
#define RC_GetThreshold(total) (R->Code / (R->Range /= (total)))
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
typedef CPpmd7_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd7_UpdateModel(CPpmd7 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
int Ppmd7a_DecodeSymbol(CPpmd7 *p)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
const UInt32 summFreq = p->MinContext->Union2.SummFreq;
if (summFreq > R->Range)
return PPMD7_SYM_ERROR;
count = RC_GetThreshold(summFreq);
hiCnt = count;
if ((Int32)(count -= s->Freq) < 0)
{
Byte sym;
RC_DecodeFinal(0, s->Freq)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update1_0(p);
return sym;
}
p->PrevSuccess = 0;
i = (unsigned)p->MinContext->NumStats - 1;
do
{
if ((Int32)(count -= (++s)->Freq) < 0)
{
Byte sym;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update1(p);
return sym;
}
}
while (--i);
if (hiCnt >= summFreq)
return PPMD7_SYM_ERROR;
hiCnt -= count;
RC_Decode(hiCnt, summFreq - hiCnt)
p->HiBitsFlag = PPMD7_HiBitsFlag_3(p->FoundState->Symbol);
PPMD_SetAllBitsIn256Bytes(charMask)
// i = p->MinContext->NumStats - 1;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd7_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
CPpmd_State *s = Ppmd7Context_OneState(p->MinContext);
UInt16 *prob = Ppmd7_GetBinSumm(p);
UInt32 pr = *prob;
UInt32 size0 = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (R->Code < size0)
{
Byte sym;
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeDec_DecodeBit0(size0);
R->Range = size0;
RC_NORM(R)
// sym = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
// Ppmd7_UpdateBin(p);
{
unsigned freq = s->Freq;
CTX_PTR c = CTX(SUCCESSOR(s));
sym = s->Symbol;
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 128));
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c > p->Text)
p->MaxContext = p->MinContext = c;
else
Ppmd7_UpdateModel(p);
}
return sym;
}
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeDec_DecodeBit1(size0);
R->Low += size0;
R->Code -= size0;
R->Range = (R->Range & ~((UInt32)PPMD_BIN_SCALE - 1)) - size0;
RC_NORM_LOCAL(R)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *s, *s2;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
CPpmd7_Context *mc;
unsigned numMasked;
RC_NORM_REMOTE(R)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!mc->Suffix)
return PPMD7_SYM_END;
mc = Ppmd7_GetContext(p, mc->Suffix);
}
while (mc->NumStats == numMasked);
s = Ppmd7_GetStats(p, mc);
{
unsigned num = mc->NumStats;
unsigned num2 = num / 2;
num &= 1;
hiCnt = (s->Freq & (unsigned)(MASK(s->Symbol))) & (0 - (UInt32)num);
s += num;
p->MinContext = mc;
do
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
hiCnt += (s[-2].Freq & (unsigned)(MASK(sym0)));
hiCnt += (s[-1].Freq & (unsigned)(MASK(sym1)));
}
while (--num2);
}
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
if (freqSum > R->Range)
return PPMD7_SYM_ERROR;
count = RC_GetThreshold(freqSum);
if (count < hiCnt)
{
Byte sym;
s = Ppmd7_GetStats(p, p->MinContext);
hiCnt = count;
// count -= s->Freq & (unsigned)(MASK(s->Symbol));
// if ((Int32)count >= 0)
{
for (;;)
{
count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
// count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
}
}
s--;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
// new (see->Summ) value can overflow over 16-bits in some rare cases
Ppmd_See_UPDATE(see)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update2(p);
return sym;
}
if (count >= freqSum)
return PPMD7_SYM_ERROR;
RC_Decode(hiCnt, freqSum - hiCnt)
// We increase (see->Summ) for sum of Freqs of all non_Masked symbols.
// new (see->Summ) value can overflow over 16-bits in some rare cases
see->Summ = (UInt16)(see->Summ + freqSum);
s = Ppmd7_GetStats(p, p->MinContext);
s2 = s + p->MinContext->NumStats;
do
{
MASK(s->Symbol) = 0;
s++;
}
while (s != s2);
}
}
#undef kTop
#undef kBot
#undef READ_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Decode
#undef RC_DecodeFinal
#undef RC_GetThreshold
#undef CTX
#undef SUCCESSOR
#undef MASK

1308
C/Ppmd8.c Normal file → Executable file
View File

File diff suppressed because it is too large Load Diff

138
C/Ppmd8.h Normal file → Executable file
View File

@@ -1,11 +1,11 @@
/* Ppmd8.h -- PPMdI codec
2017-04-03 : Igor Pavlov : Public domain
/* Ppmd8.h -- Ppmd8 (PPMdI) compression codec
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#ifndef __PPMD8_H
#define __PPMD8_H
#ifndef ZIP7_INC_PPMD8_H
#define ZIP7_INC_PPMD8_H
#include "Ppmd.h"
@@ -14,35 +14,45 @@ EXTERN_C_BEGIN
#define PPMD8_MIN_ORDER 2
#define PPMD8_MAX_ORDER 16
struct CPpmd8_Context_;
typedef
#ifdef PPMD_32BIT
struct CPpmd8_Context_ *
#else
UInt32
#endif
CPpmd8_Context_Ref;
typedef Ppmd_Ref_Type(struct CPpmd8_Context_) CPpmd8_Context_Ref;
#pragma pack(push, 1)
// MY_CPU_pragma_pack_push_1
typedef struct CPpmd8_Context_
{
Byte NumStats;
Byte Flags;
UInt16 SummFreq;
CPpmd_State_Ref Stats;
union
{
UInt16 SummFreq;
CPpmd_State2 State2;
} Union2;
union
{
CPpmd_State_Ref Stats;
CPpmd_State4 State4;
} Union4;
CPpmd8_Context_Ref Suffix;
} CPpmd8_Context;
#pragma pack(pop)
// MY_CPU_pragma_pop
#define Ppmd8Context_OneState(p) ((CPpmd_State *)&(p)->SummFreq)
#define Ppmd8Context_OneState(p) ((CPpmd_State *)&(p)->Union2)
/* The BUG in Shkarin's code for FREEZE mode was fixed, but that fixed
code is not compatible with original code for some files compressed
/* PPMdI code rev.2 contains the fix over PPMdI code rev.1.
But the code PPMdI.2 is not compatible with PPMdI.1 for some files compressed
in FREEZE mode. So we disable FREEZE mode support. */
// #define PPMD8_FREEZE_SUPPORT
enum
{
PPMD8_RESTORE_METHOD_RESTART,
@@ -50,43 +60,51 @@ enum
#ifdef PPMD8_FREEZE_SUPPORT
, PPMD8_RESTORE_METHOD_FREEZE
#endif
, PPMD8_RESTORE_METHOD_UNSUPPPORTED
};
typedef struct
{
CPpmd8_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder, RestoreMethod;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 AlignOffset;
unsigned RestoreMethod;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
/* Range Coder */
UInt32 Range;
UInt32 Code;
UInt32 Low;
union
{
IByteIn *In;
IByteOut *Out;
IByteInPtr In;
IByteOutPtr Out;
} Stream;
Byte Indx2Units[PPMD_NUM_INDEXES];
Byte Indx2Units[PPMD_NUM_INDEXES + 2]; // +2 for alignment
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
UInt32 Stamps[PPMD_NUM_INDEXES];
Byte NS2BSIndx[256], NS2Indx[260];
Byte ExpEscape[16];
CPpmd_See DummySee, See[24][32];
UInt16 BinSumm[25][64];
} CPpmd8;
void Ppmd8_Construct(CPpmd8 *p);
Bool Ppmd8_Alloc(CPpmd8 *p, UInt32 size, ISzAllocPtr alloc);
BoolInt Ppmd8_Alloc(CPpmd8 *p, UInt32 size, ISzAllocPtr alloc);
void Ppmd8_Free(CPpmd8 *p, ISzAllocPtr alloc);
void Ppmd8_Init(CPpmd8 *p, unsigned maxOrder, unsigned restoreMethod);
#define Ppmd8_WasAllocated(p) ((p)->Base != NULL)
@@ -94,43 +112,69 @@ void Ppmd8_Init(CPpmd8 *p, unsigned maxOrder, unsigned restoreMethod);
/* ---------- Internal Functions ---------- */
extern const Byte PPMD8_kExpEscape[16];
#ifdef PPMD_32BIT
#define Ppmd8_GetPtr(p, ptr) (ptr)
#define Ppmd8_GetContext(p, ptr) (ptr)
#define Ppmd8_GetStats(p, ctx) ((ctx)->Stats)
#else
#define Ppmd8_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd8_GetContext(p, offs) ((CPpmd8_Context *)Ppmd8_GetPtr((p), (offs)))
#define Ppmd8_GetStats(p, ctx) ((CPpmd_State *)Ppmd8_GetPtr((p), ((ctx)->Stats)))
#endif
#define Ppmd8_GetPtr(p, ptr) Ppmd_GetPtr(p, ptr)
#define Ppmd8_GetContext(p, ptr) Ppmd_GetPtr_Type(p, ptr, CPpmd8_Context)
#define Ppmd8_GetStats(p, ctx) Ppmd_GetPtr_Type(p, (ctx)->Union4.Stats, CPpmd_State)
void Ppmd8_Update1(CPpmd8 *p);
void Ppmd8_Update1_0(CPpmd8 *p);
void Ppmd8_Update2(CPpmd8 *p);
void Ppmd8_UpdateBin(CPpmd8 *p);
#define Ppmd8_GetBinSumm(p) \
&p->BinSumm[p->NS2Indx[(size_t)Ppmd8Context_OneState(p->MinContext)->Freq - 1]][ \
p->NS2BSIndx[Ppmd8_GetContext(p, p->MinContext->Suffix)->NumStats] + \
p->PrevSuccess + p->MinContext->Flags + ((p->RunLength >> 26) & 0x20)]
&p->BinSumm[p->NS2Indx[(size_t)Ppmd8Context_OneState(p->MinContext)->Freq - 1]] \
[ p->PrevSuccess + ((p->RunLength >> 26) & 0x20) \
+ p->NS2BSIndx[Ppmd8_GetContext(p, p->MinContext->Suffix)->NumStats] + \
+ p->MinContext->Flags ]
CPpmd_See *Ppmd8_MakeEscFreq(CPpmd8 *p, unsigned numMasked, UInt32 *scale);
/* 20.01: the original PPMdI encoder and decoder probably could work incorrectly in some rare cases,
where the original PPMdI code can give "Divide by Zero" operation.
We use the following fix to allow correct working of encoder and decoder in any cases.
We correct (Escape_Freq) and (_sum_), if (_sum_) is larger than p->Range) */
#define PPMD8_CORRECT_SUM_RANGE(p, _sum_) if (_sum_ > p->Range /* /1 */) _sum_ = p->Range;
/* ---------- Decode ---------- */
Bool Ppmd8_RangeDec_Init(CPpmd8 *p);
#define PPMD8_SYM_END (-1)
#define PPMD8_SYM_ERROR (-2)
/*
You must set (CPpmd8::Stream.In) before Ppmd8_RangeDec_Init()
Ppmd8_DecodeSymbol()
out:
>= 0 : decoded byte
-1 : PPMD8_SYM_END : End of payload marker
-2 : PPMD8_SYM_ERROR : Data error
*/
BoolInt Ppmd8_Init_RangeDec(CPpmd8 *p);
#define Ppmd8_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd8_DecodeSymbol(CPpmd8 *p); /* returns: -1 as EndMarker, -2 as DataError */
int Ppmd8_DecodeSymbol(CPpmd8 *p);
/* ---------- Encode ---------- */
#define Ppmd8_RangeEnc_Init(p) { (p)->Low = 0; (p)->Range = 0xFFFFFFFF; }
void Ppmd8_RangeEnc_FlushData(CPpmd8 *p);
void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol); /* symbol = -1 means EndMarker */
#define Ppmd8_Init_RangeEnc(p) { (p)->Low = 0; (p)->Range = 0xFFFFFFFF; }
void Ppmd8_Flush_RangeEnc(CPpmd8 *p);
void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol);
EXTERN_C_END

302
C/Ppmd8Dec.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* Ppmd8Dec.c -- PPMdI Decoder
2017-04-03 : Igor Pavlov : Public domain
/* Ppmd8Dec.c -- Ppmd8 (PPMdI) Decoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
@@ -8,150 +8,288 @@ This code is based on:
#include "Ppmd8.h"
#define kTop (1 << 24)
#define kBot (1 << 15)
#define kTop ((UInt32)1 << 24)
#define kBot ((UInt32)1 << 15)
Bool Ppmd8_RangeDec_Init(CPpmd8 *p)
#define READ_BYTE(p) IByteIn_Read((p)->Stream.In)
BoolInt Ppmd8_Init_RangeDec(CPpmd8 *p)
{
unsigned i;
p->Low = 0;
p->Range = 0xFFFFFFFF;
p->Code = 0;
p->Range = 0xFFFFFFFF;
p->Low = 0;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | IByteIn_Read(p->Stream.In);
p->Code = (p->Code << 8) | READ_BYTE(p);
return (p->Code < 0xFFFFFFFF);
}
static UInt32 RangeDec_GetThreshold(CPpmd8 *p, UInt32 total)
#define RC_NORM(p) \
while ((p->Low ^ (p->Low + p->Range)) < kTop \
|| (p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1))) { \
p->Code = (p->Code << 8) | READ_BYTE(p); \
p->Range <<= 8; p->Low <<= 8; }
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
#define R p
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd8_RD_Decode(CPpmd8 *p, UInt32 start, UInt32 size)
{
return p->Code / (p->Range /= total);
start *= R->Range;
R->Low += start;
R->Code -= start;
R->Range *= size;
RC_NORM_LOCAL(R)
}
static void RangeDec_Decode(CPpmd8 *p, UInt32 start, UInt32 size)
{
start *= p->Range;
p->Low += start;
p->Code -= start;
p->Range *= size;
#define RC_Decode(start, size) Ppmd8_RD_Decode(p, start, size);
#define RC_DecodeFinal(start, size) RC_Decode(start, size) RC_NORM_REMOTE(R)
#define RC_GetThreshold(total) (R->Code / (R->Range /= (total)))
while ((p->Low ^ (p->Low + p->Range)) < kTop ||
(p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1)))
{
p->Code = (p->Code << 8) | IByteIn_Read(p->Stream.In);
p->Range <<= 8;
p->Low <<= 8;
}
}
#define MASK(sym) ((signed char *)charMask)[sym]
#define CTX(ref) ((CPpmd8_Context *)Ppmd8_GetContext(p, ref))
// typedef CPpmd8_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd8_UpdateModel(CPpmd8 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
int Ppmd8_DecodeSymbol(CPpmd8 *p)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 0)
{
CPpmd_State *s = Ppmd8_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
if ((count = RangeDec_GetThreshold(p, p->MinContext->SummFreq)) < (hiCnt = s->Freq))
UInt32 summFreq = p->MinContext->Union2.SummFreq;
PPMD8_CORRECT_SUM_RANGE(p, summFreq)
count = RC_GetThreshold(summFreq);
hiCnt = count;
if ((Int32)(count -= s->Freq) < 0)
{
Byte symbol;
RangeDec_Decode(p, 0, s->Freq);
Byte sym;
RC_DecodeFinal(0, s->Freq)
p->FoundState = s;
symbol = s->Symbol;
sym = s->Symbol;
Ppmd8_Update1_0(p);
return symbol;
return sym;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats;
do
{
if ((hiCnt += (++s)->Freq) > count)
if ((Int32)(count -= (++s)->Freq) < 0)
{
Byte symbol;
RangeDec_Decode(p, hiCnt - s->Freq, s->Freq);
Byte sym;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
p->FoundState = s;
symbol = s->Symbol;
sym = s->Symbol;
Ppmd8_Update1(p);
return symbol;
return sym;
}
}
while (--i);
if (count >= p->MinContext->SummFreq)
return -2;
RangeDec_Decode(p, hiCnt, p->MinContext->SummFreq - hiCnt);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats;
do { MASK((--s)->Symbol) = 0; } while (--i);
if (hiCnt >= summFreq)
return PPMD8_SYM_ERROR;
hiCnt -= count;
RC_Decode(hiCnt, summFreq - hiCnt)
PPMD_SetAllBitsIn256Bytes(charMask)
// i = p->MinContext->NumStats - 1;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd8_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
CPpmd_State *s = Ppmd8Context_OneState(p->MinContext);
UInt16 *prob = Ppmd8_GetBinSumm(p);
if (((p->Code / (p->Range >>= 14)) < *prob))
UInt32 pr = *prob;
UInt32 size0 = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (R->Code < size0)
{
Byte symbol;
RangeDec_Decode(p, 0, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
symbol = (p->FoundState = Ppmd8Context_OneState(p->MinContext))->Symbol;
Ppmd8_UpdateBin(p);
return symbol;
Byte sym;
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeDec_DecodeBit0(size0);
R->Range = size0;
RC_NORM(R)
// sym = (p->FoundState = Ppmd8Context_OneState(p->MinContext))->Symbol;
// Ppmd8_UpdateBin(p);
{
unsigned freq = s->Freq;
CPpmd8_Context *c = CTX(SUCCESSOR(s));
sym = s->Symbol;
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 196));
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c >= p->UnitsStart)
p->MaxContext = p->MinContext = c;
else
Ppmd8_UpdateModel(p);
}
return sym;
}
RangeDec_Decode(p, *prob, (1 << 14) - *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD8_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeDec_DecodeBit1(rc2, size0);
R->Low += size0;
R->Code -= size0;
R->Range = (R->Range & ~((UInt32)PPMD_BIN_SCALE - 1)) - size0;
RC_NORM_LOCAL(R)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(Ppmd8Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *ps[256], *s;
CPpmd_State *s, *s2;
UInt32 freqSum, count, hiCnt;
UInt32 freqSum2;
CPpmd_See *see;
unsigned i, num, numMasked = p->MinContext->NumStats;
CPpmd8_Context *mc;
unsigned numMasked;
RC_NORM_REMOTE(R)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return -1;
p->MinContext = Ppmd8_GetContext(p, p->MinContext->Suffix);
if (!mc->Suffix)
return PPMD8_SYM_END;
mc = Ppmd8_GetContext(p, mc->Suffix);
}
while (p->MinContext->NumStats == numMasked);
hiCnt = 0;
s = Ppmd8_GetStats(p, p->MinContext);
i = 0;
num = p->MinContext->NumStats - numMasked;
do
while (mc->NumStats == numMasked);
s = Ppmd8_GetStats(p, mc);
{
int k = (int)(MASK(s->Symbol));
hiCnt += (s->Freq & k);
ps[i] = s++;
i -= k;
unsigned num = (unsigned)mc->NumStats + 1;
unsigned num2 = num / 2;
num &= 1;
hiCnt = (s->Freq & (unsigned)(MASK(s->Symbol))) & (0 - (UInt32)num);
s += num;
p->MinContext = mc;
do
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
hiCnt += (s[-2].Freq & (unsigned)(MASK(sym0)));
hiCnt += (s[-1].Freq & (unsigned)(MASK(sym1)));
}
while (--num2);
}
while (i != num);
see = Ppmd8_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = RangeDec_GetThreshold(p, freqSum);
freqSum2 = freqSum;
PPMD8_CORRECT_SUM_RANGE(R, freqSum2)
count = RC_GetThreshold(freqSum2);
if (count < hiCnt)
{
Byte symbol;
CPpmd_State **pps = ps;
for (hiCnt = 0; (hiCnt += (*pps)->Freq) <= count; pps++);
s = *pps;
RangeDec_Decode(p, hiCnt - s->Freq, s->Freq);
Ppmd_See_Update(see);
Byte sym;
// Ppmd_See_UPDATE(see) // new (see->Summ) value can overflow over 16-bits in some rare cases
s = Ppmd8_GetStats(p, p->MinContext);
hiCnt = count;
{
for (;;)
{
count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
// count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
}
}
s--;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
// new (see->Summ) value can overflow over 16-bits in some rare cases
Ppmd_See_UPDATE(see)
p->FoundState = s;
symbol = s->Symbol;
sym = s->Symbol;
Ppmd8_Update2(p);
return symbol;
return sym;
}
if (count >= freqSum)
return -2;
RangeDec_Decode(p, hiCnt, freqSum - hiCnt);
if (count >= freqSum2)
return PPMD8_SYM_ERROR;
RC_Decode(hiCnt, freqSum2 - hiCnt)
// We increase (see->Summ) for sum of Freqs of all non_Masked symbols.
// new (see->Summ) value can overflow over 16-bits in some rare cases
see->Summ = (UInt16)(see->Summ + freqSum);
do { MASK(ps[--i]->Symbol) = 0; } while (i != 0);
s = Ppmd8_GetStats(p, p->MinContext);
s2 = s + p->MinContext->NumStats + 1;
do
{
MASK(s->Symbol) = 0;
s++;
}
while (s != s2);
}
}
#undef kTop
#undef kBot
#undef READ_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Decode
#undef RC_DecodeFinal
#undef RC_GetThreshold
#undef CTX
#undef SUCCESSOR
#undef MASK

331
C/Ppmd8Enc.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* Ppmd8Enc.c -- PPMdI Encoder
2017-04-03 : Igor Pavlov : Public domain
/* Ppmd8Enc.c -- Ppmd8 (PPMdI) Encoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
@@ -8,62 +8,103 @@ This code is based on:
#include "Ppmd8.h"
#define kTop (1 << 24)
#define kBot (1 << 15)
#define kTop ((UInt32)1 << 24)
#define kBot ((UInt32)1 << 15)
void Ppmd8_RangeEnc_FlushData(CPpmd8 *p)
#define WRITE_BYTE(p) IByteOut_Write(p->Stream.Out, (Byte)(p->Low >> 24))
void Ppmd8_Flush_RangeEnc(CPpmd8 *p)
{
unsigned i;
for (i = 0; i < 4; i++, p->Low <<= 8 )
IByteOut_Write(p->Stream.Out, (Byte)(p->Low >> 24));
WRITE_BYTE(p);
}
static void RangeEnc_Normalize(CPpmd8 *p)
#define RC_NORM(p) \
while ((p->Low ^ (p->Low + p->Range)) < kTop \
|| (p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1))) \
{ WRITE_BYTE(p); p->Range <<= 8; p->Low <<= 8; }
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
// #define RC_PRE(total) p->Range /= total;
// #define RC_PRE(total)
#define R p
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd8_RangeEnc_Encode(CPpmd8 *p, UInt32 start, UInt32 size, UInt32 total)
{
while ((p->Low ^ (p->Low + p->Range)) < kTop ||
(p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1)))
{
IByteOut_Write(p->Stream.Out, (Byte)(p->Low >> 24));
p->Range <<= 8;
p->Low <<= 8;
}
}
static void RangeEnc_Encode(CPpmd8 *p, UInt32 start, UInt32 size, UInt32 total)
{
p->Low += start * (p->Range /= total);
p->Range *= size;
RangeEnc_Normalize(p);
}
static void RangeEnc_EncodeBit_0(CPpmd8 *p, UInt32 size0)
{
p->Range >>= 14;
p->Range *= size0;
RangeEnc_Normalize(p);
}
static void RangeEnc_EncodeBit_1(CPpmd8 *p, UInt32 size0)
{
p->Low += size0 * (p->Range >>= 14);
p->Range *= ((1 << 14) - size0);
RangeEnc_Normalize(p);
R->Low += start * (R->Range /= total);
R->Range *= size;
RC_NORM_LOCAL(R)
}
#define MASK(sym) ((signed char *)charMask)[sym]
#define RC_Encode(start, size, total) Ppmd8_RangeEnc_Encode(p, start, size, total);
#define RC_EncodeFinal(start, size, total) RC_Encode(start, size, total) RC_NORM_REMOTE(p)
#define CTX(ref) ((CPpmd8_Context *)Ppmd8_GetContext(p, ref))
// typedef CPpmd8_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd8_UpdateModel(CPpmd8 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
// Z7_FORCE_INLINE
// static
void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 0)
{
CPpmd_State *s = Ppmd8_GetStats(p, p->MinContext);
UInt32 sum;
unsigned i;
UInt32 summFreq = p->MinContext->Union2.SummFreq;
PPMD8_CORRECT_SUM_RANGE(p, summFreq)
// RC_PRE(summFreq);
if (s->Symbol == symbol)
{
RangeEnc_Encode(p, 0, s->Freq, p->MinContext->SummFreq);
RC_EncodeFinal(0, s->Freq, summFreq)
p->FoundState = s;
Ppmd8_Update1_0(p);
return;
@@ -75,7 +116,8 @@ void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol)
{
if ((++s)->Symbol == symbol)
{
RangeEnc_Encode(p, sum, s->Freq, p->MinContext->SummFreq);
RC_EncodeFinal(sum, s->Freq, summFreq)
p->FoundState = s;
Ppmd8_Update1(p);
return;
@@ -84,80 +126,213 @@ void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol)
}
while (--i);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats;
do { MASK((--s)->Symbol) = 0; } while (--i);
RangeEnc_Encode(p, sum, p->MinContext->SummFreq - sum, p->MinContext->SummFreq);
RC_Encode(sum, summFreq - sum, summFreq)
PPMD_SetAllBitsIn256Bytes(charMask)
// MASK(s->Symbol) = 0;
// i = p->MinContext->NumStats;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd8_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
UInt16 *prob = Ppmd8_GetBinSumm(p);
CPpmd_State *s = Ppmd8Context_OneState(p->MinContext);
UInt32 pr = *prob;
const UInt32 bound = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (s->Symbol == symbol)
{
RangeEnc_EncodeBit_0(p, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
p->FoundState = s;
Ppmd8_UpdateBin(p);
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeEnc_EncodeBit_0(p, bound);
R->Range = bound;
RC_NORM(R)
// p->FoundState = s;
// Ppmd8_UpdateBin(p);
{
const unsigned freq = s->Freq;
CPpmd8_Context *c = CTX(SUCCESSOR(s));
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 196)); // Ppmd8 (196)
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c >= p->UnitsStart)
p->MaxContext = p->MinContext = c;
else
Ppmd8_UpdateModel(p);
}
return;
}
else
{
RangeEnc_EncodeBit_1(p, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD8_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeEnc_EncodeBit_1(p, bound);
R->Low += bound;
R->Range = (R->Range & ~((UInt32)PPMD_BIN_SCALE - 1)) - bound;
RC_NORM_LOCAL(R)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
UInt32 escFreq;
CPpmd_See *see;
CPpmd_State *s;
UInt32 sum;
unsigned i, numMasked = p->MinContext->NumStats;
UInt32 sum, escFreq;
CPpmd8_Context *mc;
unsigned i, numMasked;
RC_NORM_REMOTE(p)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
if (!mc->Suffix)
return; /* EndMarker (symbol = -1) */
p->MinContext = Ppmd8_GetContext(p, p->MinContext->Suffix);
mc = Ppmd8_GetContext(p, mc->Suffix);
}
while (p->MinContext->NumStats == numMasked);
while (mc->NumStats == numMasked);
p->MinContext = mc;
see = Ppmd8_MakeEscFreq(p, numMasked, &escFreq);
s = Ppmd8_GetStats(p, p->MinContext);
sum = 0;
i = p->MinContext->NumStats + 1;
i = (unsigned)p->MinContext->NumStats + 1;
do
{
int cur = s->Symbol;
if (cur == symbol)
const unsigned cur = s->Symbol;
if ((int)cur == symbol)
{
UInt32 low = sum;
CPpmd_State *s1 = s;
do
const UInt32 low = sum;
const UInt32 freq = s->Freq;
unsigned num2;
Ppmd_See_UPDATE(see)
p->FoundState = s;
sum += escFreq;
num2 = i / 2;
i &= 1;
sum += freq & (0 - (UInt32)i);
if (num2 != 0)
{
sum += (s->Freq & (int)(MASK(s->Symbol)));
s++;
s += i;
for (;;)
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
sum += (s[-2].Freq & (unsigned)(MASK(sym0)));
sum += (s[-1].Freq & (unsigned)(MASK(sym1)));
if (--num2 == 0)
break;
}
}
while (--i);
RangeEnc_Encode(p, low, s1->Freq, sum + escFreq);
Ppmd_See_Update(see);
p->FoundState = s1;
PPMD8_CORRECT_SUM_RANGE(p, sum)
RC_EncodeFinal(low, freq, sum)
Ppmd8_Update2(p);
return;
}
sum += (s->Freq & (int)(MASK(cur)));
MASK(cur) = 0;
sum += (s->Freq & (unsigned)(MASK(cur)));
s++;
}
while (--i);
RangeEnc_Encode(p, sum, escFreq, sum + escFreq);
see->Summ = (UInt16)(see->Summ + sum + escFreq);
{
UInt32 total = sum + escFreq;
see->Summ = (UInt16)(see->Summ + total);
PPMD8_CORRECT_SUM_RANGE(p, total)
RC_Encode(sum, total - sum, total)
}
{
const CPpmd_State *s2 = Ppmd8_GetStats(p, p->MinContext);
s--;
MASK(s->Symbol) = 0;
do
{
const unsigned sym0 = s2[0].Symbol;
const unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
}
#undef kTop
#undef kBot
#undef WRITE_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Encode
#undef RC_EncodeFinal
#undef CTX
#undef SUCCESSOR
#undef MASK

6
C/Precomp.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* Precomp.h -- StdAfx
2013-11-12 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __7Z_PRECOMP_H
#define __7Z_PRECOMP_H
#ifndef ZIP7_INC_PRECOMP_H
#define ZIP7_INC_PRECOMP_H
#include "Compiler.h"
/* #include "7zTypes.h" */

28
C/RotateDefs.h Normal file → Executable file
View File

@@ -1,14 +1,14 @@
/* RotateDefs.h -- Rotate functions
2015-03-25 : Igor Pavlov : Public domain */
2023-06-18 : Igor Pavlov : Public domain */
#ifndef __ROTATE_DEFS_H
#define __ROTATE_DEFS_H
#ifndef ZIP7_INC_ROTATE_DEFS_H
#define ZIP7_INC_ROTATE_DEFS_H
#ifdef _MSC_VER
#include <stdlib.h>
/* don't use _rotl with MINGW. It can insert slow call to function. */
/* don't use _rotl with old MINGW. It can insert slow call to function. */
/* #if (_MSC_VER >= 1200) */
#pragma intrinsic(_rotl)
@@ -18,12 +18,32 @@
#define rotlFixed(x, n) _rotl((x), (n))
#define rotrFixed(x, n) _rotr((x), (n))
#if (_MSC_VER >= 1300)
#define Z7_ROTL64(x, n) _rotl64((x), (n))
#define Z7_ROTR64(x, n) _rotr64((x), (n))
#else
#define Z7_ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#define Z7_ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif
#else
/* new compilers can translate these macros to fast commands. */
#if defined(__clang__) && (__clang_major__ >= 4) \
|| defined(__GNUC__) && (__GNUC__ >= 5)
/* GCC 4.9.0 and clang 3.5 can recognize more correct version: */
#define rotlFixed(x, n) (((x) << (n)) | ((x) >> (-(n) & 31)))
#define rotrFixed(x, n) (((x) >> (n)) | ((x) << (-(n) & 31)))
#define Z7_ROTL64(x, n) (((x) << (n)) | ((x) >> (-(n) & 63)))
#define Z7_ROTR64(x, n) (((x) >> (n)) | ((x) << (-(n) & 63)))
#else
/* for old GCC / clang: */
#define rotlFixed(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotrFixed(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define Z7_ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#define Z7_ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif
#endif

712
C/Sha1.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* Sha1.c -- SHA-1 Hash
2017-04-03 : Igor Pavlov : Public domain
2023-04-02 : Igor Pavlov : Public domain
This code is based on public domain code of Steve Reid from Wei Dai's Crypto++ library. */
#include "Precomp.h"
@@ -10,331 +10,489 @@ This code is based on public domain code of Steve Reid from Wei Dai's Crypto++ l
#include "RotateDefs.h"
#include "Sha1.h"
// define it for speed optimization
// #define _SHA1_UNROLL
#ifdef _SHA1_UNROLL
#define kNumW 16
#define WW(i) W[(i)&15]
#else
#define kNumW 80
#define WW(i) W[i]
#if defined(_MSC_VER) && (_MSC_VER < 1900)
// #define USE_MY_MM
#endif
#define w0(i) (W[i] = data[i])
#ifdef MY_CPU_X86_OR_AMD64
#ifdef _MSC_VER
#if _MSC_VER >= 1200
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 8) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__INTEL_COMPILER)
#if (__INTEL_COMPILER >= 1800) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#endif
#elif defined(MY_CPU_ARM_OR_ARM64)
#ifdef _MSC_VER
#if _MSC_VER >= 1910 && _MSC_VER >= 1929 && _MSC_FULL_VER >= 192930037
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#endif
#endif
#define w1(i) (WW(i) = rotlFixed(WW((i)-3) ^ WW((i)-8) ^ WW((i)-14) ^ WW((i)-16), 1))
void Z7_FASTCALL Sha1_UpdateBlocks(UInt32 state[5], const Byte *data, size_t numBlocks);
#define f1(x,y,z) (z^(x&(y^z)))
#define f2(x,y,z) (x^y^z)
#define f3(x,y,z) ((x&y)|(z&(x|y)))
#define f4(x,y,z) (x^y^z)
#ifdef Z7_COMPILER_SHA1_SUPPORTED
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks);
#define RK(a,b,c,d,e, fx, w, k) e += fx(b,c,d) + w + k + rotlFixed(a,5); b = rotlFixed(b,30);
#define R0(a,b,c,d,e, i) RK(a,b,c,d,e, f1, w0(i), 0x5A827999)
#define R1(a,b,c,d,e, i) RK(a,b,c,d,e, f1, w1(i), 0x5A827999)
#define R2(a,b,c,d,e, i) RK(a,b,c,d,e, f2, w1(i), 0x6ED9EBA1)
#define R3(a,b,c,d,e, i) RK(a,b,c,d,e, f3, w1(i), 0x8F1BBCDC)
#define R4(a,b,c,d,e, i) RK(a,b,c,d,e, f4, w1(i), 0xCA62C1D6)
#define RX_1_4(rx1, rx4, i) \
rx1(a,b,c,d,e, i); \
rx4(e,a,b,c,d, i+1); \
rx4(d,e,a,b,c, i+2); \
rx4(c,d,e,a,b, i+3); \
rx4(b,c,d,e,a, i+4); \
#define RX_5(rx, i) RX_1_4(rx, rx, i);
#ifdef _SHA1_UNROLL
#define RX_15 \
RX_5(R0, 0); \
RX_5(R0, 5); \
RX_5(R0, 10);
#define RX_20(rx, i) \
RX_5(rx, i); \
RX_5(rx, i + 5); \
RX_5(rx, i + 10); \
RX_5(rx, i + 15);
static SHA1_FUNC_UPDATE_BLOCKS g_SHA1_FUNC_UPDATE_BLOCKS = Sha1_UpdateBlocks;
static SHA1_FUNC_UPDATE_BLOCKS g_SHA1_FUNC_UPDATE_BLOCKS_HW;
#define SHA1_UPDATE_BLOCKS(p) p->func_UpdateBlocks
#else
#define RX_15 { size_t i; for (i = 0; i < 15; i += 5) { RX_5(R0, i); } }
#define RX_20(rx, ii) { size_t i; i = ii; for (; i < ii + 20; i += 5) { RX_5(rx, i); } }
#define SHA1_UPDATE_BLOCKS(p) Sha1_UpdateBlocks
#endif
void Sha1_Init(CSha1 *p)
BoolInt Sha1_SetFunction(CSha1 *p, unsigned algo)
{
SHA1_FUNC_UPDATE_BLOCKS func = Sha1_UpdateBlocks;
#ifdef Z7_COMPILER_SHA1_SUPPORTED
if (algo != SHA1_ALGO_SW)
{
if (algo == SHA1_ALGO_DEFAULT)
func = g_SHA1_FUNC_UPDATE_BLOCKS;
else
{
if (algo != SHA1_ALGO_HW)
return False;
func = g_SHA1_FUNC_UPDATE_BLOCKS_HW;
if (!func)
return False;
}
}
#else
if (algo > 1)
return False;
#endif
p->func_UpdateBlocks = func;
return True;
}
/* define it for speed optimization */
// #define Z7_SHA1_UNROLL
// allowed unroll steps: (1, 2, 4, 5, 20)
#undef Z7_SHA1_BIG_W
#ifdef Z7_SHA1_UNROLL
#define STEP_PRE 20
#define STEP_MAIN 20
#else
#define Z7_SHA1_BIG_W
#define STEP_PRE 5
#define STEP_MAIN 5
#endif
#ifdef Z7_SHA1_BIG_W
#define kNumW 80
#define w(i) W[i]
#else
#define kNumW 16
#define w(i) W[(i)&15]
#endif
#define w0(i) (W[i] = GetBe32(data + (size_t)(i) * 4))
#define w1(i) (w(i) = rotlFixed(w((size_t)(i)-3) ^ w((size_t)(i)-8) ^ w((size_t)(i)-14) ^ w((size_t)(i)-16), 1))
#define f0(x,y,z) ( 0x5a827999 + (z^(x&(y^z))) )
#define f1(x,y,z) ( 0x6ed9eba1 + (x^y^z) )
#define f2(x,y,z) ( 0x8f1bbcdc + ((x&y)|(z&(x|y))) )
#define f3(x,y,z) ( 0xca62c1d6 + (x^y^z) )
/*
#define T1(fx, ww) \
tmp = e + fx(b,c,d) + ww + rotlFixed(a, 5); \
e = d; \
d = c; \
c = rotlFixed(b, 30); \
b = a; \
a = tmp; \
*/
#define T5(a,b,c,d,e, fx, ww) \
e += fx(b,c,d) + ww + rotlFixed(a, 5); \
b = rotlFixed(b, 30); \
/*
#define R1(i, fx, wx) \
T1 ( fx, wx(i)); \
#define R2(i, fx, wx) \
R1 ( (i) , fx, wx); \
R1 ( (i) + 1, fx, wx); \
#define R4(i, fx, wx) \
R2 ( (i) , fx, wx); \
R2 ( (i) + 2, fx, wx); \
*/
#define M5(i, fx, wx0, wx1) \
T5 ( a,b,c,d,e, fx, wx0((i) ) ) \
T5 ( e,a,b,c,d, fx, wx1((i)+1) ) \
T5 ( d,e,a,b,c, fx, wx1((i)+2) ) \
T5 ( c,d,e,a,b, fx, wx1((i)+3) ) \
T5 ( b,c,d,e,a, fx, wx1((i)+4) ) \
#define R5(i, fx, wx) \
M5 ( i, fx, wx, wx) \
#if STEP_PRE > 5
#define R20_START \
R5 ( 0, f0, w0) \
R5 ( 5, f0, w0) \
R5 ( 10, f0, w0) \
M5 ( 15, f0, w0, w1) \
#elif STEP_PRE == 5
#define R20_START \
{ size_t i; for (i = 0; i < 15; i += STEP_PRE) \
{ R5(i, f0, w0) } } \
M5 ( 15, f0, w0, w1) \
#else
#if STEP_PRE == 1
#define R_PRE R1
#elif STEP_PRE == 2
#define R_PRE R2
#elif STEP_PRE == 4
#define R_PRE R4
#endif
#define R20_START \
{ size_t i; for (i = 0; i < 16; i += STEP_PRE) \
{ R_PRE(i, f0, w0) } } \
R4 ( 16, f0, w1) \
#endif
#if STEP_MAIN > 5
#define R20(ii, fx) \
R5 ( (ii) , fx, w1) \
R5 ( (ii) + 5 , fx, w1) \
R5 ( (ii) + 10, fx, w1) \
R5 ( (ii) + 15, fx, w1) \
#else
#if STEP_MAIN == 1
#define R_MAIN R1
#elif STEP_MAIN == 2
#define R_MAIN R2
#elif STEP_MAIN == 4
#define R_MAIN R4
#elif STEP_MAIN == 5
#define R_MAIN R5
#endif
#define R20(ii, fx) \
{ size_t i; for (i = (ii); i < (ii) + 20; i += STEP_MAIN) \
{ R_MAIN(i, fx, w1) } } \
#endif
void Sha1_InitState(CSha1 *p)
{
p->count = 0;
p->state[0] = 0x67452301;
p->state[1] = 0xEFCDAB89;
p->state[2] = 0x98BADCFE;
p->state[3] = 0x10325476;
p->state[4] = 0xC3D2E1F0;
p->count = 0;
}
void Sha1_GetBlockDigest(CSha1 *p, const UInt32 *data, UInt32 *destDigest)
void Sha1_Init(CSha1 *p)
{
p->func_UpdateBlocks =
#ifdef Z7_COMPILER_SHA1_SUPPORTED
g_SHA1_FUNC_UPDATE_BLOCKS;
#else
NULL;
#endif
Sha1_InitState(p);
}
Z7_NO_INLINE
void Z7_FASTCALL Sha1_UpdateBlocks(UInt32 state[5], const Byte *data, size_t numBlocks)
{
UInt32 a, b, c, d, e;
UInt32 W[kNumW];
// if (numBlocks != 0x1264378347) return;
if (numBlocks == 0)
return;
a = p->state[0];
b = p->state[1];
c = p->state[2];
d = p->state[3];
e = p->state[4];
RX_15
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
RX_1_4(R0, R1, 15);
RX_20(R2, 20);
RX_20(R3, 40);
RX_20(R4, 60);
destDigest[0] = p->state[0] + a;
destDigest[1] = p->state[1] + b;
destDigest[2] = p->state[2] + c;
destDigest[3] = p->state[3] + d;
destDigest[4] = p->state[4] + e;
}
void Sha1_UpdateBlock_Rar(CSha1 *p, UInt32 *data, int returnRes)
{
UInt32 a, b, c, d, e;
UInt32 W[kNumW];
a = p->state[0];
b = p->state[1];
c = p->state[2];
d = p->state[3];
e = p->state[4];
RX_15
RX_1_4(R0, R1, 15);
RX_20(R2, 20);
RX_20(R3, 40);
RX_20(R4, 60);
p->state[0] += a;
p->state[1] += b;
p->state[2] += c;
p->state[3] += d;
p->state[4] += e;
if (returnRes)
do
{
size_t i;
for (i = 0 ; i < SHA1_NUM_BLOCK_WORDS; i++)
data[i] = W[kNumW - SHA1_NUM_BLOCK_WORDS + i];
#if STEP_PRE < 5 || STEP_MAIN < 5
UInt32 tmp;
#endif
R20_START
R20(20, f1)
R20(40, f2)
R20(60, f3)
a += state[0];
b += state[1];
c += state[2];
d += state[3];
e += state[4];
state[0] = a;
state[1] = b;
state[2] = c;
state[3] = d;
state[4] = e;
data += 64;
}
while (--numBlocks);
}
#define Sha1_UpdateBlock(p) Sha1_GetBlockDigest(p, p->buffer, p->state)
#define Sha1_UpdateBlock(p) SHA1_UPDATE_BLOCKS(p)(p->state, p->buffer, 1)
void Sha1_Update(CSha1 *p, const Byte *data, size_t size)
{
unsigned pos, pos2;
if (size == 0)
return;
pos = (unsigned)p->count & 0x3F;
p->count += size;
pos2 = pos & 3;
pos >>= 2;
if (pos2 != 0)
{
UInt32 w;
pos2 = (3 - pos2) * 8;
w = ((UInt32)*data++) << pos2;
if (--size && pos2)
{
pos2 -= 8;
w |= ((UInt32)*data++) << pos2;
if (--size && pos2)
{
pos2 -= 8;
w |= ((UInt32)*data++) << pos2;
size--;
}
}
p->buffer[pos] |= w;
if (pos2 == 0)
pos++;
}
for (;;)
{
if (pos == SHA1_NUM_BLOCK_WORDS)
{
for (;;)
{
size_t i;
Sha1_UpdateBlock(p);
if (size < SHA1_BLOCK_SIZE)
break;
size -= SHA1_BLOCK_SIZE;
for (i = 0; i < SHA1_NUM_BLOCK_WORDS; i += 2)
{
p->buffer[i ] = GetBe32(data);
p->buffer[i + 1] = GetBe32(data + 4);
data += 8;
}
}
pos = 0;
}
if (size < 4)
break;
p->buffer[pos] = GetBe32(data);
data += 4;
size -= 4;
pos++;
}
if (size != 0)
{
UInt32 w = ((UInt32)data[0]) << 24;
if (size > 1)
{
w |= ((UInt32)data[1]) << 16;
if (size > 2)
w |= ((UInt32)data[2]) << 8;
}
p->buffer[pos] = w;
}
}
void Sha1_Update_Rar(CSha1 *p, Byte *data, size_t size /* , int rar350Mode */)
{
int returnRes = False;
unsigned pos = (unsigned)p->count & 0x3F;
p->count += size;
while (size--)
{
unsigned pos2 = (pos & 3);
UInt32 v = ((UInt32)*data++) << (8 * (3 - pos2));
UInt32 *ref = &(p->buffer[pos >> 2]);
pos++;
if (pos2 == 0)
{
*ref = v;
continue;
}
*ref |= v;
unsigned pos = (unsigned)p->count & 0x3F;
unsigned num;
if (pos == SHA1_BLOCK_SIZE)
p->count += size;
num = 64 - pos;
if (num > size)
{
pos = 0;
Sha1_UpdateBlock_Rar(p, p->buffer, returnRes);
if (returnRes)
{
size_t i;
for (i = 0; i < SHA1_NUM_BLOCK_WORDS; i++)
{
UInt32 d = p->buffer[i];
Byte *prev = data + i * 4 - SHA1_BLOCK_SIZE;
SetUi32(prev, d);
}
}
// returnRes = rar350Mode;
returnRes = True;
memcpy(p->buffer + pos, data, size);
return;
}
if (pos != 0)
{
size -= num;
memcpy(p->buffer + pos, data, num);
data += num;
Sha1_UpdateBlock(p);
}
}
{
size_t numBlocks = size >> 6;
SHA1_UPDATE_BLOCKS(p)(p->state, data, numBlocks);
size &= 0x3F;
if (size == 0)
return;
data += (numBlocks << 6);
memcpy(p->buffer, data, size);
}
}
void Sha1_Final(CSha1 *p, Byte *digest)
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned pos2 = (pos & 3);
UInt64 numBits;
UInt32 w;
unsigned i;
pos >>= 2;
w = 0;
if (pos2 != 0)
w = p->buffer[pos];
p->buffer[pos++] = w | (((UInt32)0x80000000) >> (8 * pos2));
while (pos != (SHA1_NUM_BLOCK_WORDS - 2))
p->buffer[pos++] = 0x80;
if (pos > (64 - 8))
{
pos &= 0xF;
if (pos == 0)
Sha1_UpdateBlock(p);
p->buffer[pos++] = 0;
while (pos != 64) { p->buffer[pos++] = 0; }
// memset(&p->buf.buffer[pos], 0, 64 - pos);
Sha1_UpdateBlock(p);
pos = 0;
}
/*
if (pos & 3)
{
p->buffer[pos] = 0;
p->buffer[pos + 1] = 0;
p->buffer[pos + 2] = 0;
pos += 3;
pos &= ~3;
}
{
for (; pos < 64 - 8; pos += 4)
*(UInt32 *)(&p->buffer[pos]) = 0;
}
*/
memset(&p->buffer[pos], 0, (64 - 8) - pos);
{
const UInt64 numBits = (p->count << 3);
SetBe32(p->buffer + 64 - 8, (UInt32)(numBits >> 32))
SetBe32(p->buffer + 64 - 4, (UInt32)(numBits))
}
numBits = (p->count << 3);
p->buffer[SHA1_NUM_BLOCK_WORDS - 2] = (UInt32)(numBits >> 32);
p->buffer[SHA1_NUM_BLOCK_WORDS - 1] = (UInt32)(numBits);
Sha1_UpdateBlock(p);
for (i = 0; i < SHA1_NUM_DIGEST_WORDS; i++)
{
UInt32 v = p->state[i];
SetBe32(digest, v);
digest += 4;
}
Sha1_Init(p);
}
void Sha1_32_PrepareBlock(const CSha1 *p, UInt32 *block, unsigned size)
{
const UInt64 numBits = (p->count + size) << 5;
block[SHA1_NUM_BLOCK_WORDS - 2] = (UInt32)(numBits >> 32);
block[SHA1_NUM_BLOCK_WORDS - 1] = (UInt32)(numBits);
block[size++] = 0x80000000;
while (size != (SHA1_NUM_BLOCK_WORDS - 2))
block[size++] = 0;
}
void Sha1_32_Update(CSha1 *p, const UInt32 *data, size_t size)
{
unsigned pos = (unsigned)p->count & 0xF;
p->count += size;
while (size--)
{
p->buffer[pos++] = *data++;
if (pos == SHA1_NUM_BLOCK_WORDS)
{
pos = 0;
Sha1_UpdateBlock(p);
}
}
}
void Sha1_32_Final(CSha1 *p, UInt32 *digest)
{
UInt64 numBits;
unsigned pos = (unsigned)p->count & 0xF;
p->buffer[pos++] = 0x80000000;
while (pos != (SHA1_NUM_BLOCK_WORDS - 2))
{
pos &= 0xF;
if (pos == 0)
Sha1_UpdateBlock(p);
p->buffer[pos++] = 0;
}
SetBe32(digest, p->state[0])
SetBe32(digest + 4, p->state[1])
SetBe32(digest + 8, p->state[2])
SetBe32(digest + 12, p->state[3])
SetBe32(digest + 16, p->state[4])
numBits = (p->count << 5);
p->buffer[SHA1_NUM_BLOCK_WORDS - 2] = (UInt32)(numBits >> 32);
p->buffer[SHA1_NUM_BLOCK_WORDS - 1] = (UInt32)(numBits);
Sha1_GetBlockDigest(p, p->buffer, digest);
Sha1_Init(p);
Sha1_InitState(p);
}
void Sha1_PrepareBlock(const CSha1 *p, Byte *block, unsigned size)
{
const UInt64 numBits = (p->count + size) << 3;
SetBe32(&((UInt32 *)(void *)block)[SHA1_NUM_BLOCK_WORDS - 2], (UInt32)(numBits >> 32))
SetBe32(&((UInt32 *)(void *)block)[SHA1_NUM_BLOCK_WORDS - 1], (UInt32)(numBits))
// SetBe32((UInt32 *)(block + size), 0x80000000);
SetUi32((UInt32 *)(void *)(block + size), 0x80)
size += 4;
while (size != (SHA1_NUM_BLOCK_WORDS - 2) * 4)
{
*((UInt32 *)(void *)(block + size)) = 0;
size += 4;
}
}
void Sha1_GetBlockDigest(const CSha1 *p, const Byte *data, Byte *destDigest)
{
MY_ALIGN (16)
UInt32 st[SHA1_NUM_DIGEST_WORDS];
st[0] = p->state[0];
st[1] = p->state[1];
st[2] = p->state[2];
st[3] = p->state[3];
st[4] = p->state[4];
SHA1_UPDATE_BLOCKS(p)(st, data, 1);
SetBe32(destDigest + 0 , st[0])
SetBe32(destDigest + 1 * 4, st[1])
SetBe32(destDigest + 2 * 4, st[2])
SetBe32(destDigest + 3 * 4, st[3])
SetBe32(destDigest + 4 * 4, st[4])
}
void Sha1Prepare(void)
{
#ifdef Z7_COMPILER_SHA1_SUPPORTED
SHA1_FUNC_UPDATE_BLOCKS f, f_hw;
f = Sha1_UpdateBlocks;
f_hw = NULL;
#ifdef MY_CPU_X86_OR_AMD64
#ifndef USE_MY_MM
if (CPU_IsSupported_SHA()
&& CPU_IsSupported_SSSE3()
// && CPU_IsSupported_SSE41()
)
#endif
#else
if (CPU_IsSupported_SHA1())
#endif
{
// printf("\n========== HW SHA1 ======== \n");
#if defined(MY_CPU_ARM_OR_ARM64) && defined(_MSC_VER)
/* there was bug in MSVC compiler for ARM64 -O2 before version VS2019 16.10 (19.29.30037).
It generated incorrect SHA-1 code.
21.03 : we test sha1-hardware code at runtime initialization */
#pragma message("== SHA1 code: MSC compiler : failure-check code was inserted")
UInt32 state[5] = { 0, 1, 2, 3, 4 } ;
Byte data[64];
unsigned i;
for (i = 0; i < sizeof(data); i += 2)
{
data[i ] = (Byte)(i);
data[i + 1] = (Byte)(i + 1);
}
Sha1_UpdateBlocks_HW(state, data, sizeof(data) / 64);
if ( state[0] != 0x9acd7297
|| state[1] != 0x4624d898
|| state[2] != 0x0bf079f0
|| state[3] != 0x031e61b3
|| state[4] != 0x8323fe20)
{
// printf("\n========== SHA-1 hardware version failure ======== \n");
}
else
#endif
{
f = f_hw = Sha1_UpdateBlocks_HW;
}
}
g_SHA1_FUNC_UPDATE_BLOCKS = f;
g_SHA1_FUNC_UPDATE_BLOCKS_HW = f_hw;
#endif
}
#undef kNumW
#undef w
#undef w0
#undef w1
#undef f0
#undef f1
#undef f2
#undef f3
#undef T1
#undef T5
#undef M5
#undef R1
#undef R2
#undef R4
#undef R5
#undef R20_START
#undef R_PRE
#undef R_MAIN
#undef STEP_PRE
#undef STEP_MAIN
#undef Z7_SHA1_BIG_W
#undef Z7_SHA1_UNROLL
#undef Z7_COMPILER_SHA1_SUPPORTED

60
C/Sha1.h Normal file → Executable file
View File

@@ -1,8 +1,8 @@
/* Sha1.h -- SHA-1 Hash
2016-05-20 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __7Z_SHA1_H
#define __7Z_SHA1_H
#ifndef ZIP7_INC_SHA1_H
#define ZIP7_INC_SHA1_H
#include "7zTypes.h"
@@ -14,24 +14,62 @@ EXTERN_C_BEGIN
#define SHA1_BLOCK_SIZE (SHA1_NUM_BLOCK_WORDS * 4)
#define SHA1_DIGEST_SIZE (SHA1_NUM_DIGEST_WORDS * 4)
typedef void (Z7_FASTCALL *SHA1_FUNC_UPDATE_BLOCKS)(UInt32 state[5], const Byte *data, size_t numBlocks);
/*
if (the system supports different SHA1 code implementations)
{
(CSha1::func_UpdateBlocks) will be used
(CSha1::func_UpdateBlocks) can be set by
Sha1_Init() - to default (fastest)
Sha1_SetFunction() - to any algo
}
else
{
(CSha1::func_UpdateBlocks) is ignored.
}
*/
typedef struct
{
UInt32 state[SHA1_NUM_DIGEST_WORDS];
SHA1_FUNC_UPDATE_BLOCKS func_UpdateBlocks;
UInt64 count;
UInt32 buffer[SHA1_NUM_BLOCK_WORDS];
UInt64 _pad_2[2];
UInt32 state[SHA1_NUM_DIGEST_WORDS];
UInt32 _pad_3[3];
Byte buffer[SHA1_BLOCK_SIZE];
} CSha1;
void Sha1_Init(CSha1 *p);
void Sha1_GetBlockDigest(CSha1 *p, const UInt32 *data, UInt32 *destDigest);
#define SHA1_ALGO_DEFAULT 0
#define SHA1_ALGO_SW 1
#define SHA1_ALGO_HW 2
/*
Sha1_SetFunction()
return:
0 - (algo) value is not supported, and func_UpdateBlocks was not changed
1 - func_UpdateBlocks was set according (algo) value.
*/
BoolInt Sha1_SetFunction(CSha1 *p, unsigned algo);
void Sha1_InitState(CSha1 *p);
void Sha1_Init(CSha1 *p);
void Sha1_Update(CSha1 *p, const Byte *data, size_t size);
void Sha1_Final(CSha1 *p, Byte *digest);
void Sha1_Update_Rar(CSha1 *p, Byte *data, size_t size /* , int rar350Mode */);
void Sha1_PrepareBlock(const CSha1 *p, Byte *block, unsigned size);
void Sha1_GetBlockDigest(const CSha1 *p, const Byte *data, Byte *destDigest);
void Sha1_32_PrepareBlock(const CSha1 *p, UInt32 *block, unsigned size);
void Sha1_32_Update(CSha1 *p, const UInt32 *data, size_t size);
void Sha1_32_Final(CSha1 *p, UInt32 *digest);
// void Z7_FASTCALL Sha1_UpdateBlocks(UInt32 state[5], const Byte *data, size_t numBlocks);
/*
call Sha1Prepare() once at program start.
It prepares all supported implementations, and detects the fastest implementation.
*/
void Sha1Prepare(void);
EXTERN_C_END

386
C/Sha1Opt.c Executable file
View File

@@ -0,0 +1,386 @@
/* Sha1Opt.c -- SHA-1 optimized code for SHA-1 hardware instructions
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Compiler.h"
#include "CpuArch.h"
#if defined(_MSC_VER)
#if (_MSC_VER < 1900) && (_MSC_VER >= 1200)
// #define USE_MY_MM
#endif
#endif
#ifdef MY_CPU_X86_OR_AMD64
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1600) // fix that check
#define USE_HW_SHA
#elif defined(Z7_LLVM_CLANG_VERSION) && (Z7_LLVM_CLANG_VERSION >= 30800) \
|| defined(Z7_APPLE_CLANG_VERSION) && (Z7_APPLE_CLANG_VERSION >= 50100) \
|| defined(Z7_GCC_VERSION) && (Z7_GCC_VERSION >= 40900)
#define USE_HW_SHA
#if !defined(_INTEL_COMPILER)
// icc defines __GNUC__, but icc doesn't support __attribute__(__target__)
#if !defined(__SHA__) || !defined(__SSSE3__)
#define ATTRIB_SHA __attribute__((__target__("sha,ssse3")))
#endif
#endif
#elif defined(_MSC_VER)
#ifdef USE_MY_MM
#define USE_VER_MIN 1300
#else
#define USE_VER_MIN 1900
#endif
#if (_MSC_VER >= USE_VER_MIN)
#define USE_HW_SHA
#endif
#endif
// #endif // MY_CPU_X86_OR_AMD64
#ifdef USE_HW_SHA
// #pragma message("Sha1 HW")
// sse/sse2/ssse3:
#include <tmmintrin.h>
// sha*:
#include <immintrin.h>
#if defined (__clang__) && defined(_MSC_VER)
// #if !defined(__SSSE3__)
// #endif
#if !defined(__SHA__)
#include <shaintrin.h>
#endif
#else
#ifdef USE_MY_MM
#include "My_mm.h"
#endif
#endif
/*
SHA1 uses:
SSE2:
_mm_loadu_si128
_mm_storeu_si128
_mm_set_epi32
_mm_add_epi32
_mm_shuffle_epi32 / pshufd
_mm_xor_si128
_mm_cvtsi128_si32
_mm_cvtsi32_si128
SSSE3:
_mm_shuffle_epi8 / pshufb
SHA:
_mm_sha1*
*/
#define XOR_SI128(dest, src) dest = _mm_xor_si128(dest, src);
#define SHUFFLE_EPI8(dest, mask) dest = _mm_shuffle_epi8(dest, mask);
#define SHUFFLE_EPI32(dest, mask) dest = _mm_shuffle_epi32(dest, mask);
#ifdef __clang__
#define SHA1_RNDS4_RET_TYPE_CAST (__m128i)
#else
#define SHA1_RNDS4_RET_TYPE_CAST
#endif
#define SHA1_RND4(abcd, e0, f) abcd = SHA1_RNDS4_RET_TYPE_CAST _mm_sha1rnds4_epu32(abcd, e0, f);
#define SHA1_NEXTE(e, m) e = _mm_sha1nexte_epu32(e, m);
#define ADD_EPI32(dest, src) dest = _mm_add_epi32(dest, src);
#define SHA1_MSG1(dest, src) dest = _mm_sha1msg1_epu32(dest, src);
#define SHA1_MSG2(dest, src) dest = _mm_sha1msg2_epu32(dest, src);
#define LOAD_SHUFFLE(m, k) \
m = _mm_loadu_si128((const __m128i *)(const void *)(data + (k) * 16)); \
SHUFFLE_EPI8(m, mask) \
#define SM1(m0, m1, m2, m3) \
SHA1_MSG1(m0, m1) \
#define SM2(m0, m1, m2, m3) \
XOR_SI128(m3, m1) \
SHA1_MSG2(m3, m2) \
#define SM3(m0, m1, m2, m3) \
XOR_SI128(m3, m1) \
SM1(m0, m1, m2, m3) \
SHA1_MSG2(m3, m2) \
#define NNN(m0, m1, m2, m3)
#define R4(k, e0, e1, m0, m1, m2, m3, OP) \
e1 = abcd; \
SHA1_RND4(abcd, e0, (k) / 5) \
SHA1_NEXTE(e1, m1) \
OP(m0, m1, m2, m3) \
#define R16(k, mx, OP0, OP1, OP2, OP3) \
R4 ( (k)*4+0, e0,e1, m0,m1,m2,m3, OP0 ) \
R4 ( (k)*4+1, e1,e0, m1,m2,m3,m0, OP1 ) \
R4 ( (k)*4+2, e0,e1, m2,m3,m0,m1, OP2 ) \
R4 ( (k)*4+3, e1,e0, m3,mx,m1,m2, OP3 ) \
#define PREPARE_STATE \
SHUFFLE_EPI32 (abcd, 0x1B) \
SHUFFLE_EPI32 (e0, 0x1B) \
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks);
#ifdef ATTRIB_SHA
ATTRIB_SHA
#endif
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks)
{
const __m128i mask = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
__m128i abcd, e0;
if (numBlocks == 0)
return;
abcd = _mm_loadu_si128((const __m128i *) (const void *) &state[0]); // dbca
e0 = _mm_cvtsi32_si128((int)state[4]); // 000e
PREPARE_STATE
do
{
__m128i abcd_save, e2;
__m128i m0, m1, m2, m3;
__m128i e1;
abcd_save = abcd;
e2 = e0;
LOAD_SHUFFLE (m0, 0)
LOAD_SHUFFLE (m1, 1)
LOAD_SHUFFLE (m2, 2)
LOAD_SHUFFLE (m3, 3)
ADD_EPI32(e0, m0)
R16 ( 0, m0, SM1, SM3, SM3, SM3 )
R16 ( 1, m0, SM3, SM3, SM3, SM3 )
R16 ( 2, m0, SM3, SM3, SM3, SM3 )
R16 ( 3, m0, SM3, SM3, SM3, SM3 )
R16 ( 4, e2, SM2, NNN, NNN, NNN )
ADD_EPI32(abcd, abcd_save)
data += 64;
}
while (--numBlocks);
PREPARE_STATE
_mm_storeu_si128((__m128i *) (void *) state, abcd);
*(state+4) = (UInt32)_mm_cvtsi128_si32(e0);
}
#endif // USE_HW_SHA
#elif defined(MY_CPU_ARM_OR_ARM64)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_SHA
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_SHA
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_SHA
#endif
#endif
#ifdef USE_HW_SHA
// #pragma message("=== Sha1 HW === ")
#if defined(__clang__) || defined(__GNUC__)
#ifdef MY_CPU_ARM64
#define ATTRIB_SHA __attribute__((__target__("+crypto")))
#else
#define ATTRIB_SHA __attribute__((__target__("fpu=crypto-neon-fp-armv8")))
#endif
#else
// _MSC_VER
// for arm32
#define _ARM_USE_NEW_NEON_INTRINSICS
#endif
#if defined(_MSC_VER) && defined(MY_CPU_ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
typedef uint32x4_t v128;
// typedef __n128 v128; // MSVC
#ifdef MY_CPU_BE
#define MY_rev32_for_LE(x)
#else
#define MY_rev32_for_LE(x) x = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(x)))
#endif
#define LOAD_128(_p) (*(const v128 *)(const void *)(_p))
#define STORE_128(_p, _v) *(v128 *)(void *)(_p) = (_v)
#define LOAD_SHUFFLE(m, k) \
m = LOAD_128((data + (k) * 16)); \
MY_rev32_for_LE(m); \
#define SU0(dest, src2, src3) dest = vsha1su0q_u32(dest, src2, src3);
#define SU1(dest, src) dest = vsha1su1q_u32(dest, src);
#define C(e) abcd = vsha1cq_u32(abcd, e, t);
#define P(e) abcd = vsha1pq_u32(abcd, e, t);
#define M(e) abcd = vsha1mq_u32(abcd, e, t);
#define H(e) e = vsha1h_u32(vgetq_lane_u32(abcd, 0))
#define T(m, c) t = vaddq_u32(m, c)
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
#ifdef ATTRIB_SHA
ATTRIB_SHA
#endif
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks)
{
v128 abcd;
v128 c0, c1, c2, c3;
uint32_t e0;
if (numBlocks == 0)
return;
c0 = vdupq_n_u32(0x5a827999);
c1 = vdupq_n_u32(0x6ed9eba1);
c2 = vdupq_n_u32(0x8f1bbcdc);
c3 = vdupq_n_u32(0xca62c1d6);
abcd = LOAD_128(&state[0]);
e0 = state[4];
do
{
v128 abcd_save;
v128 m0, m1, m2, m3;
v128 t;
uint32_t e0_save, e1;
abcd_save = abcd;
e0_save = e0;
LOAD_SHUFFLE (m0, 0)
LOAD_SHUFFLE (m1, 1)
LOAD_SHUFFLE (m2, 2)
LOAD_SHUFFLE (m3, 3)
T(m0, c0); H(e1); C(e0);
T(m1, c0); SU0(m0, m1, m2); H(e0); C(e1);
T(m2, c0); SU0(m1, m2, m3); SU1(m0, m3); H(e1); C(e0);
T(m3, c0); SU0(m2, m3, m0); SU1(m1, m0); H(e0); C(e1);
T(m0, c0); SU0(m3, m0, m1); SU1(m2, m1); H(e1); C(e0);
T(m1, c1); SU0(m0, m1, m2); SU1(m3, m2); H(e0); P(e1);
T(m2, c1); SU0(m1, m2, m3); SU1(m0, m3); H(e1); P(e0);
T(m3, c1); SU0(m2, m3, m0); SU1(m1, m0); H(e0); P(e1);
T(m0, c1); SU0(m3, m0, m1); SU1(m2, m1); H(e1); P(e0);
T(m1, c1); SU0(m0, m1, m2); SU1(m3, m2); H(e0); P(e1);
T(m2, c2); SU0(m1, m2, m3); SU1(m0, m3); H(e1); M(e0);
T(m3, c2); SU0(m2, m3, m0); SU1(m1, m0); H(e0); M(e1);
T(m0, c2); SU0(m3, m0, m1); SU1(m2, m1); H(e1); M(e0);
T(m1, c2); SU0(m0, m1, m2); SU1(m3, m2); H(e0); M(e1);
T(m2, c2); SU0(m1, m2, m3); SU1(m0, m3); H(e1); M(e0);
T(m3, c3); SU0(m2, m3, m0); SU1(m1, m0); H(e0); P(e1);
T(m0, c3); SU0(m3, m0, m1); SU1(m2, m1); H(e1); P(e0);
T(m1, c3); SU1(m3, m2); H(e0); P(e1);
T(m2, c3); H(e1); P(e0);
T(m3, c3); H(e0); P(e1);
abcd = vaddq_u32(abcd, abcd_save);
e0 += e0_save;
data += 64;
}
while (--numBlocks);
STORE_128(&state[0], abcd);
state[4] = e0;
}
#endif // USE_HW_SHA
#endif // MY_CPU_ARM_OR_ARM64
#ifndef USE_HW_SHA
// #error Stop_Compiling_UNSUPPORTED_SHA
// #include <stdlib.h>
// #include "Sha1.h"
void Z7_FASTCALL Sha1_UpdateBlocks(UInt32 state[5], const Byte *data, size_t numBlocks);
#pragma message("Sha1 HW-SW stub was used")
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks);
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks)
{
Sha1_UpdateBlocks(state, data, numBlocks);
/*
UNUSED_VAR(state);
UNUSED_VAR(data);
UNUSED_VAR(numBlocks);
exit(1);
return;
*/
}
#endif
#undef SU0
#undef SU1
#undef C
#undef P
#undef M
#undef H
#undef T
#undef MY_rev32_for_LE
#undef NNN
#undef LOAD_128
#undef STORE_128
#undef LOAD_SHUFFLE
#undef SM1
#undef SM2
#undef SM3
#undef NNN
#undef R4
#undef R16
#undef PREPARE_STATE
#undef USE_HW_SHA
#undef ATTRIB_SHA
#undef USE_VER_MIN

504
C/Sha256.c Normal file → Executable file
View File

@@ -1,5 +1,5 @@
/* Crypto/Sha256.c -- SHA-256 Hash
2017-04-03 : Igor Pavlov : Public domain
/* Sha256.c -- SHA-256 Hash
2023-04-02 : Igor Pavlov : Public domain
This code is based on public domain code from Wei Dai's Crypto++ library. */
#include "Precomp.h"
@@ -10,16 +10,108 @@ This code is based on public domain code from Wei Dai's Crypto++ library. */
#include "RotateDefs.h"
#include "Sha256.h"
/* define it for speed optimization */
#ifndef _SFX
#define _SHA256_UNROLL
#define _SHA256_UNROLL2
#if defined(_MSC_VER) && (_MSC_VER < 1900)
// #define USE_MY_MM
#endif
/* #define _SHA256_UNROLL2 */
#ifdef MY_CPU_X86_OR_AMD64
#ifdef _MSC_VER
#if _MSC_VER >= 1200
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 8) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__INTEL_COMPILER)
#if (__INTEL_COMPILER >= 1800) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#endif
#elif defined(MY_CPU_ARM_OR_ARM64)
#ifdef _MSC_VER
#if _MSC_VER >= 1910
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#endif
#endif
void Sha256_Init(CSha256 *p)
void Z7_FASTCALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks);
#ifdef Z7_COMPILER_SHA256_SUPPORTED
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
static SHA256_FUNC_UPDATE_BLOCKS g_SHA256_FUNC_UPDATE_BLOCKS = Sha256_UpdateBlocks;
static SHA256_FUNC_UPDATE_BLOCKS g_SHA256_FUNC_UPDATE_BLOCKS_HW;
#define SHA256_UPDATE_BLOCKS(p) p->func_UpdateBlocks
#else
#define SHA256_UPDATE_BLOCKS(p) Sha256_UpdateBlocks
#endif
BoolInt Sha256_SetFunction(CSha256 *p, unsigned algo)
{
SHA256_FUNC_UPDATE_BLOCKS func = Sha256_UpdateBlocks;
#ifdef Z7_COMPILER_SHA256_SUPPORTED
if (algo != SHA256_ALGO_SW)
{
if (algo == SHA256_ALGO_DEFAULT)
func = g_SHA256_FUNC_UPDATE_BLOCKS;
else
{
if (algo != SHA256_ALGO_HW)
return False;
func = g_SHA256_FUNC_UPDATE_BLOCKS_HW;
if (!func)
return False;
}
}
#else
if (algo > 1)
return False;
#endif
p->func_UpdateBlocks = func;
return True;
}
/* define it for speed optimization */
#ifdef Z7_SFX
#define STEP_PRE 1
#define STEP_MAIN 1
#else
#define STEP_PRE 2
#define STEP_MAIN 4
// #define Z7_SHA256_UNROLL
#endif
#undef Z7_SHA256_BIG_W
#if STEP_MAIN != 16
#define Z7_SHA256_BIG_W
#endif
void Sha256_InitState(CSha256 *p)
{
p->count = 0;
p->state[0] = 0x6a09e667;
p->state[1] = 0xbb67ae85;
p->state[2] = 0x3c6ef372;
@@ -28,7 +120,17 @@ void Sha256_Init(CSha256 *p)
p->state[5] = 0x9b05688c;
p->state[6] = 0x1f83d9ab;
p->state[7] = 0x5be0cd19;
p->count = 0;
}
void Sha256_Init(CSha256 *p)
{
p->func_UpdateBlocks =
#ifdef Z7_COMPILER_SHA256_SUPPORTED
g_SHA256_FUNC_UPDATE_BLOCKS;
#else
NULL;
#endif
Sha256_InitState(p);
}
#define S0(x) (rotrFixed(x, 2) ^ rotrFixed(x,13) ^ rotrFixed(x, 22))
@@ -36,61 +138,100 @@ void Sha256_Init(CSha256 *p)
#define s0(x) (rotrFixed(x, 7) ^ rotrFixed(x,18) ^ (x >> 3))
#define s1(x) (rotrFixed(x,17) ^ rotrFixed(x,19) ^ (x >> 10))
#define blk0(i) (W[i])
#define blk2(i) (W[i] += s1(W[((i)-2)&15]) + W[((i)-7)&15] + s0(W[((i)-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) ((x&y)|(z&(x|y)))
#ifdef _SHA256_UNROLL2
#define R(a,b,c,d,e,f,g,h, i) \
h += S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + (j ? blk2(i) : blk0(i)); \
#define W_PRE(i) (W[(i) + (size_t)(j)] = GetBe32(data + ((size_t)(j) + i) * 4))
#define blk2_main(j, i) s1(w(j, (i)-2)) + w(j, (i)-7) + s0(w(j, (i)-15))
#ifdef Z7_SHA256_BIG_W
// we use +i instead of +(i) to change the order to solve CLANG compiler warning for signed/unsigned.
#define w(j, i) W[(size_t)(j) + i]
#define blk2(j, i) (w(j, i) = w(j, (i)-16) + blk2_main(j, i))
#else
#if STEP_MAIN == 16
#define w(j, i) W[(i) & 15]
#else
#define w(j, i) W[((size_t)(j) + (i)) & 15]
#endif
#define blk2(j, i) (w(j, i) += blk2_main(j, i))
#endif
#define W_MAIN(i) blk2(j, i)
#define T1(wx, i) \
tmp = h + S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + wx(i); \
h = g; \
g = f; \
f = e; \
e = d + tmp; \
tmp += S0(a) + Maj(a, b, c); \
d = c; \
c = b; \
b = a; \
a = tmp; \
#define R1_PRE(i) T1( W_PRE, i)
#define R1_MAIN(i) T1( W_MAIN, i)
#if (!defined(Z7_SHA256_UNROLL) || STEP_MAIN < 8) && (STEP_MAIN >= 4)
#define R2_MAIN(i) \
R1_MAIN(i) \
R1_MAIN(i + 1) \
#endif
#if defined(Z7_SHA256_UNROLL) && STEP_MAIN >= 8
#define T4( a,b,c,d,e,f,g,h, wx, i) \
h += S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + wx(i); \
tmp = h; \
h += d; \
d = tmp + S0(a) + Maj(a, b, c); \
#define R4( wx, i) \
T4 ( a,b,c,d,e,f,g,h, wx, (i )); \
T4 ( d,a,b,c,h,e,f,g, wx, (i+1)); \
T4 ( c,d,a,b,g,h,e,f, wx, (i+2)); \
T4 ( b,c,d,a,f,g,h,e, wx, (i+3)); \
#define R4_PRE(i) R4( W_PRE, i)
#define R4_MAIN(i) R4( W_MAIN, i)
#define T8( a,b,c,d,e,f,g,h, wx, i) \
h += S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + wx(i); \
d += h; \
h += S0(a) + Maj(a, b, c)
h += S0(a) + Maj(a, b, c); \
#define RX_8(i) \
R(a,b,c,d,e,f,g,h, i); \
R(h,a,b,c,d,e,f,g, i+1); \
R(g,h,a,b,c,d,e,f, i+2); \
R(f,g,h,a,b,c,d,e, i+3); \
R(e,f,g,h,a,b,c,d, i+4); \
R(d,e,f,g,h,a,b,c, i+5); \
R(c,d,e,f,g,h,a,b, i+6); \
R(b,c,d,e,f,g,h,a, i+7)
#define R8( wx, i) \
T8 ( a,b,c,d,e,f,g,h, wx, i ); \
T8 ( h,a,b,c,d,e,f,g, wx, i+1); \
T8 ( g,h,a,b,c,d,e,f, wx, i+2); \
T8 ( f,g,h,a,b,c,d,e, wx, i+3); \
T8 ( e,f,g,h,a,b,c,d, wx, i+4); \
T8 ( d,e,f,g,h,a,b,c, wx, i+5); \
T8 ( c,d,e,f,g,h,a,b, wx, i+6); \
T8 ( b,c,d,e,f,g,h,a, wx, i+7); \
#define RX_16 RX_8(0); RX_8(8);
#else
#define a(i) T[(0-(i))&7]
#define b(i) T[(1-(i))&7]
#define c(i) T[(2-(i))&7]
#define d(i) T[(3-(i))&7]
#define e(i) T[(4-(i))&7]
#define f(i) T[(5-(i))&7]
#define g(i) T[(6-(i))&7]
#define h(i) T[(7-(i))&7]
#define R(i) \
h(i) += S1(e(i)) + Ch(e(i),f(i),g(i)) + K[(i)+(size_t)(j)] + (j ? blk2(i) : blk0(i)); \
d(i) += h(i); \
h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) \
#ifdef _SHA256_UNROLL
#define RX_8(i) R(i+0); R(i+1); R(i+2); R(i+3); R(i+4); R(i+5); R(i+6); R(i+7);
#define RX_16 RX_8(0); RX_8(8);
#else
#define RX_16 unsigned i; for (i = 0; i < 16; i++) { R(i); }
#define R8_PRE(i) R8( W_PRE, i)
#define R8_MAIN(i) R8( W_MAIN, i)
#endif
#endif
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
static const UInt32 K[64] = {
// static
extern MY_ALIGN(64)
const UInt32 SHA256_K_ARRAY[64];
MY_ALIGN(64)
const UInt32 SHA256_K_ARRAY[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
@@ -109,30 +250,27 @@ static const UInt32 K[64] = {
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static void Sha256_WriteByteBlock(CSha256 *p)
{
UInt32 W[16];
unsigned j;
UInt32 *state;
#define K SHA256_K_ARRAY
#ifdef _SHA256_UNROLL2
UInt32 a,b,c,d,e,f,g,h;
Z7_NO_INLINE
void Z7_FASTCALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks)
{
UInt32 W
#ifdef Z7_SHA256_BIG_W
[64];
#else
UInt32 T[8];
[16];
#endif
for (j = 0; j < 16; j += 4)
{
const Byte *ccc = p->buffer + j * 4;
W[j ] = GetBe32(ccc);
W[j + 1] = GetBe32(ccc + 4);
W[j + 2] = GetBe32(ccc + 8);
W[j + 3] = GetBe32(ccc + 12);
}
unsigned j;
state = p->state;
UInt32 a,b,c,d,e,f,g,h;
#ifdef _SHA256_UNROLL2
#if !defined(Z7_SHA256_UNROLL) || (STEP_MAIN <= 4) || (STEP_PRE <= 4)
UInt32 tmp;
#endif
a = state[0];
b = state[1];
c = state[2];
@@ -141,39 +279,96 @@ static void Sha256_WriteByteBlock(CSha256 *p)
f = state[5];
g = state[6];
h = state[7];
#else
for (j = 0; j < 8; j++)
T[j] = state[j];
#endif
for (j = 0; j < 64; j += 16)
while (numBlocks)
{
RX_16
for (j = 0; j < 16; j += STEP_PRE)
{
#if STEP_PRE > 4
#if STEP_PRE < 8
R4_PRE(0);
#else
R8_PRE(0);
#if STEP_PRE == 16
R8_PRE(8);
#endif
#endif
#else
R1_PRE(0)
#if STEP_PRE >= 2
R1_PRE(1)
#if STEP_PRE >= 4
R1_PRE(2)
R1_PRE(3)
#endif
#endif
#endif
}
for (j = 16; j < 64; j += STEP_MAIN)
{
#if defined(Z7_SHA256_UNROLL) && STEP_MAIN >= 8
#if STEP_MAIN < 8
R4_MAIN(0)
#else
R8_MAIN(0)
#if STEP_MAIN == 16
R8_MAIN(8)
#endif
#endif
#else
R1_MAIN(0)
#if STEP_MAIN >= 2
R1_MAIN(1)
#if STEP_MAIN >= 4
R2_MAIN(2)
#if STEP_MAIN >= 8
R2_MAIN(4)
R2_MAIN(6)
#if STEP_MAIN >= 16
R2_MAIN(8)
R2_MAIN(10)
R2_MAIN(12)
R2_MAIN(14)
#endif
#endif
#endif
#endif
#endif
}
a += state[0]; state[0] = a;
b += state[1]; state[1] = b;
c += state[2]; state[2] = c;
d += state[3]; state[3] = d;
e += state[4]; state[4] = e;
f += state[5]; state[5] = f;
g += state[6]; state[6] = g;
h += state[7]; state[7] = h;
data += 64;
numBlocks--;
}
#ifdef _SHA256_UNROLL2
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
#else
for (j = 0; j < 8; j++)
state[j] += T[j];
#endif
/* Wipe variables */
/* memset(W, 0, sizeof(W)); */
/* memset(T, 0, sizeof(T)); */
}
#undef S0
#undef S1
#undef s0
#undef s1
#undef K
#define Sha256_UpdateBlock(p) SHA256_UPDATE_BLOCKS(p)(p->state, p->buffer, 1)
void Sha256_Update(CSha256 *p, const Byte *data, size_t size)
{
@@ -193,25 +388,26 @@ void Sha256_Update(CSha256 *p, const Byte *data, size_t size)
return;
}
size -= num;
memcpy(p->buffer + pos, data, num);
data += num;
if (pos != 0)
{
size -= num;
memcpy(p->buffer + pos, data, num);
data += num;
Sha256_UpdateBlock(p);
}
}
for (;;)
{
Sha256_WriteByteBlock(p);
if (size < 64)
break;
size -= 64;
memcpy(p->buffer, data, 64);
data += 64;
}
if (size != 0)
size_t numBlocks = size >> 6;
SHA256_UPDATE_BLOCKS(p)(p->state, data, numBlocks);
size &= 0x3F;
if (size == 0)
return;
data += (numBlocks << 6);
memcpy(p->buffer, data, size);
}
}
void Sha256_Final(CSha256 *p, Byte *digest)
{
unsigned pos = (unsigned)p->count & 0x3F;
@@ -219,30 +415,102 @@ void Sha256_Final(CSha256 *p, Byte *digest)
p->buffer[pos++] = 0x80;
while (pos != (64 - 8))
if (pos > (64 - 8))
{
pos &= 0x3F;
if (pos == 0)
Sha256_WriteByteBlock(p);
p->buffer[pos++] = 0;
while (pos != 64) { p->buffer[pos++] = 0; }
// memset(&p->buf.buffer[pos], 0, 64 - pos);
Sha256_UpdateBlock(p);
pos = 0;
}
/*
if (pos & 3)
{
p->buffer[pos] = 0;
p->buffer[pos + 1] = 0;
p->buffer[pos + 2] = 0;
pos += 3;
pos &= ~3;
}
{
for (; pos < 64 - 8; pos += 4)
*(UInt32 *)(&p->buffer[pos]) = 0;
}
*/
memset(&p->buffer[pos], 0, (64 - 8) - pos);
{
UInt64 numBits = (p->count << 3);
SetBe32(p->buffer + 64 - 8, (UInt32)(numBits >> 32));
SetBe32(p->buffer + 64 - 4, (UInt32)(numBits));
SetBe32(p->buffer + 64 - 8, (UInt32)(numBits >> 32))
SetBe32(p->buffer + 64 - 4, (UInt32)(numBits))
}
Sha256_WriteByteBlock(p);
Sha256_UpdateBlock(p);
for (i = 0; i < 8; i += 2)
{
UInt32 v0 = p->state[i];
UInt32 v1 = p->state[i + 1];
SetBe32(digest , v0);
SetBe32(digest + 4, v1);
UInt32 v1 = p->state[(size_t)i + 1];
SetBe32(digest , v0)
SetBe32(digest + 4, v1)
digest += 8;
}
Sha256_Init(p);
Sha256_InitState(p);
}
void Sha256Prepare(void)
{
#ifdef Z7_COMPILER_SHA256_SUPPORTED
SHA256_FUNC_UPDATE_BLOCKS f, f_hw;
f = Sha256_UpdateBlocks;
f_hw = NULL;
#ifdef MY_CPU_X86_OR_AMD64
#ifndef USE_MY_MM
if (CPU_IsSupported_SHA()
&& CPU_IsSupported_SSSE3()
// && CPU_IsSupported_SSE41()
)
#endif
#else
if (CPU_IsSupported_SHA2())
#endif
{
// printf("\n========== HW SHA256 ======== \n");
f = f_hw = Sha256_UpdateBlocks_HW;
}
g_SHA256_FUNC_UPDATE_BLOCKS = f;
g_SHA256_FUNC_UPDATE_BLOCKS_HW = f_hw;
#endif
}
#undef S0
#undef S1
#undef s0
#undef s1
#undef Ch
#undef Maj
#undef W_MAIN
#undef W_PRE
#undef w
#undef blk2_main
#undef blk2
#undef T1
#undef T4
#undef T8
#undef R1_PRE
#undef R1_MAIN
#undef R2_MAIN
#undef R4
#undef R4_PRE
#undef R4_MAIN
#undef R8
#undef R8_PRE
#undef R8_MAIN
#undef STEP_PRE
#undef STEP_MAIN
#undef Z7_SHA256_BIG_W
#undef Z7_SHA256_UNROLL
#undef Z7_COMPILER_SHA256_SUPPORTED

62
C/Sha256.h Normal file → Executable file
View File

@@ -1,26 +1,76 @@
/* Sha256.h -- SHA-256 Hash
2013-01-18 : Igor Pavlov : Public domain */
2023-04-02 : Igor Pavlov : Public domain */
#ifndef __CRYPTO_SHA256_H
#define __CRYPTO_SHA256_H
#ifndef ZIP7_INC_SHA256_H
#define ZIP7_INC_SHA256_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define SHA256_DIGEST_SIZE 32
#define SHA256_NUM_BLOCK_WORDS 16
#define SHA256_NUM_DIGEST_WORDS 8
#define SHA256_BLOCK_SIZE (SHA256_NUM_BLOCK_WORDS * 4)
#define SHA256_DIGEST_SIZE (SHA256_NUM_DIGEST_WORDS * 4)
typedef void (Z7_FASTCALL *SHA256_FUNC_UPDATE_BLOCKS)(UInt32 state[8], const Byte *data, size_t numBlocks);
/*
if (the system supports different SHA256 code implementations)
{
(CSha256::func_UpdateBlocks) will be used
(CSha256::func_UpdateBlocks) can be set by
Sha256_Init() - to default (fastest)
Sha256_SetFunction() - to any algo
}
else
{
(CSha256::func_UpdateBlocks) is ignored.
}
*/
typedef struct
{
UInt32 state[8];
SHA256_FUNC_UPDATE_BLOCKS func_UpdateBlocks;
UInt64 count;
Byte buffer[64];
UInt64 _pad_2[2];
UInt32 state[SHA256_NUM_DIGEST_WORDS];
Byte buffer[SHA256_BLOCK_SIZE];
} CSha256;
#define SHA256_ALGO_DEFAULT 0
#define SHA256_ALGO_SW 1
#define SHA256_ALGO_HW 2
/*
Sha256_SetFunction()
return:
0 - (algo) value is not supported, and func_UpdateBlocks was not changed
1 - func_UpdateBlocks was set according (algo) value.
*/
BoolInt Sha256_SetFunction(CSha256 *p, unsigned algo);
void Sha256_InitState(CSha256 *p);
void Sha256_Init(CSha256 *p);
void Sha256_Update(CSha256 *p, const Byte *data, size_t size);
void Sha256_Final(CSha256 *p, Byte *digest);
// void Z7_FASTCALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks);
/*
call Sha256Prepare() once at program start.
It prepares all supported implementations, and detects the fastest implementation.
*/
void Sha256Prepare(void);
EXTERN_C_END
#endif

Some files were not shown because too many files have changed in this diff Show More