mirror of
https://github.com/Xevion/easy7zip.git
synced 2025-12-07 13:15:04 -06:00
update Zstandard to v1.3.6
This commit is contained in:
339
C/zstd/COPYING
Normal file
339
C/zstd/COPYING
Normal file
@@ -0,0 +1,339 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 2, June 1991
|
||||
|
||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
License is intended to guarantee your freedom to share and change free
|
||||
software--to make sure the software is free for all its users. This
|
||||
General Public License applies to most of the Free Software
|
||||
Foundation's software and to any other program whose authors commit to
|
||||
using it. (Some other Free Software Foundation software is covered by
|
||||
the GNU Lesser General Public License instead.) You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
this service if you wish), that you receive source code or can get it
|
||||
if you want it, that you can change the software or use pieces of it
|
||||
in new free programs; and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
anyone to deny you these rights or to ask you to surrender the rights.
|
||||
These restrictions translate to certain responsibilities for you if you
|
||||
distribute copies of the software, or if you modify it.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must give the recipients all the rights that
|
||||
you have. You must make sure that they, too, receive or can get the
|
||||
source code. And you must show them these terms so they know their
|
||||
rights.
|
||||
|
||||
We protect your rights with two steps: (1) copyright the software, and
|
||||
(2) offer you this license which gives you legal permission to copy,
|
||||
distribute and/or modify the software.
|
||||
|
||||
Also, for each author's protection and ours, we want to make certain
|
||||
that everyone understands that there is no warranty for this free
|
||||
software. If the software is modified by someone else and passed on, we
|
||||
want its recipients to know that what they have is not the original, so
|
||||
that any problems introduced by others will not reflect on the original
|
||||
authors' reputations.
|
||||
|
||||
Finally, any free program is threatened constantly by software
|
||||
patents. We wish to avoid the danger that redistributors of a free
|
||||
program will individually obtain patent licenses, in effect making the
|
||||
program proprietary. To prevent this, we have made it clear that any
|
||||
patent must be licensed for everyone's free use or not licensed at all.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License applies to any program or other work which contains
|
||||
a notice placed by the copyright holder saying it may be distributed
|
||||
under the terms of this General Public License. The "Program", below,
|
||||
refers to any such program or work, and a "work based on the Program"
|
||||
means either the Program or any derivative work under copyright law:
|
||||
that is to say, a work containing the Program or a portion of it,
|
||||
either verbatim or with modifications and/or translated into another
|
||||
language. (Hereinafter, translation is included without limitation in
|
||||
the term "modification".) Each licensee is addressed as "you".
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running the Program is not restricted, and the output from the Program
|
||||
is covered only if its contents constitute a work based on the
|
||||
Program (independent of having been made by running the Program).
|
||||
Whether that is true depends on what the Program does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Program's
|
||||
source code as you receive it, in any medium, provided that you
|
||||
conspicuously and appropriately publish on each copy an appropriate
|
||||
copyright notice and disclaimer of warranty; keep intact all the
|
||||
notices that refer to this License and to the absence of any warranty;
|
||||
and give any other recipients of the Program a copy of this License
|
||||
along with the Program.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy, and
|
||||
you may at your option offer warranty protection in exchange for a fee.
|
||||
|
||||
2. You may modify your copy or copies of the Program or any portion
|
||||
of it, thus forming a work based on the Program, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) You must cause the modified files to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
b) You must cause any work that you distribute or publish, that in
|
||||
whole or in part contains or is derived from the Program or any
|
||||
part thereof, to be licensed as a whole at no charge to all third
|
||||
parties under the terms of this License.
|
||||
|
||||
c) If the modified program normally reads commands interactively
|
||||
when run, you must cause it, when started running for such
|
||||
interactive use in the most ordinary way, to print or display an
|
||||
announcement including an appropriate copyright notice and a
|
||||
notice that there is no warranty (or else, saying that you provide
|
||||
a warranty) and that users may redistribute the program under
|
||||
these conditions, and telling the user how to view a copy of this
|
||||
License. (Exception: if the Program itself is interactive but
|
||||
does not normally print such an announcement, your work based on
|
||||
the Program is not required to print an announcement.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Program,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Program, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Program.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Program
|
||||
with the Program (or with a work based on the Program) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may copy and distribute the Program (or a work based on it,
|
||||
under Section 2) in object code or executable form under the terms of
|
||||
Sections 1 and 2 above provided that you also do one of the following:
|
||||
|
||||
a) Accompany it with the complete corresponding machine-readable
|
||||
source code, which must be distributed under the terms of Sections
|
||||
1 and 2 above on a medium customarily used for software interchange; or,
|
||||
|
||||
b) Accompany it with a written offer, valid for at least three
|
||||
years, to give any third party, for a charge no more than your
|
||||
cost of physically performing source distribution, a complete
|
||||
machine-readable copy of the corresponding source code, to be
|
||||
distributed under the terms of Sections 1 and 2 above on a medium
|
||||
customarily used for software interchange; or,
|
||||
|
||||
c) Accompany it with the information you received as to the offer
|
||||
to distribute corresponding source code. (This alternative is
|
||||
allowed only for noncommercial distribution and only if you
|
||||
received the program in object code or executable form with such
|
||||
an offer, in accord with Subsection b above.)
|
||||
|
||||
The source code for a work means the preferred form of the work for
|
||||
making modifications to it. For an executable work, complete source
|
||||
code means all the source code for all modules it contains, plus any
|
||||
associated interface definition files, plus the scripts used to
|
||||
control compilation and installation of the executable. However, as a
|
||||
special exception, the source code distributed need not include
|
||||
anything that is normally distributed (in either source or binary
|
||||
form) with the major components (compiler, kernel, and so on) of the
|
||||
operating system on which the executable runs, unless that component
|
||||
itself accompanies the executable.
|
||||
|
||||
If distribution of executable or object code is made by offering
|
||||
access to copy from a designated place, then offering equivalent
|
||||
access to copy the source code from the same place counts as
|
||||
distribution of the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
4. You may not copy, modify, sublicense, or distribute the Program
|
||||
except as expressly provided under this License. Any attempt
|
||||
otherwise to copy, modify, sublicense or distribute the Program is
|
||||
void, and will automatically terminate your rights under this License.
|
||||
However, parties who have received copies, or rights, from you under
|
||||
this License will not have their licenses terminated so long as such
|
||||
parties remain in full compliance.
|
||||
|
||||
5. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Program or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Program (or any work based on the
|
||||
Program), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Program or works based on it.
|
||||
|
||||
6. Each time you redistribute the Program (or any work based on the
|
||||
Program), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute or modify the Program subject to
|
||||
these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties to
|
||||
this License.
|
||||
|
||||
7. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Program at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Program by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Program.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system, which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
8. If the distribution and/or use of the Program is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Program under this License
|
||||
may add an explicit geographical distribution limitation excluding
|
||||
those countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
9. The Free Software Foundation may publish revised and/or new versions
|
||||
of the General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies a version number of this License which applies to it and "any
|
||||
later version", you have the option of following the terms and conditions
|
||||
either of that version or of any later version published by the Free
|
||||
Software Foundation. If the Program does not specify a version number of
|
||||
this License, you may choose any version ever published by the Free Software
|
||||
Foundation.
|
||||
|
||||
10. If you wish to incorporate parts of the Program into other free
|
||||
programs whose distribution conditions are different, write to the author
|
||||
to ask for permission. For software which is copyrighted by the Free
|
||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
||||
make exceptions for this. Our decision will be guided by the two goals
|
||||
of preserving the free status of all derivatives of our free software and
|
||||
of promoting the sharing and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
||||
REPAIR OR CORRECTION.
|
||||
|
||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
convey the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program is interactive, make it output a short notice like this
|
||||
when it starts in an interactive mode:
|
||||
|
||||
Gnomovision version 69, Copyright (C) year name of author
|
||||
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, the commands you use may
|
||||
be called something other than `show w' and `show c'; they could even be
|
||||
mouse-clicks or menu items--whatever suits your program.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or your
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. Here is a sample; alter the names:
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
|
||||
`Gnomovision' (which makes passes at compilers) written by James Hacker.
|
||||
|
||||
<signature of Ty Coon>, 1 April 1989
|
||||
Ty Coon, President of Vice
|
||||
|
||||
This General Public License does not permit incorporating your program into
|
||||
proprietary programs. If your program is a subroutine library, you may
|
||||
consider it more useful to permit linking proprietary applications with the
|
||||
library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License.
|
||||
@@ -2,16 +2,19 @@ Zstandard library files
|
||||
================================
|
||||
|
||||
The __lib__ directory is split into several sub-directories,
|
||||
in order to make it easier to select or exclude specific features.
|
||||
in order to make it easier to select or exclude features.
|
||||
|
||||
|
||||
#### Building
|
||||
|
||||
`Makefile` script is provided, supporting the standard set of commands,
|
||||
directories, and variables (see https://www.gnu.org/prep/standards/html_node/Command-Variables.html).
|
||||
`Makefile` script is provided, supporting all standard [Makefile conventions](https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html#Makefile-Conventions),
|
||||
including commands variables, staged install, directory variables and standard targets.
|
||||
- `make` : generates both static and dynamic libraries
|
||||
- `make install` : install libraries in default system directories
|
||||
|
||||
`libzstd` default scope includes compression, decompression, dictionary building,
|
||||
and decoding support for legacy formats >= v0.5.0.
|
||||
|
||||
|
||||
#### API
|
||||
|
||||
@@ -27,29 +30,42 @@ Optional advanced features are exposed via :
|
||||
- `ZSTD_STATIC_LINKING_ONLY` : if this macro is defined _before_ including `zstd.h`,
|
||||
it unlocks access to advanced experimental API,
|
||||
exposed in second part of `zstd.h`.
|
||||
These APIs shall ___never be used with dynamic library___ !
|
||||
They are not "stable", their definition may change in the future.
|
||||
These APIs are not "stable", their definition may change in the future.
|
||||
As a consequence, it shall ___never be used with dynamic library___ !
|
||||
Only static linking is allowed.
|
||||
|
||||
|
||||
#### Modular build
|
||||
|
||||
It's possible to compile only a limited set of features.
|
||||
|
||||
- Directory `lib/common` is always required, for all variants.
|
||||
- Compression source code lies in `lib/compress`
|
||||
- Decompression source code lies in `lib/decompress`
|
||||
- It's possible to include only `compress` or only `decompress`, they don't depend on each other.
|
||||
- `lib/dictBuilder` : makes it possible to generate dictionaries from a set of samples.
|
||||
The API is exposed in `lib/dictBuilder/zdict.h`.
|
||||
This module depends on both `lib/common` and `lib/compress` .
|
||||
- `lib/legacy` : source code to decompress older zstd formats, starting from `v0.1`.
|
||||
This module depends on `lib/common` and `lib/decompress`.
|
||||
To enable this feature, it's necessary to define `ZSTD_LEGACY_SUPPORT = 1` during compilation.
|
||||
Typically, with `gcc`, add argument `-DZSTD_LEGACY_SUPPORT=1`.
|
||||
Using higher number limits the number of version supported.
|
||||
For example, `ZSTD_LEGACY_SUPPORT=2` means : "support legacy formats starting from v0.2+".
|
||||
The API is exposed in `lib/legacy/zstd_legacy.h`.
|
||||
Each version also provides a (dedicated) set of advanced API.
|
||||
For example, advanced API for version `v0.4` is exposed in `lib/legacy/zstd_v04.h` .
|
||||
The API is exposed in `lib/dictBuilder/zdict.h`.
|
||||
This module depends on both `lib/common` and `lib/compress` .
|
||||
- `lib/legacy` : source code to decompress legacy zstd formats, starting from `v0.1.0`.
|
||||
This module depends on `lib/common` and `lib/decompress`.
|
||||
To enable this feature, define `ZSTD_LEGACY_SUPPORT` during compilation.
|
||||
Specifying a number limits versions supported to that version onward.
|
||||
For example, `ZSTD_LEGACY_SUPPORT=2` means : "support legacy formats >= v0.2.0".
|
||||
`ZSTD_LEGACY_SUPPORT=3` means : "support legacy formats >= v0.3.0", and so on.
|
||||
Currently, the default library setting is `ZST_LEGACY_SUPPORT=5`.
|
||||
It can be changed at build by any other value.
|
||||
Note that any number >= 8 translates into "do __not__ support legacy formats",
|
||||
since all versions of `zstd` >= v0.8 are compatible with v1+ specification.
|
||||
`ZSTD_LEGACY_SUPPORT=0` also means "do __not__ support legacy formats".
|
||||
Once enabled, this capability is transparently triggered within decompression functions.
|
||||
It's also possible to invoke directly legacy API, as exposed in `lib/legacy/zstd_legacy.h`.
|
||||
Each version also provides an additional dedicated set of advanced API.
|
||||
For example, advanced API for version `v0.4` is exposed in `lib/legacy/zstd_v04.h` .
|
||||
Note : `lib/legacy` only supports _decoding_ legacy formats.
|
||||
- Similarly, you can define `ZSTD_LIB_COMPRESSION, ZSTD_LIB_DECOMPRESSION`, `ZSTD_LIB_DICTBUILDER`,
|
||||
and `ZSTD_LIB_DEPRECATED` as 0 to forgo compilation of the corresponding features. This will
|
||||
also disable compilation of all dependencies (eg. `ZSTD_LIB_COMPRESSION=0` will also disable
|
||||
dictBuilder).
|
||||
|
||||
|
||||
#### Multithreading support
|
||||
@@ -57,19 +73,16 @@ Optional advanced features are exposed via :
|
||||
Multithreading is disabled by default when building with `make`.
|
||||
Enabling multithreading requires 2 conditions :
|
||||
- set macro `ZSTD_MULTITHREAD`
|
||||
- on POSIX systems : compile with pthread (`-pthread` compilation flag for `gcc` for example)
|
||||
- on POSIX systems : compile with pthread (`-pthread` compilation flag for `gcc`)
|
||||
|
||||
Both conditions are automatically triggered by invoking `make lib-mt` target.
|
||||
Note that, when linking a POSIX program with a multithreaded version of `libzstd`,
|
||||
it's necessary to trigger `-pthread` flag during link stage.
|
||||
|
||||
Multithreading capabilities are exposed via :
|
||||
- private API `lib/compress/zstdmt_compress.h`.
|
||||
Symbols defined in this header are currently exposed in `libzstd`, hence usable.
|
||||
Note however that this API is planned to be locked and remain strictly internal in the future.
|
||||
- advanced API `ZSTD_compress_generic()`, defined in `lib/zstd.h`, experimental section.
|
||||
This API is still considered experimental, but is designed to be labelled "stable" at some point in the future.
|
||||
It's the recommended entry point for multi-threading operations.
|
||||
Multithreading capabilities are exposed
|
||||
via [advanced API `ZSTD_compress_generic()` defined in `lib/zstd.h`](https://github.com/facebook/zstd/blob/dev/lib/zstd.h#L919).
|
||||
This API is still considered experimental,
|
||||
but is expected to become "stable" at some point in the future.
|
||||
|
||||
|
||||
#### Windows : using MinGW+MSYS to create DLL
|
||||
@@ -92,7 +105,6 @@ The compiled executable will require ZSTD DLL which is available at `dll\libzstd
|
||||
|
||||
Obsolete API on their way out are stored in directory `lib/deprecated`.
|
||||
At this stage, it contains older streaming prototypes, in `lib/deprecated/zbuff.h`.
|
||||
Presence in this directory is temporary.
|
||||
These prototypes will be removed in some future version.
|
||||
Consider migrating code towards supported streaming API exposed in `zstd.h`.
|
||||
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
/* ******************************************************************
|
||||
bitstream
|
||||
Part of FSE library
|
||||
header file (to include)
|
||||
Copyright (C) 2013-2017, Yann Collet.
|
||||
Copyright (C) 2013-present, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
@@ -49,21 +48,10 @@ extern "C" {
|
||||
* Dependencies
|
||||
******************************************/
|
||||
#include "mem.h" /* unaligned access routines */
|
||||
#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
|
||||
#include "error_private.h" /* error codes and messages */
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Debug
|
||||
***************************************/
|
||||
#if defined(BIT_DEBUG) && (BIT_DEBUG>=1)
|
||||
# include <assert.h>
|
||||
#else
|
||||
# ifndef assert
|
||||
# define assert(condition) ((void)0)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
/*=========================================
|
||||
* Target specific
|
||||
=========================================*/
|
||||
@@ -83,8 +71,7 @@ extern "C" {
|
||||
* A critical property of these streams is that they encode and decode in **reverse** direction.
|
||||
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
typedef struct {
|
||||
size_t bitContainer;
|
||||
unsigned bitPos;
|
||||
char* startPtr;
|
||||
@@ -118,8 +105,7 @@ MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
|
||||
/*-********************************************
|
||||
* bitStream decoding API (read backward)
|
||||
**********************************************/
|
||||
typedef struct
|
||||
{
|
||||
typedef struct {
|
||||
size_t bitContainer;
|
||||
unsigned bitsConsumed;
|
||||
const char* ptr;
|
||||
@@ -167,7 +153,7 @@ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
|
||||
/*-**************************************************************
|
||||
* Internal functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BIT_highbit32 (register U32 val)
|
||||
MEM_STATIC unsigned BIT_highbit32 (U32 val)
|
||||
{
|
||||
assert(val != 0);
|
||||
{
|
||||
@@ -236,7 +222,8 @@ MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
|
||||
}
|
||||
|
||||
/*! BIT_addBitsFast() :
|
||||
* works only if `value` is _clean_, meaning all high bits above nbBits are 0 */
|
||||
* works only if `value` is _clean_,
|
||||
* meaning all high bits above nbBits are 0 */
|
||||
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
|
||||
size_t value, unsigned nbBits)
|
||||
{
|
||||
@@ -426,7 +413,7 @@ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
|
||||
* Refill `bitD` from buffer previously set in BIT_initDStream() .
|
||||
* This function is safe, it guarantees it will not read beyond src buffer.
|
||||
* @return : status of `BIT_DStream_t` internal register.
|
||||
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
|
||||
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
|
||||
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
|
||||
{
|
||||
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
|
||||
|
||||
@@ -63,15 +63,62 @@
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* prefetch */
|
||||
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
|
||||
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
|
||||
# define PREFETCH(ptr) _mm_prefetch((const char*)ptr, _MM_HINT_T0)
|
||||
#elif defined(__GNUC__)
|
||||
# define PREFETCH(ptr) __builtin_prefetch(ptr, 0, 0)
|
||||
#else
|
||||
# define PREFETCH(ptr) /* disabled */
|
||||
/* target attribute */
|
||||
#ifndef __has_attribute
|
||||
#define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */
|
||||
#endif
|
||||
#if defined(__GNUC__)
|
||||
# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
|
||||
#else
|
||||
# define TARGET_ATTRIBUTE(target)
|
||||
#endif
|
||||
|
||||
/* Enable runtime BMI2 dispatch based on the CPU.
|
||||
* Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
|
||||
*/
|
||||
#ifndef DYNAMIC_BMI2
|
||||
#if ((defined(__clang__) && __has_attribute(__target__)) \
|
||||
|| (defined(__GNUC__) \
|
||||
&& (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
|
||||
&& (defined(__x86_64__) || defined(_M_X86)) \
|
||||
&& !defined(__BMI2__)
|
||||
# define DYNAMIC_BMI2 1
|
||||
#else
|
||||
# define DYNAMIC_BMI2 0
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* prefetch
|
||||
* can be disabled, by declaring NO_PREFETCH macro
|
||||
* All prefetch invocations use a single default locality 2,
|
||||
* generating instruction prefetcht1,
|
||||
* which, according to Intel, means "load data into L2 cache".
|
||||
* This is a good enough "middle ground" for the time being,
|
||||
* though in theory, it would be better to specialize locality depending on data being prefetched.
|
||||
* Tests could not determine any sensible difference based on locality value. */
|
||||
#if defined(NO_PREFETCH)
|
||||
# define PREFETCH(ptr) (void)(ptr) /* disabled */
|
||||
#else
|
||||
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
|
||||
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
|
||||
# define PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1)
|
||||
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
|
||||
# define PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */)
|
||||
# else
|
||||
# define PREFETCH(ptr) (void)(ptr) /* disabled */
|
||||
# endif
|
||||
#endif /* NO_PREFETCH */
|
||||
|
||||
#define CACHELINE_SIZE 64
|
||||
|
||||
#define PREFETCH_AREA(p, s) { \
|
||||
const char* const _ptr = (const char*)(p); \
|
||||
size_t const _size = (size_t)(s); \
|
||||
size_t _pos; \
|
||||
for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \
|
||||
PREFETCH(_ptr + _pos); \
|
||||
} \
|
||||
}
|
||||
|
||||
/* disable warnings */
|
||||
#ifdef _MSC_VER /* Visual Studio */
|
||||
|
||||
215
C/zstd/cpu.h
Normal file
215
C/zstd/cpu.h
Normal file
@@ -0,0 +1,215 @@
|
||||
/*
|
||||
* Copyright (c) 2018-present, Facebook, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
||||
* in the COPYING file in the root directory of this source tree).
|
||||
* You may select, at your option, one of the above-listed licenses.
|
||||
*/
|
||||
|
||||
#ifndef ZSTD_COMMON_CPU_H
|
||||
#define ZSTD_COMMON_CPU_H
|
||||
|
||||
/**
|
||||
* Implementation taken from folly/CpuId.h
|
||||
* https://github.com/facebook/folly/blob/master/folly/CpuId.h
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "mem.h"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
U32 f1c;
|
||||
U32 f1d;
|
||||
U32 f7b;
|
||||
U32 f7c;
|
||||
} ZSTD_cpuid_t;
|
||||
|
||||
MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
|
||||
U32 f1c = 0;
|
||||
U32 f1d = 0;
|
||||
U32 f7b = 0;
|
||||
U32 f7c = 0;
|
||||
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
|
||||
int reg[4];
|
||||
__cpuid((int*)reg, 0);
|
||||
{
|
||||
int const n = reg[0];
|
||||
if (n >= 1) {
|
||||
__cpuid((int*)reg, 1);
|
||||
f1c = (U32)reg[2];
|
||||
f1d = (U32)reg[3];
|
||||
}
|
||||
if (n >= 7) {
|
||||
__cpuidex((int*)reg, 7, 0);
|
||||
f7b = (U32)reg[1];
|
||||
f7c = (U32)reg[2];
|
||||
}
|
||||
}
|
||||
#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
|
||||
/* The following block like the normal cpuid branch below, but gcc
|
||||
* reserves ebx for use of its pic register so we must specially
|
||||
* handle the save and restore to avoid clobbering the register
|
||||
*/
|
||||
U32 n;
|
||||
__asm__(
|
||||
"pushl %%ebx\n\t"
|
||||
"cpuid\n\t"
|
||||
"popl %%ebx\n\t"
|
||||
: "=a"(n)
|
||||
: "a"(0)
|
||||
: "ecx", "edx");
|
||||
if (n >= 1) {
|
||||
U32 f1a;
|
||||
__asm__(
|
||||
"pushl %%ebx\n\t"
|
||||
"cpuid\n\t"
|
||||
"popl %%ebx\n\t"
|
||||
: "=a"(f1a), "=c"(f1c), "=d"(f1d)
|
||||
: "a"(1));
|
||||
}
|
||||
if (n >= 7) {
|
||||
__asm__(
|
||||
"pushl %%ebx\n\t"
|
||||
"cpuid\n\t"
|
||||
"movl %%ebx, %%eax\n\r"
|
||||
"popl %%ebx"
|
||||
: "=a"(f7b), "=c"(f7c)
|
||||
: "a"(7), "c"(0)
|
||||
: "edx");
|
||||
}
|
||||
#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__)
|
||||
U32 n;
|
||||
__asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx");
|
||||
if (n >= 1) {
|
||||
U32 f1a;
|
||||
__asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx");
|
||||
}
|
||||
if (n >= 7) {
|
||||
U32 f7a;
|
||||
__asm__("cpuid"
|
||||
: "=a"(f7a), "=b"(f7b), "=c"(f7c)
|
||||
: "a"(7), "c"(0)
|
||||
: "edx");
|
||||
}
|
||||
#endif
|
||||
{
|
||||
ZSTD_cpuid_t cpuid;
|
||||
cpuid.f1c = f1c;
|
||||
cpuid.f1d = f1d;
|
||||
cpuid.f7b = f7b;
|
||||
cpuid.f7c = f7c;
|
||||
return cpuid;
|
||||
}
|
||||
}
|
||||
|
||||
#define X(name, r, bit) \
|
||||
MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \
|
||||
return ((cpuid.r) & (1U << bit)) != 0; \
|
||||
}
|
||||
|
||||
/* cpuid(1): Processor Info and Feature Bits. */
|
||||
#define C(name, bit) X(name, f1c, bit)
|
||||
C(sse3, 0)
|
||||
C(pclmuldq, 1)
|
||||
C(dtes64, 2)
|
||||
C(monitor, 3)
|
||||
C(dscpl, 4)
|
||||
C(vmx, 5)
|
||||
C(smx, 6)
|
||||
C(eist, 7)
|
||||
C(tm2, 8)
|
||||
C(ssse3, 9)
|
||||
C(cnxtid, 10)
|
||||
C(fma, 12)
|
||||
C(cx16, 13)
|
||||
C(xtpr, 14)
|
||||
C(pdcm, 15)
|
||||
C(pcid, 17)
|
||||
C(dca, 18)
|
||||
C(sse41, 19)
|
||||
C(sse42, 20)
|
||||
C(x2apic, 21)
|
||||
C(movbe, 22)
|
||||
C(popcnt, 23)
|
||||
C(tscdeadline, 24)
|
||||
C(aes, 25)
|
||||
C(xsave, 26)
|
||||
C(osxsave, 27)
|
||||
C(avx, 28)
|
||||
C(f16c, 29)
|
||||
C(rdrand, 30)
|
||||
#undef C
|
||||
#define D(name, bit) X(name, f1d, bit)
|
||||
D(fpu, 0)
|
||||
D(vme, 1)
|
||||
D(de, 2)
|
||||
D(pse, 3)
|
||||
D(tsc, 4)
|
||||
D(msr, 5)
|
||||
D(pae, 6)
|
||||
D(mce, 7)
|
||||
D(cx8, 8)
|
||||
D(apic, 9)
|
||||
D(sep, 11)
|
||||
D(mtrr, 12)
|
||||
D(pge, 13)
|
||||
D(mca, 14)
|
||||
D(cmov, 15)
|
||||
D(pat, 16)
|
||||
D(pse36, 17)
|
||||
D(psn, 18)
|
||||
D(clfsh, 19)
|
||||
D(ds, 21)
|
||||
D(acpi, 22)
|
||||
D(mmx, 23)
|
||||
D(fxsr, 24)
|
||||
D(sse, 25)
|
||||
D(sse2, 26)
|
||||
D(ss, 27)
|
||||
D(htt, 28)
|
||||
D(tm, 29)
|
||||
D(pbe, 31)
|
||||
#undef D
|
||||
|
||||
/* cpuid(7): Extended Features. */
|
||||
#define B(name, bit) X(name, f7b, bit)
|
||||
B(bmi1, 3)
|
||||
B(hle, 4)
|
||||
B(avx2, 5)
|
||||
B(smep, 7)
|
||||
B(bmi2, 8)
|
||||
B(erms, 9)
|
||||
B(invpcid, 10)
|
||||
B(rtm, 11)
|
||||
B(mpx, 14)
|
||||
B(avx512f, 16)
|
||||
B(avx512dq, 17)
|
||||
B(rdseed, 18)
|
||||
B(adx, 19)
|
||||
B(smap, 20)
|
||||
B(avx512ifma, 21)
|
||||
B(pcommit, 22)
|
||||
B(clflushopt, 23)
|
||||
B(clwb, 24)
|
||||
B(avx512pf, 26)
|
||||
B(avx512er, 27)
|
||||
B(avx512cd, 28)
|
||||
B(sha, 29)
|
||||
B(avx512bw, 30)
|
||||
B(avx512vl, 31)
|
||||
#undef B
|
||||
#define C(name, bit) X(name, f7c, bit)
|
||||
C(prefetchwt1, 0)
|
||||
C(avx512vbmi, 1)
|
||||
#undef C
|
||||
|
||||
#undef X
|
||||
|
||||
#endif /* ZSTD_COMMON_CPU_H */
|
||||
44
C/zstd/debug.c
Normal file
44
C/zstd/debug.c
Normal file
@@ -0,0 +1,44 @@
|
||||
/* ******************************************************************
|
||||
debug
|
||||
Part of FSE library
|
||||
Copyright (C) 2013-present, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
****************************************************************** */
|
||||
|
||||
|
||||
/*
|
||||
* This module only hosts one global variable
|
||||
* which can be used to dynamically influence the verbosity of traces,
|
||||
* such as DEBUGLOG and RAWLOG
|
||||
*/
|
||||
|
||||
#include "debug.h"
|
||||
|
||||
int g_debuglevel = DEBUGLEVEL;
|
||||
123
C/zstd/debug.h
Normal file
123
C/zstd/debug.h
Normal file
@@ -0,0 +1,123 @@
|
||||
/* ******************************************************************
|
||||
debug
|
||||
Part of FSE library
|
||||
Copyright (C) 2013-present, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
****************************************************************** */
|
||||
|
||||
|
||||
/*
|
||||
* The purpose of this header is to enable debug functions.
|
||||
* They regroup assert(), DEBUGLOG() and RAWLOG() for run-time,
|
||||
* and DEBUG_STATIC_ASSERT() for compile-time.
|
||||
*
|
||||
* By default, DEBUGLEVEL==0, which means run-time debug is disabled.
|
||||
*
|
||||
* Level 1 enables assert() only.
|
||||
* Starting level 2, traces can be generated and pushed to stderr.
|
||||
* The higher the level, the more verbose the traces.
|
||||
*
|
||||
* It's possible to dynamically adjust level using variable g_debug_level,
|
||||
* which is only declared if DEBUGLEVEL>=2,
|
||||
* and is a global variable, not multi-thread protected (use with care)
|
||||
*/
|
||||
|
||||
#ifndef DEBUG_H_12987983217
|
||||
#define DEBUG_H_12987983217
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* static assert is triggered at compile time, leaving no runtime artefact,
|
||||
* but can only work with compile-time constants.
|
||||
* This variant can only be used inside a function. */
|
||||
#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1])
|
||||
|
||||
|
||||
/* DEBUGLEVEL is expected to be defined externally,
|
||||
* typically through compiler command line.
|
||||
* Value must be a number. */
|
||||
#ifndef DEBUGLEVEL
|
||||
# define DEBUGLEVEL 0
|
||||
#endif
|
||||
|
||||
/* recommended values for DEBUGLEVEL :
|
||||
* 0 : no debug, all run-time functions disabled
|
||||
* 1 : no display, enables assert() only
|
||||
* 2 : reserved, for currently active debug path
|
||||
* 3 : events once per object lifetime (CCtx, CDict, etc.)
|
||||
* 4 : events once per frame
|
||||
* 5 : events once per block
|
||||
* 6 : events once per sequence (verbose)
|
||||
* 7+: events at every position (*very* verbose)
|
||||
*
|
||||
* It's generally inconvenient to output traces > 5.
|
||||
* In which case, it's possible to selectively enable higher verbosity levels
|
||||
* by modifying g_debug_level.
|
||||
*/
|
||||
|
||||
#if (DEBUGLEVEL>=1)
|
||||
# include <assert.h>
|
||||
#else
|
||||
# ifndef assert /* assert may be already defined, due to prior #include <assert.h> */
|
||||
# define assert(condition) ((void)0) /* disable assert (default) */
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if (DEBUGLEVEL>=2)
|
||||
# include <stdio.h>
|
||||
extern int g_debuglevel; /* here, this variable is only declared,
|
||||
it actually lives in debug.c,
|
||||
and is shared by the whole process.
|
||||
It's typically used to enable very verbose levels
|
||||
on selective conditions (such as position in src) */
|
||||
|
||||
# define RAWLOG(l, ...) { \
|
||||
if (l<=g_debuglevel) { \
|
||||
fprintf(stderr, __VA_ARGS__); \
|
||||
} }
|
||||
# define DEBUGLOG(l, ...) { \
|
||||
if (l<=g_debuglevel) { \
|
||||
fprintf(stderr, __FILE__ ": " __VA_ARGS__); \
|
||||
fprintf(stderr, " \n"); \
|
||||
} }
|
||||
#else
|
||||
# define RAWLOG(l, ...) {} /* disabled */
|
||||
# define DEBUGLOG(l, ...) {} /* disabled */
|
||||
#endif
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* DEBUG_H_12987983217 */
|
||||
@@ -72,7 +72,21 @@ size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* t
|
||||
unsigned charnum = 0;
|
||||
int previous0 = 0;
|
||||
|
||||
if (hbSize < 4) return ERROR(srcSize_wrong);
|
||||
if (hbSize < 4) {
|
||||
/* This function only works when hbSize >= 4 */
|
||||
char buffer[4];
|
||||
memset(buffer, 0, sizeof(buffer));
|
||||
memcpy(buffer, headerBuffer, hbSize);
|
||||
{ size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr,
|
||||
buffer, sizeof(buffer));
|
||||
if (FSE_isError(countSize)) return countSize;
|
||||
if (countSize > hbSize) return ERROR(corruption_detected);
|
||||
return countSize;
|
||||
} }
|
||||
assert(hbSize >= 4);
|
||||
|
||||
/* init */
|
||||
memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */
|
||||
bitStream = MEM_readLE32(ip);
|
||||
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
|
||||
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
|
||||
@@ -105,6 +119,7 @@ size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* t
|
||||
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
|
||||
while (charnum < n0) normalizedCounter[charnum++] = 0;
|
||||
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
|
||||
assert((bitCount >> 3) <= 3); /* For first condition to work */
|
||||
ip += bitCount>>3;
|
||||
bitCount &= 7;
|
||||
bitStream = MEM_readLE32(ip) >> bitCount;
|
||||
|
||||
@@ -29,6 +29,7 @@ const char* ERR_getErrorString(ERR_enum code)
|
||||
case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
|
||||
case PREFIX(init_missing): return "Context should be init first";
|
||||
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
|
||||
case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough";
|
||||
case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
|
||||
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
|
||||
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
|
||||
|
||||
86
C/zstd/fse.h
86
C/zstd/fse.h
@@ -72,6 +72,7 @@ extern "C" {
|
||||
#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
|
||||
FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* FSE simple functions
|
||||
******************************************/
|
||||
@@ -129,7 +130,7 @@ FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src,
|
||||
******************************************/
|
||||
/*!
|
||||
FSE_compress() does the following:
|
||||
1. count symbol occurrence from source[] into table count[]
|
||||
1. count symbol occurrence from source[] into table count[] (see hist.h)
|
||||
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
|
||||
3. save normalized counters to memory buffer using writeNCount()
|
||||
4. build encoding table 'CTable' from normalized counters
|
||||
@@ -147,15 +148,6 @@ or to save and provide normalized distribution using external method.
|
||||
|
||||
/* *** COMPRESSION *** */
|
||||
|
||||
/*! FSE_count():
|
||||
Provides the precise count of each byte within a table 'count'.
|
||||
'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
|
||||
*maxSymbolValuePtr will be updated if detected smaller than initial value.
|
||||
@return : the count of the most frequent symbol (which is not identified).
|
||||
if return == srcSize, there is only one symbol.
|
||||
Can also return an error code, which can be tested with FSE_isError(). */
|
||||
FSE_PUBLIC_API size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
|
||||
|
||||
/*! FSE_optimalTableLog():
|
||||
dynamically downsize 'tableLog' when conditions are met.
|
||||
It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
|
||||
@@ -167,7 +159,8 @@ FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize
|
||||
'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
|
||||
@return : tableLog,
|
||||
or an errorCode, which can be tested using FSE_isError() */
|
||||
FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
|
||||
FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
|
||||
const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
|
||||
|
||||
/*! FSE_NCountWriteBound():
|
||||
Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
|
||||
@@ -178,8 +171,9 @@ FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tab
|
||||
Compactly save 'normalizedCounter' into 'buffer'.
|
||||
@return : size of the compressed table,
|
||||
or an errorCode, which can be tested using FSE_isError(). */
|
||||
FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
|
||||
const short* normalizedCounter,
|
||||
unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
/*! Constructor and Destructor of FSE_CTable.
|
||||
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
|
||||
@@ -250,7 +244,9 @@ If there is an error, the function will return an ErrorCode (which can be tested
|
||||
@return : size read from 'rBuffer',
|
||||
or an errorCode, which can be tested using FSE_isError().
|
||||
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
|
||||
FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
|
||||
FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
|
||||
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
|
||||
const void* rBuffer, size_t rBuffSize);
|
||||
|
||||
/*! Constructor and Destructor of FSE_DTable.
|
||||
Note that its size depends on 'tableLog' */
|
||||
@@ -325,33 +321,8 @@ If there is an error, the function will return an error code, which can be teste
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE advanced API
|
||||
*******************************************/
|
||||
/* FSE_count_wksp() :
|
||||
* Same as FSE_count(), but using an externally provided scratch buffer.
|
||||
* `workSpace` size must be table of >= `1024` unsigned
|
||||
*/
|
||||
size_t FSE_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize, unsigned* workSpace);
|
||||
|
||||
/** FSE_countFast() :
|
||||
* same as FSE_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr
|
||||
*/
|
||||
size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
|
||||
|
||||
/* FSE_countFast_wksp() :
|
||||
* Same as FSE_countFast(), but using an externally provided scratch buffer.
|
||||
* `workSpace` must be a table of minimum `1024` unsigned
|
||||
*/
|
||||
size_t FSE_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* workSpace);
|
||||
|
||||
/*! FSE_count_simple
|
||||
* Same as FSE_countFast(), but does not use any additional memory (not even on stack).
|
||||
* This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` (presuming it's also the size of `count`).
|
||||
*/
|
||||
size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
* FSE advanced API
|
||||
***************************************** */
|
||||
|
||||
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
|
||||
/**< same as FSE_optimalTableLog(), which used `minus==2` */
|
||||
@@ -576,6 +547,39 @@ MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePt
|
||||
}
|
||||
|
||||
|
||||
/* FSE_getMaxNbBits() :
|
||||
* Approximate maximum cost of a symbol, in bits.
|
||||
* Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
|
||||
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
|
||||
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
|
||||
MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
|
||||
{
|
||||
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
|
||||
return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
|
||||
}
|
||||
|
||||
/* FSE_bitCost() :
|
||||
* Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
|
||||
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
|
||||
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
|
||||
MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
|
||||
{
|
||||
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
|
||||
U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
|
||||
U32 const threshold = (minNbBits+1) << 16;
|
||||
assert(tableLog < 16);
|
||||
assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
|
||||
{ U32 const tableSize = 1 << tableLog;
|
||||
U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
|
||||
U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
|
||||
U32 const bitMultiplier = 1 << accuracyLog;
|
||||
assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
|
||||
assert(normalizedDeltaFromThreshold <= bitMultiplier);
|
||||
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* ====== Decompression ====== */
|
||||
|
||||
typedef struct {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
/* ******************************************************************
|
||||
FSE : Finite State Entropy encoder
|
||||
Copyright (C) 2013-2015, Yann Collet.
|
||||
Copyright (C) 2013-present, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
@@ -37,9 +37,11 @@
|
||||
****************************************************************/
|
||||
#include <stdlib.h> /* malloc, free, qsort */
|
||||
#include <string.h> /* memcpy, memset */
|
||||
#include <stdio.h> /* printf (debug) */
|
||||
#include "bitstream.h"
|
||||
#include "compiler.h"
|
||||
#include "mem.h" /* U32, U16, etc. */
|
||||
#include "debug.h" /* assert, DEBUGLOG */
|
||||
#include "hist.h" /* HIST_count_wksp */
|
||||
#include "bitstream.h"
|
||||
#define FSE_STATIC_LINKING_ONLY
|
||||
#include "fse.h"
|
||||
#include "error_private.h"
|
||||
@@ -49,7 +51,6 @@
|
||||
* Error Management
|
||||
****************************************************************/
|
||||
#define FSE_isError ERR_isError
|
||||
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
@@ -82,7 +83,9 @@
|
||||
* wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
|
||||
* workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
|
||||
*/
|
||||
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
|
||||
size_t FSE_buildCTable_wksp(FSE_CTable* ct,
|
||||
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
|
||||
void* workSpace, size_t wkspSize)
|
||||
{
|
||||
U32 const tableSize = 1 << tableLog;
|
||||
U32 const tableMask = tableSize - 1;
|
||||
@@ -100,9 +103,14 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsi
|
||||
if (((size_t)1 << tableLog) * sizeof(FSE_FUNCTION_TYPE) > wkspSize) return ERROR(tableLog_tooLarge);
|
||||
tableU16[-2] = (U16) tableLog;
|
||||
tableU16[-1] = (U16) maxSymbolValue;
|
||||
assert(tableLog < 16); /* required for threshold strategy to work */
|
||||
|
||||
/* For explanations on how to distribute symbol values over the table :
|
||||
* http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
|
||||
* http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
|
||||
|
||||
#ifdef __clang_analyzer__
|
||||
memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */
|
||||
#endif
|
||||
|
||||
/* symbol start positions */
|
||||
{ U32 u;
|
||||
@@ -122,13 +130,15 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsi
|
||||
U32 symbol;
|
||||
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
|
||||
int nbOccurences;
|
||||
for (nbOccurences=0; nbOccurences<normalizedCounter[symbol]; nbOccurences++) {
|
||||
int const freq = normalizedCounter[symbol];
|
||||
for (nbOccurences=0; nbOccurences<freq; nbOccurences++) {
|
||||
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
|
||||
position = (position + step) & tableMask;
|
||||
while (position > highThreshold) position = (position + step) & tableMask; /* Low proba area */
|
||||
while (position > highThreshold)
|
||||
position = (position + step) & tableMask; /* Low proba area */
|
||||
} }
|
||||
|
||||
if (position!=0) return ERROR(GENERIC); /* Must have gone through all positions */
|
||||
assert(position==0); /* Must have initialized all positions */
|
||||
}
|
||||
|
||||
/* Build table */
|
||||
@@ -143,7 +153,10 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsi
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
switch (normalizedCounter[s])
|
||||
{
|
||||
case 0: break;
|
||||
case 0:
|
||||
/* filling nonetheless, for compatibility with FSE_getMaxNbBits() */
|
||||
symbolTT[s].deltaNbBits = ((tableLog+1) << 16) - (1<<tableLog);
|
||||
break;
|
||||
|
||||
case -1:
|
||||
case 1:
|
||||
@@ -160,6 +173,18 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsi
|
||||
total += normalizedCounter[s];
|
||||
} } } }
|
||||
|
||||
#if 0 /* debug : symbol costs */
|
||||
DEBUGLOG(5, "\n --- table statistics : ");
|
||||
{ U32 symbol;
|
||||
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
|
||||
DEBUGLOG(5, "%3u: w=%3i, maxBits=%u, fracBits=%.2f",
|
||||
symbol, normalizedCounter[symbol],
|
||||
FSE_getMaxNbBits(symbolTT, symbol),
|
||||
(double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -174,8 +199,9 @@ size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned
|
||||
|
||||
#ifndef FSE_COMMONDEFS_ONLY
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* FSE NCount encoding-decoding
|
||||
* FSE NCount encoding
|
||||
****************************************************************/
|
||||
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
@@ -183,9 +209,10 @@ size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
|
||||
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
|
||||
}
|
||||
|
||||
static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
|
||||
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
|
||||
unsigned writeIsSafe)
|
||||
static size_t
|
||||
FSE_writeNCount_generic (void* header, size_t headerBufferSize,
|
||||
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
|
||||
unsigned writeIsSafe)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*) header;
|
||||
BYTE* out = ostart;
|
||||
@@ -194,13 +221,12 @@ static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
|
||||
const int tableSize = 1 << tableLog;
|
||||
int remaining;
|
||||
int threshold;
|
||||
U32 bitStream;
|
||||
int bitCount;
|
||||
unsigned charnum = 0;
|
||||
int previous0 = 0;
|
||||
U32 bitStream = 0;
|
||||
int bitCount = 0;
|
||||
unsigned symbol = 0;
|
||||
unsigned const alphabetSize = maxSymbolValue + 1;
|
||||
int previousIs0 = 0;
|
||||
|
||||
bitStream = 0;
|
||||
bitCount = 0;
|
||||
/* Table Size */
|
||||
bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
|
||||
bitCount += 4;
|
||||
@@ -210,48 +236,53 @@ static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
|
||||
threshold = tableSize;
|
||||
nbBits = tableLog+1;
|
||||
|
||||
while (remaining>1) { /* stops at 1 */
|
||||
if (previous0) {
|
||||
unsigned start = charnum;
|
||||
while (!normalizedCounter[charnum]) charnum++;
|
||||
while (charnum >= start+24) {
|
||||
while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */
|
||||
if (previousIs0) {
|
||||
unsigned start = symbol;
|
||||
while ((symbol < alphabetSize) && !normalizedCounter[symbol]) symbol++;
|
||||
if (symbol == alphabetSize) break; /* incorrect distribution */
|
||||
while (symbol >= start+24) {
|
||||
start+=24;
|
||||
bitStream += 0xFFFFU << bitCount;
|
||||
if ((!writeIsSafe) && (out > oend-2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
if ((!writeIsSafe) && (out > oend-2))
|
||||
return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
out[0] = (BYTE) bitStream;
|
||||
out[1] = (BYTE)(bitStream>>8);
|
||||
out+=2;
|
||||
bitStream>>=16;
|
||||
}
|
||||
while (charnum >= start+3) {
|
||||
while (symbol >= start+3) {
|
||||
start+=3;
|
||||
bitStream += 3 << bitCount;
|
||||
bitCount += 2;
|
||||
}
|
||||
bitStream += (charnum-start) << bitCount;
|
||||
bitStream += (symbol-start) << bitCount;
|
||||
bitCount += 2;
|
||||
if (bitCount>16) {
|
||||
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
if ((!writeIsSafe) && (out > oend - 2))
|
||||
return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
out[0] = (BYTE)bitStream;
|
||||
out[1] = (BYTE)(bitStream>>8);
|
||||
out += 2;
|
||||
bitStream >>= 16;
|
||||
bitCount -= 16;
|
||||
} }
|
||||
{ int count = normalizedCounter[charnum++];
|
||||
int const max = (2*threshold-1)-remaining;
|
||||
{ int count = normalizedCounter[symbol++];
|
||||
int const max = (2*threshold-1) - remaining;
|
||||
remaining -= count < 0 ? -count : count;
|
||||
count++; /* +1 for extra accuracy */
|
||||
if (count>=threshold) count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
|
||||
if (count>=threshold)
|
||||
count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
|
||||
bitStream += count << bitCount;
|
||||
bitCount += nbBits;
|
||||
bitCount -= (count<max);
|
||||
previous0 = (count==1);
|
||||
previousIs0 = (count==1);
|
||||
if (remaining<1) return ERROR(GENERIC);
|
||||
while (remaining<threshold) nbBits--, threshold>>=1;
|
||||
while (remaining<threshold) { nbBits--; threshold>>=1; }
|
||||
}
|
||||
if (bitCount>16) {
|
||||
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
if ((!writeIsSafe) && (out > oend - 2))
|
||||
return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
out[0] = (BYTE)bitStream;
|
||||
out[1] = (BYTE)(bitStream>>8);
|
||||
out += 2;
|
||||
@@ -259,19 +290,23 @@ static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
|
||||
bitCount -= 16;
|
||||
} }
|
||||
|
||||
if (remaining != 1)
|
||||
return ERROR(GENERIC); /* incorrect normalized distribution */
|
||||
assert(symbol <= alphabetSize);
|
||||
|
||||
/* flush remaining bitStream */
|
||||
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
if ((!writeIsSafe) && (out > oend - 2))
|
||||
return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
out[0] = (BYTE)bitStream;
|
||||
out[1] = (BYTE)(bitStream>>8);
|
||||
out+= (bitCount+7) /8;
|
||||
|
||||
if (charnum > maxSymbolValue + 1) return ERROR(GENERIC);
|
||||
|
||||
return (out-ostart);
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
|
||||
size_t FSE_writeNCount (void* buffer, size_t bufferSize,
|
||||
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
|
||||
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
|
||||
@@ -279,171 +314,13 @@ size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalized
|
||||
if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
|
||||
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
|
||||
|
||||
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
|
||||
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1 /* write in buffer is safe */);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* Counting histogram
|
||||
****************************************************************/
|
||||
/*! FSE_count_simple
|
||||
This function counts byte values within `src`, and store the histogram into table `count`.
|
||||
It doesn't use any additional memory.
|
||||
But this function is unsafe : it doesn't check that all values within `src` can fit into `count`.
|
||||
For this reason, prefer using a table `count` with 256 elements.
|
||||
@return : count of most numerous element
|
||||
*/
|
||||
size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*)src;
|
||||
const BYTE* const end = ip + srcSize;
|
||||
unsigned maxSymbolValue = *maxSymbolValuePtr;
|
||||
unsigned max=0;
|
||||
|
||||
memset(count, 0, (maxSymbolValue+1)*sizeof(*count));
|
||||
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
|
||||
|
||||
while (ip<end) count[*ip++]++;
|
||||
|
||||
while (!count[maxSymbolValue]) maxSymbolValue--;
|
||||
*maxSymbolValuePtr = maxSymbolValue;
|
||||
|
||||
{ U32 s; for (s=0; s<=maxSymbolValue; s++) if (count[s] > max) max = count[s]; }
|
||||
|
||||
return (size_t)max;
|
||||
}
|
||||
|
||||
|
||||
/* FSE_count_parallel_wksp() :
|
||||
* Same as FSE_count_parallel(), but using an externally provided scratch buffer.
|
||||
* `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`` */
|
||||
static size_t FSE_count_parallel_wksp(
|
||||
unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize,
|
||||
unsigned checkMax, unsigned* const workSpace)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*)source;
|
||||
const BYTE* const iend = ip+sourceSize;
|
||||
unsigned maxSymbolValue = *maxSymbolValuePtr;
|
||||
unsigned max=0;
|
||||
U32* const Counting1 = workSpace;
|
||||
U32* const Counting2 = Counting1 + 256;
|
||||
U32* const Counting3 = Counting2 + 256;
|
||||
U32* const Counting4 = Counting3 + 256;
|
||||
|
||||
memset(Counting1, 0, 4*256*sizeof(unsigned));
|
||||
|
||||
/* safety checks */
|
||||
if (!sourceSize) {
|
||||
memset(count, 0, maxSymbolValue + 1);
|
||||
*maxSymbolValuePtr = 0;
|
||||
return 0;
|
||||
}
|
||||
if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */
|
||||
|
||||
/* by stripes of 16 bytes */
|
||||
{ U32 cached = MEM_read32(ip); ip += 4;
|
||||
while (ip < iend-15) {
|
||||
U32 c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
}
|
||||
ip-=4;
|
||||
}
|
||||
|
||||
/* finish last symbols */
|
||||
while (ip<iend) Counting1[*ip++]++;
|
||||
|
||||
if (checkMax) { /* verify stats will fit into destination table */
|
||||
U32 s; for (s=255; s>maxSymbolValue; s--) {
|
||||
Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
|
||||
if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
|
||||
} }
|
||||
|
||||
{ U32 s; for (s=0; s<=maxSymbolValue; s++) {
|
||||
count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
|
||||
if (count[s] > max) max = count[s];
|
||||
} }
|
||||
|
||||
while (!count[maxSymbolValue]) maxSymbolValue--;
|
||||
*maxSymbolValuePtr = maxSymbolValue;
|
||||
return (size_t)max;
|
||||
}
|
||||
|
||||
/* FSE_countFast_wksp() :
|
||||
* Same as FSE_countFast(), but using an externally provided scratch buffer.
|
||||
* `workSpace` size must be table of >= `1024` unsigned */
|
||||
size_t FSE_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize, unsigned* workSpace)
|
||||
{
|
||||
if (sourceSize < 1500) return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
|
||||
return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace);
|
||||
}
|
||||
|
||||
/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
|
||||
size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize)
|
||||
{
|
||||
unsigned tmpCounters[1024];
|
||||
return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters);
|
||||
}
|
||||
|
||||
/* FSE_count_wksp() :
|
||||
* Same as FSE_count(), but using an externally provided scratch buffer.
|
||||
* `workSpace` size must be table of >= `1024` unsigned */
|
||||
size_t FSE_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize, unsigned* workSpace)
|
||||
{
|
||||
if (*maxSymbolValuePtr < 255)
|
||||
return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace);
|
||||
*maxSymbolValuePtr = 255;
|
||||
return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace);
|
||||
}
|
||||
|
||||
size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
unsigned tmpCounters[1024];
|
||||
return FSE_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* FSE Compression Code
|
||||
****************************************************************/
|
||||
/*! FSE_sizeof_CTable() :
|
||||
FSE_CTable is a variable size structure which contains :
|
||||
`U16 tableLog;`
|
||||
`U16 maxSymbolValue;`
|
||||
`U16 nextStateNumber[1 << tableLog];` // This size is variable
|
||||
`FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];` // This size is variable
|
||||
Allocation is manual (C standard does not support variable-size structures).
|
||||
*/
|
||||
size_t FSE_sizeof_CTable (unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
||||
return FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
|
||||
}
|
||||
|
||||
FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
@@ -458,7 +335,7 @@ void FSE_freeCTable (FSE_CTable* ct) { free(ct); }
|
||||
/* provides the minimum logSize to safely represent a distribution */
|
||||
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
|
||||
{
|
||||
U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1;
|
||||
U32 minBitsSrc = BIT_highbit32((U32)(srcSize)) + 1;
|
||||
U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
|
||||
U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
|
||||
assert(srcSize > 1); /* Not supported, RLE should be used instead */
|
||||
@@ -521,6 +398,9 @@ static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count,
|
||||
}
|
||||
ToDistribute = (1 << tableLog) - distributed;
|
||||
|
||||
if (ToDistribute == 0)
|
||||
return 0;
|
||||
|
||||
if ((total / ToDistribute) > lowOne) {
|
||||
/* risk of rounding to zero */
|
||||
lowOne = (U32)((total * 3) / (ToDistribute * 2));
|
||||
@@ -540,7 +420,7 @@ static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count,
|
||||
find max, then give all remaining points to max */
|
||||
U32 maxV = 0, maxC = 0;
|
||||
for (s=0; s<=maxSymbolValue; s++)
|
||||
if (count[s] > maxC) maxV=s, maxC=count[s];
|
||||
if (count[s] > maxC) { maxV=s; maxC=count[s]; }
|
||||
norm[maxV] += (short)ToDistribute;
|
||||
return 0;
|
||||
}
|
||||
@@ -548,7 +428,7 @@ static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count,
|
||||
if (total == 0) {
|
||||
/* all of the symbols were low enough for the lowOne or lowThreshold */
|
||||
for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
|
||||
if (norm[s] > 0) ToDistribute--, norm[s]++;
|
||||
if (norm[s] > 0) { ToDistribute--; norm[s]++; }
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -604,7 +484,7 @@ size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
|
||||
U64 restToBeat = vStep * rtbTable[proba];
|
||||
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
|
||||
}
|
||||
if (proba > largestP) largestP=proba, largest=s;
|
||||
if (proba > largestP) { largestP=proba; largest=s; }
|
||||
normalizedCounter[s] = proba;
|
||||
stillToDistribute -= proba;
|
||||
} }
|
||||
@@ -621,11 +501,11 @@ size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
|
||||
U32 s;
|
||||
U32 nTotal = 0;
|
||||
for (s=0; s<=maxSymbolValue; s++)
|
||||
printf("%3i: %4i \n", s, normalizedCounter[s]);
|
||||
RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]);
|
||||
for (s=0; s<=maxSymbolValue; s++)
|
||||
nTotal += abs(normalizedCounter[s]);
|
||||
if (nTotal != (1U<<tableLog))
|
||||
printf("Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
|
||||
RAWLOG(2, "Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
|
||||
getchar();
|
||||
}
|
||||
#endif
|
||||
@@ -792,7 +672,7 @@ size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t src
|
||||
if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
|
||||
|
||||
/* Scan input and build symbol stats */
|
||||
{ CHECK_V_F(maxCount, FSE_count_wksp(count, &maxSymbolValue, src, srcSize, (unsigned*)scratchBuffer) );
|
||||
{ CHECK_V_F(maxCount, HIST_count_wksp(count, &maxSymbolValue, src, srcSize, (unsigned*)scratchBuffer) );
|
||||
if (maxCount == srcSize) return 1; /* only a single symbol in src : rle */
|
||||
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
|
||||
if (maxCount < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
|
||||
@@ -827,7 +707,7 @@ typedef struct {
|
||||
size_t FSE_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
fseWkspMax_t scratchBuffer;
|
||||
FSE_STATIC_ASSERT(sizeof(scratchBuffer) >= FSE_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)); /* compilation failures here means scratchBuffer is not large enough */
|
||||
DEBUG_STATIC_ASSERT(sizeof(scratchBuffer) >= FSE_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)); /* compilation failures here means scratchBuffer is not large enough */
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
||||
return FSE_compress_wksp(dst, dstCapacity, src, srcSize, maxSymbolValue, tableLog, &scratchBuffer, sizeof(scratchBuffer));
|
||||
}
|
||||
|
||||
@@ -49,7 +49,7 @@
|
||||
* Error Management
|
||||
****************************************************************/
|
||||
#define FSE_isError ERR_isError
|
||||
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
||||
#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
|
||||
|
||||
/* check and forward error code */
|
||||
#define CHECK_F(f) { size_t const e = f; if (FSE_isError(e)) return e; }
|
||||
@@ -139,8 +139,8 @@ size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned
|
||||
{ U32 u;
|
||||
for (u=0; u<tableSize; u++) {
|
||||
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
|
||||
U16 nextState = symbolNext[symbol]++;
|
||||
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
|
||||
U32 const nextState = symbolNext[symbol]++;
|
||||
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
|
||||
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
|
||||
} }
|
||||
|
||||
|
||||
195
C/zstd/hist.c
Normal file
195
C/zstd/hist.c
Normal file
@@ -0,0 +1,195 @@
|
||||
/* ******************************************************************
|
||||
hist : Histogram functions
|
||||
part of Finite State Entropy project
|
||||
Copyright (C) 2013-present, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
|
||||
/* --- dependencies --- */
|
||||
#include "mem.h" /* U32, BYTE, etc. */
|
||||
#include "debug.h" /* assert, DEBUGLOG */
|
||||
#include "error_private.h" /* ERROR */
|
||||
#include "hist.h"
|
||||
|
||||
|
||||
/* --- Error management --- */
|
||||
unsigned HIST_isError(size_t code) { return ERR_isError(code); }
|
||||
|
||||
/*-**************************************************************
|
||||
* Histogram functions
|
||||
****************************************************************/
|
||||
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*)src;
|
||||
const BYTE* const end = ip + srcSize;
|
||||
unsigned maxSymbolValue = *maxSymbolValuePtr;
|
||||
unsigned largestCount=0;
|
||||
|
||||
memset(count, 0, (maxSymbolValue+1) * sizeof(*count));
|
||||
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
|
||||
|
||||
while (ip<end) {
|
||||
assert(*ip <= maxSymbolValue);
|
||||
count[*ip++]++;
|
||||
}
|
||||
|
||||
while (!count[maxSymbolValue]) maxSymbolValue--;
|
||||
*maxSymbolValuePtr = maxSymbolValue;
|
||||
|
||||
{ U32 s;
|
||||
for (s=0; s<=maxSymbolValue; s++)
|
||||
if (count[s] > largestCount) largestCount = count[s];
|
||||
}
|
||||
|
||||
return largestCount;
|
||||
}
|
||||
|
||||
|
||||
/* HIST_count_parallel_wksp() :
|
||||
* store histogram into 4 intermediate tables, recombined at the end.
|
||||
* this design makes better use of OoO cpus,
|
||||
* and is noticeably faster when some values are heavily repeated.
|
||||
* But it needs some additional workspace for intermediate tables.
|
||||
* `workSpace` size must be a table of size >= HIST_WKSP_SIZE_U32.
|
||||
* @return : largest histogram frequency,
|
||||
* or an error code (notably when histogram would be larger than *maxSymbolValuePtr). */
|
||||
static size_t HIST_count_parallel_wksp(
|
||||
unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize,
|
||||
unsigned checkMax,
|
||||
unsigned* const workSpace)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*)source;
|
||||
const BYTE* const iend = ip+sourceSize;
|
||||
unsigned maxSymbolValue = *maxSymbolValuePtr;
|
||||
unsigned max=0;
|
||||
U32* const Counting1 = workSpace;
|
||||
U32* const Counting2 = Counting1 + 256;
|
||||
U32* const Counting3 = Counting2 + 256;
|
||||
U32* const Counting4 = Counting3 + 256;
|
||||
|
||||
memset(workSpace, 0, 4*256*sizeof(unsigned));
|
||||
|
||||
/* safety checks */
|
||||
if (!sourceSize) {
|
||||
memset(count, 0, maxSymbolValue + 1);
|
||||
*maxSymbolValuePtr = 0;
|
||||
return 0;
|
||||
}
|
||||
if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */
|
||||
|
||||
/* by stripes of 16 bytes */
|
||||
{ U32 cached = MEM_read32(ip); ip += 4;
|
||||
while (ip < iend-15) {
|
||||
U32 c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
}
|
||||
ip-=4;
|
||||
}
|
||||
|
||||
/* finish last symbols */
|
||||
while (ip<iend) Counting1[*ip++]++;
|
||||
|
||||
if (checkMax) { /* verify stats will fit into destination table */
|
||||
U32 s; for (s=255; s>maxSymbolValue; s--) {
|
||||
Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
|
||||
if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
|
||||
} }
|
||||
|
||||
{ U32 s;
|
||||
if (maxSymbolValue > 255) maxSymbolValue = 255;
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
|
||||
if (count[s] > max) max = count[s];
|
||||
} }
|
||||
|
||||
while (!count[maxSymbolValue]) maxSymbolValue--;
|
||||
*maxSymbolValuePtr = maxSymbolValue;
|
||||
return (size_t)max;
|
||||
}
|
||||
|
||||
/* HIST_countFast_wksp() :
|
||||
* Same as HIST_countFast(), but using an externally provided scratch buffer.
|
||||
* `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
|
||||
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize,
|
||||
unsigned* workSpace)
|
||||
{
|
||||
if (sourceSize < 1500) /* heuristic threshold */
|
||||
return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize);
|
||||
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace);
|
||||
}
|
||||
|
||||
/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
|
||||
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize)
|
||||
{
|
||||
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
|
||||
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters);
|
||||
}
|
||||
|
||||
/* HIST_count_wksp() :
|
||||
* Same as HIST_count(), but using an externally provided scratch buffer.
|
||||
* `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
|
||||
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize, unsigned* workSpace)
|
||||
{
|
||||
if (*maxSymbolValuePtr < 255)
|
||||
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace);
|
||||
*maxSymbolValuePtr = 255;
|
||||
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace);
|
||||
}
|
||||
|
||||
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
|
||||
return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters);
|
||||
}
|
||||
92
C/zstd/hist.h
Normal file
92
C/zstd/hist.h
Normal file
@@ -0,0 +1,92 @@
|
||||
/* ******************************************************************
|
||||
hist : Histogram functions
|
||||
part of Finite State Entropy project
|
||||
Copyright (C) 2013-present, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
|
||||
/* --- dependencies --- */
|
||||
#include <stddef.h> /* size_t */
|
||||
|
||||
|
||||
/* --- simple histogram functions --- */
|
||||
|
||||
/*! HIST_count():
|
||||
* Provides the precise count of each byte within a table 'count'.
|
||||
* 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
|
||||
* Updates *maxSymbolValuePtr with actual largest symbol value detected.
|
||||
* @return : count of the most frequent symbol (which isn't identified).
|
||||
* or an error code, which can be tested using HIST_isError().
|
||||
* note : if return == srcSize, there is only one symbol.
|
||||
*/
|
||||
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
unsigned HIST_isError(size_t code); /**< tells if a return value is an error code */
|
||||
|
||||
|
||||
/* --- advanced histogram functions --- */
|
||||
|
||||
#define HIST_WKSP_SIZE_U32 1024
|
||||
/** HIST_count_wksp() :
|
||||
* Same as HIST_count(), but using an externally provided scratch buffer.
|
||||
* Benefit is this function will use very little stack space.
|
||||
* `workSpace` must be a table of unsigned of size >= HIST_WKSP_SIZE_U32
|
||||
*/
|
||||
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned* workSpace);
|
||||
|
||||
/** HIST_countFast() :
|
||||
* same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr.
|
||||
* This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr`
|
||||
*/
|
||||
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/** HIST_countFast_wksp() :
|
||||
* Same as HIST_countFast(), but using an externally provided scratch buffer.
|
||||
* `workSpace` must be a table of unsigned of size >= HIST_WKSP_SIZE_U32
|
||||
*/
|
||||
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned* workSpace);
|
||||
|
||||
/*! HIST_count_simple() :
|
||||
* Same as HIST_countFast(), this function is unsafe,
|
||||
* and will segfault if any value within `src` is `> *maxSymbolValuePtr`.
|
||||
* It is also a bit slower for large inputs.
|
||||
* However, it does not need any additional memory (not even on stack).
|
||||
* @return : count of the most frequent symbol.
|
||||
* Note this function doesn't produce any error (i.e. it must succeed).
|
||||
*/
|
||||
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize);
|
||||
254
C/zstd/huf.h
254
C/zstd/huf.h
@@ -1,7 +1,7 @@
|
||||
/* ******************************************************************
|
||||
Huffman coder, part of New Generation Entropy library
|
||||
header file
|
||||
Copyright (C) 2013-2016, Yann Collet.
|
||||
huff0 huffman codec,
|
||||
part of Finite State Entropy library
|
||||
Copyright (C) 2013-present, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
@@ -58,32 +58,32 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* *** simple functions *** */
|
||||
/**
|
||||
HUF_compress() :
|
||||
Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
|
||||
'dst' buffer must be already allocated.
|
||||
Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
|
||||
`srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
|
||||
@return : size of compressed data (<= `dstCapacity`).
|
||||
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
|
||||
if return == 1, srcData is a single repeated byte symbol (RLE compression).
|
||||
if HUF_isError(return), compression failed (more details using HUF_getErrorName())
|
||||
*/
|
||||
/* ========================== */
|
||||
/* *** simple functions *** */
|
||||
/* ========================== */
|
||||
|
||||
/** HUF_compress() :
|
||||
* Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
|
||||
* 'dst' buffer must be already allocated.
|
||||
* Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
|
||||
* `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
|
||||
* @return : size of compressed data (<= `dstCapacity`).
|
||||
* Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
|
||||
* if HUF_isError(return), compression failed (more details using HUF_getErrorName())
|
||||
*/
|
||||
HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/**
|
||||
HUF_decompress() :
|
||||
Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
|
||||
into already allocated buffer 'dst', of minimum size 'dstSize'.
|
||||
`originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
|
||||
Note : in contrast with FSE, HUF_decompress can regenerate
|
||||
RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
|
||||
because it knows size to regenerate.
|
||||
@return : size of regenerated data (== originalSize),
|
||||
or an error code, which can be tested using HUF_isError()
|
||||
*/
|
||||
/** HUF_decompress() :
|
||||
* Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
|
||||
* into already allocated buffer 'dst', of minimum size 'dstSize'.
|
||||
* `originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
|
||||
* Note : in contrast with FSE, HUF_decompress can regenerate
|
||||
* RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
|
||||
* because it knows size to regenerate (originalSize).
|
||||
* @return : size of regenerated data (== originalSize),
|
||||
* or an error code, which can be tested using HUF_isError()
|
||||
*/
|
||||
HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize,
|
||||
const void* cSrc, size_t cSrcSize);
|
||||
|
||||
@@ -100,39 +100,32 @@ HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error c
|
||||
/* *** Advanced function *** */
|
||||
|
||||
/** HUF_compress2() :
|
||||
* Same as HUF_compress(), but offers direct control over `maxSymbolValue` and `tableLog`.
|
||||
* `tableLog` must be `<= HUF_TABLELOG_MAX` . */
|
||||
HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
|
||||
* Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`.
|
||||
* `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX .
|
||||
* `tableLog` must be `<= HUF_TABLELOG_MAX` . */
|
||||
HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
/** HUF_compress4X_wksp() :
|
||||
* Same as HUF_compress2(), but uses externally allocated `workSpace`.
|
||||
* `workspace` must have minimum alignment of 4, and be at least as large as following macro */
|
||||
* `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */
|
||||
#define HUF_WORKSPACE_SIZE (6 << 10)
|
||||
#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32))
|
||||
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
|
||||
|
||||
/**
|
||||
* The minimum workspace size for the `workSpace` used in
|
||||
* HUF_readDTableX2_wksp() and HUF_readDTableX4_wksp().
|
||||
*
|
||||
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
|
||||
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
|
||||
* Buffer overflow errors may potentially occur if code modifications result in
|
||||
* a required workspace size greater than that specified in the following
|
||||
* macro.
|
||||
*/
|
||||
#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10)
|
||||
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
|
||||
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned tableLog,
|
||||
void* workSpace, size_t wkspSize);
|
||||
|
||||
#endif /* HUF_H_298734234 */
|
||||
|
||||
/* ******************************************************************
|
||||
* WARNING !!
|
||||
* The following section contains advanced and experimental definitions
|
||||
* which shall never be used in the context of dll
|
||||
* which shall never be used in the context of a dynamic library,
|
||||
* because they are not guaranteed to remain stable in the future.
|
||||
* Only consider them in association with static linking.
|
||||
*******************************************************************/
|
||||
* *****************************************************************/
|
||||
#if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY)
|
||||
#define HUF_H_HUF_STATIC_LINKING_ONLY
|
||||
|
||||
@@ -141,11 +134,11 @@ HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, const
|
||||
|
||||
|
||||
/* *** Constants *** */
|
||||
#define HUF_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
|
||||
#define HUF_TABLELOG_DEFAULT 11 /* tableLog by default, when not specified */
|
||||
#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
|
||||
#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
|
||||
#define HUF_SYMBOLVALUE_MAX 255
|
||||
|
||||
#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
|
||||
#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
|
||||
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
|
||||
# error "HUF_TABLELOG_MAX is too large !"
|
||||
#endif
|
||||
@@ -170,130 +163,169 @@ HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, const
|
||||
/* static allocation of HUF's DTable */
|
||||
typedef U32 HUF_DTable;
|
||||
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
|
||||
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
|
||||
#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \
|
||||
HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
|
||||
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
|
||||
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
|
||||
HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Advanced decompression functions
|
||||
******************************************/
|
||||
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
|
||||
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
|
||||
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
|
||||
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< considers RLE and uncompressed as errors */
|
||||
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress4X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* HUF detailed API
|
||||
******************************************/
|
||||
/*!
|
||||
HUF_compress() does the following:
|
||||
1. count symbol occurrence from source[] into table count[] using FSE_count()
|
||||
2. (optional) refine tableLog using HUF_optimalTableLog()
|
||||
3. build Huffman table from count using HUF_buildCTable()
|
||||
4. save Huffman table to memory buffer using HUF_writeCTable()
|
||||
5. encode the data stream using HUF_compress4X_usingCTable()
|
||||
* HUF detailed API
|
||||
* ****************************************/
|
||||
|
||||
The following API allows targeting specific sub-functions for advanced tasks.
|
||||
For example, it's possible to compress several blocks using the same 'CTable',
|
||||
or to save and regenerate 'CTable' using external methods.
|
||||
*/
|
||||
/* FSE_count() : find it within "fse.h" */
|
||||
/*! HUF_compress() does the following:
|
||||
* 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
|
||||
* 2. (optional) refine tableLog using HUF_optimalTableLog()
|
||||
* 3. build Huffman table from count using HUF_buildCTable()
|
||||
* 4. save Huffman table to memory buffer using HUF_writeCTable()
|
||||
* 5. encode the data stream using HUF_compress4X_usingCTable()
|
||||
*
|
||||
* The following API allows targeting specific sub-functions for advanced tasks.
|
||||
* For example, it's possible to compress several blocks using the same 'CTable',
|
||||
* or to save and regenerate 'CTable' using external methods.
|
||||
*/
|
||||
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
|
||||
typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
|
||||
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits);
|
||||
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */
|
||||
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
||||
|
||||
typedef enum {
|
||||
HUF_repeat_none, /**< Cannot use the previous table */
|
||||
HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
|
||||
HUF_repeat_valid /**< Can use the previous table and it is asumed to be valid */
|
||||
HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */
|
||||
} HUF_repeat;
|
||||
/** HUF_compress4X_repeat() :
|
||||
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
|
||||
* If it uses hufTable it does not modify hufTable or repeat.
|
||||
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
|
||||
* If preferRepeat then the old table will always be used if valid. */
|
||||
size_t HUF_compress4X_repeat(void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
|
||||
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
|
||||
* If it uses hufTable it does not modify hufTable or repeat.
|
||||
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
|
||||
* If preferRepeat then the old table will always be used if valid. */
|
||||
size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned tableLog,
|
||||
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
|
||||
|
||||
/** HUF_buildCTable_wksp() :
|
||||
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
|
||||
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
|
||||
* `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
|
||||
*/
|
||||
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize);
|
||||
#define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1)
|
||||
#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
|
||||
size_t HUF_buildCTable_wksp (HUF_CElt* tree,
|
||||
const U32* count, U32 maxSymbolValue, U32 maxNbBits,
|
||||
void* workSpace, size_t wkspSize);
|
||||
|
||||
/*! HUF_readStats() :
|
||||
Read compact Huffman tree, saved by HUF_writeCTable().
|
||||
`huffWeight` is destination buffer.
|
||||
@return : size read from `src` , or an error Code .
|
||||
Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
|
||||
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
||||
U32* nbSymbolsPtr, U32* tableLogPtr,
|
||||
* Read compact Huffman tree, saved by HUF_writeCTable().
|
||||
* `huffWeight` is destination buffer.
|
||||
* @return : size read from `src` , or an error Code .
|
||||
* Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
|
||||
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize,
|
||||
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/** HUF_readCTable() :
|
||||
* Loading a CTable saved with HUF_writeCTable() */
|
||||
* Loading a CTable saved with HUF_writeCTable() */
|
||||
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
|
||||
|
||||
/** HUF_getNbBits() :
|
||||
* Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
|
||||
* Note 1 : is not inlined, as HUF_CElt definition is private
|
||||
* Note 2 : const void* used, so that it can provide a statically allocated table as argument (which uses type U32) */
|
||||
U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue);
|
||||
|
||||
/*
|
||||
HUF_decompress() does the following:
|
||||
1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
|
||||
2. build Huffman table from save, using HUF_readDTableXn()
|
||||
3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
|
||||
*/
|
||||
* HUF_decompress() does the following:
|
||||
* 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics
|
||||
* 2. build Huffman table from save, using HUF_readDTableX?()
|
||||
* 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable()
|
||||
*/
|
||||
|
||||
/** HUF_selectDecoder() :
|
||||
* Tells which decoder is likely to decode faster,
|
||||
* based on a set of pre-determined metrics.
|
||||
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
|
||||
* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
|
||||
* Tells which decoder is likely to decode faster,
|
||||
* based on a set of pre-computed metrics.
|
||||
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
|
||||
* Assumption : 0 < dstSize <= 128 KB */
|
||||
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
|
||||
|
||||
/**
|
||||
* The minimum workspace size for the `workSpace` used in
|
||||
* HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp().
|
||||
*
|
||||
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
|
||||
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
|
||||
* Buffer overflow errors may potentially occur if code modifications result in
|
||||
* a required workspace size greater than that specified in the following
|
||||
* macro.
|
||||
*/
|
||||
#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10)
|
||||
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
|
||||
|
||||
size_t HUF_readDTableX1 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
||||
size_t HUF_readDTableX1_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
|
||||
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
||||
size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
|
||||
size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
||||
size_t HUF_readDTableX4_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
|
||||
|
||||
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress4X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
|
||||
|
||||
/* ====================== */
|
||||
/* single stream variants */
|
||||
/* ====================== */
|
||||
|
||||
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
|
||||
size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
||||
/** HUF_compress1X_repeat() :
|
||||
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
|
||||
* If it uses hufTable it does not modify hufTable or repeat.
|
||||
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
|
||||
* If preferRepeat then the old table will always be used if valid. */
|
||||
size_t HUF_compress1X_repeat(void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
|
||||
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
|
||||
* If it uses hufTable it does not modify hufTable or repeat.
|
||||
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
|
||||
* If preferRepeat then the old table will always be used if valid. */
|
||||
size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned tableLog,
|
||||
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
|
||||
|
||||
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
|
||||
size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
|
||||
size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
|
||||
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
|
||||
|
||||
size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
|
||||
size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize);
|
||||
size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress1X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress1X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
|
||||
|
||||
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */
|
||||
size_t HUF_decompress1X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
|
||||
/* BMI2 variants.
|
||||
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
|
||||
*/
|
||||
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
|
||||
size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
|
||||
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
|
||||
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
|
||||
|
||||
#endif /* HUF_STATIC_LINKING_ONLY */
|
||||
|
||||
|
||||
@@ -45,7 +45,9 @@
|
||||
****************************************************************/
|
||||
#include <string.h> /* memcpy, memset */
|
||||
#include <stdio.h> /* printf (debug) */
|
||||
#include "compiler.h"
|
||||
#include "bitstream.h"
|
||||
#include "hist.h"
|
||||
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
|
||||
#include "fse.h" /* header compression */
|
||||
#define HUF_STATIC_LINKING_ONLY
|
||||
@@ -57,7 +59,7 @@
|
||||
* Error Management
|
||||
****************************************************************/
|
||||
#define HUF_isError ERR_isError
|
||||
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
||||
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
|
||||
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
|
||||
#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
|
||||
|
||||
@@ -80,7 +82,7 @@ unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxS
|
||||
* Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
|
||||
*/
|
||||
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
|
||||
size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
|
||||
static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* op = ostart;
|
||||
@@ -99,9 +101,9 @@ size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable,
|
||||
if (wtSize <= 1) return 0; /* Not compressible */
|
||||
|
||||
/* Scan input and build symbol stats */
|
||||
{ CHECK_V_F(maxCount, FSE_count_simple(count, &maxSymbolValue, weightTable, wtSize) );
|
||||
{ unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize); /* never fails */
|
||||
if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
|
||||
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
|
||||
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
|
||||
}
|
||||
|
||||
tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
|
||||
@@ -215,6 +217,13 @@ size_t HUF_readCTable (HUF_CElt* CTable, U32* maxSymbolValuePtr, const void* src
|
||||
return readSize;
|
||||
}
|
||||
|
||||
U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
|
||||
{
|
||||
const HUF_CElt* table = (const HUF_CElt*)symbolTable;
|
||||
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
|
||||
return table[symbolValue].nbBits;
|
||||
}
|
||||
|
||||
|
||||
typedef struct nodeElt_s {
|
||||
U32 count;
|
||||
@@ -322,7 +331,10 @@ static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
|
||||
U32 const c = count[n];
|
||||
U32 const r = BIT_highbit32(c+1) + 1;
|
||||
U32 pos = rank[r].current++;
|
||||
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
|
||||
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) {
|
||||
huffNode[pos] = huffNode[pos-1];
|
||||
pos--;
|
||||
}
|
||||
huffNode[pos].count = c;
|
||||
huffNode[pos].byte = (BYTE)n;
|
||||
}
|
||||
@@ -331,10 +343,10 @@ static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
|
||||
|
||||
/** HUF_buildCTable_wksp() :
|
||||
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
|
||||
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
|
||||
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of HUF_CTABLE_WORKSPACE_SIZE_U32 unsigned.
|
||||
*/
|
||||
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
|
||||
typedef nodeElt huffNodeTable[2*HUF_SYMBOLVALUE_MAX+1 +1];
|
||||
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
|
||||
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
|
||||
{
|
||||
nodeElt* const huffNode0 = (nodeElt*)workSpace;
|
||||
@@ -345,9 +357,10 @@ size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValu
|
||||
U32 nodeRoot;
|
||||
|
||||
/* safety checks */
|
||||
if (wkspSize < sizeof(huffNodeTable)) return ERROR(GENERIC); /* workSpace is not large enough */
|
||||
if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
|
||||
if (wkspSize < sizeof(huffNodeTable)) return ERROR(workSpace_tooSmall);
|
||||
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
|
||||
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(GENERIC);
|
||||
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
|
||||
memset(huffNode0, 0, sizeof(huffNodeTable));
|
||||
|
||||
/* sort, decreasing order */
|
||||
@@ -405,6 +418,7 @@ size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValu
|
||||
}
|
||||
|
||||
/** HUF_buildCTable() :
|
||||
* @return : maxNbBits
|
||||
* Note : count is used before tree is written, so they can safely overlap
|
||||
*/
|
||||
size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
|
||||
@@ -432,13 +446,14 @@ static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, uns
|
||||
return !bad;
|
||||
}
|
||||
|
||||
static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
|
||||
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
|
||||
|
||||
FORCE_INLINE_TEMPLATE void
|
||||
HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
|
||||
{
|
||||
BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
|
||||
}
|
||||
|
||||
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
|
||||
|
||||
#define HUF_FLUSHBITS(s) BIT_flushBits(s)
|
||||
|
||||
#define HUF_FLUSHBITS_1(stream) \
|
||||
@@ -447,7 +462,10 @@ size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
|
||||
#define HUF_FLUSHBITS_2(stream) \
|
||||
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
|
||||
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
||||
FORCE_INLINE_TEMPLATE size_t
|
||||
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*) src;
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
@@ -491,8 +509,58 @@ size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, si
|
||||
return BIT_closeCStream(&bitC);
|
||||
}
|
||||
|
||||
#if DYNAMIC_BMI2
|
||||
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
||||
static TARGET_ATTRIBUTE("bmi2") size_t
|
||||
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable)
|
||||
{
|
||||
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
|
||||
}
|
||||
|
||||
static size_t
|
||||
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable)
|
||||
{
|
||||
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
|
||||
}
|
||||
|
||||
static size_t
|
||||
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable, const int bmi2)
|
||||
{
|
||||
if (bmi2) {
|
||||
return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
|
||||
}
|
||||
return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static size_t
|
||||
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable, const int bmi2)
|
||||
{
|
||||
(void)bmi2;
|
||||
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
||||
{
|
||||
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
|
||||
}
|
||||
|
||||
|
||||
static size_t
|
||||
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const HUF_CElt* CTable, int bmi2)
|
||||
{
|
||||
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
|
||||
const BYTE* ip = (const BYTE*) src;
|
||||
@@ -505,28 +573,31 @@ size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, si
|
||||
if (srcSize < 12) return 0; /* no saving possible : too small input */
|
||||
op += 6; /* jumpTable */
|
||||
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
|
||||
if (cSize==0) return 0;
|
||||
assert(cSize <= 65535);
|
||||
MEM_writeLE16(ostart, (U16)cSize);
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
ip += segmentSize;
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
|
||||
if (cSize==0) return 0;
|
||||
assert(cSize <= 65535);
|
||||
MEM_writeLE16(ostart+2, (U16)cSize);
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
ip += segmentSize;
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
|
||||
if (cSize==0) return 0;
|
||||
assert(cSize <= 65535);
|
||||
MEM_writeLE16(ostart+4, (U16)cSize);
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
ip += segmentSize;
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, iend-ip, CTable) );
|
||||
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, iend-ip, CTable, bmi2) );
|
||||
if (cSize==0) return 0;
|
||||
op += cSize;
|
||||
}
|
||||
@@ -534,15 +605,20 @@ size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, si
|
||||
return op-ostart;
|
||||
}
|
||||
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
||||
{
|
||||
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
|
||||
}
|
||||
|
||||
|
||||
static size_t HUF_compressCTable_internal(
|
||||
BYTE* const ostart, BYTE* op, BYTE* const oend,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned singleStream, const HUF_CElt* CTable)
|
||||
unsigned singleStream, const HUF_CElt* CTable, const int bmi2)
|
||||
{
|
||||
size_t const cSize = singleStream ?
|
||||
HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) :
|
||||
HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
|
||||
HUF_compress1X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2) :
|
||||
HUF_compress4X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2);
|
||||
if (HUF_isError(cSize)) { return cSize; }
|
||||
if (cSize==0) { return 0; } /* uncompressible */
|
||||
op += cSize;
|
||||
@@ -551,86 +627,98 @@ static size_t HUF_compressCTable_internal(
|
||||
return op-ostart;
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
U32 count[HUF_SYMBOLVALUE_MAX + 1];
|
||||
HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
|
||||
huffNodeTable nodeTable;
|
||||
} HUF_compress_tables_t;
|
||||
|
||||
/* `workSpace` must a table of at least 1024 unsigned */
|
||||
/* HUF_compress_internal() :
|
||||
* `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
|
||||
static size_t HUF_compress_internal (
|
||||
void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
unsigned singleStream,
|
||||
void* workSpace, size_t wkspSize,
|
||||
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat)
|
||||
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
|
||||
const int bmi2)
|
||||
{
|
||||
HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace;
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
BYTE* op = ostart;
|
||||
|
||||
U32* count;
|
||||
size_t const countSize = sizeof(U32) * (HUF_SYMBOLVALUE_MAX + 1);
|
||||
HUF_CElt* CTable;
|
||||
size_t const CTableSize = sizeof(HUF_CElt) * (HUF_SYMBOLVALUE_MAX + 1);
|
||||
|
||||
/* checks & inits */
|
||||
if (wkspSize < sizeof(huffNodeTable) + countSize + CTableSize) return ERROR(GENERIC);
|
||||
if (!srcSize) return 0; /* Uncompressed (note : 1 means rle, so first byte must be correct) */
|
||||
if (!dstSize) return 0; /* cannot fit within dst budget */
|
||||
if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
|
||||
if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
|
||||
if (!srcSize) return 0; /* Uncompressed */
|
||||
if (!dstSize) return 0; /* cannot fit anything within dst budget */
|
||||
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
|
||||
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
|
||||
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
|
||||
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
|
||||
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
|
||||
|
||||
count = (U32*)workSpace;
|
||||
workSpace = (BYTE*)workSpace + countSize;
|
||||
wkspSize -= countSize;
|
||||
CTable = (HUF_CElt*)workSpace;
|
||||
workSpace = (BYTE*)workSpace + CTableSize;
|
||||
wkspSize -= CTableSize;
|
||||
|
||||
/* Heuristic : If we don't need to check the validity of the old table use the old table for small inputs */
|
||||
/* Heuristic : If old table is valid, use it for small inputs */
|
||||
if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
|
||||
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
|
||||
return HUF_compressCTable_internal(ostart, op, oend,
|
||||
src, srcSize,
|
||||
singleStream, oldHufTable, bmi2);
|
||||
}
|
||||
|
||||
/* Scan input and build symbol stats */
|
||||
{ CHECK_V_F(largest, FSE_count_wksp (count, &maxSymbolValue, (const BYTE*)src, srcSize, (U32*)workSpace) );
|
||||
{ CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->count) );
|
||||
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
|
||||
if (largest <= (srcSize >> 7)+1) return 0; /* Fast heuristic : not compressible enough */
|
||||
if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
|
||||
}
|
||||
|
||||
/* Check validity of previous table */
|
||||
if (repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, count, maxSymbolValue)) {
|
||||
if ( repeat
|
||||
&& *repeat == HUF_repeat_check
|
||||
&& !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
|
||||
*repeat = HUF_repeat_none;
|
||||
}
|
||||
/* Heuristic : use existing table for small inputs */
|
||||
if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
|
||||
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
|
||||
return HUF_compressCTable_internal(ostart, op, oend,
|
||||
src, srcSize,
|
||||
singleStream, oldHufTable, bmi2);
|
||||
}
|
||||
|
||||
/* Build Huffman Tree */
|
||||
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
|
||||
{ CHECK_V_F(maxBits, HUF_buildCTable_wksp (CTable, count, maxSymbolValue, huffLog, workSpace, wkspSize) );
|
||||
{ CHECK_V_F(maxBits, HUF_buildCTable_wksp(table->CTable, table->count,
|
||||
maxSymbolValue, huffLog,
|
||||
table->nodeTable, sizeof(table->nodeTable)) );
|
||||
huffLog = (U32)maxBits;
|
||||
/* Zero the unused symbols so we can check it for validity */
|
||||
memset(CTable + maxSymbolValue + 1, 0, CTableSize - (maxSymbolValue + 1) * sizeof(HUF_CElt));
|
||||
/* Zero unused symbols in CTable, so we can check it for validity */
|
||||
memset(table->CTable + (maxSymbolValue + 1), 0,
|
||||
sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
|
||||
}
|
||||
|
||||
/* Write table description header */
|
||||
{ CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog) );
|
||||
/* Check if using the previous table will be beneficial */
|
||||
{ CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
|
||||
/* Check if using previous huffman table is beneficial */
|
||||
if (repeat && *repeat != HUF_repeat_none) {
|
||||
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, count, maxSymbolValue);
|
||||
size_t const newSize = HUF_estimateCompressedSize(CTable, count, maxSymbolValue);
|
||||
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
|
||||
size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
|
||||
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
|
||||
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
|
||||
}
|
||||
}
|
||||
/* Use the new table */
|
||||
return HUF_compressCTable_internal(ostart, op, oend,
|
||||
src, srcSize,
|
||||
singleStream, oldHufTable, bmi2);
|
||||
} }
|
||||
|
||||
/* Use the new huffman table */
|
||||
if (hSize + 12ul >= srcSize) { return 0; }
|
||||
op += hSize;
|
||||
if (repeat) { *repeat = HUF_repeat_none; }
|
||||
if (oldHufTable) { memcpy(oldHufTable, CTable, CTableSize); } /* Save the new table */
|
||||
if (oldHufTable)
|
||||
memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
|
||||
}
|
||||
return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, CTable);
|
||||
return HUF_compressCTable_internal(ostart, op, oend,
|
||||
src, srcSize,
|
||||
singleStream, table->CTable, bmi2);
|
||||
}
|
||||
|
||||
|
||||
@@ -639,52 +727,70 @@ size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
void* workSpace, size_t wkspSize)
|
||||
{
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, NULL, NULL, 0);
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize,
|
||||
maxSymbolValue, huffLog, 1 /*single stream*/,
|
||||
workSpace, wkspSize,
|
||||
NULL, NULL, 0, 0 /*bmi2*/);
|
||||
}
|
||||
|
||||
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
void* workSpace, size_t wkspSize,
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
|
||||
{
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize,
|
||||
maxSymbolValue, huffLog, 1 /*single stream*/,
|
||||
workSpace, wkspSize, hufTable,
|
||||
repeat, preferRepeat, bmi2);
|
||||
}
|
||||
|
||||
size_t HUF_compress1X (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog)
|
||||
{
|
||||
unsigned workSpace[1024];
|
||||
unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
|
||||
return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
|
||||
}
|
||||
|
||||
/* HUF_compress4X_repeat():
|
||||
* compress input using 4 streams.
|
||||
* provide workspace to generate compression tables */
|
||||
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
void* workSpace, size_t wkspSize)
|
||||
{
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, NULL, NULL, 0);
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize,
|
||||
maxSymbolValue, huffLog, 0 /*4 streams*/,
|
||||
workSpace, wkspSize,
|
||||
NULL, NULL, 0, 0 /*bmi2*/);
|
||||
}
|
||||
|
||||
/* HUF_compress4X_repeat():
|
||||
* compress input using 4 streams.
|
||||
* re-use an existing huffman compression table */
|
||||
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
void* workSpace, size_t wkspSize,
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
|
||||
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
|
||||
{
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize,
|
||||
maxSymbolValue, huffLog, 0 /* 4 streams */,
|
||||
workSpace, wkspSize,
|
||||
hufTable, repeat, preferRepeat, bmi2);
|
||||
}
|
||||
|
||||
size_t HUF_compress2 (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog)
|
||||
{
|
||||
unsigned workSpace[1024];
|
||||
unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
|
||||
return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
|
||||
}
|
||||
|
||||
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
||||
{
|
||||
return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_TABLELOG_DEFAULT);
|
||||
return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
40
C/zstd/mem.h
40
C/zstd/mem.h
@@ -56,18 +56,26 @@ MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (size
|
||||
typedef int32_t S32;
|
||||
typedef uint64_t U64;
|
||||
typedef int64_t S64;
|
||||
typedef intptr_t iPtrDiff;
|
||||
typedef uintptr_t uPtrDiff;
|
||||
#else
|
||||
# include <limits.h>
|
||||
#if CHAR_BIT != 8
|
||||
# error "this implementation requires char to be exactly 8-bit type"
|
||||
#endif
|
||||
typedef unsigned char BYTE;
|
||||
#if USHRT_MAX != 65535
|
||||
# error "this implementation requires short to be exactly 16-bit type"
|
||||
#endif
|
||||
typedef unsigned short U16;
|
||||
typedef signed short S16;
|
||||
#if UINT_MAX != 4294967295
|
||||
# error "this implementation requires int to be exactly 32-bit type"
|
||||
#endif
|
||||
typedef unsigned int U32;
|
||||
typedef signed int S32;
|
||||
/* note : there are no limits defined for long long type in C90.
|
||||
* limits exist in C99, however, in such case, <stdint.h> is preferred */
|
||||
typedef unsigned long long U64;
|
||||
typedef signed long long S64;
|
||||
typedef ptrdiff_t iPtrDiff;
|
||||
typedef size_t uPtrDiff;
|
||||
#endif
|
||||
|
||||
|
||||
@@ -123,20 +131,26 @@ MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
|
||||
/* currently only defined for gcc and icc */
|
||||
#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
|
||||
__pragma( pack(push, 1) )
|
||||
typedef union { U16 u16; U32 u32; U64 u64; size_t st; } unalign;
|
||||
typedef struct { U16 v; } unalign16;
|
||||
typedef struct { U32 v; } unalign32;
|
||||
typedef struct { U64 v; } unalign64;
|
||||
typedef struct { size_t v; } unalignArch;
|
||||
__pragma( pack(pop) )
|
||||
#else
|
||||
typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
|
||||
typedef struct { U16 v; } __attribute__((packed)) unalign16;
|
||||
typedef struct { U32 v; } __attribute__((packed)) unalign32;
|
||||
typedef struct { U64 v; } __attribute__((packed)) unalign64;
|
||||
typedef struct { size_t v; } __attribute__((packed)) unalignArch;
|
||||
#endif
|
||||
|
||||
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
|
||||
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
||||
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
|
||||
MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalign*)ptr)->st; }
|
||||
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
|
||||
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
|
||||
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
|
||||
MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
|
||||
|
||||
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
|
||||
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; }
|
||||
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; }
|
||||
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
|
||||
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
|
||||
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
|
||||
|
||||
#else
|
||||
|
||||
|
||||
193
C/zstd/pool.c
193
C/zstd/pool.c
@@ -10,8 +10,9 @@
|
||||
|
||||
|
||||
/* ====== Dependencies ======= */
|
||||
#include <stddef.h> /* size_t */
|
||||
#include <stdlib.h> /* malloc, calloc, free */
|
||||
#include <stddef.h> /* size_t */
|
||||
#include "debug.h" /* assert */
|
||||
#include "zstd_internal.h" /* ZSTD_malloc, ZSTD_free */
|
||||
#include "pool.h"
|
||||
|
||||
/* ====== Compiler specifics ====== */
|
||||
@@ -33,8 +34,9 @@ typedef struct POOL_job_s {
|
||||
struct POOL_ctx_s {
|
||||
ZSTD_customMem customMem;
|
||||
/* Keep track of the threads */
|
||||
ZSTD_pthread_t *threads;
|
||||
size_t numThreads;
|
||||
ZSTD_pthread_t* threads;
|
||||
size_t threadCapacity;
|
||||
size_t threadLimit;
|
||||
|
||||
/* The queue is a circular buffer */
|
||||
POOL_job *queue;
|
||||
@@ -58,10 +60,10 @@ struct POOL_ctx_s {
|
||||
};
|
||||
|
||||
/* POOL_thread() :
|
||||
Work thread for the thread pool.
|
||||
Waits for jobs and executes them.
|
||||
@returns : NULL on failure else non-null.
|
||||
*/
|
||||
* Work thread for the thread pool.
|
||||
* Waits for jobs and executes them.
|
||||
* @returns : NULL on failure else non-null.
|
||||
*/
|
||||
static void* POOL_thread(void* opaque) {
|
||||
POOL_ctx* const ctx = (POOL_ctx*)opaque;
|
||||
if (!ctx) { return NULL; }
|
||||
@@ -69,14 +71,17 @@ static void* POOL_thread(void* opaque) {
|
||||
/* Lock the mutex and wait for a non-empty queue or until shutdown */
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
|
||||
while (ctx->queueEmpty && !ctx->shutdown) {
|
||||
while ( ctx->queueEmpty
|
||||
|| (ctx->numThreadsBusy >= ctx->threadLimit) ) {
|
||||
if (ctx->shutdown) {
|
||||
/* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit),
|
||||
* a few threads will be shutdown while !queueEmpty,
|
||||
* but enough threads will remain active to finish the queue */
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
return opaque;
|
||||
}
|
||||
ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
|
||||
}
|
||||
/* empty => shutting down: so stop */
|
||||
if (ctx->queueEmpty) {
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
return opaque;
|
||||
}
|
||||
/* Pop a job off the queue */
|
||||
{ POOL_job const job = ctx->queue[ctx->queueHead];
|
||||
ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
|
||||
@@ -89,33 +94,35 @@ static void* POOL_thread(void* opaque) {
|
||||
job.function(job.opaque);
|
||||
|
||||
/* If the intended queue size was 0, signal after finishing job */
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
ctx->numThreadsBusy--;
|
||||
if (ctx->queueSize == 1) {
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
ctx->numThreadsBusy--;
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
|
||||
} }
|
||||
}
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
}
|
||||
} /* for (;;) */
|
||||
/* Unreachable */
|
||||
assert(0); /* Unreachable */
|
||||
}
|
||||
|
||||
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
|
||||
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
|
||||
}
|
||||
|
||||
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) {
|
||||
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
|
||||
ZSTD_customMem customMem) {
|
||||
POOL_ctx* ctx;
|
||||
/* Check the parameters */
|
||||
/* Check parameters */
|
||||
if (!numThreads) { return NULL; }
|
||||
/* Allocate the context and zero initialize */
|
||||
ctx = (POOL_ctx*)ZSTD_calloc(sizeof(POOL_ctx), customMem);
|
||||
if (!ctx) { return NULL; }
|
||||
/* Initialize the job queue.
|
||||
* It needs one extra space since one space is wasted to differentiate empty
|
||||
* and full queues.
|
||||
* It needs one extra space since one space is wasted to differentiate
|
||||
* empty and full queues.
|
||||
*/
|
||||
ctx->queueSize = queueSize + 1;
|
||||
ctx->queue = (POOL_job*) malloc(ctx->queueSize * sizeof(POOL_job));
|
||||
ctx->queue = (POOL_job*)ZSTD_malloc(ctx->queueSize * sizeof(POOL_job), customMem);
|
||||
ctx->queueHead = 0;
|
||||
ctx->queueTail = 0;
|
||||
ctx->numThreadsBusy = 0;
|
||||
@@ -126,7 +133,7 @@ POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customM
|
||||
ctx->shutdown = 0;
|
||||
/* Allocate space for the thread handles */
|
||||
ctx->threads = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
|
||||
ctx->numThreads = 0;
|
||||
ctx->threadCapacity = 0;
|
||||
ctx->customMem = customMem;
|
||||
/* Check for errors */
|
||||
if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
|
||||
@@ -134,11 +141,12 @@ POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customM
|
||||
{ size_t i;
|
||||
for (i = 0; i < numThreads; ++i) {
|
||||
if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
|
||||
ctx->numThreads = i;
|
||||
ctx->threadCapacity = i;
|
||||
POOL_free(ctx);
|
||||
return NULL;
|
||||
} }
|
||||
ctx->numThreads = numThreads;
|
||||
ctx->threadCapacity = numThreads;
|
||||
ctx->threadLimit = numThreads;
|
||||
}
|
||||
return ctx;
|
||||
}
|
||||
@@ -156,8 +164,8 @@ static void POOL_join(POOL_ctx* ctx) {
|
||||
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
|
||||
/* Join all of the threads */
|
||||
{ size_t i;
|
||||
for (i = 0; i < ctx->numThreads; ++i) {
|
||||
ZSTD_pthread_join(ctx->threads[i], NULL);
|
||||
for (i = 0; i < ctx->threadCapacity; ++i) {
|
||||
ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */
|
||||
} }
|
||||
}
|
||||
|
||||
@@ -172,54 +180,120 @@ void POOL_free(POOL_ctx *ctx) {
|
||||
ZSTD_free(ctx, ctx->customMem);
|
||||
}
|
||||
|
||||
|
||||
|
||||
size_t POOL_sizeof(POOL_ctx *ctx) {
|
||||
if (ctx==NULL) return 0; /* supports sizeof NULL */
|
||||
return sizeof(*ctx)
|
||||
+ ctx->queueSize * sizeof(POOL_job)
|
||||
+ ctx->numThreads * sizeof(ZSTD_pthread_t);
|
||||
+ ctx->threadCapacity * sizeof(ZSTD_pthread_t);
|
||||
}
|
||||
|
||||
|
||||
/* @return : 0 on success, 1 on error */
|
||||
static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
|
||||
{
|
||||
if (numThreads <= ctx->threadCapacity) {
|
||||
if (!numThreads) return 1;
|
||||
ctx->threadLimit = numThreads;
|
||||
return 0;
|
||||
}
|
||||
/* numThreads > threadCapacity */
|
||||
{ ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
|
||||
if (!threadPool) return 1;
|
||||
/* replace existing thread pool */
|
||||
memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
|
||||
ZSTD_free(ctx->threads, ctx->customMem);
|
||||
ctx->threads = threadPool;
|
||||
/* Initialize additional threads */
|
||||
{ size_t threadId;
|
||||
for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) {
|
||||
if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) {
|
||||
ctx->threadCapacity = threadId;
|
||||
return 1;
|
||||
} }
|
||||
} }
|
||||
/* successfully expanded */
|
||||
ctx->threadCapacity = numThreads;
|
||||
ctx->threadLimit = numThreads;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* @return : 0 on success, 1 on error */
|
||||
int POOL_resize(POOL_ctx* ctx, size_t numThreads)
|
||||
{
|
||||
int result;
|
||||
if (ctx==NULL) return 1;
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
result = POOL_resize_internal(ctx, numThreads);
|
||||
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns 1 if the queue is full and 0 otherwise.
|
||||
*
|
||||
* If the queueSize is 1 (the pool was created with an intended queueSize of 0),
|
||||
* then a queue is empty if there is a thread free and no job is waiting.
|
||||
* When queueSize is 1 (pool was created with an intended queueSize of 0),
|
||||
* then a queue is empty if there is a thread free _and_ no job is waiting.
|
||||
*/
|
||||
static int isQueueFull(POOL_ctx const* ctx) {
|
||||
if (ctx->queueSize > 1) {
|
||||
return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
|
||||
} else {
|
||||
return ctx->numThreadsBusy == ctx->numThreads ||
|
||||
return (ctx->numThreadsBusy == ctx->threadLimit) ||
|
||||
!ctx->queueEmpty;
|
||||
}
|
||||
}
|
||||
|
||||
void POOL_add(void* ctxVoid, POOL_function function, void *opaque) {
|
||||
POOL_ctx* const ctx = (POOL_ctx*)ctxVoid;
|
||||
if (!ctx) { return; }
|
||||
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
{ POOL_job const job = {function, opaque};
|
||||
static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
|
||||
{
|
||||
POOL_job const job = {function, opaque};
|
||||
assert(ctx != NULL);
|
||||
if (ctx->shutdown) return;
|
||||
|
||||
/* Wait until there is space in the queue for the new job */
|
||||
while (isQueueFull(ctx) && !ctx->shutdown) {
|
||||
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
|
||||
}
|
||||
/* The queue is still going => there is space */
|
||||
if (!ctx->shutdown) {
|
||||
ctx->queueEmpty = 0;
|
||||
ctx->queue[ctx->queueTail] = job;
|
||||
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
|
||||
}
|
||||
}
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
ctx->queueEmpty = 0;
|
||||
ctx->queue[ctx->queueTail] = job;
|
||||
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
|
||||
ZSTD_pthread_cond_signal(&ctx->queuePopCond);
|
||||
}
|
||||
|
||||
#else /* ZSTD_MULTITHREAD not defined */
|
||||
/* No multi-threading support */
|
||||
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
|
||||
{
|
||||
assert(ctx != NULL);
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
/* Wait until there is space in the queue for the new job */
|
||||
while (isQueueFull(ctx) && (!ctx->shutdown)) {
|
||||
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
|
||||
}
|
||||
POOL_add_internal(ctx, function, opaque);
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
}
|
||||
|
||||
/* We don't need any data, but if it is empty malloc() might return NULL. */
|
||||
|
||||
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
|
||||
{
|
||||
assert(ctx != NULL);
|
||||
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
|
||||
if (isQueueFull(ctx)) {
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
return 0;
|
||||
}
|
||||
POOL_add_internal(ctx, function, opaque);
|
||||
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
#else /* ZSTD_MULTITHREAD not defined */
|
||||
|
||||
/* ========================== */
|
||||
/* No multi-threading support */
|
||||
/* ========================== */
|
||||
|
||||
|
||||
/* We don't need any data, but if it is empty, malloc() might return NULL. */
|
||||
struct POOL_ctx_s {
|
||||
int dummy;
|
||||
};
|
||||
@@ -241,11 +315,22 @@ void POOL_free(POOL_ctx* ctx) {
|
||||
(void)ctx;
|
||||
}
|
||||
|
||||
void POOL_add(void* ctx, POOL_function function, void* opaque) {
|
||||
int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
|
||||
(void)ctx; (void)numThreads;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
|
||||
(void)ctx;
|
||||
function(opaque);
|
||||
}
|
||||
|
||||
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
|
||||
(void)ctx;
|
||||
function(opaque);
|
||||
return 1;
|
||||
}
|
||||
|
||||
size_t POOL_sizeof(POOL_ctx* ctx) {
|
||||
if (ctx==NULL) return 0; /* supports sizeof NULL */
|
||||
assert(ctx == &g_ctx);
|
||||
|
||||
@@ -17,7 +17,8 @@ extern "C" {
|
||||
|
||||
|
||||
#include <stddef.h> /* size_t */
|
||||
#include "zstd_internal.h" /* ZSTD_customMem */
|
||||
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */
|
||||
#include "zstd.h"
|
||||
|
||||
typedef struct POOL_ctx_s POOL_ctx;
|
||||
|
||||
@@ -27,35 +28,53 @@ typedef struct POOL_ctx_s POOL_ctx;
|
||||
* The maximum number of queued jobs before blocking is `queueSize`.
|
||||
* @return : POOL_ctx pointer on success, else NULL.
|
||||
*/
|
||||
POOL_ctx *POOL_create(size_t numThreads, size_t queueSize);
|
||||
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize);
|
||||
|
||||
POOL_ctx *POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem);
|
||||
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
|
||||
ZSTD_customMem customMem);
|
||||
|
||||
/*! POOL_free() :
|
||||
Free a thread pool returned by POOL_create().
|
||||
*/
|
||||
void POOL_free(POOL_ctx *ctx);
|
||||
* Free a thread pool returned by POOL_create().
|
||||
*/
|
||||
void POOL_free(POOL_ctx* ctx);
|
||||
|
||||
/*! POOL_resize() :
|
||||
* Expands or shrinks pool's number of threads.
|
||||
* This is more efficient than releasing + creating a new context,
|
||||
* since it tries to preserve and re-use existing threads.
|
||||
* `numThreads` must be at least 1.
|
||||
* @return : 0 when resize was successful,
|
||||
* !0 (typically 1) if there is an error.
|
||||
* note : only numThreads can be resized, queueSize remains unchanged.
|
||||
*/
|
||||
int POOL_resize(POOL_ctx* ctx, size_t numThreads);
|
||||
|
||||
/*! POOL_sizeof() :
|
||||
return memory usage of pool returned by POOL_create().
|
||||
*/
|
||||
size_t POOL_sizeof(POOL_ctx *ctx);
|
||||
* @return threadpool memory usage
|
||||
* note : compatible with NULL (returns 0 in this case)
|
||||
*/
|
||||
size_t POOL_sizeof(POOL_ctx* ctx);
|
||||
|
||||
/*! POOL_function :
|
||||
The function type that can be added to a thread pool.
|
||||
*/
|
||||
typedef void (*POOL_function)(void *);
|
||||
/*! POOL_add_function :
|
||||
The function type for a generic thread pool add function.
|
||||
*/
|
||||
typedef void (*POOL_add_function)(void *, POOL_function, void *);
|
||||
* The function type that can be added to a thread pool.
|
||||
*/
|
||||
typedef void (*POOL_function)(void*);
|
||||
|
||||
/*! POOL_add() :
|
||||
Add the job `function(opaque)` to the thread pool.
|
||||
Possibly blocks until there is room in the queue.
|
||||
Note : The function may be executed asynchronously, so `opaque` must live until the function has been completed.
|
||||
*/
|
||||
void POOL_add(void *ctx, POOL_function function, void *opaque);
|
||||
* Add the job `function(opaque)` to the thread pool. `ctx` must be valid.
|
||||
* Possibly blocks until there is room in the queue.
|
||||
* Note : The function may be executed asynchronously,
|
||||
* therefore, `opaque` must live until function has been completed.
|
||||
*/
|
||||
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
|
||||
|
||||
|
||||
/*! POOL_tryAdd() :
|
||||
* Add the job `function(opaque)` to thread pool _if_ a worker is available.
|
||||
* Returns immediately even if not (does not block).
|
||||
* @return : 1 if successful, 0 if not.
|
||||
*/
|
||||
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque);
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
|
||||
@@ -45,15 +45,15 @@ extern "C" {
|
||||
|
||||
/* mutex */
|
||||
#define ZSTD_pthread_mutex_t CRITICAL_SECTION
|
||||
#define ZSTD_pthread_mutex_init(a, b) (InitializeCriticalSection((a)), 0)
|
||||
#define ZSTD_pthread_mutex_init(a, b) ((void)(b), InitializeCriticalSection((a)), 0)
|
||||
#define ZSTD_pthread_mutex_destroy(a) DeleteCriticalSection((a))
|
||||
#define ZSTD_pthread_mutex_lock(a) EnterCriticalSection((a))
|
||||
#define ZSTD_pthread_mutex_unlock(a) LeaveCriticalSection((a))
|
||||
|
||||
/* condition variable */
|
||||
#define ZSTD_pthread_cond_t CONDITION_VARIABLE
|
||||
#define ZSTD_pthread_cond_init(a, b) (InitializeConditionVariable((a)), 0)
|
||||
#define ZSTD_pthread_cond_destroy(a) /* No delete */
|
||||
#define ZSTD_pthread_cond_init(a, b) ((void)(b), InitializeConditionVariable((a)), 0)
|
||||
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
|
||||
#define ZSTD_pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE)
|
||||
#define ZSTD_pthread_cond_signal(a) WakeConditionVariable((a))
|
||||
#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a))
|
||||
@@ -100,17 +100,17 @@ int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr);
|
||||
/* No multithreading support */
|
||||
|
||||
typedef int ZSTD_pthread_mutex_t;
|
||||
#define ZSTD_pthread_mutex_init(a, b) ((void)a, 0)
|
||||
#define ZSTD_pthread_mutex_destroy(a)
|
||||
#define ZSTD_pthread_mutex_lock(a)
|
||||
#define ZSTD_pthread_mutex_unlock(a)
|
||||
#define ZSTD_pthread_mutex_init(a, b) ((void)(a), (void)(b), 0)
|
||||
#define ZSTD_pthread_mutex_destroy(a) ((void)(a))
|
||||
#define ZSTD_pthread_mutex_lock(a) ((void)(a))
|
||||
#define ZSTD_pthread_mutex_unlock(a) ((void)(a))
|
||||
|
||||
typedef int ZSTD_pthread_cond_t;
|
||||
#define ZSTD_pthread_cond_init(a, b) ((void)a, 0)
|
||||
#define ZSTD_pthread_cond_destroy(a)
|
||||
#define ZSTD_pthread_cond_wait(a, b)
|
||||
#define ZSTD_pthread_cond_signal(a)
|
||||
#define ZSTD_pthread_cond_broadcast(a)
|
||||
#define ZSTD_pthread_cond_init(a, b) ((void)(a), (void)(b), 0)
|
||||
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
|
||||
#define ZSTD_pthread_cond_wait(a, b) ((void)(a), (void)(b))
|
||||
#define ZSTD_pthread_cond_signal(a) ((void)(a))
|
||||
#define ZSTD_pthread_cond_broadcast(a) ((void)(a))
|
||||
|
||||
/* do not use ZSTD_pthread_t */
|
||||
|
||||
|
||||
@@ -98,6 +98,7 @@
|
||||
/* Modify the local functions below should you wish to use some other memory routines */
|
||||
/* for malloc(), free() */
|
||||
#include <stdlib.h>
|
||||
#include <stddef.h> /* size_t */
|
||||
static void* XXH_malloc(size_t s) { return malloc(s); }
|
||||
static void XXH_free (void* p) { free(p); }
|
||||
/* for memcpy() */
|
||||
|
||||
814
C/zstd/zstd.h
814
C/zstd/zstd.h
File diff suppressed because it is too large
Load Diff
@@ -31,22 +31,23 @@ const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; }
|
||||
* ZSTD Error Management
|
||||
******************************************/
|
||||
/*! ZSTD_isError() :
|
||||
* tells if a return value is an error code */
|
||||
* tells if a return value is an error code */
|
||||
unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
|
||||
|
||||
/*! ZSTD_getErrorName() :
|
||||
* provides error code string from function result (useful for debugging) */
|
||||
* provides error code string from function result (useful for debugging) */
|
||||
const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
|
||||
|
||||
/*! ZSTD_getError() :
|
||||
* convert a `size_t` function result into a proper ZSTD_errorCode enum */
|
||||
* convert a `size_t` function result into a proper ZSTD_errorCode enum */
|
||||
ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
|
||||
|
||||
/*! ZSTD_getErrorString() :
|
||||
* provides error code string from enum */
|
||||
* provides error code string from enum */
|
||||
const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }
|
||||
|
||||
|
||||
|
||||
/*=**************************************************************
|
||||
* Custom allocator
|
||||
****************************************************************/
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,307 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
||||
* in the COPYING file in the root directory of this source tree).
|
||||
* You may select, at your option, one of the above-listed licenses.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef ZSTD_COMPRESS_H
|
||||
#define ZSTD_COMPRESS_H
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include "zstd_internal.h"
|
||||
#ifdef ZSTD_MULTITHREAD
|
||||
# include "zstdmt_compress.h"
|
||||
#endif
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*-*************************************
|
||||
* Constants
|
||||
***************************************/
|
||||
static const U32 g_searchStrength = 8;
|
||||
#define HASH_READ_SIZE 8
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Context memory management
|
||||
***************************************/
|
||||
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
|
||||
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
|
||||
|
||||
typedef struct ZSTD_prefixDict_s {
|
||||
const void* dict;
|
||||
size_t dictSize;
|
||||
ZSTD_dictMode_e dictMode;
|
||||
} ZSTD_prefixDict;
|
||||
|
||||
struct ZSTD_CCtx_s {
|
||||
const BYTE* nextSrc; /* next block here to continue on current prefix */
|
||||
const BYTE* base; /* All regular indexes relative to this position */
|
||||
const BYTE* dictBase; /* extDict indexes relative to this position */
|
||||
U32 dictLimit; /* below that point, need extDict */
|
||||
U32 lowLimit; /* below that point, no more data */
|
||||
U32 nextToUpdate; /* index from which to continue dictionary update */
|
||||
U32 nextToUpdate3; /* index from which to continue dictionary update */
|
||||
U32 hashLog3; /* dispatch table : larger == faster, more memory */
|
||||
U32 loadedDictEnd; /* index of end of dictionary */
|
||||
ZSTD_compressionStage_e stage;
|
||||
U32 dictID;
|
||||
ZSTD_CCtx_params requestedParams;
|
||||
ZSTD_CCtx_params appliedParams;
|
||||
void* workSpace;
|
||||
size_t workSpaceSize;
|
||||
size_t blockSize;
|
||||
U64 pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
|
||||
U64 consumedSrcSize;
|
||||
XXH64_state_t xxhState;
|
||||
ZSTD_customMem customMem;
|
||||
size_t staticSize;
|
||||
|
||||
seqStore_t seqStore; /* sequences storage ptrs */
|
||||
optState_t optState;
|
||||
ldmState_t ldmState; /* long distance matching state */
|
||||
U32* hashTable;
|
||||
U32* hashTable3;
|
||||
U32* chainTable;
|
||||
ZSTD_entropyCTables_t* entropy;
|
||||
|
||||
/* streaming */
|
||||
char* inBuff;
|
||||
size_t inBuffSize;
|
||||
size_t inToCompress;
|
||||
size_t inBuffPos;
|
||||
size_t inBuffTarget;
|
||||
char* outBuff;
|
||||
size_t outBuffSize;
|
||||
size_t outBuffContentSize;
|
||||
size_t outBuffFlushedSize;
|
||||
ZSTD_cStreamStage streamStage;
|
||||
U32 frameEnded;
|
||||
|
||||
/* Dictionary */
|
||||
ZSTD_CDict* cdictLocal;
|
||||
const ZSTD_CDict* cdict;
|
||||
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
|
||||
|
||||
/* Multi-threading */
|
||||
#ifdef ZSTD_MULTITHREAD
|
||||
ZSTDMT_CCtx* mtctx;
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
|
||||
8, 9, 10, 11, 12, 13, 14, 15,
|
||||
16, 16, 17, 17, 18, 18, 19, 19,
|
||||
20, 20, 20, 20, 21, 21, 21, 21,
|
||||
22, 22, 22, 22, 22, 22, 22, 22,
|
||||
23, 23, 23, 23, 23, 23, 23, 23,
|
||||
24, 24, 24, 24, 24, 24, 24, 24,
|
||||
24, 24, 24, 24, 24, 24, 24, 24 };
|
||||
|
||||
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
||||
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
||||
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
|
||||
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
|
||||
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
|
||||
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
|
||||
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
|
||||
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
|
||||
|
||||
/*! ZSTD_storeSeq() :
|
||||
Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
|
||||
`offsetCode` : distance to match, or 0 == repCode.
|
||||
`matchCode` : matchLength - MINMATCH
|
||||
*/
|
||||
MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t matchCode)
|
||||
{
|
||||
#if defined(ZSTD_DEBUG) && (ZSTD_DEBUG >= 6)
|
||||
static const BYTE* g_start = NULL;
|
||||
U32 const pos = (U32)((const BYTE*)literals - g_start);
|
||||
if (g_start==NULL) g_start = (const BYTE*)literals;
|
||||
if ((pos > 0) && (pos < 1000000000))
|
||||
DEBUGLOG(6, "Cpos %6u :%5u literals & match %3u bytes at distance %6u",
|
||||
pos, (U32)litLength, (U32)matchCode+MINMATCH, (U32)offsetCode);
|
||||
#endif
|
||||
/* copy Literals */
|
||||
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + 128 KB);
|
||||
ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
|
||||
seqStorePtr->lit += litLength;
|
||||
|
||||
/* literal Length */
|
||||
if (litLength>0xFFFF) {
|
||||
seqStorePtr->longLengthID = 1;
|
||||
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
|
||||
}
|
||||
seqStorePtr->sequences[0].litLength = (U16)litLength;
|
||||
|
||||
/* match offset */
|
||||
seqStorePtr->sequences[0].offset = offsetCode + 1;
|
||||
|
||||
/* match Length */
|
||||
if (matchCode>0xFFFF) {
|
||||
seqStorePtr->longLengthID = 2;
|
||||
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
|
||||
}
|
||||
seqStorePtr->sequences[0].matchLength = (U16)matchCode;
|
||||
|
||||
seqStorePtr->sequences++;
|
||||
}
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Match length counter
|
||||
***************************************/
|
||||
static unsigned ZSTD_NbCommonBytes (register size_t val)
|
||||
{
|
||||
if (MEM_isLittleEndian()) {
|
||||
if (MEM_64bits()) {
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
unsigned long r = 0;
|
||||
_BitScanForward64( &r, (U64)val );
|
||||
return (unsigned)(r>>3);
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (__builtin_ctzll((U64)val) >> 3);
|
||||
# else
|
||||
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
|
||||
0, 3, 1, 3, 1, 4, 2, 7,
|
||||
0, 2, 3, 6, 1, 5, 3, 5,
|
||||
1, 3, 4, 4, 2, 5, 6, 7,
|
||||
7, 0, 1, 2, 3, 3, 4, 6,
|
||||
2, 6, 5, 5, 3, 4, 5, 6,
|
||||
7, 1, 2, 4, 6, 4, 4, 5,
|
||||
7, 2, 6, 5, 7, 6, 7, 7 };
|
||||
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
|
||||
# endif
|
||||
} else { /* 32 bits */
|
||||
# if defined(_MSC_VER)
|
||||
unsigned long r=0;
|
||||
_BitScanForward( &r, (U32)val );
|
||||
return (unsigned)(r>>3);
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
||||
return (__builtin_ctz((U32)val) >> 3);
|
||||
# else
|
||||
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
|
||||
3, 2, 2, 1, 3, 2, 0, 1,
|
||||
3, 3, 1, 2, 2, 2, 2, 0,
|
||||
3, 1, 2, 0, 1, 0, 1, 1 };
|
||||
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
|
||||
# endif
|
||||
}
|
||||
} else { /* Big Endian CPU */
|
||||
if (MEM_64bits()) {
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
unsigned long r = 0;
|
||||
_BitScanReverse64( &r, val );
|
||||
return (unsigned)(r>>3);
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (__builtin_clzll(val) >> 3);
|
||||
# else
|
||||
unsigned r;
|
||||
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
|
||||
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
|
||||
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
|
||||
r += (!val);
|
||||
return r;
|
||||
# endif
|
||||
} else { /* 32 bits */
|
||||
# if defined(_MSC_VER)
|
||||
unsigned long r = 0;
|
||||
_BitScanReverse( &r, (unsigned long)val );
|
||||
return (unsigned)(r>>3);
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
||||
return (__builtin_clz((U32)val) >> 3);
|
||||
# else
|
||||
unsigned r;
|
||||
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
|
||||
r += (!val);
|
||||
return r;
|
||||
# endif
|
||||
} }
|
||||
}
|
||||
|
||||
|
||||
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
|
||||
{
|
||||
const BYTE* const pStart = pIn;
|
||||
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
|
||||
|
||||
while (pIn < pInLoopLimit) {
|
||||
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
|
||||
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
|
||||
pIn += ZSTD_NbCommonBytes(diff);
|
||||
return (size_t)(pIn - pStart);
|
||||
}
|
||||
if (MEM_64bits()) if ((pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
|
||||
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
|
||||
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
|
||||
return (size_t)(pIn - pStart);
|
||||
}
|
||||
|
||||
/** ZSTD_count_2segments() :
|
||||
* can count match length with `ip` & `match` in 2 different segments.
|
||||
* convention : on reaching mEnd, match count continue starting from iStart
|
||||
*/
|
||||
MEM_STATIC size_t ZSTD_count_2segments(const BYTE* ip, const BYTE* match, const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
|
||||
{
|
||||
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
|
||||
size_t const matchLength = ZSTD_count(ip, match, vEnd);
|
||||
if (match + matchLength != mEnd) return matchLength;
|
||||
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
|
||||
}
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Hashes
|
||||
***************************************/
|
||||
static const U32 prime3bytes = 506832829U;
|
||||
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
|
||||
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
|
||||
|
||||
static const U32 prime4bytes = 2654435761U;
|
||||
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
|
||||
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
|
||||
|
||||
static const U64 prime5bytes = 889523592379ULL;
|
||||
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
|
||||
|
||||
static const U64 prime6bytes = 227718039650203ULL;
|
||||
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
|
||||
|
||||
static const U64 prime7bytes = 58295818150454627ULL;
|
||||
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
|
||||
|
||||
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
|
||||
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
|
||||
|
||||
MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
|
||||
{
|
||||
switch(mls)
|
||||
{
|
||||
default:
|
||||
case 4: return ZSTD_hash4Ptr(p, hBits);
|
||||
case 5: return ZSTD_hash5Ptr(p, hBits);
|
||||
case 6: return ZSTD_hash6Ptr(p, hBits);
|
||||
case 7: return ZSTD_hash7Ptr(p, hBits);
|
||||
case 8: return ZSTD_hash8Ptr(p, hBits);
|
||||
}
|
||||
}
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ZSTD_COMPRESS_H */
|
||||
798
C/zstd/zstd_compress_internal.h
Normal file
798
C/zstd/zstd_compress_internal.h
Normal file
@@ -0,0 +1,798 @@
|
||||
/*
|
||||
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This source code is licensed under both the BSD-style license (found in the
|
||||
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
||||
* in the COPYING file in the root directory of this source tree).
|
||||
* You may select, at your option, one of the above-listed licenses.
|
||||
*/
|
||||
|
||||
/* This header contains definitions
|
||||
* that shall **only** be used by modules within lib/compress.
|
||||
*/
|
||||
|
||||
#ifndef ZSTD_COMPRESS_H
|
||||
#define ZSTD_COMPRESS_H
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include "zstd_internal.h"
|
||||
#ifdef ZSTD_MULTITHREAD
|
||||
# include "zstdmt_compress.h"
|
||||
#endif
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Constants
|
||||
***************************************/
|
||||
#define kSearchStrength 8
|
||||
#define HASH_READ_SIZE 8
|
||||
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index 1 now means "unsorted".
|
||||
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
|
||||
It's not a big deal though : candidate will just be sorted again.
|
||||
Additionnally, candidate position 1 will be lost.
|
||||
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
|
||||
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be misdhandled after table re-use with a different strategy
|
||||
Constant required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Context memory management
|
||||
***************************************/
|
||||
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
|
||||
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
|
||||
|
||||
typedef enum {
|
||||
ZSTD_dictDefaultAttach = 0,
|
||||
ZSTD_dictForceAttach = 1,
|
||||
ZSTD_dictForceCopy = -1,
|
||||
} ZSTD_dictAttachPref_e;
|
||||
|
||||
typedef struct ZSTD_prefixDict_s {
|
||||
const void* dict;
|
||||
size_t dictSize;
|
||||
ZSTD_dictContentType_e dictContentType;
|
||||
} ZSTD_prefixDict;
|
||||
|
||||
typedef struct {
|
||||
U32 CTable[HUF_CTABLE_SIZE_U32(255)];
|
||||
HUF_repeat repeatMode;
|
||||
} ZSTD_hufCTables_t;
|
||||
|
||||
typedef struct {
|
||||
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
|
||||
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
|
||||
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
|
||||
FSE_repeat offcode_repeatMode;
|
||||
FSE_repeat matchlength_repeatMode;
|
||||
FSE_repeat litlength_repeatMode;
|
||||
} ZSTD_fseCTables_t;
|
||||
|
||||
typedef struct {
|
||||
ZSTD_hufCTables_t huf;
|
||||
ZSTD_fseCTables_t fse;
|
||||
} ZSTD_entropyCTables_t;
|
||||
|
||||
typedef struct {
|
||||
U32 off;
|
||||
U32 len;
|
||||
} ZSTD_match_t;
|
||||
|
||||
typedef struct {
|
||||
int price;
|
||||
U32 off;
|
||||
U32 mlen;
|
||||
U32 litlen;
|
||||
U32 rep[ZSTD_REP_NUM];
|
||||
} ZSTD_optimal_t;
|
||||
|
||||
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
|
||||
|
||||
typedef struct {
|
||||
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
|
||||
U32* litFreq; /* table of literals statistics, of size 256 */
|
||||
U32* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
|
||||
U32* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
|
||||
U32* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
|
||||
ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
|
||||
ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
|
||||
|
||||
U32 litSum; /* nb of literals */
|
||||
U32 litLengthSum; /* nb of litLength codes */
|
||||
U32 matchLengthSum; /* nb of matchLength codes */
|
||||
U32 offCodeSum; /* nb of offset codes */
|
||||
U32 litSumBasePrice; /* to compare to log2(litfreq) */
|
||||
U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
|
||||
U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
|
||||
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
|
||||
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
|
||||
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
|
||||
} optState_t;
|
||||
|
||||
typedef struct {
|
||||
ZSTD_entropyCTables_t entropy;
|
||||
U32 rep[ZSTD_REP_NUM];
|
||||
} ZSTD_compressedBlockState_t;
|
||||
|
||||
typedef struct {
|
||||
BYTE const* nextSrc; /* next block here to continue on current prefix */
|
||||
BYTE const* base; /* All regular indexes relative to this position */
|
||||
BYTE const* dictBase; /* extDict indexes relative to this position */
|
||||
U32 dictLimit; /* below that point, need extDict */
|
||||
U32 lowLimit; /* below that point, no more data */
|
||||
} ZSTD_window_t;
|
||||
|
||||
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
|
||||
struct ZSTD_matchState_t {
|
||||
ZSTD_window_t window; /* State for window round buffer management */
|
||||
U32 loadedDictEnd; /* index of end of dictionary */
|
||||
U32 nextToUpdate; /* index from which to continue table update */
|
||||
U32 nextToUpdate3; /* index from which to continue table update */
|
||||
U32 hashLog3; /* dispatch table : larger == faster, more memory */
|
||||
U32* hashTable;
|
||||
U32* hashTable3;
|
||||
U32* chainTable;
|
||||
optState_t opt; /* optimal parser state */
|
||||
const ZSTD_matchState_t *dictMatchState;
|
||||
ZSTD_compressionParameters cParams;
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
ZSTD_compressedBlockState_t* prevCBlock;
|
||||
ZSTD_compressedBlockState_t* nextCBlock;
|
||||
ZSTD_matchState_t matchState;
|
||||
} ZSTD_blockState_t;
|
||||
|
||||
typedef struct {
|
||||
U32 offset;
|
||||
U32 checksum;
|
||||
} ldmEntry_t;
|
||||
|
||||
typedef struct {
|
||||
ZSTD_window_t window; /* State for the window round buffer management */
|
||||
ldmEntry_t* hashTable;
|
||||
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
|
||||
U64 hashPower; /* Used to compute the rolling hash.
|
||||
* Depends on ldmParams.minMatchLength */
|
||||
} ldmState_t;
|
||||
|
||||
typedef struct {
|
||||
U32 enableLdm; /* 1 if enable long distance matching */
|
||||
U32 hashLog; /* Log size of hashTable */
|
||||
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
|
||||
U32 minMatchLength; /* Minimum match length */
|
||||
U32 hashEveryLog; /* Log number of entries to skip */
|
||||
U32 windowLog; /* Window log for the LDM */
|
||||
} ldmParams_t;
|
||||
|
||||
typedef struct {
|
||||
U32 offset;
|
||||
U32 litLength;
|
||||
U32 matchLength;
|
||||
} rawSeq;
|
||||
|
||||
typedef struct {
|
||||
rawSeq* seq; /* The start of the sequences */
|
||||
size_t pos; /* The position where reading stopped. <= size. */
|
||||
size_t size; /* The number of sequences. <= capacity. */
|
||||
size_t capacity; /* The capacity starting from `seq` pointer */
|
||||
} rawSeqStore_t;
|
||||
|
||||
struct ZSTD_CCtx_params_s {
|
||||
ZSTD_format_e format;
|
||||
ZSTD_compressionParameters cParams;
|
||||
ZSTD_frameParameters fParams;
|
||||
|
||||
int compressionLevel;
|
||||
int forceWindow; /* force back-references to respect limit of
|
||||
* 1<<wLog, even for dictionary */
|
||||
|
||||
ZSTD_dictAttachPref_e attachDictPref;
|
||||
|
||||
/* Multithreading: used to pass parameters to mtctx */
|
||||
unsigned nbWorkers;
|
||||
unsigned jobSize;
|
||||
unsigned overlapSizeLog;
|
||||
|
||||
/* Long distance matching parameters */
|
||||
ldmParams_t ldmParams;
|
||||
|
||||
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
|
||||
ZSTD_customMem customMem;
|
||||
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
|
||||
|
||||
struct ZSTD_CCtx_s {
|
||||
ZSTD_compressionStage_e stage;
|
||||
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
|
||||
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
|
||||
ZSTD_CCtx_params requestedParams;
|
||||
ZSTD_CCtx_params appliedParams;
|
||||
U32 dictID;
|
||||
|
||||
int workSpaceOversizedDuration;
|
||||
void* workSpace;
|
||||
size_t workSpaceSize;
|
||||
size_t blockSize;
|
||||
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
|
||||
unsigned long long consumedSrcSize;
|
||||
unsigned long long producedCSize;
|
||||
XXH64_state_t xxhState;
|
||||
ZSTD_customMem customMem;
|
||||
size_t staticSize;
|
||||
|
||||
seqStore_t seqStore; /* sequences storage ptrs */
|
||||
ldmState_t ldmState; /* long distance matching state */
|
||||
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
|
||||
size_t maxNbLdmSequences;
|
||||
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
|
||||
ZSTD_blockState_t blockState;
|
||||
U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
|
||||
|
||||
/* streaming */
|
||||
char* inBuff;
|
||||
size_t inBuffSize;
|
||||
size_t inToCompress;
|
||||
size_t inBuffPos;
|
||||
size_t inBuffTarget;
|
||||
char* outBuff;
|
||||
size_t outBuffSize;
|
||||
size_t outBuffContentSize;
|
||||
size_t outBuffFlushedSize;
|
||||
ZSTD_cStreamStage streamStage;
|
||||
U32 frameEnded;
|
||||
|
||||
/* Dictionary */
|
||||
ZSTD_CDict* cdictLocal;
|
||||
const ZSTD_CDict* cdict;
|
||||
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
|
||||
|
||||
/* Multi-threading */
|
||||
#ifdef ZSTD_MULTITHREAD
|
||||
ZSTDMT_CCtx* mtctx;
|
||||
#endif
|
||||
};
|
||||
|
||||
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
|
||||
|
||||
typedef enum { ZSTD_noDict = 0, ZSTD_extDict = 1, ZSTD_dictMatchState = 2 } ZSTD_dictMode_e;
|
||||
|
||||
|
||||
typedef size_t (*ZSTD_blockCompressor) (
|
||||
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode);
|
||||
|
||||
|
||||
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
|
||||
{
|
||||
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
|
||||
8, 9, 10, 11, 12, 13, 14, 15,
|
||||
16, 16, 17, 17, 18, 18, 19, 19,
|
||||
20, 20, 20, 20, 21, 21, 21, 21,
|
||||
22, 22, 22, 22, 22, 22, 22, 22,
|
||||
23, 23, 23, 23, 23, 23, 23, 23,
|
||||
24, 24, 24, 24, 24, 24, 24, 24,
|
||||
24, 24, 24, 24, 24, 24, 24, 24 };
|
||||
static const U32 LL_deltaCode = 19;
|
||||
return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
|
||||
}
|
||||
|
||||
/* ZSTD_MLcode() :
|
||||
* note : mlBase = matchLength - MINMATCH;
|
||||
* because it's the format it's stored in seqStore->sequences */
|
||||
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
|
||||
{
|
||||
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
||||
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
||||
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
|
||||
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
|
||||
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
|
||||
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
|
||||
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
|
||||
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
|
||||
static const U32 ML_deltaCode = 36;
|
||||
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
|
||||
}
|
||||
|
||||
/*! ZSTD_storeSeq() :
|
||||
* Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
|
||||
* `offsetCode` : distance to match + 3 (values 1-3 are repCodes).
|
||||
* `mlBase` : matchLength - MINMATCH
|
||||
*/
|
||||
MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t mlBase)
|
||||
{
|
||||
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
|
||||
static const BYTE* g_start = NULL;
|
||||
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
|
||||
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
|
||||
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
|
||||
pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offsetCode);
|
||||
}
|
||||
#endif
|
||||
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
|
||||
/* copy Literals */
|
||||
assert(seqStorePtr->maxNbLit <= 128 KB);
|
||||
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
|
||||
ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
|
||||
seqStorePtr->lit += litLength;
|
||||
|
||||
/* literal Length */
|
||||
if (litLength>0xFFFF) {
|
||||
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
|
||||
seqStorePtr->longLengthID = 1;
|
||||
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
|
||||
}
|
||||
seqStorePtr->sequences[0].litLength = (U16)litLength;
|
||||
|
||||
/* match offset */
|
||||
seqStorePtr->sequences[0].offset = offsetCode + 1;
|
||||
|
||||
/* match Length */
|
||||
if (mlBase>0xFFFF) {
|
||||
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
|
||||
seqStorePtr->longLengthID = 2;
|
||||
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
|
||||
}
|
||||
seqStorePtr->sequences[0].matchLength = (U16)mlBase;
|
||||
|
||||
seqStorePtr->sequences++;
|
||||
}
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Match length counter
|
||||
***************************************/
|
||||
static unsigned ZSTD_NbCommonBytes (size_t val)
|
||||
{
|
||||
if (MEM_isLittleEndian()) {
|
||||
if (MEM_64bits()) {
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
unsigned long r = 0;
|
||||
_BitScanForward64( &r, (U64)val );
|
||||
return (unsigned)(r>>3);
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (__builtin_ctzll((U64)val) >> 3);
|
||||
# else
|
||||
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
|
||||
0, 3, 1, 3, 1, 4, 2, 7,
|
||||
0, 2, 3, 6, 1, 5, 3, 5,
|
||||
1, 3, 4, 4, 2, 5, 6, 7,
|
||||
7, 0, 1, 2, 3, 3, 4, 6,
|
||||
2, 6, 5, 5, 3, 4, 5, 6,
|
||||
7, 1, 2, 4, 6, 4, 4, 5,
|
||||
7, 2, 6, 5, 7, 6, 7, 7 };
|
||||
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
|
||||
# endif
|
||||
} else { /* 32 bits */
|
||||
# if defined(_MSC_VER)
|
||||
unsigned long r=0;
|
||||
_BitScanForward( &r, (U32)val );
|
||||
return (unsigned)(r>>3);
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
||||
return (__builtin_ctz((U32)val) >> 3);
|
||||
# else
|
||||
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
|
||||
3, 2, 2, 1, 3, 2, 0, 1,
|
||||
3, 3, 1, 2, 2, 2, 2, 0,
|
||||
3, 1, 2, 0, 1, 0, 1, 1 };
|
||||
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
|
||||
# endif
|
||||
}
|
||||
} else { /* Big Endian CPU */
|
||||
if (MEM_64bits()) {
|
||||
# if defined(_MSC_VER) && defined(_WIN64)
|
||||
unsigned long r = 0;
|
||||
_BitScanReverse64( &r, val );
|
||||
return (unsigned)(r>>3);
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 4)
|
||||
return (__builtin_clzll(val) >> 3);
|
||||
# else
|
||||
unsigned r;
|
||||
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
|
||||
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
|
||||
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
|
||||
r += (!val);
|
||||
return r;
|
||||
# endif
|
||||
} else { /* 32 bits */
|
||||
# if defined(_MSC_VER)
|
||||
unsigned long r = 0;
|
||||
_BitScanReverse( &r, (unsigned long)val );
|
||||
return (unsigned)(r>>3);
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
||||
return (__builtin_clz((U32)val) >> 3);
|
||||
# else
|
||||
unsigned r;
|
||||
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
|
||||
r += (!val);
|
||||
return r;
|
||||
# endif
|
||||
} }
|
||||
}
|
||||
|
||||
|
||||
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
|
||||
{
|
||||
const BYTE* const pStart = pIn;
|
||||
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
|
||||
|
||||
if (pIn < pInLoopLimit) {
|
||||
{ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
|
||||
if (diff) return ZSTD_NbCommonBytes(diff); }
|
||||
pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
|
||||
while (pIn < pInLoopLimit) {
|
||||
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
|
||||
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
|
||||
pIn += ZSTD_NbCommonBytes(diff);
|
||||
return (size_t)(pIn - pStart);
|
||||
} }
|
||||
if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
|
||||
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
|
||||
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
|
||||
return (size_t)(pIn - pStart);
|
||||
}
|
||||
|
||||
/** ZSTD_count_2segments() :
|
||||
* can count match length with `ip` & `match` in 2 different segments.
|
||||
* convention : on reaching mEnd, match count continue starting from iStart
|
||||
*/
|
||||
MEM_STATIC size_t
|
||||
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
|
||||
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
|
||||
{
|
||||
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
|
||||
size_t const matchLength = ZSTD_count(ip, match, vEnd);
|
||||
if (match + matchLength != mEnd) return matchLength;
|
||||
DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
|
||||
DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
|
||||
DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
|
||||
DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
|
||||
DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
|
||||
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
|
||||
}
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Hashes
|
||||
***************************************/
|
||||
static const U32 prime3bytes = 506832829U;
|
||||
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
|
||||
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
|
||||
|
||||
static const U32 prime4bytes = 2654435761U;
|
||||
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
|
||||
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
|
||||
|
||||
static const U64 prime5bytes = 889523592379ULL;
|
||||
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
|
||||
|
||||
static const U64 prime6bytes = 227718039650203ULL;
|
||||
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
|
||||
|
||||
static const U64 prime7bytes = 58295818150454627ULL;
|
||||
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
|
||||
|
||||
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
|
||||
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
|
||||
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
|
||||
|
||||
MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
|
||||
{
|
||||
switch(mls)
|
||||
{
|
||||
default:
|
||||
case 4: return ZSTD_hash4Ptr(p, hBits);
|
||||
case 5: return ZSTD_hash5Ptr(p, hBits);
|
||||
case 6: return ZSTD_hash6Ptr(p, hBits);
|
||||
case 7: return ZSTD_hash7Ptr(p, hBits);
|
||||
case 8: return ZSTD_hash8Ptr(p, hBits);
|
||||
}
|
||||
}
|
||||
|
||||
/*-*************************************
|
||||
* Round buffer management
|
||||
***************************************/
|
||||
/* Max current allowed */
|
||||
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
|
||||
/* Maximum chunk size before overflow correction needs to be called again */
|
||||
#define ZSTD_CHUNKSIZE_MAX \
|
||||
( ((U32)-1) /* Maximum ending current index */ \
|
||||
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
|
||||
|
||||
/**
|
||||
* ZSTD_window_clear():
|
||||
* Clears the window containing the history by simply setting it to empty.
|
||||
*/
|
||||
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
|
||||
{
|
||||
size_t const endT = (size_t)(window->nextSrc - window->base);
|
||||
U32 const end = (U32)endT;
|
||||
|
||||
window->lowLimit = end;
|
||||
window->dictLimit = end;
|
||||
}
|
||||
|
||||
/**
|
||||
* ZSTD_window_hasExtDict():
|
||||
* Returns non-zero if the window has a non-empty extDict.
|
||||
*/
|
||||
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
|
||||
{
|
||||
return window.lowLimit < window.dictLimit;
|
||||
}
|
||||
|
||||
/**
|
||||
* ZSTD_matchState_dictMode():
|
||||
* Inspects the provided matchState and figures out what dictMode should be
|
||||
* passed to the compressor.
|
||||
*/
|
||||
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
|
||||
{
|
||||
return ZSTD_window_hasExtDict(ms->window) ?
|
||||
ZSTD_extDict :
|
||||
ms->dictMatchState != NULL ?
|
||||
ZSTD_dictMatchState :
|
||||
ZSTD_noDict;
|
||||
}
|
||||
|
||||
/**
|
||||
* ZSTD_window_needOverflowCorrection():
|
||||
* Returns non-zero if the indices are getting too large and need overflow
|
||||
* protection.
|
||||
*/
|
||||
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
|
||||
void const* srcEnd)
|
||||
{
|
||||
U32 const current = (U32)((BYTE const*)srcEnd - window.base);
|
||||
return current > ZSTD_CURRENT_MAX;
|
||||
}
|
||||
|
||||
/**
|
||||
* ZSTD_window_correctOverflow():
|
||||
* Reduces the indices to protect from index overflow.
|
||||
* Returns the correction made to the indices, which must be applied to every
|
||||
* stored index.
|
||||
*
|
||||
* The least significant cycleLog bits of the indices must remain the same,
|
||||
* which may be 0. Every index up to maxDist in the past must be valid.
|
||||
* NOTE: (maxDist & cycleMask) must be zero.
|
||||
*/
|
||||
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
|
||||
U32 maxDist, void const* src)
|
||||
{
|
||||
/* preemptive overflow correction:
|
||||
* 1. correction is large enough:
|
||||
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
|
||||
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
|
||||
*
|
||||
* current - newCurrent
|
||||
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
|
||||
* > (3<<29) - (1<<chainLog)
|
||||
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
|
||||
* > 1<<29
|
||||
*
|
||||
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
|
||||
* After correction, current is less than (1<<chainLog + 1<<windowLog).
|
||||
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
|
||||
* In 32-bit mode we are safe, because (chainLog <= 29), so
|
||||
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
|
||||
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
|
||||
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
|
||||
*/
|
||||
U32 const cycleMask = (1U << cycleLog) - 1;
|
||||
U32 const current = (U32)((BYTE const*)src - window->base);
|
||||
U32 const newCurrent = (current & cycleMask) + maxDist;
|
||||
U32 const correction = current - newCurrent;
|
||||
assert((maxDist & cycleMask) == 0);
|
||||
assert(current > newCurrent);
|
||||
/* Loose bound, should be around 1<<29 (see above) */
|
||||
assert(correction > 1<<28);
|
||||
|
||||
window->base += correction;
|
||||
window->dictBase += correction;
|
||||
window->lowLimit -= correction;
|
||||
window->dictLimit -= correction;
|
||||
|
||||
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
|
||||
window->lowLimit);
|
||||
return correction;
|
||||
}
|
||||
|
||||
/**
|
||||
* ZSTD_window_enforceMaxDist():
|
||||
* Updates lowLimit so that:
|
||||
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
|
||||
*
|
||||
* This allows a simple check that index >= lowLimit to see if index is valid.
|
||||
* This must be called before a block compression call, with srcEnd as the block
|
||||
* source end.
|
||||
*
|
||||
* If loadedDictEndPtr is not NULL, we set it to zero once we update lowLimit.
|
||||
* This is because dictionaries are allowed to be referenced as long as the last
|
||||
* byte of the dictionary is in the window, but once they are out of range,
|
||||
* they cannot be referenced. If loadedDictEndPtr is NULL, we use
|
||||
* loadedDictEnd == 0.
|
||||
*
|
||||
* In normal dict mode, the dict is between lowLimit and dictLimit. In
|
||||
* dictMatchState mode, lowLimit and dictLimit are the same, and the dictionary
|
||||
* is below them. forceWindow and dictMatchState are therefore incompatible.
|
||||
*/
|
||||
MEM_STATIC void ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
|
||||
void const* srcEnd, U32 maxDist,
|
||||
U32* loadedDictEndPtr,
|
||||
const ZSTD_matchState_t** dictMatchStatePtr)
|
||||
{
|
||||
U32 const current = (U32)((BYTE const*)srcEnd - window->base);
|
||||
U32 loadedDictEnd = loadedDictEndPtr != NULL ? *loadedDictEndPtr : 0;
|
||||
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: current=%u, maxDist=%u", current, maxDist);
|
||||
if (current > maxDist + loadedDictEnd) {
|
||||
U32 const newLowLimit = current - maxDist;
|
||||
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
|
||||
if (window->dictLimit < window->lowLimit) {
|
||||
DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
|
||||
window->dictLimit, window->lowLimit);
|
||||
window->dictLimit = window->lowLimit;
|
||||
}
|
||||
if (loadedDictEndPtr)
|
||||
*loadedDictEndPtr = 0;
|
||||
if (dictMatchStatePtr)
|
||||
*dictMatchStatePtr = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ZSTD_window_update():
|
||||
* Updates the window by appending [src, src + srcSize) to the window.
|
||||
* If it is not contiguous, the current prefix becomes the extDict, and we
|
||||
* forget about the extDict. Handles overlap of the prefix and extDict.
|
||||
* Returns non-zero if the segment is contiguous.
|
||||
*/
|
||||
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
|
||||
void const* src, size_t srcSize)
|
||||
{
|
||||
BYTE const* const ip = (BYTE const*)src;
|
||||
U32 contiguous = 1;
|
||||
DEBUGLOG(5, "ZSTD_window_update");
|
||||
/* Check if blocks follow each other */
|
||||
if (src != window->nextSrc) {
|
||||
/* not contiguous */
|
||||
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
|
||||
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
|
||||
window->lowLimit = window->dictLimit;
|
||||
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
|
||||
window->dictLimit = (U32)distanceFromBase;
|
||||
window->dictBase = window->base;
|
||||
window->base = ip - distanceFromBase;
|
||||
// ms->nextToUpdate = window->dictLimit;
|
||||
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
|
||||
contiguous = 0;
|
||||
}
|
||||
window->nextSrc = ip + srcSize;
|
||||
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
|
||||
if ( (ip+srcSize > window->dictBase + window->lowLimit)
|
||||
& (ip < window->dictBase + window->dictLimit)) {
|
||||
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
|
||||
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
|
||||
window->lowLimit = lowLimitMax;
|
||||
DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
|
||||
}
|
||||
return contiguous;
|
||||
}
|
||||
|
||||
|
||||
/* debug functions */
|
||||
|
||||
MEM_STATIC double ZSTD_fWeight(U32 rawStat)
|
||||
{
|
||||
U32 const fp_accuracy = 8;
|
||||
U32 const fp_multiplier = (1 << fp_accuracy);
|
||||
U32 const stat = rawStat + 1;
|
||||
U32 const hb = ZSTD_highbit32(stat);
|
||||
U32 const BWeight = hb * fp_multiplier;
|
||||
U32 const FWeight = (stat << fp_accuracy) >> hb;
|
||||
U32 const weight = BWeight + FWeight;
|
||||
assert(hb + fp_accuracy < 31);
|
||||
return (double)weight / fp_multiplier;
|
||||
}
|
||||
|
||||
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
|
||||
{
|
||||
unsigned u, sum;
|
||||
for (u=0, sum=0; u<=max; u++) sum += table[u];
|
||||
DEBUGLOG(2, "total nb elts: %u", sum);
|
||||
for (u=0; u<=max; u++) {
|
||||
DEBUGLOG(2, "%2u: %5u (%.2f)",
|
||||
u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
|
||||
}
|
||||
}
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* ==============================================================
|
||||
* Private declarations
|
||||
* These prototypes shall only be called from within lib/compress
|
||||
* ============================================================== */
|
||||
|
||||
/* ZSTD_getCParamsFromCCtxParams() :
|
||||
* cParams are built depending on compressionLevel, src size hints,
|
||||
* LDM and manually set compression parameters.
|
||||
*/
|
||||
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
|
||||
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize);
|
||||
|
||||
/*! ZSTD_initCStream_internal() :
|
||||
* Private use only. Init streaming operation.
|
||||
* expects params to be valid.
|
||||
* must receive dict, or cdict, or none, but not both.
|
||||
* @return : 0, or an error code */
|
||||
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
|
||||
const void* dict, size_t dictSize,
|
||||
const ZSTD_CDict* cdict,
|
||||
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
|
||||
|
||||
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
|
||||
|
||||
/*! ZSTD_compressStream_generic() :
|
||||
* Private use only. To be called from zstdmt_compress.c in single-thread mode. */
|
||||
size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
|
||||
ZSTD_outBuffer* output,
|
||||
ZSTD_inBuffer* input,
|
||||
ZSTD_EndDirective const flushMode);
|
||||
|
||||
/*! ZSTD_getCParamsFromCDict() :
|
||||
* as the name implies */
|
||||
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
|
||||
|
||||
/* ZSTD_compressBegin_advanced_internal() :
|
||||
* Private use only. To be called from zstdmt_compress.c. */
|
||||
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
|
||||
const void* dict, size_t dictSize,
|
||||
ZSTD_dictContentType_e dictContentType,
|
||||
ZSTD_dictTableLoadMethod_e dtlm,
|
||||
const ZSTD_CDict* cdict,
|
||||
ZSTD_CCtx_params params,
|
||||
unsigned long long pledgedSrcSize);
|
||||
|
||||
/* ZSTD_compress_advanced_internal() :
|
||||
* Private use only. To be called from zstdmt_compress.c. */
|
||||
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const void* dict,size_t dictSize,
|
||||
ZSTD_CCtx_params params);
|
||||
|
||||
|
||||
/* ZSTD_writeLastEmptyBlock() :
|
||||
* output an empty Block with end-of-frame mark to complete a frame
|
||||
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
|
||||
* or an error code if `dstCapcity` is too small (<ZSTD_blockHeaderSize)
|
||||
*/
|
||||
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
|
||||
|
||||
|
||||
/* ZSTD_referenceExternalSequences() :
|
||||
* Must be called before starting a compression operation.
|
||||
* seqs must parse a prefix of the source.
|
||||
* This cannot be used when long range matching is enabled.
|
||||
* Zstd will use these sequences, and pass the literals to a secondary block
|
||||
* compressor.
|
||||
* @return : An error code on failure.
|
||||
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
|
||||
* access and data corruption.
|
||||
*/
|
||||
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
|
||||
|
||||
|
||||
#endif /* ZSTD_COMPRESS_H */
|
||||
File diff suppressed because it is too large
Load Diff
@@ -8,106 +8,243 @@
|
||||
* You may select, at your option, one of the above-listed licenses.
|
||||
*/
|
||||
|
||||
#include "zstd_compress_internal.h"
|
||||
#include "zstd_double_fast.h"
|
||||
|
||||
|
||||
void ZSTD_fillDoubleHashTable(ZSTD_CCtx* cctx, const void* end, const U32 mls)
|
||||
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
|
||||
{
|
||||
U32* const hashLarge = cctx->hashTable;
|
||||
U32 const hBitsL = cctx->appliedParams.cParams.hashLog;
|
||||
U32* const hashSmall = cctx->chainTable;
|
||||
U32 const hBitsS = cctx->appliedParams.cParams.chainLog;
|
||||
const BYTE* const base = cctx->base;
|
||||
const BYTE* ip = base + cctx->nextToUpdate;
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
U32* const hashLarge = ms->hashTable;
|
||||
U32 const hBitsL = cParams->hashLog;
|
||||
U32 const mls = cParams->searchLength;
|
||||
U32* const hashSmall = ms->chainTable;
|
||||
U32 const hBitsS = cParams->chainLog;
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* ip = base + ms->nextToUpdate;
|
||||
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
|
||||
const size_t fastHashFillStep = 3;
|
||||
const U32 fastHashFillStep = 3;
|
||||
|
||||
while(ip <= iend) {
|
||||
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base);
|
||||
hashLarge[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base);
|
||||
ip += fastHashFillStep;
|
||||
/* Always insert every fastHashFillStep position into the hash tables.
|
||||
* Insert the other positions into the large hash table if their entry
|
||||
* is empty.
|
||||
*/
|
||||
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
|
||||
U32 const current = (U32)(ip - base);
|
||||
U32 i;
|
||||
for (i = 0; i < fastHashFillStep; ++i) {
|
||||
size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
|
||||
size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
|
||||
if (i == 0)
|
||||
hashSmall[smHash] = current + i;
|
||||
if (i == 0 || hashLarge[lgHash] == 0)
|
||||
hashLarge[lgHash] = current + i;
|
||||
/* Only load extra positions for ZSTD_dtlm_full */
|
||||
if (dtlm == ZSTD_dtlm_fast)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
FORCE_INLINE_TEMPLATE
|
||||
size_t ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx,
|
||||
const void* src, size_t srcSize,
|
||||
const U32 mls)
|
||||
size_t ZSTD_compressBlock_doubleFast_generic(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize,
|
||||
U32 const mls /* template */, ZSTD_dictMode_e const dictMode)
|
||||
{
|
||||
U32* const hashLong = cctx->hashTable;
|
||||
const U32 hBitsL = cctx->appliedParams.cParams.hashLog;
|
||||
U32* const hashSmall = cctx->chainTable;
|
||||
const U32 hBitsS = cctx->appliedParams.cParams.chainLog;
|
||||
seqStore_t* seqStorePtr = &(cctx->seqStore);
|
||||
const BYTE* const base = cctx->base;
|
||||
ZSTD_compressionParameters const* cParams = &ms->cParams;
|
||||
U32* const hashLong = ms->hashTable;
|
||||
const U32 hBitsL = cParams->hashLog;
|
||||
U32* const hashSmall = ms->chainTable;
|
||||
const U32 hBitsS = cParams->chainLog;
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const BYTE* ip = istart;
|
||||
const BYTE* anchor = istart;
|
||||
const U32 lowestIndex = cctx->dictLimit;
|
||||
const BYTE* const lowest = base + lowestIndex;
|
||||
const U32 prefixLowestIndex = ms->window.dictLimit;
|
||||
const BYTE* const prefixLowest = base + prefixLowestIndex;
|
||||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - HASH_READ_SIZE;
|
||||
U32 offset_1=seqStorePtr->rep[0], offset_2=seqStorePtr->rep[1];
|
||||
U32 offset_1=rep[0], offset_2=rep[1];
|
||||
U32 offsetSaved = 0;
|
||||
|
||||
const ZSTD_matchState_t* const dms = ms->dictMatchState;
|
||||
const ZSTD_compressionParameters* const dictCParams =
|
||||
dictMode == ZSTD_dictMatchState ?
|
||||
&dms->cParams : NULL;
|
||||
const U32* const dictHashLong = dictMode == ZSTD_dictMatchState ?
|
||||
dms->hashTable : NULL;
|
||||
const U32* const dictHashSmall = dictMode == ZSTD_dictMatchState ?
|
||||
dms->chainTable : NULL;
|
||||
const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ?
|
||||
dms->window.dictLimit : 0;
|
||||
const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
|
||||
dms->window.base : NULL;
|
||||
const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
|
||||
dictBase + dictStartIndex : NULL;
|
||||
const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
|
||||
dms->window.nextSrc : NULL;
|
||||
const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
|
||||
prefixLowestIndex - (U32)(dictEnd - dictBase) :
|
||||
0;
|
||||
const U32 dictHBitsL = dictMode == ZSTD_dictMatchState ?
|
||||
dictCParams->hashLog : hBitsL;
|
||||
const U32 dictHBitsS = dictMode == ZSTD_dictMatchState ?
|
||||
dictCParams->chainLog : hBitsS;
|
||||
const U32 dictAndPrefixLength = (U32)(ip - prefixLowest + dictEnd - dictStart);
|
||||
|
||||
assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
|
||||
|
||||
/* init */
|
||||
ip += (ip==lowest);
|
||||
{ U32 const maxRep = (U32)(ip-lowest);
|
||||
ip += (dictAndPrefixLength == 0);
|
||||
if (dictMode == ZSTD_noDict) {
|
||||
U32 const maxRep = (U32)(ip - prefixLowest);
|
||||
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
|
||||
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
|
||||
}
|
||||
if (dictMode == ZSTD_dictMatchState) {
|
||||
/* dictMatchState repCode checks don't currently handle repCode == 0
|
||||
* disabling. */
|
||||
assert(offset_1 <= dictAndPrefixLength);
|
||||
assert(offset_2 <= dictAndPrefixLength);
|
||||
}
|
||||
|
||||
/* Main Search Loop */
|
||||
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
|
||||
size_t mLength;
|
||||
U32 offset;
|
||||
size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
|
||||
size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
|
||||
size_t const dictHL = ZSTD_hashPtr(ip, dictHBitsL, 8);
|
||||
size_t const dictHS = ZSTD_hashPtr(ip, dictHBitsS, mls);
|
||||
U32 const current = (U32)(ip-base);
|
||||
U32 const matchIndexL = hashLong[h2];
|
||||
U32 const matchIndexS = hashSmall[h];
|
||||
U32 matchIndexS = hashSmall[h];
|
||||
const BYTE* matchLong = base + matchIndexL;
|
||||
const BYTE* match = base + matchIndexS;
|
||||
const U32 repIndex = current + 1 - offset_1;
|
||||
const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
|
||||
&& repIndex < prefixLowestIndex) ?
|
||||
dictBase + (repIndex - dictIndexDelta) :
|
||||
base + repIndex;
|
||||
hashLong[h2] = hashSmall[h] = current; /* update hash tables */
|
||||
|
||||
assert(offset_1 <= current); /* supposed guaranteed by construction */
|
||||
if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
|
||||
/* favor repcode */
|
||||
/* check dictMatchState repcode */
|
||||
if (dictMode == ZSTD_dictMatchState
|
||||
&& ((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
|
||||
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
||||
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
goto _match_stored;
|
||||
}
|
||||
|
||||
/* check noDict repcode */
|
||||
if ( dictMode == ZSTD_noDict
|
||||
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
|
||||
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
} else {
|
||||
U32 offset;
|
||||
if ( (matchIndexL > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip)) ) {
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
goto _match_stored;
|
||||
}
|
||||
|
||||
if (matchIndexL > prefixLowestIndex) {
|
||||
/* check prefix long match */
|
||||
if (MEM_read64(matchLong) == MEM_read64(ip)) {
|
||||
mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
|
||||
offset = (U32)(ip-matchLong);
|
||||
while (((ip>anchor) & (matchLong>lowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
|
||||
} else if ( (matchIndexS > lowestIndex) && (MEM_read32(match) == MEM_read32(ip)) ) {
|
||||
size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
|
||||
U32 const matchIndexL3 = hashLong[hl3];
|
||||
const BYTE* matchL3 = base + matchIndexL3;
|
||||
hashLong[hl3] = current + 1;
|
||||
if ( (matchIndexL3 > lowestIndex) && (MEM_read64(matchL3) == MEM_read64(ip+1)) ) {
|
||||
while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
|
||||
goto _match_found;
|
||||
}
|
||||
} else if (dictMode == ZSTD_dictMatchState) {
|
||||
/* check dictMatchState long match */
|
||||
U32 const dictMatchIndexL = dictHashLong[dictHL];
|
||||
const BYTE* dictMatchL = dictBase + dictMatchIndexL;
|
||||
assert(dictMatchL < dictEnd);
|
||||
|
||||
if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) {
|
||||
mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8;
|
||||
offset = (U32)(current - dictMatchIndexL - dictIndexDelta);
|
||||
while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
|
||||
goto _match_found;
|
||||
}
|
||||
}
|
||||
|
||||
if (matchIndexS > prefixLowestIndex) {
|
||||
/* check prefix short match */
|
||||
if (MEM_read32(match) == MEM_read32(ip)) {
|
||||
goto _search_next_long;
|
||||
}
|
||||
} else if (dictMode == ZSTD_dictMatchState) {
|
||||
/* check dictMatchState short match */
|
||||
U32 const dictMatchIndexS = dictHashSmall[dictHS];
|
||||
match = dictBase + dictMatchIndexS;
|
||||
matchIndexS = dictMatchIndexS + dictIndexDelta;
|
||||
|
||||
if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
|
||||
goto _search_next_long;
|
||||
}
|
||||
}
|
||||
|
||||
ip += ((ip-anchor) >> kSearchStrength) + 1;
|
||||
continue;
|
||||
|
||||
_search_next_long:
|
||||
|
||||
{
|
||||
size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
|
||||
size_t const dictHLNext = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
|
||||
U32 const matchIndexL3 = hashLong[hl3];
|
||||
const BYTE* matchL3 = base + matchIndexL3;
|
||||
hashLong[hl3] = current + 1;
|
||||
|
||||
/* check prefix long +1 match */
|
||||
if (matchIndexL3 > prefixLowestIndex) {
|
||||
if (MEM_read64(matchL3) == MEM_read64(ip+1)) {
|
||||
mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8;
|
||||
ip++;
|
||||
offset = (U32)(ip-matchL3);
|
||||
while (((ip>anchor) & (matchL3>lowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
|
||||
} else {
|
||||
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
|
||||
offset = (U32)(ip-match);
|
||||
while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
|
||||
goto _match_found;
|
||||
}
|
||||
} else if (dictMode == ZSTD_dictMatchState) {
|
||||
/* check dict long +1 match */
|
||||
U32 const dictMatchIndexL3 = dictHashLong[dictHLNext];
|
||||
const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
|
||||
assert(dictMatchL3 < dictEnd);
|
||||
if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
|
||||
mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8;
|
||||
ip++;
|
||||
offset = (U32)(current + 1 - dictMatchIndexL3 - dictIndexDelta);
|
||||
while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
|
||||
goto _match_found;
|
||||
}
|
||||
} else {
|
||||
ip += ((ip-anchor) >> g_searchStrength) + 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
}
|
||||
|
||||
/* if no long +1 match, explore the short match we found */
|
||||
if (dictMode == ZSTD_dictMatchState && matchIndexS < prefixLowestIndex) {
|
||||
mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
|
||||
offset = (U32)(current - matchIndexS);
|
||||
while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
} else {
|
||||
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
|
||||
offset = (U32)(ip - match);
|
||||
while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
}
|
||||
|
||||
/* fall-through */
|
||||
|
||||
_match_found:
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
|
||||
_match_stored:
|
||||
/* match found */
|
||||
ip += mLength;
|
||||
anchor = ip;
|
||||
@@ -120,134 +257,185 @@ size_t ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx,
|
||||
hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
|
||||
|
||||
/* check immediate repcode */
|
||||
while ( (ip <= ilimit)
|
||||
&& ( (offset_2>0)
|
||||
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
|
||||
/* store sequence */
|
||||
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
|
||||
{ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
|
||||
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
|
||||
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
|
||||
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
|
||||
ip += rLength;
|
||||
anchor = ip;
|
||||
continue; /* faster when present ... (?) */
|
||||
} } }
|
||||
if (dictMode == ZSTD_dictMatchState) {
|
||||
while (ip <= ilimit) {
|
||||
U32 const current2 = (U32)(ip-base);
|
||||
U32 const repIndex2 = current2 - offset_2;
|
||||
const BYTE* repMatch2 = dictMode == ZSTD_dictMatchState
|
||||
&& repIndex2 < prefixLowestIndex ?
|
||||
dictBase - dictIndexDelta + repIndex2 :
|
||||
base + repIndex2;
|
||||
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
||||
const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
|
||||
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
|
||||
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
|
||||
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
|
||||
ip += repLength2;
|
||||
anchor = ip;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (dictMode == ZSTD_noDict) {
|
||||
while ( (ip <= ilimit)
|
||||
&& ( (offset_2>0)
|
||||
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
|
||||
/* store sequence */
|
||||
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
|
||||
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
|
||||
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
|
||||
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
|
||||
ip += rLength;
|
||||
anchor = ip;
|
||||
continue; /* faster when present ... (?) */
|
||||
} } } }
|
||||
|
||||
/* save reps for next block */
|
||||
seqStorePtr->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
|
||||
seqStorePtr->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
|
||||
rep[0] = offset_1 ? offset_1 : offsetSaved;
|
||||
rep[1] = offset_2 ? offset_2 : offsetSaved;
|
||||
|
||||
/* Return the last literals size */
|
||||
return iend - anchor;
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTD_compressBlock_doubleFast(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
||||
size_t ZSTD_compressBlock_doubleFast(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize)
|
||||
{
|
||||
const U32 mls = ctx->appliedParams.cParams.searchLength;
|
||||
const U32 mls = ms->cParams.searchLength;
|
||||
switch(mls)
|
||||
{
|
||||
default: /* includes case 3 */
|
||||
case 4 :
|
||||
return ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 4);
|
||||
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_noDict);
|
||||
case 5 :
|
||||
return ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 5);
|
||||
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_noDict);
|
||||
case 6 :
|
||||
return ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 6);
|
||||
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_noDict);
|
||||
case 7 :
|
||||
return ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 7);
|
||||
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_noDict);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize,
|
||||
const U32 mls)
|
||||
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize)
|
||||
{
|
||||
U32* const hashLong = ctx->hashTable;
|
||||
U32 const hBitsL = ctx->appliedParams.cParams.hashLog;
|
||||
U32* const hashSmall = ctx->chainTable;
|
||||
U32 const hBitsS = ctx->appliedParams.cParams.chainLog;
|
||||
seqStore_t* seqStorePtr = &(ctx->seqStore);
|
||||
const BYTE* const base = ctx->base;
|
||||
const BYTE* const dictBase = ctx->dictBase;
|
||||
const U32 mls = ms->cParams.searchLength;
|
||||
switch(mls)
|
||||
{
|
||||
default: /* includes case 3 */
|
||||
case 4 :
|
||||
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_dictMatchState);
|
||||
case 5 :
|
||||
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_dictMatchState);
|
||||
case 6 :
|
||||
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_dictMatchState);
|
||||
case 7 :
|
||||
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_dictMatchState);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize,
|
||||
U32 const mls /* template */)
|
||||
{
|
||||
ZSTD_compressionParameters const* cParams = &ms->cParams;
|
||||
U32* const hashLong = ms->hashTable;
|
||||
U32 const hBitsL = cParams->hashLog;
|
||||
U32* const hashSmall = ms->chainTable;
|
||||
U32 const hBitsS = cParams->chainLog;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const BYTE* ip = istart;
|
||||
const BYTE* anchor = istart;
|
||||
const U32 lowestIndex = ctx->lowLimit;
|
||||
const BYTE* const dictStart = dictBase + lowestIndex;
|
||||
const U32 dictLimit = ctx->dictLimit;
|
||||
const BYTE* const lowPrefixPtr = base + dictLimit;
|
||||
const BYTE* const dictEnd = dictBase + dictLimit;
|
||||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - 8;
|
||||
U32 offset_1=seqStorePtr->rep[0], offset_2=seqStorePtr->rep[1];
|
||||
const U32 prefixStartIndex = ms->window.dictLimit;
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* const prefixStart = base + prefixStartIndex;
|
||||
const U32 dictStartIndex = ms->window.lowLimit;
|
||||
const BYTE* const dictBase = ms->window.dictBase;
|
||||
const BYTE* const dictStart = dictBase + dictStartIndex;
|
||||
const BYTE* const dictEnd = dictBase + prefixStartIndex;
|
||||
U32 offset_1=rep[0], offset_2=rep[1];
|
||||
|
||||
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
|
||||
|
||||
/* Search Loop */
|
||||
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
|
||||
const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
|
||||
const U32 matchIndex = hashSmall[hSmall];
|
||||
const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base;
|
||||
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
|
||||
const BYTE* match = matchBase + matchIndex;
|
||||
|
||||
const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
|
||||
const U32 matchLongIndex = hashLong[hLong];
|
||||
const BYTE* matchLongBase = matchLongIndex < dictLimit ? dictBase : base;
|
||||
const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base;
|
||||
const BYTE* matchLong = matchLongBase + matchLongIndex;
|
||||
|
||||
const U32 current = (U32)(ip-base);
|
||||
const U32 repIndex = current + 1 - offset_1; /* offset_1 expected <= current +1 */
|
||||
const BYTE* repBase = repIndex < dictLimit ? dictBase : base;
|
||||
const BYTE* repMatch = repBase + repIndex;
|
||||
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
|
||||
const BYTE* const repMatch = repBase + repIndex;
|
||||
size_t mLength;
|
||||
hashSmall[hSmall] = hashLong[hLong] = current; /* update hash table */
|
||||
|
||||
if ( (((U32)((dictLimit-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex))
|
||||
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
||||
const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, lowPrefixPtr) + 4;
|
||||
if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
|
||||
& (repIndex > dictStartIndex))
|
||||
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
||||
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
} else {
|
||||
if ((matchLongIndex > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
|
||||
const BYTE* matchEnd = matchLongIndex < dictLimit ? dictEnd : iend;
|
||||
const BYTE* lowMatchPtr = matchLongIndex < dictLimit ? dictStart : lowPrefixPtr;
|
||||
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
|
||||
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
|
||||
const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart;
|
||||
U32 offset;
|
||||
mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, lowPrefixPtr) + 8;
|
||||
mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8;
|
||||
offset = current - matchLongIndex;
|
||||
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
|
||||
} else if ((matchIndex > lowestIndex) && (MEM_read32(match) == MEM_read32(ip))) {
|
||||
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
|
||||
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
|
||||
U32 const matchIndex3 = hashLong[h3];
|
||||
const BYTE* const match3Base = matchIndex3 < dictLimit ? dictBase : base;
|
||||
const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base;
|
||||
const BYTE* match3 = match3Base + matchIndex3;
|
||||
U32 offset;
|
||||
hashLong[h3] = current + 1;
|
||||
if ( (matchIndex3 > lowestIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
|
||||
const BYTE* matchEnd = matchIndex3 < dictLimit ? dictEnd : iend;
|
||||
const BYTE* lowMatchPtr = matchIndex3 < dictLimit ? dictStart : lowPrefixPtr;
|
||||
mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, lowPrefixPtr) + 8;
|
||||
if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
|
||||
const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend;
|
||||
const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart;
|
||||
mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8;
|
||||
ip++;
|
||||
offset = current+1 - matchIndex3;
|
||||
while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
|
||||
} else {
|
||||
const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend;
|
||||
const BYTE* lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
|
||||
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, lowPrefixPtr) + 4;
|
||||
const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
|
||||
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
|
||||
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
|
||||
offset = current - matchIndex;
|
||||
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
}
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
|
||||
} else {
|
||||
ip += ((ip-anchor) >> g_searchStrength) + 1;
|
||||
ip += ((ip-anchor) >> kSearchStrength) + 1;
|
||||
continue;
|
||||
} }
|
||||
|
||||
@@ -265,13 +453,14 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
|
||||
while (ip <= ilimit) {
|
||||
U32 const current2 = (U32)(ip-base);
|
||||
U32 const repIndex2 = current2 - offset_2;
|
||||
const BYTE* repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
|
||||
if ( (((U32)((dictLimit-1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
||||
const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, lowPrefixPtr) + 4;
|
||||
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
|
||||
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
|
||||
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
|
||||
& (repIndex2 > dictStartIndex))
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
||||
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
|
||||
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
|
||||
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
|
||||
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
|
||||
ip += repLength2;
|
||||
@@ -282,27 +471,29 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
|
||||
} } }
|
||||
|
||||
/* save reps for next block */
|
||||
seqStorePtr->repToConfirm[0] = offset_1; seqStorePtr->repToConfirm[1] = offset_2;
|
||||
rep[0] = offset_1;
|
||||
rep[1] = offset_2;
|
||||
|
||||
/* Return the last literals size */
|
||||
return iend - anchor;
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize)
|
||||
size_t ZSTD_compressBlock_doubleFast_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize)
|
||||
{
|
||||
U32 const mls = ctx->appliedParams.cParams.searchLength;
|
||||
U32 const mls = ms->cParams.searchLength;
|
||||
switch(mls)
|
||||
{
|
||||
default: /* includes case 3 */
|
||||
case 4 :
|
||||
return ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 4);
|
||||
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 4);
|
||||
case 5 :
|
||||
return ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 5);
|
||||
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 5);
|
||||
case 6 :
|
||||
return ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 6);
|
||||
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 6);
|
||||
case 7 :
|
||||
return ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 7);
|
||||
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 7);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,15 +11,25 @@
|
||||
#ifndef ZSTD_DOUBLE_FAST_H
|
||||
#define ZSTD_DOUBLE_FAST_H
|
||||
|
||||
#include "zstd_compress.h"
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ZSTD_fillDoubleHashTable(ZSTD_CCtx* cctx, const void* end, const U32 mls);
|
||||
size_t ZSTD_compressBlock_doubleFast(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
#include "mem.h" /* U32 */
|
||||
#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
|
||||
|
||||
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm);
|
||||
size_t ZSTD_compressBlock_doubleFast(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_doubleFast_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
|
||||
@@ -35,12 +35,20 @@ extern "C" {
|
||||
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY
|
||||
#endif
|
||||
|
||||
/*-****************************************
|
||||
* error codes list
|
||||
* note : this API is still considered unstable
|
||||
* and shall not be used with a dynamic library.
|
||||
* only static linking is allowed
|
||||
******************************************/
|
||||
/*-*********************************************
|
||||
* Error codes list
|
||||
*-*********************************************
|
||||
* Error codes _values_ are pinned down since v1.3.1 only.
|
||||
* Therefore, don't rely on values if you may link to any version < v1.3.1.
|
||||
*
|
||||
* Only values < 100 are considered stable.
|
||||
*
|
||||
* note 1 : this API shall be used with static linking only.
|
||||
* dynamic linking is not yet officially supported.
|
||||
* note 2 : Prefer relying on the enum than on its value whenever possible
|
||||
* This is the only supported way to use the error list < v1.3.1
|
||||
* note 3 : ZSTD_isError() is always correct, whatever the library version.
|
||||
**********************************************/
|
||||
typedef enum {
|
||||
ZSTD_error_no_error = 0,
|
||||
ZSTD_error_GENERIC = 1,
|
||||
@@ -61,9 +69,10 @@ typedef enum {
|
||||
ZSTD_error_stage_wrong = 60,
|
||||
ZSTD_error_init_missing = 62,
|
||||
ZSTD_error_memory_allocation = 64,
|
||||
ZSTD_error_workSpace_tooSmall= 66,
|
||||
ZSTD_error_dstSize_tooSmall = 70,
|
||||
ZSTD_error_srcSize_wrong = 72,
|
||||
/* following error codes are not stable and may be removed or changed in a future version */
|
||||
/* following error codes are __NOT STABLE__, they can be removed or changed in future versions */
|
||||
ZSTD_error_frameIndex_tooLarge = 100,
|
||||
ZSTD_error_seekableIO = 102,
|
||||
ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */
|
||||
|
||||
@@ -8,77 +8,170 @@
|
||||
* You may select, at your option, one of the above-listed licenses.
|
||||
*/
|
||||
|
||||
#include "zstd_compress_internal.h"
|
||||
#include "zstd_fast.h"
|
||||
|
||||
|
||||
void ZSTD_fillHashTable (ZSTD_CCtx* zc, const void* end, const U32 mls)
|
||||
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
|
||||
{
|
||||
U32* const hashTable = zc->hashTable;
|
||||
U32 const hBits = zc->appliedParams.cParams.hashLog;
|
||||
const BYTE* const base = zc->base;
|
||||
const BYTE* ip = base + zc->nextToUpdate;
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
U32* const hashTable = ms->hashTable;
|
||||
U32 const hBits = cParams->hashLog;
|
||||
U32 const mls = cParams->searchLength;
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* ip = base + ms->nextToUpdate;
|
||||
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
|
||||
const size_t fastHashFillStep = 3;
|
||||
const U32 fastHashFillStep = 3;
|
||||
|
||||
while(ip <= iend) {
|
||||
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base);
|
||||
ip += fastHashFillStep;
|
||||
/* Always insert every fastHashFillStep position into the hash table.
|
||||
* Insert the other positions if their hash entry is empty.
|
||||
*/
|
||||
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
|
||||
U32 const current = (U32)(ip - base);
|
||||
U32 i;
|
||||
for (i = 0; i < fastHashFillStep; ++i) {
|
||||
size_t const hash = ZSTD_hashPtr(ip + i, hBits, mls);
|
||||
if (i == 0 || hashTable[hash] == 0)
|
||||
hashTable[hash] = current + i;
|
||||
/* Only load extra positions for ZSTD_dtlm_full */
|
||||
if (dtlm == ZSTD_dtlm_fast)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
FORCE_INLINE_TEMPLATE
|
||||
size_t ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
|
||||
const void* src, size_t srcSize,
|
||||
const U32 mls)
|
||||
size_t ZSTD_compressBlock_fast_generic(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize,
|
||||
U32 const mls, ZSTD_dictMode_e const dictMode)
|
||||
{
|
||||
U32* const hashTable = cctx->hashTable;
|
||||
U32 const hBits = cctx->appliedParams.cParams.hashLog;
|
||||
seqStore_t* seqStorePtr = &(cctx->seqStore);
|
||||
const BYTE* const base = cctx->base;
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
U32* const hashTable = ms->hashTable;
|
||||
U32 const hlog = cParams->hashLog;
|
||||
/* support stepSize of 0 */
|
||||
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const BYTE* ip = istart;
|
||||
const BYTE* anchor = istart;
|
||||
const U32 lowestIndex = cctx->dictLimit;
|
||||
const BYTE* const lowest = base + lowestIndex;
|
||||
const U32 prefixStartIndex = ms->window.dictLimit;
|
||||
const BYTE* const prefixStart = base + prefixStartIndex;
|
||||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - HASH_READ_SIZE;
|
||||
U32 offset_1=seqStorePtr->rep[0], offset_2=seqStorePtr->rep[1];
|
||||
U32 offset_1=rep[0], offset_2=rep[1];
|
||||
U32 offsetSaved = 0;
|
||||
|
||||
const ZSTD_matchState_t* const dms = ms->dictMatchState;
|
||||
const ZSTD_compressionParameters* const dictCParams =
|
||||
dictMode == ZSTD_dictMatchState ?
|
||||
&dms->cParams : NULL;
|
||||
const U32* const dictHashTable = dictMode == ZSTD_dictMatchState ?
|
||||
dms->hashTable : NULL;
|
||||
const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ?
|
||||
dms->window.dictLimit : 0;
|
||||
const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
|
||||
dms->window.base : NULL;
|
||||
const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
|
||||
dictBase + dictStartIndex : NULL;
|
||||
const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
|
||||
dms->window.nextSrc : NULL;
|
||||
const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
|
||||
prefixStartIndex - (U32)(dictEnd - dictBase) :
|
||||
0;
|
||||
const U32 dictAndPrefixLength = (U32)(ip - prefixStart + dictEnd - dictStart);
|
||||
const U32 dictHLog = dictMode == ZSTD_dictMatchState ?
|
||||
dictCParams->hashLog : hlog;
|
||||
|
||||
assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
|
||||
|
||||
/* otherwise, we would get index underflow when translating a dict index
|
||||
* into a local index */
|
||||
assert(dictMode != ZSTD_dictMatchState
|
||||
|| prefixStartIndex >= (U32)(dictEnd - dictBase));
|
||||
|
||||
/* init */
|
||||
ip += (ip==lowest);
|
||||
{ U32 const maxRep = (U32)(ip-lowest);
|
||||
ip += (dictAndPrefixLength == 0);
|
||||
if (dictMode == ZSTD_noDict) {
|
||||
U32 const maxRep = (U32)(ip - prefixStart);
|
||||
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
|
||||
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
|
||||
}
|
||||
if (dictMode == ZSTD_dictMatchState) {
|
||||
/* dictMatchState repCode checks don't currently handle repCode == 0
|
||||
* disabling. */
|
||||
assert(offset_1 <= dictAndPrefixLength);
|
||||
assert(offset_2 <= dictAndPrefixLength);
|
||||
}
|
||||
|
||||
/* Main Search Loop */
|
||||
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
|
||||
size_t mLength;
|
||||
size_t const h = ZSTD_hashPtr(ip, hBits, mls);
|
||||
size_t const h = ZSTD_hashPtr(ip, hlog, mls);
|
||||
U32 const current = (U32)(ip-base);
|
||||
U32 const matchIndex = hashTable[h];
|
||||
const BYTE* match = base + matchIndex;
|
||||
const U32 repIndex = current + 1 - offset_1;
|
||||
const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
|
||||
&& repIndex < prefixStartIndex) ?
|
||||
dictBase + (repIndex - dictIndexDelta) :
|
||||
base + repIndex;
|
||||
hashTable[h] = current; /* update hash table */
|
||||
|
||||
if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
|
||||
if ( (dictMode == ZSTD_dictMatchState)
|
||||
&& ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
|
||||
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
||||
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
} else if ( dictMode == ZSTD_noDict
|
||||
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
|
||||
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
} else {
|
||||
U32 offset;
|
||||
if ( (matchIndex <= lowestIndex) || (MEM_read32(match) != MEM_read32(ip)) ) {
|
||||
ip += ((ip-anchor) >> g_searchStrength) + 1;
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
} else if ( (matchIndex <= prefixStartIndex) ) {
|
||||
if (dictMode == ZSTD_dictMatchState) {
|
||||
size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls);
|
||||
U32 const dictMatchIndex = dictHashTable[dictHash];
|
||||
const BYTE* dictMatch = dictBase + dictMatchIndex;
|
||||
if (dictMatchIndex <= dictStartIndex ||
|
||||
MEM_read32(dictMatch) != MEM_read32(ip)) {
|
||||
assert(stepSize >= 1);
|
||||
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
|
||||
continue;
|
||||
} else {
|
||||
/* found a dict match */
|
||||
U32 const offset = (U32)(current-dictMatchIndex-dictIndexDelta);
|
||||
mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4;
|
||||
while (((ip>anchor) & (dictMatch>dictStart))
|
||||
&& (ip[-1] == dictMatch[-1])) {
|
||||
ip--; dictMatch--; mLength++;
|
||||
} /* catch up */
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
}
|
||||
} else {
|
||||
assert(stepSize >= 1);
|
||||
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
|
||||
continue;
|
||||
}
|
||||
} else if (MEM_read32(match) != MEM_read32(ip)) {
|
||||
/* it's not a match, and we're not going to check the dictionary */
|
||||
assert(stepSize >= 1);
|
||||
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
|
||||
continue;
|
||||
} else {
|
||||
/* found a regular match */
|
||||
U32 const offset = (U32)(ip-match);
|
||||
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
|
||||
offset = (U32)(ip-match);
|
||||
while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
while (((ip>anchor) & (match>prefixStart))
|
||||
&& (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
}
|
||||
|
||||
/* match found */
|
||||
@@ -87,105 +180,158 @@ size_t ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
|
||||
|
||||
if (ip <= ilimit) {
|
||||
/* Fill Table */
|
||||
hashTable[ZSTD_hashPtr(base+current+2, hBits, mls)] = current+2; /* here because current+2 could be > iend-8 */
|
||||
hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base);
|
||||
assert(base+current+2 > istart); /* check base overflow */
|
||||
hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2; /* here because current+2 could be > iend-8 */
|
||||
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
|
||||
|
||||
/* check immediate repcode */
|
||||
while ( (ip <= ilimit)
|
||||
&& ( (offset_2>0)
|
||||
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
|
||||
/* store sequence */
|
||||
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
|
||||
{ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
|
||||
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip-base);
|
||||
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
|
||||
ip += rLength;
|
||||
anchor = ip;
|
||||
continue; /* faster when present ... (?) */
|
||||
} } }
|
||||
if (dictMode == ZSTD_dictMatchState) {
|
||||
while (ip <= ilimit) {
|
||||
U32 const current2 = (U32)(ip-base);
|
||||
U32 const repIndex2 = current2 - offset_2;
|
||||
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
|
||||
dictBase - dictIndexDelta + repIndex2 :
|
||||
base + repIndex2;
|
||||
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
||||
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
|
||||
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
|
||||
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
|
||||
ip += repLength2;
|
||||
anchor = ip;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (dictMode == ZSTD_noDict) {
|
||||
while ( (ip <= ilimit)
|
||||
&& ( (offset_2>0)
|
||||
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
|
||||
/* store sequence */
|
||||
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
|
||||
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
|
||||
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = (U32)(ip-base);
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
|
||||
ip += rLength;
|
||||
anchor = ip;
|
||||
continue; /* faster when present ... (?) */
|
||||
} } } }
|
||||
|
||||
/* save reps for next block */
|
||||
seqStorePtr->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
|
||||
seqStorePtr->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
|
||||
rep[0] = offset_1 ? offset_1 : offsetSaved;
|
||||
rep[1] = offset_2 ? offset_2 : offsetSaved;
|
||||
|
||||
/* Return the last literals size */
|
||||
return iend - anchor;
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTD_compressBlock_fast(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize)
|
||||
size_t ZSTD_compressBlock_fast(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize)
|
||||
{
|
||||
const U32 mls = ctx->appliedParams.cParams.searchLength;
|
||||
ZSTD_compressionParameters const* cParams = &ms->cParams;
|
||||
U32 const mls = cParams->searchLength;
|
||||
assert(ms->dictMatchState == NULL);
|
||||
switch(mls)
|
||||
{
|
||||
default: /* includes case 3 */
|
||||
case 4 :
|
||||
return ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 4);
|
||||
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_noDict);
|
||||
case 5 :
|
||||
return ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 5);
|
||||
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_noDict);
|
||||
case 6 :
|
||||
return ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 6);
|
||||
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_noDict);
|
||||
case 7 :
|
||||
return ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 7);
|
||||
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_noDict);
|
||||
}
|
||||
}
|
||||
|
||||
size_t ZSTD_compressBlock_fast_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize)
|
||||
{
|
||||
ZSTD_compressionParameters const* cParams = &ms->cParams;
|
||||
U32 const mls = cParams->searchLength;
|
||||
assert(ms->dictMatchState != NULL);
|
||||
switch(mls)
|
||||
{
|
||||
default: /* includes case 3 */
|
||||
case 4 :
|
||||
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_dictMatchState);
|
||||
case 5 :
|
||||
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_dictMatchState);
|
||||
case 6 :
|
||||
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_dictMatchState);
|
||||
case 7 :
|
||||
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_dictMatchState);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize,
|
||||
const U32 mls)
|
||||
static size_t ZSTD_compressBlock_fast_extDict_generic(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize, U32 const mls)
|
||||
{
|
||||
U32* hashTable = ctx->hashTable;
|
||||
const U32 hBits = ctx->appliedParams.cParams.hashLog;
|
||||
seqStore_t* seqStorePtr = &(ctx->seqStore);
|
||||
const BYTE* const base = ctx->base;
|
||||
const BYTE* const dictBase = ctx->dictBase;
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
U32* const hashTable = ms->hashTable;
|
||||
U32 const hlog = cParams->hashLog;
|
||||
/* support stepSize of 0 */
|
||||
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
|
||||
const BYTE* const base = ms->window.base;
|
||||
const BYTE* const dictBase = ms->window.dictBase;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const BYTE* ip = istart;
|
||||
const BYTE* anchor = istart;
|
||||
const U32 lowestIndex = ctx->lowLimit;
|
||||
const BYTE* const dictStart = dictBase + lowestIndex;
|
||||
const U32 dictLimit = ctx->dictLimit;
|
||||
const BYTE* const lowPrefixPtr = base + dictLimit;
|
||||
const BYTE* const dictEnd = dictBase + dictLimit;
|
||||
const U32 dictStartIndex = ms->window.lowLimit;
|
||||
const BYTE* const dictStart = dictBase + dictStartIndex;
|
||||
const U32 prefixStartIndex = ms->window.dictLimit;
|
||||
const BYTE* const prefixStart = base + prefixStartIndex;
|
||||
const BYTE* const dictEnd = dictBase + prefixStartIndex;
|
||||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - 8;
|
||||
U32 offset_1=seqStorePtr->rep[0], offset_2=seqStorePtr->rep[1];
|
||||
U32 offset_1=rep[0], offset_2=rep[1];
|
||||
|
||||
/* Search Loop */
|
||||
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
|
||||
const size_t h = ZSTD_hashPtr(ip, hBits, mls);
|
||||
const U32 matchIndex = hashTable[h];
|
||||
const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base;
|
||||
const BYTE* match = matchBase + matchIndex;
|
||||
const U32 current = (U32)(ip-base);
|
||||
const U32 repIndex = current + 1 - offset_1; /* offset_1 expected <= current +1 */
|
||||
const BYTE* repBase = repIndex < dictLimit ? dictBase : base;
|
||||
const BYTE* repMatch = repBase + repIndex;
|
||||
const size_t h = ZSTD_hashPtr(ip, hlog, mls);
|
||||
const U32 matchIndex = hashTable[h];
|
||||
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
|
||||
const BYTE* match = matchBase + matchIndex;
|
||||
const U32 current = (U32)(ip-base);
|
||||
const U32 repIndex = current + 1 - offset_1;
|
||||
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
|
||||
const BYTE* const repMatch = repBase + repIndex;
|
||||
size_t mLength;
|
||||
hashTable[h] = current; /* update hash table */
|
||||
assert(offset_1 <= current +1); /* check repIndex */
|
||||
|
||||
if ( (((U32)((dictLimit-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex))
|
||||
if ( (((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > dictStartIndex))
|
||||
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
||||
const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, lowPrefixPtr) + 4;
|
||||
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
|
||||
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
|
||||
ip++;
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
|
||||
} else {
|
||||
if ( (matchIndex < lowestIndex) ||
|
||||
if ( (matchIndex < dictStartIndex) ||
|
||||
(MEM_read32(match) != MEM_read32(ip)) ) {
|
||||
ip += ((ip-anchor) >> g_searchStrength) + 1;
|
||||
assert(stepSize >= 1);
|
||||
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
|
||||
continue;
|
||||
}
|
||||
{ const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend;
|
||||
const BYTE* lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
|
||||
{ const BYTE* matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
|
||||
const BYTE* lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
|
||||
U32 offset;
|
||||
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, lowPrefixPtr) + 4;
|
||||
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
|
||||
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
||||
offset = current - matchIndex;
|
||||
offset_2 = offset_1;
|
||||
offset_1 = offset;
|
||||
ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
||||
} }
|
||||
|
||||
/* found a match : store it */
|
||||
@@ -194,20 +340,20 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
|
||||
|
||||
if (ip <= ilimit) {
|
||||
/* Fill Table */
|
||||
hashTable[ZSTD_hashPtr(base+current+2, hBits, mls)] = current+2;
|
||||
hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base);
|
||||
hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2;
|
||||
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
|
||||
/* check immediate repcode */
|
||||
while (ip <= ilimit) {
|
||||
U32 const current2 = (U32)(ip-base);
|
||||
U32 const repIndex2 = current2 - offset_2;
|
||||
const BYTE* repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
|
||||
if ( (((U32)((dictLimit-1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */
|
||||
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
|
||||
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (repIndex2 > dictStartIndex)) /* intentional overflow */
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
||||
const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, lowPrefixPtr) + 4;
|
||||
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
|
||||
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
|
||||
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
||||
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
|
||||
hashTable[ZSTD_hashPtr(ip, hBits, mls)] = current2;
|
||||
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
|
||||
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
|
||||
ip += repLength2;
|
||||
anchor = ip;
|
||||
continue;
|
||||
@@ -216,27 +362,30 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
|
||||
} } }
|
||||
|
||||
/* save reps for next block */
|
||||
seqStorePtr->repToConfirm[0] = offset_1; seqStorePtr->repToConfirm[1] = offset_2;
|
||||
rep[0] = offset_1;
|
||||
rep[1] = offset_2;
|
||||
|
||||
/* Return the last literals size */
|
||||
return iend - anchor;
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTD_compressBlock_fast_extDict(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize)
|
||||
size_t ZSTD_compressBlock_fast_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize)
|
||||
{
|
||||
U32 const mls = ctx->appliedParams.cParams.searchLength;
|
||||
ZSTD_compressionParameters const* cParams = &ms->cParams;
|
||||
U32 const mls = cParams->searchLength;
|
||||
switch(mls)
|
||||
{
|
||||
default: /* includes case 3 */
|
||||
case 4 :
|
||||
return ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 4);
|
||||
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 4);
|
||||
case 5 :
|
||||
return ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 5);
|
||||
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 5);
|
||||
case 6 :
|
||||
return ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 6);
|
||||
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 6);
|
||||
case 7 :
|
||||
return ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 7);
|
||||
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 7);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,17 +11,24 @@
|
||||
#ifndef ZSTD_FAST_H
|
||||
#define ZSTD_FAST_H
|
||||
|
||||
#include "zstd_compress.h"
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ZSTD_fillHashTable(ZSTD_CCtx* zc, const void* end, const U32 mls);
|
||||
size_t ZSTD_compressBlock_fast(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_fast_extDict(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize);
|
||||
#include "mem.h" /* U32 */
|
||||
#include "zstd_compress_internal.h"
|
||||
|
||||
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
|
||||
void const* end, ZSTD_dictTableLoadMethod_e dtlm);
|
||||
size_t ZSTD_compressBlock_fast(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_fast_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_fast_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
|
||||
@@ -11,12 +11,17 @@
|
||||
#ifndef ZSTD_CCOMMON_H_MODULE
|
||||
#define ZSTD_CCOMMON_H_MODULE
|
||||
|
||||
/* this module contains definitions which must be identical
|
||||
* across compression, decompression and dictBuilder.
|
||||
* It also contains a few functions useful to at least 2 of them
|
||||
* and which benefit from being inlined */
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include "compiler.h"
|
||||
#include "mem.h"
|
||||
#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */
|
||||
#include "error_private.h"
|
||||
#define ZSTD_STATIC_LINKING_ONLY
|
||||
#include "zstd.h"
|
||||
@@ -34,38 +39,8 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Debug
|
||||
***************************************/
|
||||
#if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1)
|
||||
# include <assert.h>
|
||||
#else
|
||||
# ifndef assert
|
||||
# define assert(condition) ((void)0)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#define ZSTD_STATIC_ASSERT(c) { enum { ZSTD_static_assert = 1/(int)(!!(c)) }; }
|
||||
|
||||
#if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=2)
|
||||
# include <stdio.h>
|
||||
/* recommended values for ZSTD_DEBUG display levels :
|
||||
* 1 : no display, enables assert() only
|
||||
* 2 : reserved for currently active debugging path
|
||||
* 3 : events once per object lifetime (CCtx, CDict)
|
||||
* 4 : events once per frame
|
||||
* 5 : events once per block
|
||||
* 6 : events once per sequence (*very* verbose) */
|
||||
# define DEBUGLOG(l, ...) { \
|
||||
if (l<=ZSTD_DEBUG) { \
|
||||
fprintf(stderr, __FILE__ ": "); \
|
||||
fprintf(stderr, __VA_ARGS__); \
|
||||
fprintf(stderr, " \n"); \
|
||||
} }
|
||||
#else
|
||||
# define DEBUGLOG(l, ...) {} /* disabled */
|
||||
#endif
|
||||
/* ---- static assert (debug) --- */
|
||||
#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)
|
||||
|
||||
|
||||
/*-*************************************
|
||||
@@ -85,9 +60,7 @@ extern "C" {
|
||||
#define ZSTD_OPT_NUM (1<<12)
|
||||
|
||||
#define ZSTD_REP_NUM 3 /* number of repcodes */
|
||||
#define ZSTD_REP_CHECK (ZSTD_REP_NUM) /* number of repcodes to check by the optimal parser */
|
||||
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
|
||||
#define ZSTD_REP_MOVE_OPT (ZSTD_REP_NUM)
|
||||
static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
|
||||
|
||||
#define KB *(1 <<10)
|
||||
@@ -106,8 +79,7 @@ static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
|
||||
static const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
|
||||
static const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
|
||||
|
||||
#define ZSTD_FRAMEIDSIZE 4
|
||||
static const size_t ZSTD_frameIdSize = ZSTD_FRAMEIDSIZE; /* magic number size */
|
||||
#define ZSTD_FRAMEIDSIZE 4 /* magic number size */
|
||||
|
||||
#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
|
||||
static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
|
||||
@@ -125,37 +97,50 @@ typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingTy
|
||||
|
||||
#define Litbits 8
|
||||
#define MaxLit ((1<<Litbits) - 1)
|
||||
#define MaxML 52
|
||||
#define MaxLL 35
|
||||
#define MaxML 52
|
||||
#define MaxLL 35
|
||||
#define DefaultMaxOff 28
|
||||
#define MaxOff 31
|
||||
#define MaxOff 31
|
||||
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
|
||||
#define MLFSELog 9
|
||||
#define LLFSELog 9
|
||||
#define OffFSELog 8
|
||||
#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
|
||||
|
||||
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
|
||||
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 2, 2, 3, 3,
|
||||
4, 6, 7, 8, 9,10,11,12,
|
||||
13,14,15,16 };
|
||||
static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
|
||||
static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 1, 1, 1,
|
||||
2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 3, 2, 1, 1, 1, 1, 1,
|
||||
-1,-1,-1,-1 };
|
||||
#define LL_DEFAULTNORMLOG 6 /* for static allocation */
|
||||
static const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
|
||||
|
||||
static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
|
||||
static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 2, 2, 3, 3,
|
||||
4, 4, 5, 7, 8, 9,10,11,
|
||||
12,13,14,15,16 };
|
||||
static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
|
||||
static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2,
|
||||
2, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1,-1,-1,
|
||||
-1,-1,-1,-1,-1 };
|
||||
#define ML_DEFAULTNORMLOG 6 /* for static allocation */
|
||||
static const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
|
||||
|
||||
static const S16 OF_defaultNorm[DefaultMaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
|
||||
static const S16 OF_defaultNorm[DefaultMaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2,
|
||||
2, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1,
|
||||
-1,-1,-1,-1,-1 };
|
||||
#define OF_DEFAULTNORMLOG 5 /* for static allocation */
|
||||
static const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
|
||||
|
||||
@@ -167,7 +152,7 @@ static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
|
||||
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
|
||||
|
||||
/*! ZSTD_wildcopy() :
|
||||
* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
|
||||
* custom version of memcpy(), can overwrite up to WILDCOPY_OVERLENGTH bytes (if length==0) */
|
||||
#define WILDCOPY_OVERLENGTH 8
|
||||
MEM_STATIC void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
|
||||
{
|
||||
@@ -191,17 +176,14 @@ MEM_STATIC void ZSTD_wildcopy_e(void* dst, const void* src, void* dstEnd) /* s
|
||||
|
||||
|
||||
/*-*******************************************
|
||||
* Private interfaces
|
||||
* Private declarations
|
||||
*********************************************/
|
||||
typedef struct ZSTD_stats_s ZSTD_stats_t;
|
||||
|
||||
typedef struct seqDef_s {
|
||||
U32 offset;
|
||||
U16 litLength;
|
||||
U16 matchLength;
|
||||
} seqDef;
|
||||
|
||||
|
||||
typedef struct {
|
||||
seqDef* sequencesStart;
|
||||
seqDef* sequences;
|
||||
@@ -210,106 +192,14 @@ typedef struct {
|
||||
BYTE* llCode;
|
||||
BYTE* mlCode;
|
||||
BYTE* ofCode;
|
||||
size_t maxNbSeq;
|
||||
size_t maxNbLit;
|
||||
U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
|
||||
U32 longLengthPos;
|
||||
U32 rep[ZSTD_REP_NUM];
|
||||
U32 repToConfirm[ZSTD_REP_NUM];
|
||||
} seqStore_t;
|
||||
|
||||
typedef struct {
|
||||
U32 off;
|
||||
U32 len;
|
||||
} ZSTD_match_t;
|
||||
|
||||
typedef struct {
|
||||
U32 price;
|
||||
U32 off;
|
||||
U32 mlen;
|
||||
U32 litlen;
|
||||
U32 rep[ZSTD_REP_NUM];
|
||||
} ZSTD_optimal_t;
|
||||
|
||||
typedef struct {
|
||||
U32* litFreq;
|
||||
U32* litLengthFreq;
|
||||
U32* matchLengthFreq;
|
||||
U32* offCodeFreq;
|
||||
ZSTD_match_t* matchTable;
|
||||
ZSTD_optimal_t* priceTable;
|
||||
|
||||
U32 matchLengthSum;
|
||||
U32 matchSum;
|
||||
U32 litLengthSum;
|
||||
U32 litSum;
|
||||
U32 offCodeSum;
|
||||
U32 log2matchLengthSum;
|
||||
U32 log2matchSum;
|
||||
U32 log2litLengthSum;
|
||||
U32 log2litSum;
|
||||
U32 log2offCodeSum;
|
||||
U32 factor;
|
||||
U32 staticPrices;
|
||||
U32 cachedPrice;
|
||||
U32 cachedLitLength;
|
||||
const BYTE* cachedLiterals;
|
||||
} optState_t;
|
||||
|
||||
typedef struct {
|
||||
U32 offset;
|
||||
U32 checksum;
|
||||
} ldmEntry_t;
|
||||
|
||||
typedef struct {
|
||||
ldmEntry_t* hashTable;
|
||||
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
|
||||
U64 hashPower; /* Used to compute the rolling hash.
|
||||
* Depends on ldmParams.minMatchLength */
|
||||
} ldmState_t;
|
||||
|
||||
typedef struct {
|
||||
U32 enableLdm; /* 1 if enable long distance matching */
|
||||
U32 hashLog; /* Log size of hashTable */
|
||||
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
|
||||
U32 minMatchLength; /* Minimum match length */
|
||||
U32 hashEveryLog; /* Log number of entries to skip */
|
||||
} ldmParams_t;
|
||||
|
||||
typedef struct {
|
||||
U32 hufCTable[HUF_CTABLE_SIZE_U32(255)];
|
||||
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
|
||||
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
|
||||
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
|
||||
U32 workspace[HUF_WORKSPACE_SIZE_U32];
|
||||
HUF_repeat hufCTable_repeatMode;
|
||||
FSE_repeat offcode_repeatMode;
|
||||
FSE_repeat matchlength_repeatMode;
|
||||
FSE_repeat litlength_repeatMode;
|
||||
} ZSTD_entropyCTables_t;
|
||||
|
||||
struct ZSTD_CCtx_params_s {
|
||||
ZSTD_format_e format;
|
||||
ZSTD_compressionParameters cParams;
|
||||
ZSTD_frameParameters fParams;
|
||||
|
||||
int compressionLevel;
|
||||
U32 forceWindow; /* force back-references to respect limit of
|
||||
* 1<<wLog, even for dictionary */
|
||||
|
||||
/* Multithreading: used to pass parameters to mtctx */
|
||||
U32 nbThreads;
|
||||
unsigned jobSize;
|
||||
unsigned overlapSizeLog;
|
||||
|
||||
/* Long distance matching parameters */
|
||||
ldmParams_t ldmParams;
|
||||
|
||||
/* For use with createCCtxParams() and freeCCtxParams() only */
|
||||
ZSTD_customMem customMem;
|
||||
|
||||
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
|
||||
|
||||
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx);
|
||||
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr);
|
||||
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
|
||||
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
|
||||
|
||||
/* custom memory allocation functions */
|
||||
void* ZSTD_malloc(size_t size, ZSTD_customMem customMem);
|
||||
@@ -317,9 +207,7 @@ void* ZSTD_calloc(size_t size, ZSTD_customMem customMem);
|
||||
void ZSTD_free(void* ptr, ZSTD_customMem customMem);
|
||||
|
||||
|
||||
/*====== common function ======*/
|
||||
|
||||
MEM_STATIC U32 ZSTD_highbit32(U32 val)
|
||||
MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
|
||||
{
|
||||
assert(val != 0);
|
||||
{
|
||||
@@ -330,67 +218,26 @@ MEM_STATIC U32 ZSTD_highbit32(U32 val)
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
|
||||
return 31 - __builtin_clz(val);
|
||||
# else /* Software version */
|
||||
static const int DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
|
||||
static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
|
||||
U32 v = val;
|
||||
int r;
|
||||
v |= v >> 1;
|
||||
v |= v >> 2;
|
||||
v |= v >> 4;
|
||||
v |= v >> 8;
|
||||
v |= v >> 16;
|
||||
r = DeBruijnClz[(U32)(v * 0x07C4ACDDU) >> 27];
|
||||
return r;
|
||||
return DeBruijnClz[(v * 0x07C4ACDDU) >> 27];
|
||||
# endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* hidden functions */
|
||||
|
||||
/* ZSTD_invalidateRepCodes() :
|
||||
* ensures next compression will not use repcodes from previous block.
|
||||
* Note : only works with regular variant;
|
||||
* do not use with extDict variant ! */
|
||||
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx);
|
||||
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */
|
||||
|
||||
|
||||
/*! ZSTD_initCStream_internal() :
|
||||
* Private use only. Init streaming operation.
|
||||
* expects params to be valid.
|
||||
* must receive dict, or cdict, or none, but not both.
|
||||
* @return : 0, or an error code */
|
||||
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
|
||||
const void* dict, size_t dictSize,
|
||||
const ZSTD_CDict* cdict,
|
||||
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
|
||||
|
||||
/*! ZSTD_compressStream_generic() :
|
||||
* Private use only. To be called from zstdmt_compress.c in single-thread mode. */
|
||||
size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
|
||||
ZSTD_outBuffer* output,
|
||||
ZSTD_inBuffer* input,
|
||||
ZSTD_EndDirective const flushMode);
|
||||
|
||||
/*! ZSTD_getCParamsFromCDict() :
|
||||
* as the name implies */
|
||||
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
|
||||
|
||||
/* ZSTD_compressBegin_advanced_internal() :
|
||||
* Private use only. To be called from zstdmt_compress.c. */
|
||||
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
|
||||
const void* dict, size_t dictSize,
|
||||
ZSTD_dictMode_e dictMode,
|
||||
ZSTD_CCtx_params params,
|
||||
unsigned long long pledgedSrcSize);
|
||||
|
||||
/* ZSTD_compress_advanced_internal() :
|
||||
* Private use only. To be called from zstdmt_compress.c. */
|
||||
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const void* dict,size_t dictSize,
|
||||
ZSTD_CCtx_params params);
|
||||
|
||||
typedef struct {
|
||||
blockType_e blockType;
|
||||
U32 lastBlock;
|
||||
@@ -398,7 +245,8 @@ typedef struct {
|
||||
} blockProperties_t;
|
||||
|
||||
/*! ZSTD_getcBlockSize() :
|
||||
* Provides the size of compressed block from block header `src` */
|
||||
* Provides the size of compressed block from block header `src` */
|
||||
/* Used by: decompress, fullbench (does not get its definition from here) */
|
||||
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
|
||||
blockProperties_t* bpPtr);
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -11,25 +11,54 @@
|
||||
#ifndef ZSTD_LAZY_H
|
||||
#define ZSTD_LAZY_H
|
||||
|
||||
#include "zstd_compress.h"
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
U32 ZSTD_insertAndFindFirstIndex (ZSTD_CCtx* zc, const BYTE* ip, U32 mls);
|
||||
void ZSTD_updateTree(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls);
|
||||
void ZSTD_updateTree_extDict(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls);
|
||||
#include "zstd_compress_internal.h"
|
||||
|
||||
size_t ZSTD_compressBlock_btlazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_greedy(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
|
||||
|
||||
size_t ZSTD_compressBlock_greedy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_btlazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). pre-emptively increase value of ZSTD_DUBT_UNSORTED_MARK */
|
||||
|
||||
size_t ZSTD_compressBlock_btlazy2(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy2(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_greedy(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy2_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_greedy_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
size_t ZSTD_compressBlock_greedy_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_lazy2_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_btlazy2_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
|
||||
#include "zstd_ldm.h"
|
||||
|
||||
#include "debug.h"
|
||||
#include "zstd_fast.h" /* ZSTD_fillHashTable() */
|
||||
#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
|
||||
|
||||
@@ -17,36 +18,46 @@
|
||||
#define LDM_HASH_RLOG 7
|
||||
#define LDM_HASH_CHAR_OFFSET 10
|
||||
|
||||
size_t ZSTD_ldm_initializeParameters(ldmParams_t* params, U32 enableLdm)
|
||||
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
|
||||
ZSTD_compressionParameters const* cParams)
|
||||
{
|
||||
params->windowLog = cParams->windowLog;
|
||||
ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
|
||||
params->enableLdm = enableLdm>0;
|
||||
params->hashLog = 0;
|
||||
params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
|
||||
params->minMatchLength = LDM_MIN_MATCH_LENGTH;
|
||||
params->hashEveryLog = ZSTD_LDM_HASHEVERYLOG_NOTSET;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ZSTD_ldm_adjustParameters(ldmParams_t* params, U32 windowLog)
|
||||
{
|
||||
DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
|
||||
if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
|
||||
if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
|
||||
if (cParams->strategy >= ZSTD_btopt) {
|
||||
/* Get out of the way of the optimal parser */
|
||||
U32 const minMatch = MAX(cParams->targetLength, params->minMatchLength);
|
||||
assert(minMatch >= ZSTD_LDM_MINMATCH_MIN);
|
||||
assert(minMatch <= ZSTD_LDM_MINMATCH_MAX);
|
||||
params->minMatchLength = minMatch;
|
||||
}
|
||||
if (params->hashLog == 0) {
|
||||
params->hashLog = MAX(ZSTD_HASHLOG_MIN, windowLog - LDM_HASH_RLOG);
|
||||
params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
|
||||
assert(params->hashLog <= ZSTD_HASHLOG_MAX);
|
||||
}
|
||||
if (params->hashEveryLog == ZSTD_LDM_HASHEVERYLOG_NOTSET) {
|
||||
params->hashEveryLog =
|
||||
windowLog < params->hashLog ? 0 : windowLog - params->hashLog;
|
||||
if (params->hashEveryLog == 0) {
|
||||
params->hashEveryLog = params->windowLog < params->hashLog
|
||||
? 0
|
||||
: params->windowLog - params->hashLog;
|
||||
}
|
||||
params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
|
||||
}
|
||||
|
||||
size_t ZSTD_ldm_getTableSize(U32 hashLog, U32 bucketSizeLog) {
|
||||
size_t const ldmHSize = ((size_t)1) << hashLog;
|
||||
size_t const ldmBucketSizeLog = MIN(bucketSizeLog, hashLog);
|
||||
size_t ZSTD_ldm_getTableSize(ldmParams_t params)
|
||||
{
|
||||
size_t const ldmHSize = ((size_t)1) << params.hashLog;
|
||||
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
|
||||
size_t const ldmBucketSize =
|
||||
((size_t)1) << (hashLog - ldmBucketSizeLog);
|
||||
return ldmBucketSize + (ldmHSize * (sizeof(ldmEntry_t)));
|
||||
((size_t)1) << (params.hashLog - ldmBucketSizeLog);
|
||||
size_t const totalSize = ldmBucketSize + ldmHSize * sizeof(ldmEntry_t);
|
||||
return params.enableLdm ? totalSize : 0;
|
||||
}
|
||||
|
||||
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
|
||||
{
|
||||
return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0;
|
||||
}
|
||||
|
||||
/** ZSTD_ldm_getSmallHash() :
|
||||
@@ -167,6 +178,7 @@ static U64 ZSTD_ldm_ipow(U64 base, U64 exp)
|
||||
}
|
||||
|
||||
U64 ZSTD_ldm_getHashPower(U32 minMatchLength) {
|
||||
DEBUGLOG(4, "ZSTD_ldm_getHashPower: mml=%u", minMatchLength);
|
||||
assert(minMatchLength >= ZSTD_LDM_MINMATCH_MIN);
|
||||
return ZSTD_ldm_ipow(prime8bytes, minMatchLength - 1);
|
||||
}
|
||||
@@ -205,21 +217,19 @@ static size_t ZSTD_ldm_countBackwardsMatch(
|
||||
*
|
||||
* The tables for the other strategies are filled within their
|
||||
* block compressors. */
|
||||
static size_t ZSTD_ldm_fillFastTables(ZSTD_CCtx* zc, const void* end)
|
||||
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
|
||||
void const* end)
|
||||
{
|
||||
const BYTE* const iend = (const BYTE*)end;
|
||||
const U32 mls = zc->appliedParams.cParams.searchLength;
|
||||
|
||||
switch(zc->appliedParams.cParams.strategy)
|
||||
switch(ms->cParams.strategy)
|
||||
{
|
||||
case ZSTD_fast:
|
||||
ZSTD_fillHashTable(zc, iend, mls);
|
||||
zc->nextToUpdate = (U32)(iend - zc->base);
|
||||
ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast);
|
||||
break;
|
||||
|
||||
case ZSTD_dfast:
|
||||
ZSTD_fillDoubleHashTable(zc, iend, mls);
|
||||
zc->nextToUpdate = (U32)(iend - zc->base);
|
||||
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast);
|
||||
break;
|
||||
|
||||
case ZSTD_greedy:
|
||||
@@ -268,69 +278,62 @@ static U64 ZSTD_ldm_fillLdmHashTable(ldmState_t* state,
|
||||
* Sets cctx->nextToUpdate to a position corresponding closer to anchor
|
||||
* if it is far way
|
||||
* (after a long match, only update tables a limited amount). */
|
||||
static void ZSTD_ldm_limitTableUpdate(ZSTD_CCtx* cctx, const BYTE* anchor)
|
||||
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
|
||||
{
|
||||
U32 const current = (U32)(anchor - cctx->base);
|
||||
if (current > cctx->nextToUpdate + 1024) {
|
||||
cctx->nextToUpdate =
|
||||
current - MIN(512, current - cctx->nextToUpdate - 1024);
|
||||
U32 const current = (U32)(anchor - ms->window.base);
|
||||
if (current > ms->nextToUpdate + 1024) {
|
||||
ms->nextToUpdate =
|
||||
current - MIN(512, current - ms->nextToUpdate - 1024);
|
||||
}
|
||||
}
|
||||
|
||||
typedef size_t (*ZSTD_blockCompressor) (ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
/* defined in zstd_compress.c */
|
||||
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict);
|
||||
|
||||
FORCE_INLINE_TEMPLATE
|
||||
size_t ZSTD_compressBlock_ldm_generic(ZSTD_CCtx* cctx,
|
||||
const void* src, size_t srcSize)
|
||||
static size_t ZSTD_ldm_generateSequences_internal(
|
||||
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
|
||||
ldmParams_t const* params, void const* src, size_t srcSize)
|
||||
{
|
||||
ldmState_t* const ldmState = &(cctx->ldmState);
|
||||
const ldmParams_t ldmParams = cctx->appliedParams.ldmParams;
|
||||
const U64 hashPower = ldmState->hashPower;
|
||||
const U32 hBits = ldmParams.hashLog - ldmParams.bucketSizeLog;
|
||||
const U32 ldmBucketSize = ((U32)1 << ldmParams.bucketSizeLog);
|
||||
const U32 ldmTagMask = ((U32)1 << ldmParams.hashEveryLog) - 1;
|
||||
seqStore_t* const seqStorePtr = &(cctx->seqStore);
|
||||
const BYTE* const base = cctx->base;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const BYTE* ip = istart;
|
||||
const BYTE* anchor = istart;
|
||||
const U32 lowestIndex = cctx->dictLimit;
|
||||
const BYTE* const lowest = base + lowestIndex;
|
||||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - MAX(ldmParams.minMatchLength, HASH_READ_SIZE);
|
||||
|
||||
const ZSTD_blockCompressor blockCompressor =
|
||||
ZSTD_selectBlockCompressor(cctx->appliedParams.cParams.strategy, 0);
|
||||
U32* const repToConfirm = seqStorePtr->repToConfirm;
|
||||
U32 savedRep[ZSTD_REP_NUM];
|
||||
/* LDM parameters */
|
||||
int const extDict = ZSTD_window_hasExtDict(ldmState->window);
|
||||
U32 const minMatchLength = params->minMatchLength;
|
||||
U64 const hashPower = ldmState->hashPower;
|
||||
U32 const hBits = params->hashLog - params->bucketSizeLog;
|
||||
U32 const ldmBucketSize = 1U << params->bucketSizeLog;
|
||||
U32 const hashEveryLog = params->hashEveryLog;
|
||||
U32 const ldmTagMask = (1U << params->hashEveryLog) - 1;
|
||||
/* Prefix and extDict parameters */
|
||||
U32 const dictLimit = ldmState->window.dictLimit;
|
||||
U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
|
||||
BYTE const* const base = ldmState->window.base;
|
||||
BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
|
||||
BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
|
||||
BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
|
||||
BYTE const* const lowPrefixPtr = base + dictLimit;
|
||||
/* Input bounds */
|
||||
BYTE const* const istart = (BYTE const*)src;
|
||||
BYTE const* const iend = istart + srcSize;
|
||||
BYTE const* const ilimit = iend - MAX(minMatchLength, HASH_READ_SIZE);
|
||||
/* Input positions */
|
||||
BYTE const* anchor = istart;
|
||||
BYTE const* ip = istart;
|
||||
/* Rolling hash */
|
||||
BYTE const* lastHashed = NULL;
|
||||
U64 rollingHash = 0;
|
||||
const BYTE* lastHashed = NULL;
|
||||
size_t i, lastLiterals;
|
||||
|
||||
/* Save seqStorePtr->rep and copy repToConfirm */
|
||||
for (i = 0; i < ZSTD_REP_NUM; i++)
|
||||
savedRep[i] = repToConfirm[i] = seqStorePtr->rep[i];
|
||||
|
||||
/* Main Search Loop */
|
||||
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
|
||||
while (ip <= ilimit) {
|
||||
size_t mLength;
|
||||
U32 const current = (U32)(ip - base);
|
||||
size_t forwardMatchLength = 0, backwardMatchLength = 0;
|
||||
ldmEntry_t* bestEntry = NULL;
|
||||
if (ip != istart) {
|
||||
rollingHash = ZSTD_ldm_updateHash(rollingHash, lastHashed[0],
|
||||
lastHashed[ldmParams.minMatchLength],
|
||||
lastHashed[minMatchLength],
|
||||
hashPower);
|
||||
} else {
|
||||
rollingHash = ZSTD_ldm_getRollingHash(ip, ldmParams.minMatchLength);
|
||||
rollingHash = ZSTD_ldm_getRollingHash(ip, minMatchLength);
|
||||
}
|
||||
lastHashed = ip;
|
||||
|
||||
/* Do not insert and do not look for a match */
|
||||
if (ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashEveryLog) !=
|
||||
ldmTagMask) {
|
||||
if (ZSTD_ldm_getTag(rollingHash, hBits, hashEveryLog) != ldmTagMask) {
|
||||
ip++;
|
||||
continue;
|
||||
}
|
||||
@@ -340,27 +343,49 @@ size_t ZSTD_compressBlock_ldm_generic(ZSTD_CCtx* cctx,
|
||||
ldmEntry_t* const bucket =
|
||||
ZSTD_ldm_getBucket(ldmState,
|
||||
ZSTD_ldm_getSmallHash(rollingHash, hBits),
|
||||
ldmParams);
|
||||
*params);
|
||||
ldmEntry_t* cur;
|
||||
size_t bestMatchLength = 0;
|
||||
U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
|
||||
|
||||
for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) {
|
||||
const BYTE* const pMatch = cur->offset + base;
|
||||
size_t curForwardMatchLength, curBackwardMatchLength,
|
||||
curTotalMatchLength;
|
||||
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
|
||||
continue;
|
||||
}
|
||||
if (extDict) {
|
||||
BYTE const* const curMatchBase =
|
||||
cur->offset < dictLimit ? dictBase : base;
|
||||
BYTE const* const pMatch = curMatchBase + cur->offset;
|
||||
BYTE const* const matchEnd =
|
||||
cur->offset < dictLimit ? dictEnd : iend;
|
||||
BYTE const* const lowMatchPtr =
|
||||
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
|
||||
|
||||
curForwardMatchLength = ZSTD_count(ip, pMatch, iend);
|
||||
if (curForwardMatchLength < ldmParams.minMatchLength) {
|
||||
continue;
|
||||
curForwardMatchLength = ZSTD_count_2segments(
|
||||
ip, pMatch, iend,
|
||||
matchEnd, lowPrefixPtr);
|
||||
if (curForwardMatchLength < minMatchLength) {
|
||||
continue;
|
||||
}
|
||||
curBackwardMatchLength =
|
||||
ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
|
||||
lowMatchPtr);
|
||||
curTotalMatchLength = curForwardMatchLength +
|
||||
curBackwardMatchLength;
|
||||
} else { /* !extDict */
|
||||
BYTE const* const pMatch = base + cur->offset;
|
||||
curForwardMatchLength = ZSTD_count(ip, pMatch, iend);
|
||||
if (curForwardMatchLength < minMatchLength) {
|
||||
continue;
|
||||
}
|
||||
curBackwardMatchLength =
|
||||
ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
|
||||
lowPrefixPtr);
|
||||
curTotalMatchLength = curForwardMatchLength +
|
||||
curBackwardMatchLength;
|
||||
}
|
||||
curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch(
|
||||
ip, anchor, pMatch, lowest);
|
||||
curTotalMatchLength = curForwardMatchLength +
|
||||
curBackwardMatchLength;
|
||||
|
||||
if (curTotalMatchLength > bestMatchLength) {
|
||||
bestMatchLength = curTotalMatchLength;
|
||||
@@ -375,7 +400,7 @@ size_t ZSTD_compressBlock_ldm_generic(ZSTD_CCtx* cctx,
|
||||
if (bestEntry == NULL) {
|
||||
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash,
|
||||
hBits, current,
|
||||
ldmParams);
|
||||
*params);
|
||||
ip++;
|
||||
continue;
|
||||
}
|
||||
@@ -384,324 +409,238 @@ size_t ZSTD_compressBlock_ldm_generic(ZSTD_CCtx* cctx,
|
||||
mLength = forwardMatchLength + backwardMatchLength;
|
||||
ip -= backwardMatchLength;
|
||||
|
||||
/* Call the block compressor on the remaining literals */
|
||||
{
|
||||
/* Store the sequence:
|
||||
* ip = current - backwardMatchLength
|
||||
* The match is at (bestEntry->offset - backwardMatchLength)
|
||||
*/
|
||||
U32 const matchIndex = bestEntry->offset;
|
||||
const BYTE* const match = base + matchIndex - backwardMatchLength;
|
||||
U32 const offset = (U32)(ip - match);
|
||||
U32 const offset = current - matchIndex;
|
||||
rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
|
||||
|
||||
/* Overwrite rep codes */
|
||||
for (i = 0; i < ZSTD_REP_NUM; i++)
|
||||
seqStorePtr->rep[i] = repToConfirm[i];
|
||||
|
||||
/* Fill tables for block compressor */
|
||||
ZSTD_ldm_limitTableUpdate(cctx, anchor);
|
||||
ZSTD_ldm_fillFastTables(cctx, anchor);
|
||||
|
||||
/* Call block compressor and get remaining literals */
|
||||
lastLiterals = blockCompressor(cctx, anchor, ip - anchor);
|
||||
cctx->nextToUpdate = (U32)(ip - base);
|
||||
|
||||
/* Update repToConfirm with the new offset */
|
||||
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
|
||||
repToConfirm[i] = repToConfirm[i-1];
|
||||
repToConfirm[0] = offset;
|
||||
|
||||
/* Store the sequence with the leftover literals */
|
||||
ZSTD_storeSeq(seqStorePtr, lastLiterals, ip - lastLiterals,
|
||||
offset + ZSTD_REP_MOVE, mLength - MINMATCH);
|
||||
/* Out of sequence storage */
|
||||
if (rawSeqStore->size == rawSeqStore->capacity)
|
||||
return ERROR(dstSize_tooSmall);
|
||||
seq->litLength = (U32)(ip - anchor);
|
||||
seq->matchLength = (U32)mLength;
|
||||
seq->offset = offset;
|
||||
rawSeqStore->size++;
|
||||
}
|
||||
|
||||
/* Insert the current entry into the hash table */
|
||||
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
|
||||
(U32)(lastHashed - base),
|
||||
ldmParams);
|
||||
*params);
|
||||
|
||||
assert(ip + backwardMatchLength == lastHashed);
|
||||
|
||||
/* Fill the hash table from lastHashed+1 to ip+mLength*/
|
||||
/* Heuristic: don't need to fill the entire table at end of block */
|
||||
if (ip + mLength < ilimit) {
|
||||
if (ip + mLength <= ilimit) {
|
||||
rollingHash = ZSTD_ldm_fillLdmHashTable(
|
||||
ldmState, rollingHash, lastHashed,
|
||||
ip + mLength, base, hBits, ldmParams);
|
||||
ip + mLength, base, hBits, *params);
|
||||
lastHashed = ip + mLength - 1;
|
||||
}
|
||||
ip += mLength;
|
||||
anchor = ip;
|
||||
/* Check immediate repcode */
|
||||
while ( (ip < ilimit)
|
||||
&& ( (repToConfirm[1] > 0) && (repToConfirm[1] <= (U32)(ip-lowest))
|
||||
&& (MEM_read32(ip) == MEM_read32(ip - repToConfirm[1])) )) {
|
||||
}
|
||||
return iend - anchor;
|
||||
}
|
||||
|
||||
size_t const rLength = ZSTD_count(ip+4, ip+4-repToConfirm[1],
|
||||
iend) + 4;
|
||||
/* Swap repToConfirm[1] <=> repToConfirm[0] */
|
||||
{
|
||||
U32 const tmpOff = repToConfirm[1];
|
||||
repToConfirm[1] = repToConfirm[0];
|
||||
repToConfirm[0] = tmpOff;
|
||||
}
|
||||
/*! ZSTD_ldm_reduceTable() :
|
||||
* reduce table indexes by `reducerValue` */
|
||||
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
|
||||
U32 const reducerValue)
|
||||
{
|
||||
U32 u;
|
||||
for (u = 0; u < size; u++) {
|
||||
if (table[u].offset < reducerValue) table[u].offset = 0;
|
||||
else table[u].offset -= reducerValue;
|
||||
}
|
||||
}
|
||||
|
||||
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
|
||||
size_t ZSTD_ldm_generateSequences(
|
||||
ldmState_t* ldmState, rawSeqStore_t* sequences,
|
||||
ldmParams_t const* params, void const* src, size_t srcSize)
|
||||
{
|
||||
U32 const maxDist = 1U << params->windowLog;
|
||||
BYTE const* const istart = (BYTE const*)src;
|
||||
BYTE const* const iend = istart + srcSize;
|
||||
size_t const kMaxChunkSize = 1 << 20;
|
||||
size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
|
||||
size_t chunk;
|
||||
size_t leftoverSize = 0;
|
||||
|
||||
/* Fill the hash table from lastHashed+1 to ip+rLength*/
|
||||
if (ip + rLength < ilimit) {
|
||||
rollingHash = ZSTD_ldm_fillLdmHashTable(
|
||||
ldmState, rollingHash, lastHashed,
|
||||
ip + rLength, base, hBits, ldmParams);
|
||||
lastHashed = ip + rLength - 1;
|
||||
}
|
||||
ip += rLength;
|
||||
anchor = ip;
|
||||
assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
|
||||
/* Check that ZSTD_window_update() has been called for this chunk prior
|
||||
* to passing it to this function.
|
||||
*/
|
||||
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
|
||||
/* The input could be very large (in zstdmt), so it must be broken up into
|
||||
* chunks to enforce the maximmum distance and handle overflow correction.
|
||||
*/
|
||||
assert(sequences->pos <= sequences->size);
|
||||
assert(sequences->size <= sequences->capacity);
|
||||
for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
|
||||
BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
|
||||
size_t const remaining = (size_t)(iend - chunkStart);
|
||||
BYTE const *const chunkEnd =
|
||||
(remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
|
||||
size_t const chunkSize = chunkEnd - chunkStart;
|
||||
size_t newLeftoverSize;
|
||||
size_t const prevSize = sequences->size;
|
||||
|
||||
assert(chunkStart < iend);
|
||||
/* 1. Perform overflow correction if necessary. */
|
||||
if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) {
|
||||
U32 const ldmHSize = 1U << params->hashLog;
|
||||
U32 const correction = ZSTD_window_correctOverflow(
|
||||
&ldmState->window, /* cycleLog */ 0, maxDist, src);
|
||||
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
|
||||
}
|
||||
}
|
||||
|
||||
/* Overwrite rep */
|
||||
for (i = 0; i < ZSTD_REP_NUM; i++)
|
||||
seqStorePtr->rep[i] = repToConfirm[i];
|
||||
|
||||
ZSTD_ldm_limitTableUpdate(cctx, anchor);
|
||||
ZSTD_ldm_fillFastTables(cctx, anchor);
|
||||
|
||||
lastLiterals = blockCompressor(cctx, anchor, iend - anchor);
|
||||
cctx->nextToUpdate = (U32)(iend - base);
|
||||
|
||||
/* Restore seqStorePtr->rep */
|
||||
for (i = 0; i < ZSTD_REP_NUM; i++)
|
||||
seqStorePtr->rep[i] = savedRep[i];
|
||||
|
||||
/* Return the last literals size */
|
||||
return lastLiterals;
|
||||
}
|
||||
|
||||
size_t ZSTD_compressBlock_ldm(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
return ZSTD_compressBlock_ldm_generic(ctx, src, srcSize);
|
||||
}
|
||||
|
||||
static size_t ZSTD_compressBlock_ldm_extDict_generic(
|
||||
ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
ldmState_t* const ldmState = &(ctx->ldmState);
|
||||
const ldmParams_t ldmParams = ctx->appliedParams.ldmParams;
|
||||
const U64 hashPower = ldmState->hashPower;
|
||||
const U32 hBits = ldmParams.hashLog - ldmParams.bucketSizeLog;
|
||||
const U32 ldmBucketSize = ((U32)1 << ldmParams.bucketSizeLog);
|
||||
const U32 ldmTagMask = ((U32)1 << ldmParams.hashEveryLog) - 1;
|
||||
seqStore_t* const seqStorePtr = &(ctx->seqStore);
|
||||
const BYTE* const base = ctx->base;
|
||||
const BYTE* const dictBase = ctx->dictBase;
|
||||
const BYTE* const istart = (const BYTE*)src;
|
||||
const BYTE* ip = istart;
|
||||
const BYTE* anchor = istart;
|
||||
const U32 lowestIndex = ctx->lowLimit;
|
||||
const BYTE* const dictStart = dictBase + lowestIndex;
|
||||
const U32 dictLimit = ctx->dictLimit;
|
||||
const BYTE* const lowPrefixPtr = base + dictLimit;
|
||||
const BYTE* const dictEnd = dictBase + dictLimit;
|
||||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* const ilimit = iend - MAX(ldmParams.minMatchLength, HASH_READ_SIZE);
|
||||
|
||||
const ZSTD_blockCompressor blockCompressor =
|
||||
ZSTD_selectBlockCompressor(ctx->appliedParams.cParams.strategy, 1);
|
||||
U32* const repToConfirm = seqStorePtr->repToConfirm;
|
||||
U32 savedRep[ZSTD_REP_NUM];
|
||||
U64 rollingHash = 0;
|
||||
const BYTE* lastHashed = NULL;
|
||||
size_t i, lastLiterals;
|
||||
|
||||
/* Save seqStorePtr->rep and copy repToConfirm */
|
||||
for (i = 0; i < ZSTD_REP_NUM; i++) {
|
||||
savedRep[i] = repToConfirm[i] = seqStorePtr->rep[i];
|
||||
}
|
||||
|
||||
/* Search Loop */
|
||||
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
|
||||
size_t mLength;
|
||||
const U32 current = (U32)(ip-base);
|
||||
size_t forwardMatchLength = 0, backwardMatchLength = 0;
|
||||
ldmEntry_t* bestEntry = NULL;
|
||||
if (ip != istart) {
|
||||
rollingHash = ZSTD_ldm_updateHash(rollingHash, lastHashed[0],
|
||||
lastHashed[ldmParams.minMatchLength],
|
||||
hashPower);
|
||||
/* 2. We enforce the maximum offset allowed.
|
||||
*
|
||||
* kMaxChunkSize should be small enough that we don't lose too much of
|
||||
* the window through early invalidation.
|
||||
* TODO: * Test the chunk size.
|
||||
* * Try invalidation after the sequence generation and test the
|
||||
* the offset against maxDist directly.
|
||||
*/
|
||||
ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, NULL, NULL);
|
||||
/* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
|
||||
newLeftoverSize = ZSTD_ldm_generateSequences_internal(
|
||||
ldmState, sequences, params, chunkStart, chunkSize);
|
||||
if (ZSTD_isError(newLeftoverSize))
|
||||
return newLeftoverSize;
|
||||
/* 4. We add the leftover literals from previous iterations to the first
|
||||
* newly generated sequence, or add the `newLeftoverSize` if none are
|
||||
* generated.
|
||||
*/
|
||||
/* Prepend the leftover literals from the last call */
|
||||
if (prevSize < sequences->size) {
|
||||
sequences->seq[prevSize].litLength += (U32)leftoverSize;
|
||||
leftoverSize = newLeftoverSize;
|
||||
} else {
|
||||
rollingHash = ZSTD_ldm_getRollingHash(ip, ldmParams.minMatchLength);
|
||||
}
|
||||
lastHashed = ip;
|
||||
|
||||
if (ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashEveryLog) !=
|
||||
ldmTagMask) {
|
||||
/* Don't insert and don't look for a match */
|
||||
ip++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Get the best entry and compute the match lengths */
|
||||
{
|
||||
ldmEntry_t* const bucket =
|
||||
ZSTD_ldm_getBucket(ldmState,
|
||||
ZSTD_ldm_getSmallHash(rollingHash, hBits),
|
||||
ldmParams);
|
||||
ldmEntry_t* cur;
|
||||
size_t bestMatchLength = 0;
|
||||
U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
|
||||
|
||||
for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) {
|
||||
const BYTE* const curMatchBase =
|
||||
cur->offset < dictLimit ? dictBase : base;
|
||||
const BYTE* const pMatch = curMatchBase + cur->offset;
|
||||
const BYTE* const matchEnd =
|
||||
cur->offset < dictLimit ? dictEnd : iend;
|
||||
const BYTE* const lowMatchPtr =
|
||||
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
|
||||
size_t curForwardMatchLength, curBackwardMatchLength,
|
||||
curTotalMatchLength;
|
||||
|
||||
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
|
||||
continue;
|
||||
}
|
||||
|
||||
curForwardMatchLength = ZSTD_count_2segments(
|
||||
ip, pMatch, iend,
|
||||
matchEnd, lowPrefixPtr);
|
||||
if (curForwardMatchLength < ldmParams.minMatchLength) {
|
||||
continue;
|
||||
}
|
||||
curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch(
|
||||
ip, anchor, pMatch, lowMatchPtr);
|
||||
curTotalMatchLength = curForwardMatchLength +
|
||||
curBackwardMatchLength;
|
||||
|
||||
if (curTotalMatchLength > bestMatchLength) {
|
||||
bestMatchLength = curTotalMatchLength;
|
||||
forwardMatchLength = curForwardMatchLength;
|
||||
backwardMatchLength = curBackwardMatchLength;
|
||||
bestEntry = cur;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* No match found -- continue searching */
|
||||
if (bestEntry == NULL) {
|
||||
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
|
||||
(U32)(lastHashed - base),
|
||||
ldmParams);
|
||||
ip++;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Match found */
|
||||
mLength = forwardMatchLength + backwardMatchLength;
|
||||
ip -= backwardMatchLength;
|
||||
|
||||
/* Call the block compressor on the remaining literals */
|
||||
{
|
||||
/* ip = current - backwardMatchLength
|
||||
* The match is at (bestEntry->offset - backwardMatchLength) */
|
||||
U32 const matchIndex = bestEntry->offset;
|
||||
U32 const offset = current - matchIndex;
|
||||
|
||||
/* Overwrite rep codes */
|
||||
for (i = 0; i < ZSTD_REP_NUM; i++)
|
||||
seqStorePtr->rep[i] = repToConfirm[i];
|
||||
|
||||
/* Fill the hash table for the block compressor */
|
||||
ZSTD_ldm_limitTableUpdate(ctx, anchor);
|
||||
ZSTD_ldm_fillFastTables(ctx, anchor);
|
||||
|
||||
/* Call block compressor and get remaining literals */
|
||||
lastLiterals = blockCompressor(ctx, anchor, ip - anchor);
|
||||
ctx->nextToUpdate = (U32)(ip - base);
|
||||
|
||||
/* Update repToConfirm with the new offset */
|
||||
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
|
||||
repToConfirm[i] = repToConfirm[i-1];
|
||||
repToConfirm[0] = offset;
|
||||
|
||||
/* Store the sequence with the leftover literals */
|
||||
ZSTD_storeSeq(seqStorePtr, lastLiterals, ip - lastLiterals,
|
||||
offset + ZSTD_REP_MOVE, mLength - MINMATCH);
|
||||
}
|
||||
|
||||
/* Insert the current entry into the hash table */
|
||||
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
|
||||
(U32)(lastHashed - base),
|
||||
ldmParams);
|
||||
|
||||
/* Fill the hash table from lastHashed+1 to ip+mLength */
|
||||
assert(ip + backwardMatchLength == lastHashed);
|
||||
if (ip + mLength < ilimit) {
|
||||
rollingHash = ZSTD_ldm_fillLdmHashTable(
|
||||
ldmState, rollingHash, lastHashed,
|
||||
ip + mLength, base, hBits,
|
||||
ldmParams);
|
||||
lastHashed = ip + mLength - 1;
|
||||
}
|
||||
ip += mLength;
|
||||
anchor = ip;
|
||||
|
||||
/* check immediate repcode */
|
||||
while (ip < ilimit) {
|
||||
U32 const current2 = (U32)(ip-base);
|
||||
U32 const repIndex2 = current2 - repToConfirm[1];
|
||||
const BYTE* repMatch2 = repIndex2 < dictLimit ?
|
||||
dictBase + repIndex2 : base + repIndex2;
|
||||
if ( (((U32)((dictLimit-1) - repIndex2) >= 3) &
|
||||
(repIndex2 > lowestIndex)) /* intentional overflow */
|
||||
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
||||
const BYTE* const repEnd2 = repIndex2 < dictLimit ?
|
||||
dictEnd : iend;
|
||||
size_t const repLength2 =
|
||||
ZSTD_count_2segments(ip+4, repMatch2+4, iend,
|
||||
repEnd2, lowPrefixPtr) + 4;
|
||||
|
||||
U32 tmpOffset = repToConfirm[1];
|
||||
repToConfirm[1] = repToConfirm[0];
|
||||
repToConfirm[0] = tmpOffset;
|
||||
|
||||
ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
|
||||
|
||||
/* Fill the hash table from lastHashed+1 to ip+repLength2*/
|
||||
if (ip + repLength2 < ilimit) {
|
||||
rollingHash = ZSTD_ldm_fillLdmHashTable(
|
||||
ldmState, rollingHash, lastHashed,
|
||||
ip + repLength2, base, hBits,
|
||||
ldmParams);
|
||||
lastHashed = ip + repLength2 - 1;
|
||||
}
|
||||
ip += repLength2;
|
||||
anchor = ip;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
assert(newLeftoverSize == chunkSize);
|
||||
leftoverSize += chunkSize;
|
||||
}
|
||||
}
|
||||
|
||||
/* Overwrite rep */
|
||||
for (i = 0; i < ZSTD_REP_NUM; i++)
|
||||
seqStorePtr->rep[i] = repToConfirm[i];
|
||||
|
||||
ZSTD_ldm_limitTableUpdate(ctx, anchor);
|
||||
ZSTD_ldm_fillFastTables(ctx, anchor);
|
||||
|
||||
/* Call the block compressor one last time on the last literals */
|
||||
lastLiterals = blockCompressor(ctx, anchor, iend - anchor);
|
||||
ctx->nextToUpdate = (U32)(iend - base);
|
||||
|
||||
/* Restore seqStorePtr->rep */
|
||||
for (i = 0; i < ZSTD_REP_NUM; i++)
|
||||
seqStorePtr->rep[i] = savedRep[i];
|
||||
|
||||
/* Return the last literals size */
|
||||
return lastLiterals;
|
||||
return 0;
|
||||
}
|
||||
|
||||
size_t ZSTD_compressBlock_ldm_extDict(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize)
|
||||
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) {
|
||||
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
|
||||
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
|
||||
if (srcSize <= seq->litLength) {
|
||||
/* Skip past srcSize literals */
|
||||
seq->litLength -= (U32)srcSize;
|
||||
return;
|
||||
}
|
||||
srcSize -= seq->litLength;
|
||||
seq->litLength = 0;
|
||||
if (srcSize < seq->matchLength) {
|
||||
/* Skip past the first srcSize of the match */
|
||||
seq->matchLength -= (U32)srcSize;
|
||||
if (seq->matchLength < minMatch) {
|
||||
/* The match is too short, omit it */
|
||||
if (rawSeqStore->pos + 1 < rawSeqStore->size) {
|
||||
seq[1].litLength += seq[0].matchLength;
|
||||
}
|
||||
rawSeqStore->pos++;
|
||||
}
|
||||
return;
|
||||
}
|
||||
srcSize -= seq->matchLength;
|
||||
seq->matchLength = 0;
|
||||
rawSeqStore->pos++;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* If the sequence length is longer than remaining then the sequence is split
|
||||
* between this block and the next.
|
||||
*
|
||||
* Returns the current sequence to handle, or if the rest of the block should
|
||||
* be literals, it returns a sequence with offset == 0.
|
||||
*/
|
||||
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
|
||||
U32 const remaining, U32 const minMatch)
|
||||
{
|
||||
return ZSTD_compressBlock_ldm_extDict_generic(ctx, src, srcSize);
|
||||
rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
|
||||
assert(sequence.offset > 0);
|
||||
/* Likely: No partial sequence */
|
||||
if (remaining >= sequence.litLength + sequence.matchLength) {
|
||||
rawSeqStore->pos++;
|
||||
return sequence;
|
||||
}
|
||||
/* Cut the sequence short (offset == 0 ==> rest is literals). */
|
||||
if (remaining <= sequence.litLength) {
|
||||
sequence.offset = 0;
|
||||
} else if (remaining < sequence.litLength + sequence.matchLength) {
|
||||
sequence.matchLength = remaining - sequence.litLength;
|
||||
if (sequence.matchLength < minMatch) {
|
||||
sequence.offset = 0;
|
||||
}
|
||||
}
|
||||
/* Skip past `remaining` bytes for the future sequences. */
|
||||
ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
|
||||
return sequence;
|
||||
}
|
||||
|
||||
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize)
|
||||
{
|
||||
const ZSTD_compressionParameters* const cParams = &ms->cParams;
|
||||
unsigned const minMatch = cParams->searchLength;
|
||||
ZSTD_blockCompressor const blockCompressor =
|
||||
ZSTD_selectBlockCompressor(cParams->strategy, ZSTD_matchState_dictMode(ms));
|
||||
/* Input bounds */
|
||||
BYTE const* const istart = (BYTE const*)src;
|
||||
BYTE const* const iend = istart + srcSize;
|
||||
/* Input positions */
|
||||
BYTE const* ip = istart;
|
||||
|
||||
DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
|
||||
assert(rawSeqStore->pos <= rawSeqStore->size);
|
||||
assert(rawSeqStore->size <= rawSeqStore->capacity);
|
||||
/* Loop through each sequence and apply the block compressor to the lits */
|
||||
while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
|
||||
/* maybeSplitSequence updates rawSeqStore->pos */
|
||||
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
|
||||
(U32)(iend - ip), minMatch);
|
||||
int i;
|
||||
/* End signal */
|
||||
if (sequence.offset == 0)
|
||||
break;
|
||||
|
||||
assert(sequence.offset <= (1U << cParams->windowLog));
|
||||
assert(ip + sequence.litLength + sequence.matchLength <= iend);
|
||||
|
||||
/* Fill tables for block compressor */
|
||||
ZSTD_ldm_limitTableUpdate(ms, ip);
|
||||
ZSTD_ldm_fillFastTables(ms, ip);
|
||||
/* Run the block compressor */
|
||||
DEBUGLOG(5, "calling block compressor on segment of size %u", sequence.litLength);
|
||||
{
|
||||
size_t const newLitLength =
|
||||
blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
|
||||
ip += sequence.litLength;
|
||||
/* Update the repcodes */
|
||||
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
|
||||
rep[i] = rep[i-1];
|
||||
rep[0] = sequence.offset;
|
||||
/* Store the sequence */
|
||||
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength,
|
||||
sequence.offset + ZSTD_REP_MOVE,
|
||||
sequence.matchLength - MINMATCH);
|
||||
ip += sequence.matchLength;
|
||||
}
|
||||
}
|
||||
/* Fill the tables for the block compressor */
|
||||
ZSTD_ldm_limitTableUpdate(ms, ip);
|
||||
ZSTD_ldm_fillFastTables(ms, ip);
|
||||
/* Compress the last literals */
|
||||
return blockCompressor(ms, seqStore, rep, ip, iend - ip);
|
||||
}
|
||||
|
||||
@@ -10,43 +10,81 @@
|
||||
#ifndef ZSTD_LDM_H
|
||||
#define ZSTD_LDM_H
|
||||
|
||||
#include "zstd_compress.h"
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "zstd_compress_internal.h" /* ldmParams_t, U32 */
|
||||
#include "zstd.h" /* ZSTD_CCtx, size_t */
|
||||
|
||||
/*-*************************************
|
||||
* Long distance matching
|
||||
***************************************/
|
||||
|
||||
#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_DEFAULTMAX
|
||||
#define ZSTD_LDM_HASHEVERYLOG_NOTSET 9999
|
||||
|
||||
/** ZSTD_compressBlock_ldm_generic() :
|
||||
/**
|
||||
* ZSTD_ldm_generateSequences():
|
||||
*
|
||||
* This is a block compressor intended for long distance matching.
|
||||
* Generates the sequences using the long distance match finder.
|
||||
* Generates long range matching sequences in `sequences`, which parse a prefix
|
||||
* of the source. `sequences` must be large enough to store every sequence,
|
||||
* which can be checked with `ZSTD_ldm_getMaxNbSeq()`.
|
||||
* @returns 0 or an error code.
|
||||
*
|
||||
* The function searches for matches of length at least
|
||||
* ldmParams.minMatchLength using a hash table in cctx->ldmState.
|
||||
* Matches can be at a distance of up to cParams.windowLog.
|
||||
*
|
||||
* Upon finding a match, the unmatched literals are compressed using a
|
||||
* ZSTD_blockCompressor (depending on the strategy in the compression
|
||||
* parameters), which stores the matched sequences. The "long distance"
|
||||
* match is then stored with the remaining literals from the
|
||||
* ZSTD_blockCompressor. */
|
||||
size_t ZSTD_compressBlock_ldm(ZSTD_CCtx* cctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_ldm_extDict(ZSTD_CCtx* ctx,
|
||||
const void* src, size_t srcSize);
|
||||
* NOTE: The user must have called ZSTD_window_update() for all of the input
|
||||
* they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks.
|
||||
* NOTE: This function returns an error if it runs out of space to store
|
||||
* sequences.
|
||||
*/
|
||||
size_t ZSTD_ldm_generateSequences(
|
||||
ldmState_t* ldms, rawSeqStore_t* sequences,
|
||||
ldmParams_t const* params, void const* src, size_t srcSize);
|
||||
|
||||
/**
|
||||
* ZSTD_ldm_blockCompress():
|
||||
*
|
||||
* Compresses a block using the predefined sequences, along with a secondary
|
||||
* block compressor. The literals section of every sequence is passed to the
|
||||
* secondary block compressor, and those sequences are interspersed with the
|
||||
* predefined sequences. Returns the length of the last literals.
|
||||
* Updates `rawSeqStore.pos` to indicate how many sequences have been consumed.
|
||||
* `rawSeqStore.seq` may also be updated to split the last sequence between two
|
||||
* blocks.
|
||||
* @return The length of the last literals.
|
||||
*
|
||||
* NOTE: The source must be at most the maximum block size, but the predefined
|
||||
* sequences can be any size, and may be longer than the block. In the case that
|
||||
* they are longer than the block, the last sequences may need to be split into
|
||||
* two. We handle that case correctly, and update `rawSeqStore` appropriately.
|
||||
* NOTE: This function does not return any errors.
|
||||
*/
|
||||
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
/**
|
||||
* ZSTD_ldm_skipSequences():
|
||||
*
|
||||
* Skip past `srcSize` bytes worth of sequences in `rawSeqStore`.
|
||||
* Avoids emitting matches less than `minMatch` bytes.
|
||||
* Must be called for data with is not passed to ZSTD_ldm_blockCompress().
|
||||
*/
|
||||
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize,
|
||||
U32 const minMatch);
|
||||
|
||||
/** ZSTD_ldm_initializeParameters() :
|
||||
* Initialize the long distance matching parameters to their default values. */
|
||||
size_t ZSTD_ldm_initializeParameters(ldmParams_t* params, U32 enableLdm);
|
||||
|
||||
/** ZSTD_ldm_getTableSize() :
|
||||
* Estimate the space needed for long distance matching tables. */
|
||||
size_t ZSTD_ldm_getTableSize(U32 hashLog, U32 bucketSizeLog);
|
||||
* Estimate the space needed for long distance matching tables or 0 if LDM is
|
||||
* disabled.
|
||||
*/
|
||||
size_t ZSTD_ldm_getTableSize(ldmParams_t params);
|
||||
|
||||
/** ZSTD_ldm_getSeqSpace() :
|
||||
* Return an upper bound on the number of sequences that can be produced by
|
||||
* the long distance matcher, or 0 if LDM is disabled.
|
||||
*/
|
||||
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize);
|
||||
|
||||
/** ZSTD_ldm_getTableSize() :
|
||||
* Return prime8bytes^(minMatchLength-1) */
|
||||
@@ -57,8 +95,12 @@ U64 ZSTD_ldm_getHashPower(U32 minMatchLength);
|
||||
* windowLog and params->hashLog.
|
||||
*
|
||||
* Ensures that params->bucketSizeLog is <= params->hashLog (setting it to
|
||||
* params->hashLog if it is not). */
|
||||
void ZSTD_ldm_adjustParameters(ldmParams_t* params, U32 windowLog);
|
||||
* params->hashLog if it is not).
|
||||
*
|
||||
* Ensures that the minMatchLength >= targetLength during optimal parsing.
|
||||
*/
|
||||
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
|
||||
ZSTD_compressionParameters const* cParams);
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
|
||||
@@ -246,6 +246,7 @@ MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version)
|
||||
MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U32 newVersion,
|
||||
const void* dict, size_t dictSize)
|
||||
{
|
||||
DEBUGLOG(5, "ZSTD_initLegacyStream for v0.%u", newVersion);
|
||||
if (prevVersion != newVersion) ZSTD_freeLegacyStreamContext(*legacyContext, prevVersion);
|
||||
switch(newVersion)
|
||||
{
|
||||
@@ -304,6 +305,7 @@ MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U
|
||||
MEM_STATIC size_t ZSTD_decompressLegacyStream(void* legacyContext, U32 version,
|
||||
ZSTD_outBuffer* output, ZSTD_inBuffer* input)
|
||||
{
|
||||
DEBUGLOG(5, "ZSTD_decompressLegacyStream for v0.%u", version);
|
||||
switch(version)
|
||||
{
|
||||
default :
|
||||
|
||||
1713
C/zstd/zstd_opt.c
1713
C/zstd/zstd_opt.c
File diff suppressed because it is too large
Load Diff
@@ -11,17 +11,35 @@
|
||||
#ifndef ZSTD_OPT_H
|
||||
#define ZSTD_OPT_H
|
||||
|
||||
#include "zstd_compress.h"
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
size_t ZSTD_compressBlock_btopt(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_btultra(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
#include "zstd_compress_internal.h"
|
||||
|
||||
size_t ZSTD_compressBlock_btopt_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_btultra_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
||||
/* used in ZSTD_loadDictionaryContent() */
|
||||
void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend);
|
||||
|
||||
size_t ZSTD_compressBlock_btopt(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_btultra(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
size_t ZSTD_compressBlock_btopt_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_btultra_dictMatchState(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
size_t ZSTD_compressBlock_btopt_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
size_t ZSTD_compressBlock_btultra_extDict(
|
||||
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
|
||||
void const* src, size_t srcSize);
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
|
||||
@@ -339,7 +339,7 @@ typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
|
||||
/****************************************************************
|
||||
* Internal functions
|
||||
****************************************************************/
|
||||
FORCE_INLINE unsigned FSE_highbit32 (register U32 val)
|
||||
FORCE_INLINE unsigned FSE_highbit32 (U32 val)
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
unsigned long r;
|
||||
@@ -668,11 +668,17 @@ static size_t FSE_initDStream(FSE_DStream_t* bitD, const void* srcBuffer, size_t
|
||||
switch(srcSize)
|
||||
{
|
||||
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
|
||||
/* fallthrough */
|
||||
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
|
||||
/* fallthrough */
|
||||
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
|
||||
/* fallthrough */
|
||||
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
|
||||
/* fallthrough */
|
||||
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
|
||||
/* fallthrough */
|
||||
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
|
||||
/* fallthrough */
|
||||
default:;
|
||||
}
|
||||
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
|
||||
@@ -1458,7 +1464,7 @@ unsigned ZSTDv01_isError(size_t code) { return ERR_isError(code); }
|
||||
* Decompression code
|
||||
**************************************************************/
|
||||
|
||||
size_t ZSTDv01_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
||||
static size_t ZSTDv01_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
||||
{
|
||||
const BYTE* const in = (const BYTE* const)src;
|
||||
BYTE headerFlags;
|
||||
@@ -1511,7 +1517,7 @@ static size_t ZSTD_decompressLiterals(void* ctx,
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTDv01_decodeLiteralsBlock(void* ctx,
|
||||
static size_t ZSTDv01_decodeLiteralsBlock(void* ctx,
|
||||
void* dst, size_t maxDstSize,
|
||||
const BYTE** litStart, size_t* litSize,
|
||||
const void* src, size_t srcSize)
|
||||
@@ -1563,7 +1569,7 @@ size_t ZSTDv01_decodeLiteralsBlock(void* ctx,
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTDv01_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
|
||||
static size_t ZSTDv01_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
|
||||
FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
|
||||
@@ -330,18 +330,6 @@ MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
|
||||
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
|
||||
|
||||
|
||||
/*
|
||||
* Start by invoking BIT_initDStream().
|
||||
* A chunk of the bitStream is then stored into a local register.
|
||||
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
||||
* Local register is manually filled from memory by the BIT_reloadDStream() method.
|
||||
* A reload guarantee a minimum of ((8*sizeof(size_t))-7) bits when its result is BIT_DStream_unfinished.
|
||||
* Otherwise, it can be less than that, so proceed accordingly.
|
||||
* Checking if DStream has reached its end can be performed with BIT_endOfDStream()
|
||||
*/
|
||||
|
||||
|
||||
/******************************************
|
||||
* unsafe API
|
||||
******************************************/
|
||||
@@ -353,7 +341,7 @@ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
|
||||
/****************************************************************
|
||||
* Helper functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BIT_highbit32 (register U32 val)
|
||||
MEM_STATIC unsigned BIT_highbit32 (U32 val)
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
unsigned long r=0;
|
||||
@@ -411,11 +399,17 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
|
||||
switch(srcSize)
|
||||
{
|
||||
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
|
||||
/* fallthrough */
|
||||
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
|
||||
/* fallthrough */
|
||||
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
|
||||
/* fallthrough */
|
||||
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
|
||||
/* fallthrough */
|
||||
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
|
||||
/* fallthrough */
|
||||
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
|
||||
/* fallthrough */
|
||||
default:;
|
||||
}
|
||||
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
|
||||
@@ -427,13 +421,6 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
|
||||
return srcSize;
|
||||
}
|
||||
|
||||
/*!BIT_lookBits
|
||||
* Provides next n bits from local register
|
||||
* local register is not modified (bits are still present for next read/look)
|
||||
* On 32-bits, maxNbBits==25
|
||||
* On 64-bits, maxNbBits==57
|
||||
* @return : value extracted
|
||||
*/
|
||||
MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
||||
@@ -453,11 +440,6 @@ MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
bitD->bitsConsumed += nbBits;
|
||||
}
|
||||
|
||||
/*!BIT_readBits
|
||||
* Read next n bits from local register.
|
||||
* pay attention to not read more than nbBits contained into local register.
|
||||
* @return : extracted value.
|
||||
*/
|
||||
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
size_t value = BIT_lookBits(bitD, nbBits);
|
||||
@@ -695,55 +677,6 @@ static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bi
|
||||
|
||||
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
|
||||
|
||||
/*
|
||||
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
|
||||
You will decode FSE-encoded symbols from the bitStream,
|
||||
and also any other bitFields you put in, **in reverse order**.
|
||||
|
||||
You will need a few variables to track your bitStream. They are :
|
||||
|
||||
BIT_DStream_t DStream; // Stream context
|
||||
FSE_DState_t DState; // State context. Multiple ones are possible
|
||||
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
|
||||
|
||||
The first thing to do is to init the bitStream.
|
||||
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
|
||||
|
||||
You should then retrieve your initial state(s)
|
||||
(in reverse flushing order if you have several ones) :
|
||||
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
|
||||
|
||||
You can then decode your data, symbol after symbol.
|
||||
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
|
||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
||||
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
|
||||
|
||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
||||
size_t bitField = BIT_readBits(&DStream, nbBits);
|
||||
|
||||
All above operations only read from local register (which size depends on size_t).
|
||||
Refueling the register from memory is manually performed by the reload method.
|
||||
endSignal = FSE_reloadDStream(&DStream);
|
||||
|
||||
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
|
||||
BIT_DStream_unfinished : there is still some data left into the DStream.
|
||||
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
||||
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
||||
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
||||
|
||||
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
||||
to properly detect the exact end of stream.
|
||||
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
||||
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
|
||||
|
||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
||||
Checking if DStream has reached its end is performed by :
|
||||
BIT_endOfDStream(&DStream);
|
||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
||||
FSE_endOfDState(&DState);
|
||||
*/
|
||||
|
||||
|
||||
/******************************************
|
||||
* FSE unsafe API
|
||||
|
||||
@@ -332,17 +332,6 @@ MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
|
||||
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
|
||||
|
||||
|
||||
/*
|
||||
* Start by invoking BIT_initDStream().
|
||||
* A chunk of the bitStream is then stored into a local register.
|
||||
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
||||
* Local register is manually filled from memory by the BIT_reloadDStream() method.
|
||||
* A reload guarantee a minimum of ((8*sizeof(size_t))-7) bits when its result is BIT_DStream_unfinished.
|
||||
* Otherwise, it can be less than that, so proceed accordingly.
|
||||
* Checking if DStream has reached its end can be performed with BIT_endOfDStream()
|
||||
*/
|
||||
|
||||
|
||||
/******************************************
|
||||
* unsafe API
|
||||
@@ -355,7 +344,7 @@ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
|
||||
/****************************************************************
|
||||
* Helper functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BIT_highbit32 (register U32 val)
|
||||
MEM_STATIC unsigned BIT_highbit32 (U32 val)
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
unsigned long r=0;
|
||||
@@ -413,11 +402,17 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
|
||||
switch(srcSize)
|
||||
{
|
||||
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
|
||||
/* fallthrough */
|
||||
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
|
||||
/* fallthrough */
|
||||
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
|
||||
/* fallthrough */
|
||||
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
|
||||
/* fallthrough */
|
||||
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
|
||||
/* fallthrough */
|
||||
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
|
||||
/* fallthrough */
|
||||
default:;
|
||||
}
|
||||
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
|
||||
@@ -428,14 +423,6 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
|
||||
|
||||
return srcSize;
|
||||
}
|
||||
|
||||
/*!BIT_lookBits
|
||||
* Provides next n bits from local register
|
||||
* local register is not modified (bits are still present for next read/look)
|
||||
* On 32-bits, maxNbBits==25
|
||||
* On 64-bits, maxNbBits==57
|
||||
* @return : value extracted
|
||||
*/
|
||||
MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
||||
@@ -455,11 +442,6 @@ MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
bitD->bitsConsumed += nbBits;
|
||||
}
|
||||
|
||||
/*!BIT_readBits
|
||||
* Read next n bits from local register.
|
||||
* pay attention to not read more than nbBits contained into local register.
|
||||
* @return : extracted value.
|
||||
*/
|
||||
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
size_t value = BIT_lookBits(bitD, nbBits);
|
||||
@@ -697,55 +679,6 @@ static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bi
|
||||
|
||||
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
|
||||
|
||||
/*
|
||||
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
|
||||
You will decode FSE-encoded symbols from the bitStream,
|
||||
and also any other bitFields you put in, **in reverse order**.
|
||||
|
||||
You will need a few variables to track your bitStream. They are :
|
||||
|
||||
BIT_DStream_t DStream; // Stream context
|
||||
FSE_DState_t DState; // State context. Multiple ones are possible
|
||||
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
|
||||
|
||||
The first thing to do is to init the bitStream.
|
||||
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
|
||||
|
||||
You should then retrieve your initial state(s)
|
||||
(in reverse flushing order if you have several ones) :
|
||||
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
|
||||
|
||||
You can then decode your data, symbol after symbol.
|
||||
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
|
||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
||||
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
|
||||
|
||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
||||
size_t bitField = BIT_readBits(&DStream, nbBits);
|
||||
|
||||
All above operations only read from local register (which size depends on size_t).
|
||||
Refueling the register from memory is manually performed by the reload method.
|
||||
endSignal = FSE_reloadDStream(&DStream);
|
||||
|
||||
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
|
||||
BIT_DStream_unfinished : there is still some data left into the DStream.
|
||||
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
||||
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
||||
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
||||
|
||||
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
||||
to properly detect the exact end of stream.
|
||||
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
||||
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
|
||||
|
||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
||||
Checking if DStream has reached its end is performed by :
|
||||
BIT_endOfDStream(&DStream);
|
||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
||||
FSE_endOfDState(&DState);
|
||||
*/
|
||||
|
||||
|
||||
/******************************************
|
||||
* FSE unsafe API
|
||||
|
||||
@@ -9,45 +9,19 @@
|
||||
*/
|
||||
|
||||
|
||||
/*- Dependencies -*/
|
||||
/******************************************
|
||||
* Includes
|
||||
******************************************/
|
||||
#include <stddef.h> /* size_t, ptrdiff_t */
|
||||
#include <string.h> /* memcpy */
|
||||
|
||||
#include "zstd_v04.h"
|
||||
#include "error_private.h"
|
||||
|
||||
|
||||
/* ******************************************************************
|
||||
mem.h
|
||||
low-level memory access routines
|
||||
Copyright (C) 2013-2015, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
* mem.h
|
||||
*******************************************************************/
|
||||
#ifndef MEM_H_MODULE
|
||||
#define MEM_H_MODULE
|
||||
|
||||
@@ -55,12 +29,6 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/******************************************
|
||||
* Includes
|
||||
******************************************/
|
||||
#include <stddef.h> /* size_t, ptrdiff_t */
|
||||
#include <string.h> /* memcpy */
|
||||
|
||||
|
||||
/******************************************
|
||||
* Compiler-specific
|
||||
@@ -103,6 +71,15 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Debug
|
||||
***************************************/
|
||||
#include "debug.h"
|
||||
#ifndef assert
|
||||
# define assert(condition) ((void)0)
|
||||
#endif
|
||||
|
||||
|
||||
/****************************************************************
|
||||
* Memory I/O
|
||||
*****************************************************************/
|
||||
@@ -255,46 +232,10 @@ MEM_STATIC size_t MEM_readLEST(const void* memPtr)
|
||||
/*
|
||||
zstd - standard compression library
|
||||
Header File for static linking only
|
||||
Copyright (C) 2014-2015, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd source repository : https://github.com/Cyan4973/zstd
|
||||
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
*/
|
||||
#ifndef ZSTD_STATIC_H
|
||||
#define ZSTD_STATIC_H
|
||||
|
||||
/* The objects defined into this file shall be considered experimental.
|
||||
* They are not considered stable, as their prototype may change in the future.
|
||||
* You can use them for tests, provide feedback, or if you can endure risks of future changes.
|
||||
*/
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* *************************************
|
||||
* Types
|
||||
@@ -381,9 +322,6 @@ static size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t maxDstS
|
||||
*/
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* ZSTD_STATIC_H */
|
||||
@@ -392,42 +330,10 @@ static size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t maxDstS
|
||||
/*
|
||||
zstd_internal - common functions to include
|
||||
Header File for include
|
||||
Copyright (C) 2014-2015, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd source repository : https://github.com/Cyan4973/zstd
|
||||
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
*/
|
||||
#ifndef ZSTD_CCOMMON_H_MODULE
|
||||
#define ZSTD_CCOMMON_H_MODULE
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* *************************************
|
||||
* Common macros
|
||||
***************************************/
|
||||
@@ -499,44 +405,10 @@ static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
|
||||
}
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* ******************************************************************
|
||||
FSE : Finite State Entropy coder
|
||||
header file
|
||||
Copyright (C) 2013-2015, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
#ifndef FSE_H
|
||||
#define FSE_H
|
||||
@@ -738,16 +610,6 @@ MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
|
||||
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
|
||||
|
||||
|
||||
/*
|
||||
* Start by invoking BIT_initDStream().
|
||||
* A chunk of the bitStream is then stored into a local register.
|
||||
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
||||
* Local register is manually filled from memory by the BIT_reloadDStream() method.
|
||||
* A reload guarantee a minimum of ((8*sizeof(size_t))-7) bits when its result is BIT_DStream_unfinished.
|
||||
* Otherwise, it can be less than that, so proceed accordingly.
|
||||
* Checking if DStream has reached its end can be performed with BIT_endOfDStream()
|
||||
*/
|
||||
|
||||
|
||||
/******************************************
|
||||
@@ -761,7 +623,7 @@ MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
|
||||
/****************************************************************
|
||||
* Helper functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BIT_highbit32 (register U32 val)
|
||||
MEM_STATIC unsigned BIT_highbit32 (U32 val)
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
unsigned long r=0;
|
||||
@@ -834,13 +696,6 @@ MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, si
|
||||
return srcSize;
|
||||
}
|
||||
|
||||
/*!BIT_lookBits
|
||||
* Provides next n bits from local register
|
||||
* local register is not modified (bits are still present for next read/look)
|
||||
* On 32-bits, maxNbBits==25
|
||||
* On 64-bits, maxNbBits==57
|
||||
* @return : value extracted
|
||||
*/
|
||||
MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
||||
@@ -860,11 +715,6 @@ MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
bitD->bitsConsumed += nbBits;
|
||||
}
|
||||
|
||||
/*!BIT_readBits
|
||||
* Read next n bits from local register.
|
||||
* pay attention to not read more than nbBits contained into local register.
|
||||
* @return : extracted value.
|
||||
*/
|
||||
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
size_t value = BIT_lookBits(bitD, nbBits);
|
||||
@@ -1011,55 +861,6 @@ static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bi
|
||||
|
||||
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
|
||||
|
||||
/*!
|
||||
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
|
||||
You will decode FSE-encoded symbols from the bitStream,
|
||||
and also any other bitFields you put in, **in reverse order**.
|
||||
|
||||
You will need a few variables to track your bitStream. They are :
|
||||
|
||||
BIT_DStream_t DStream; // Stream context
|
||||
FSE_DState_t DState; // State context. Multiple ones are possible
|
||||
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
|
||||
|
||||
The first thing to do is to init the bitStream.
|
||||
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
|
||||
|
||||
You should then retrieve your initial state(s)
|
||||
(in reverse flushing order if you have several ones) :
|
||||
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
|
||||
|
||||
You can then decode your data, symbol after symbol.
|
||||
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
|
||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
||||
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
|
||||
|
||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
||||
size_t bitField = BIT_readBits(&DStream, nbBits);
|
||||
|
||||
All above operations only read from local register (which size depends on size_t).
|
||||
Refueling the register from memory is manually performed by the reload method.
|
||||
endSignal = FSE_reloadDStream(&DStream);
|
||||
|
||||
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
|
||||
BIT_DStream_unfinished : there is still some data left into the DStream.
|
||||
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
||||
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
||||
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
||||
|
||||
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
||||
to properly detect the exact end of stream.
|
||||
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
||||
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
|
||||
|
||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
||||
Checking if DStream has reached its end is performed by :
|
||||
BIT_endOfDStream(&DStream);
|
||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
||||
FSE_endOfDState(&DState);
|
||||
*/
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE unsafe API
|
||||
@@ -1292,6 +1093,7 @@ static size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, un
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
||||
|
||||
/* Init, lay down lowprob symbols */
|
||||
memset(tableDecode, 0, sizeof(FSE_DECODE_TYPE) * (maxSymbolValue+1) ); /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */
|
||||
DTableH.tableLog = (U16)tableLog;
|
||||
for (s=0; s<=maxSymbolValue; s++)
|
||||
{
|
||||
@@ -3141,7 +2943,7 @@ static size_t ZSTD_execSequence(BYTE* op,
|
||||
}
|
||||
else
|
||||
{
|
||||
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
|
||||
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8, but must be signed */
|
||||
}
|
||||
return sequenceLength;
|
||||
}
|
||||
@@ -3599,12 +3401,14 @@ static size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbc, void* dst, size_t* maxDs
|
||||
char* const oend = ostart + *maxDstSizePtr;
|
||||
U32 notDone = 1;
|
||||
|
||||
DEBUGLOG(5, "ZBUFF_decompressContinue");
|
||||
while (notDone)
|
||||
{
|
||||
switch(zbc->stage)
|
||||
{
|
||||
|
||||
case ZBUFFds_init :
|
||||
DEBUGLOG(5, "ZBUFF_decompressContinue: stage==ZBUFFds_init => ERROR(init_missing)");
|
||||
return ERROR(init_missing);
|
||||
|
||||
case ZBUFFds_readHeader :
|
||||
@@ -3804,7 +3608,7 @@ size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSi
|
||||
|
||||
|
||||
ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void) { return ZBUFF_createDCtx(); }
|
||||
size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx) { return ZBUFF_freeDCtx(dctx); }
|
||||
size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx) { return ZBUFF_freeDCtx(dctx); }
|
||||
|
||||
size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx) { return ZBUFF_decompressInit(dctx); }
|
||||
size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* src, size_t srcSize)
|
||||
@@ -3812,13 +3616,9 @@ size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* src, s
|
||||
|
||||
size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
|
||||
{
|
||||
DEBUGLOG(5, "ZBUFFv04_decompressContinue");
|
||||
return ZBUFF_decompressContinue(dctx, dst, maxDstSizePtr, src, srcSizePtr);
|
||||
}
|
||||
|
||||
ZSTD_DCtx* ZSTDv04_createDCtx(void) { return ZSTD_createDCtx(); }
|
||||
size_t ZSTDv04_freeDCtx(ZSTD_DCtx* dctx) { return ZSTD_freeDCtx(dctx); }
|
||||
|
||||
size_t ZSTDv04_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize)
|
||||
{
|
||||
return ZSTD_getFrameParams(params, src, srcSize);
|
||||
}
|
||||
|
||||
@@ -736,18 +736,6 @@ MEM_STATIC BITv05_DStream_status BITv05_reloadDStream(BITv05_DStream_t* bitD);
|
||||
MEM_STATIC unsigned BITv05_endOfDStream(const BITv05_DStream_t* bitD);
|
||||
|
||||
|
||||
/*!
|
||||
* Start by invoking BITv05_initDStream().
|
||||
* A chunk of the bitStream is then stored into a local register.
|
||||
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
||||
* Local register is explicitly reloaded from memory by the BITv05_reloadDStream() method.
|
||||
* A reload guarantee a minimum of ((8*sizeof(size_t))-7) bits when its result is BITv05_DStream_unfinished.
|
||||
* Otherwise, it can be less than that, so proceed accordingly.
|
||||
* Checking if DStream has reached its end can be performed with BITv05_endOfDStream()
|
||||
*/
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* unsafe API
|
||||
******************************************/
|
||||
@@ -759,7 +747,7 @@ MEM_STATIC size_t BITv05_readBitsFast(BITv05_DStream_t* bitD, unsigned nbBits);
|
||||
/*-**************************************************************
|
||||
* Helper functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BITv05_highbit32 (register U32 val)
|
||||
MEM_STATIC unsigned BITv05_highbit32 (U32 val)
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
unsigned long r=0;
|
||||
@@ -829,13 +817,6 @@ MEM_STATIC size_t BITv05_initDStream(BITv05_DStream_t* bitD, const void* srcBuff
|
||||
return srcSize;
|
||||
}
|
||||
|
||||
/*!BITv05_lookBits
|
||||
* Provides next n bits from local register
|
||||
* local register is not modified (bits are still present for next read/look)
|
||||
* On 32-bits, maxNbBits==25
|
||||
* On 64-bits, maxNbBits==57
|
||||
* @return : value extracted
|
||||
*/
|
||||
MEM_STATIC size_t BITv05_lookBits(BITv05_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
||||
@@ -855,11 +836,6 @@ MEM_STATIC void BITv05_skipBits(BITv05_DStream_t* bitD, U32 nbBits)
|
||||
bitD->bitsConsumed += nbBits;
|
||||
}
|
||||
|
||||
/*!BITv05_readBits
|
||||
* Read next n bits from local register.
|
||||
* pay attention to not read more than nbBits contained into local register.
|
||||
* @return : extracted value.
|
||||
*/
|
||||
MEM_STATIC size_t BITv05_readBits(BITv05_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
size_t value = BITv05_lookBits(bitD, nbBits);
|
||||
@@ -995,54 +971,6 @@ static unsigned char FSEv05_decodeSymbol(FSEv05_DState_t* DStatePtr, BITv05_DStr
|
||||
|
||||
static unsigned FSEv05_endOfDState(const FSEv05_DState_t* DStatePtr);
|
||||
|
||||
/*!
|
||||
Let's now decompose FSEv05_decompress_usingDTable() into its unitary components.
|
||||
You will decode FSEv05-encoded symbols from the bitStream,
|
||||
and also any other bitFields you put in, **in reverse order**.
|
||||
|
||||
You will need a few variables to track your bitStream. They are :
|
||||
|
||||
BITv05_DStream_t DStream; // Stream context
|
||||
FSEv05_DState_t DState; // State context. Multiple ones are possible
|
||||
FSEv05_DTable* DTablePtr; // Decoding table, provided by FSEv05_buildDTable()
|
||||
|
||||
The first thing to do is to init the bitStream.
|
||||
errorCode = BITv05_initDStream(&DStream, srcBuffer, srcSize);
|
||||
|
||||
You should then retrieve your initial state(s)
|
||||
(in reverse flushing order if you have several ones) :
|
||||
errorCode = FSEv05_initDState(&DState, &DStream, DTablePtr);
|
||||
|
||||
You can then decode your data, symbol after symbol.
|
||||
For information the maximum number of bits read by FSEv05_decodeSymbol() is 'tableLog'.
|
||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
||||
unsigned char symbol = FSEv05_decodeSymbol(&DState, &DStream);
|
||||
|
||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
||||
size_t bitField = BITv05_readBits(&DStream, nbBits);
|
||||
|
||||
All above operations only read from local register (which size depends on size_t).
|
||||
Refueling the register from memory is manually performed by the reload method.
|
||||
endSignal = FSEv05_reloadDStream(&DStream);
|
||||
|
||||
BITv05_reloadDStream() result tells if there is still some more data to read from DStream.
|
||||
BITv05_DStream_unfinished : there is still some data left into the DStream.
|
||||
BITv05_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
||||
BITv05_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
||||
BITv05_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
||||
|
||||
When reaching end of buffer (BITv05_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
||||
to properly detect the exact end of stream.
|
||||
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
||||
BITv05_reloadDStream(&DStream) >= BITv05_DStream_completed
|
||||
|
||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
||||
Checking if DStream has reached its end is performed by :
|
||||
BITv05_endOfDStream(&DStream);
|
||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
||||
FSEv05_endOfDState(&DState);
|
||||
*/
|
||||
|
||||
|
||||
/* *****************************************
|
||||
@@ -1296,6 +1224,7 @@ size_t FSEv05_buildDTable(FSEv05_DTable* dt, const short* normalizedCounter, uns
|
||||
if (tableLog > FSEv05_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
||||
|
||||
/* Init, lay down lowprob symbols */
|
||||
memset(tableDecode, 0, sizeof(FSEv05_FUNCTION_TYPE) * (maxSymbolValue+1) ); /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */
|
||||
DTableH.tableLog = (U16)tableLog;
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
if (normalizedCounter[s]==-1) {
|
||||
@@ -2730,6 +2659,7 @@ struct ZSTDv05_DCtx_s
|
||||
BYTE headerBuffer[ZSTDv05_frameHeaderSize_max];
|
||||
}; /* typedef'd to ZSTDv05_DCtx within "zstd_static.h" */
|
||||
|
||||
size_t ZSTDv05_sizeofDCtx (void); /* Hidden declaration */
|
||||
size_t ZSTDv05_sizeofDCtx (void) { return sizeof(ZSTDv05_DCtx); }
|
||||
|
||||
size_t ZSTDv05_decompressBegin(ZSTDv05_DCtx* dctx)
|
||||
@@ -2894,7 +2824,7 @@ static size_t ZSTDv05_decodeFrameHeader_Part2(ZSTDv05_DCtx* zc, const void* src,
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTDv05_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
||||
static size_t ZSTDv05_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
||||
{
|
||||
const BYTE* const in = (const BYTE* const)src;
|
||||
BYTE headerFlags;
|
||||
@@ -2917,6 +2847,7 @@ size_t ZSTDv05_getcBlockSize(const void* src, size_t srcSize, blockProperties_t*
|
||||
|
||||
static size_t ZSTDv05_copyRawBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
||||
{
|
||||
if (dst==NULL) return ERROR(dstSize_tooSmall);
|
||||
if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
|
||||
memcpy(dst, src, srcSize);
|
||||
return srcSize;
|
||||
@@ -2925,8 +2856,8 @@ static size_t ZSTDv05_copyRawBlock(void* dst, size_t maxDstSize, const void* src
|
||||
|
||||
/*! ZSTDv05_decodeLiteralsBlock() :
|
||||
@return : nb of bytes read from src (< srcSize ) */
|
||||
size_t ZSTDv05_decodeLiteralsBlock(ZSTDv05_DCtx* dctx,
|
||||
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
|
||||
static size_t ZSTDv05_decodeLiteralsBlock(ZSTDv05_DCtx* dctx,
|
||||
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
|
||||
{
|
||||
const BYTE* const istart = (const BYTE*) src;
|
||||
|
||||
@@ -3060,7 +2991,7 @@ size_t ZSTDv05_decodeLiteralsBlock(ZSTDv05_DCtx* dctx,
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTDv05_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
|
||||
static size_t ZSTDv05_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
|
||||
FSEv05_DTable* DTableLL, FSEv05_DTable* DTableML, FSEv05_DTable* DTableOffb,
|
||||
const void* src, size_t srcSize, U32 flagStaticTable)
|
||||
{
|
||||
@@ -3369,11 +3300,11 @@ static size_t ZSTDv05_decompressSequences(
|
||||
BYTE* const ostart = (BYTE* const)dst;
|
||||
BYTE* op = ostart;
|
||||
BYTE* const oend = ostart + maxDstSize;
|
||||
size_t errorCode, dumpsLength;
|
||||
size_t errorCode, dumpsLength=0;
|
||||
const BYTE* litPtr = dctx->litPtr;
|
||||
const BYTE* const litEnd = litPtr + dctx->litSize;
|
||||
int nbSeq;
|
||||
const BYTE* dumps;
|
||||
int nbSeq=0;
|
||||
const BYTE* dumps = NULL;
|
||||
U32* DTableLL = dctx->LLTable;
|
||||
U32* DTableML = dctx->MLTable;
|
||||
U32* DTableOffb = dctx->OffTable;
|
||||
@@ -3482,10 +3413,10 @@ static size_t ZSTDv05_decompress_continueDCtx(ZSTDv05_DCtx* dctx,
|
||||
BYTE* const oend = ostart + maxDstSize;
|
||||
size_t remainingSize = srcSize;
|
||||
blockProperties_t blockProperties;
|
||||
memset(&blockProperties, 0, sizeof(blockProperties));
|
||||
|
||||
/* Frame Header */
|
||||
{
|
||||
size_t frameHeaderSize;
|
||||
{ size_t frameHeaderSize;
|
||||
if (srcSize < ZSTDv05_frameHeaderSize_min+ZSTDv05_blockHeaderSize) return ERROR(srcSize_wrong);
|
||||
frameHeaderSize = ZSTDv05_decodeFrameHeader_Part1(dctx, src, ZSTDv05_frameHeaderSize_min);
|
||||
if (ZSTDv05_isError(frameHeaderSize)) return frameHeaderSize;
|
||||
|
||||
@@ -189,7 +189,7 @@ MEM_STATIC U32 MEM_swap32(U32 in)
|
||||
{
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
return _byteswap_ulong(in);
|
||||
#elif defined (__GNUC__)
|
||||
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
|
||||
return __builtin_bswap32(in);
|
||||
#else
|
||||
return ((in << 24) & 0xff000000 ) |
|
||||
@@ -203,7 +203,7 @@ MEM_STATIC U64 MEM_swap64(U64 in)
|
||||
{
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
return _byteswap_uint64(in);
|
||||
#elif defined (__GNUC__)
|
||||
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
|
||||
return __builtin_bswap64(in);
|
||||
#else
|
||||
return ((in << 56) & 0xff00000000000000ULL) |
|
||||
@@ -839,16 +839,6 @@ MEM_STATIC BITv06_DStream_status BITv06_reloadDStream(BITv06_DStream_t* bitD);
|
||||
MEM_STATIC unsigned BITv06_endOfDStream(const BITv06_DStream_t* bitD);
|
||||
|
||||
|
||||
/* Start by invoking BITv06_initDStream().
|
||||
* A chunk of the bitStream is then stored into a local register.
|
||||
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
||||
* Local register is explicitly reloaded from memory by the BITv06_reloadDStream() method.
|
||||
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BITv06_DStream_unfinished.
|
||||
* Otherwise, it can be less than that, so proceed accordingly.
|
||||
* Checking if DStream has reached its end can be performed with BITv06_endOfDStream().
|
||||
*/
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* unsafe API
|
||||
@@ -861,7 +851,7 @@ MEM_STATIC size_t BITv06_readBitsFast(BITv06_DStream_t* bitD, unsigned nbBits);
|
||||
/*-**************************************************************
|
||||
* Internal functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BITv06_highbit32 (register U32 val)
|
||||
MEM_STATIC unsigned BITv06_highbit32 ( U32 val)
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
unsigned long r=0;
|
||||
@@ -929,13 +919,6 @@ MEM_STATIC size_t BITv06_initDStream(BITv06_DStream_t* bitD, const void* srcBuff
|
||||
}
|
||||
|
||||
|
||||
/*! BITv06_lookBits() :
|
||||
* Provides next n bits from local register.
|
||||
* local register is not modified.
|
||||
* On 32-bits, maxNbBits==24.
|
||||
* On 64-bits, maxNbBits==56.
|
||||
* @return : value extracted
|
||||
*/
|
||||
MEM_STATIC size_t BITv06_lookBits(const BITv06_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
||||
@@ -955,11 +938,6 @@ MEM_STATIC void BITv06_skipBits(BITv06_DStream_t* bitD, U32 nbBits)
|
||||
bitD->bitsConsumed += nbBits;
|
||||
}
|
||||
|
||||
/*! BITv06_readBits() :
|
||||
* Read (consume) next n bits from local register and update.
|
||||
* Pay attention to not read more than nbBits contained into local register.
|
||||
* @return : extracted value.
|
||||
*/
|
||||
MEM_STATIC size_t BITv06_readBits(BITv06_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
size_t const value = BITv06_lookBits(bitD, nbBits);
|
||||
@@ -976,11 +954,6 @@ MEM_STATIC size_t BITv06_readBitsFast(BITv06_DStream_t* bitD, U32 nbBits)
|
||||
return value;
|
||||
}
|
||||
|
||||
/*! BITv06_reloadDStream() :
|
||||
* Refill `BITv06_DStream_t` from src buffer previously defined (see BITv06_initDStream() ).
|
||||
* This function is safe, it guarantees it will not read beyond src buffer.
|
||||
* @return : status of `BITv06_DStream_t` internal register.
|
||||
if status == unfinished, internal register is filled with >= (sizeof(bitD->bitContainer)*8 - 7) bits */
|
||||
MEM_STATIC BITv06_DStream_status BITv06_reloadDStream(BITv06_DStream_t* bitD)
|
||||
{
|
||||
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
|
||||
@@ -1103,55 +1076,6 @@ static void FSEv06_initDState(FSEv06_DState_t* DStatePtr, BITv06_DStream_t*
|
||||
|
||||
static unsigned char FSEv06_decodeSymbol(FSEv06_DState_t* DStatePtr, BITv06_DStream_t* bitD);
|
||||
|
||||
/*!
|
||||
Let's now decompose FSEv06_decompress_usingDTable() into its unitary components.
|
||||
You will decode FSE-encoded symbols from the bitStream,
|
||||
and also any other bitFields you put in, **in reverse order**.
|
||||
|
||||
You will need a few variables to track your bitStream. They are :
|
||||
|
||||
BITv06_DStream_t DStream; // Stream context
|
||||
FSEv06_DState_t DState; // State context. Multiple ones are possible
|
||||
FSEv06_DTable* DTablePtr; // Decoding table, provided by FSEv06_buildDTable()
|
||||
|
||||
The first thing to do is to init the bitStream.
|
||||
errorCode = BITv06_initDStream(&DStream, srcBuffer, srcSize);
|
||||
|
||||
You should then retrieve your initial state(s)
|
||||
(in reverse flushing order if you have several ones) :
|
||||
errorCode = FSEv06_initDState(&DState, &DStream, DTablePtr);
|
||||
|
||||
You can then decode your data, symbol after symbol.
|
||||
For information the maximum number of bits read by FSEv06_decodeSymbol() is 'tableLog'.
|
||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
||||
unsigned char symbol = FSEv06_decodeSymbol(&DState, &DStream);
|
||||
|
||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
||||
size_t bitField = BITv06_readBits(&DStream, nbBits);
|
||||
|
||||
All above operations only read from local register (which size depends on size_t).
|
||||
Refueling the register from memory is manually performed by the reload method.
|
||||
endSignal = FSEv06_reloadDStream(&DStream);
|
||||
|
||||
BITv06_reloadDStream() result tells if there is still some more data to read from DStream.
|
||||
BITv06_DStream_unfinished : there is still some data left into the DStream.
|
||||
BITv06_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
||||
BITv06_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
||||
BITv06_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
||||
|
||||
When reaching end of buffer (BITv06_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
||||
to properly detect the exact end of stream.
|
||||
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
||||
BITv06_reloadDStream(&DStream) >= BITv06_DStream_completed
|
||||
|
||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
||||
Checking if DStream has reached its end is performed by :
|
||||
BITv06_endOfDStream(&DStream);
|
||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
||||
FSEv06_endOfDState(&DState);
|
||||
*/
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE unsafe API
|
||||
@@ -1326,9 +1250,7 @@ const char* FSEv06_getErrorName(size_t code) { return ERR_getErrorName(code); }
|
||||
/* **************************************************************
|
||||
* HUF Error Management
|
||||
****************************************************************/
|
||||
unsigned HUFv06_isError(size_t code) { return ERR_isError(code); }
|
||||
|
||||
const char* HUFv06_getErrorName(size_t code) { return ERR_getErrorName(code); }
|
||||
static unsigned HUFv06_isError(size_t code) { return ERR_isError(code); }
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
@@ -2899,7 +2821,8 @@ struct ZSTDv06_DCtx_s
|
||||
BYTE headerBuffer[ZSTDv06_FRAMEHEADERSIZE_MAX];
|
||||
}; /* typedef'd to ZSTDv06_DCtx within "zstd_static.h" */
|
||||
|
||||
size_t ZSTDv06_sizeofDCtx (void) { return sizeof(ZSTDv06_DCtx); } /* non published interface */
|
||||
size_t ZSTDv06_sizeofDCtx (void); /* Hidden declaration */
|
||||
size_t ZSTDv06_sizeofDCtx (void) { return sizeof(ZSTDv06_DCtx); }
|
||||
|
||||
size_t ZSTDv06_decompressBegin(ZSTDv06_DCtx* dctx)
|
||||
{
|
||||
@@ -3098,7 +3021,7 @@ typedef struct
|
||||
|
||||
/*! ZSTDv06_getcBlockSize() :
|
||||
* Provides the size of compressed block from block header `src` */
|
||||
size_t ZSTDv06_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
||||
static size_t ZSTDv06_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
||||
{
|
||||
const BYTE* const in = (const BYTE* const)src;
|
||||
U32 cSize;
|
||||
@@ -3117,6 +3040,7 @@ size_t ZSTDv06_getcBlockSize(const void* src, size_t srcSize, blockProperties_t*
|
||||
|
||||
static size_t ZSTDv06_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
||||
{
|
||||
if (dst==NULL) return ERROR(dstSize_tooSmall);
|
||||
if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
|
||||
memcpy(dst, src, srcSize);
|
||||
return srcSize;
|
||||
@@ -3125,7 +3049,7 @@ static size_t ZSTDv06_copyRawBlock(void* dst, size_t dstCapacity, const void* sr
|
||||
|
||||
/*! ZSTDv06_decodeLiteralsBlock() :
|
||||
@return : nb of bytes read from src (< srcSize ) */
|
||||
size_t ZSTDv06_decodeLiteralsBlock(ZSTDv06_DCtx* dctx,
|
||||
static size_t ZSTDv06_decodeLiteralsBlock(ZSTDv06_DCtx* dctx,
|
||||
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
|
||||
{
|
||||
const BYTE* const istart = (const BYTE*) src;
|
||||
@@ -3259,7 +3183,7 @@ size_t ZSTDv06_decodeLiteralsBlock(ZSTDv06_DCtx* dctx,
|
||||
@return : nb bytes read from src,
|
||||
or an error code if it fails, testable with ZSTDv06_isError()
|
||||
*/
|
||||
size_t ZSTDv06_buildSeqTable(FSEv06_DTable* DTable, U32 type, U32 max, U32 maxLog,
|
||||
static size_t ZSTDv06_buildSeqTable(FSEv06_DTable* DTable, U32 type, U32 max, U32 maxLog,
|
||||
const void* src, size_t srcSize,
|
||||
const S16* defaultNorm, U32 defaultLog, U32 flagRepeatTable)
|
||||
{
|
||||
@@ -3289,7 +3213,7 @@ size_t ZSTDv06_buildSeqTable(FSEv06_DTable* DTable, U32 type, U32 max, U32 maxLo
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTDv06_decodeSeqHeaders(int* nbSeqPtr,
|
||||
static size_t ZSTDv06_decodeSeqHeaders(int* nbSeqPtr,
|
||||
FSEv06_DTable* DTableLL, FSEv06_DTable* DTableML, FSEv06_DTable* DTableOffb, U32 flagRepeatTable,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
@@ -3434,7 +3358,7 @@ static void ZSTDv06_decodeSequence(seq_t* seq, seqState_t* seqState)
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTDv06_execSequence(BYTE* op,
|
||||
static size_t ZSTDv06_execSequence(BYTE* op,
|
||||
BYTE* const oend, seq_t sequence,
|
||||
const BYTE** litPtr, const BYTE* const litLimit,
|
||||
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
|
||||
@@ -4082,7 +4006,7 @@ size_t ZBUFFv06_decompressContinue(ZBUFFv06_DCtx* zbd,
|
||||
if (ZSTDv06_isError(hSize)) return hSize;
|
||||
if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */
|
||||
memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip);
|
||||
zbd->lhSize += iend-ip; ip = iend; notDone = 0;
|
||||
zbd->lhSize += iend-ip;
|
||||
*dstCapacityPtr = 0;
|
||||
return (hSize - zbd->lhSize) + ZSTDv06_blockHeaderSize; /* remaining header bytes + next block header */
|
||||
}
|
||||
|
||||
@@ -348,7 +348,7 @@ MEM_STATIC U32 MEM_swap32(U32 in)
|
||||
{
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
return _byteswap_ulong(in);
|
||||
#elif defined (__GNUC__)
|
||||
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
|
||||
return __builtin_bswap32(in);
|
||||
#else
|
||||
return ((in << 24) & 0xff000000 ) |
|
||||
@@ -362,7 +362,7 @@ MEM_STATIC U64 MEM_swap64(U64 in)
|
||||
{
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
return _byteswap_uint64(in);
|
||||
#elif defined (__GNUC__)
|
||||
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
|
||||
return __builtin_bswap64(in);
|
||||
#else
|
||||
return ((in << 56) & 0xff00000000000000ULL) |
|
||||
@@ -511,16 +511,6 @@ MEM_STATIC BITv07_DStream_status BITv07_reloadDStream(BITv07_DStream_t* bitD);
|
||||
MEM_STATIC unsigned BITv07_endOfDStream(const BITv07_DStream_t* bitD);
|
||||
|
||||
|
||||
/* Start by invoking BITv07_initDStream().
|
||||
* A chunk of the bitStream is then stored into a local register.
|
||||
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
||||
* Local register is explicitly reloaded from memory by the BITv07_reloadDStream() method.
|
||||
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BITv07_DStream_unfinished.
|
||||
* Otherwise, it can be less than that, so proceed accordingly.
|
||||
* Checking if DStream has reached its end can be performed with BITv07_endOfDStream().
|
||||
*/
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* unsafe API
|
||||
@@ -533,7 +523,7 @@ MEM_STATIC size_t BITv07_readBitsFast(BITv07_DStream_t* bitD, unsigned nbBits);
|
||||
/*-**************************************************************
|
||||
* Internal functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BITv07_highbit32 (register U32 val)
|
||||
MEM_STATIC unsigned BITv07_highbit32 (U32 val)
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
unsigned long r=0;
|
||||
@@ -599,13 +589,6 @@ MEM_STATIC size_t BITv07_initDStream(BITv07_DStream_t* bitD, const void* srcBuff
|
||||
}
|
||||
|
||||
|
||||
/*! BITv07_lookBits() :
|
||||
* Provides next n bits from local register.
|
||||
* local register is not modified.
|
||||
* On 32-bits, maxNbBits==24.
|
||||
* On 64-bits, maxNbBits==56.
|
||||
* @return : value extracted
|
||||
*/
|
||||
MEM_STATIC size_t BITv07_lookBits(const BITv07_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
||||
@@ -625,11 +608,6 @@ MEM_STATIC void BITv07_skipBits(BITv07_DStream_t* bitD, U32 nbBits)
|
||||
bitD->bitsConsumed += nbBits;
|
||||
}
|
||||
|
||||
/*! BITv07_readBits() :
|
||||
* Read (consume) next n bits from local register and update.
|
||||
* Pay attention to not read more than nbBits contained into local register.
|
||||
* @return : extracted value.
|
||||
*/
|
||||
MEM_STATIC size_t BITv07_readBits(BITv07_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
size_t const value = BITv07_lookBits(bitD, nbBits);
|
||||
@@ -646,11 +624,6 @@ MEM_STATIC size_t BITv07_readBitsFast(BITv07_DStream_t* bitD, U32 nbBits)
|
||||
return value;
|
||||
}
|
||||
|
||||
/*! BITv07_reloadDStream() :
|
||||
* Refill `BITv07_DStream_t` from src buffer previously defined (see BITv07_initDStream() ).
|
||||
* This function is safe, it guarantees it will not read beyond src buffer.
|
||||
* @return : status of `BITv07_DStream_t` internal register.
|
||||
if status == unfinished, internal register is filled with >= (sizeof(bitD->bitContainer)*8 - 7) bits */
|
||||
MEM_STATIC BITv07_DStream_status BITv07_reloadDStream(BITv07_DStream_t* bitD)
|
||||
{
|
||||
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should not happen => corruption detected */
|
||||
@@ -874,55 +847,6 @@ static void FSEv07_initDState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t*
|
||||
static unsigned char FSEv07_decodeSymbol(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD);
|
||||
|
||||
|
||||
/**<
|
||||
Let's now decompose FSEv07_decompress_usingDTable() into its unitary components.
|
||||
You will decode FSE-encoded symbols from the bitStream,
|
||||
and also any other bitFields you put in, **in reverse order**.
|
||||
|
||||
You will need a few variables to track your bitStream. They are :
|
||||
|
||||
BITv07_DStream_t DStream; // Stream context
|
||||
FSEv07_DState_t DState; // State context. Multiple ones are possible
|
||||
FSEv07_DTable* DTablePtr; // Decoding table, provided by FSEv07_buildDTable()
|
||||
|
||||
The first thing to do is to init the bitStream.
|
||||
errorCode = BITv07_initDStream(&DStream, srcBuffer, srcSize);
|
||||
|
||||
You should then retrieve your initial state(s)
|
||||
(in reverse flushing order if you have several ones) :
|
||||
errorCode = FSEv07_initDState(&DState, &DStream, DTablePtr);
|
||||
|
||||
You can then decode your data, symbol after symbol.
|
||||
For information the maximum number of bits read by FSEv07_decodeSymbol() is 'tableLog'.
|
||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
||||
unsigned char symbol = FSEv07_decodeSymbol(&DState, &DStream);
|
||||
|
||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
||||
size_t bitField = BITv07_readBits(&DStream, nbBits);
|
||||
|
||||
All above operations only read from local register (which size depends on size_t).
|
||||
Refueling the register from memory is manually performed by the reload method.
|
||||
endSignal = FSEv07_reloadDStream(&DStream);
|
||||
|
||||
BITv07_reloadDStream() result tells if there is still some more data to read from DStream.
|
||||
BITv07_DStream_unfinished : there is still some data left into the DStream.
|
||||
BITv07_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
||||
BITv07_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
||||
BITv07_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
||||
|
||||
When reaching end of buffer (BITv07_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
||||
to properly detect the exact end of stream.
|
||||
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
||||
BITv07_reloadDStream(&DStream) >= BITv07_DStream_completed
|
||||
|
||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
||||
Checking if DStream has reached its end is performed by :
|
||||
BITv07_endOfDStream(&DStream);
|
||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
||||
FSEv07_endOfDState(&DState);
|
||||
*/
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE unsafe API
|
||||
@@ -2704,7 +2628,7 @@ const char* ZBUFFv07_getErrorName(size_t errorCode) { return ERR_getErrorName(er
|
||||
|
||||
|
||||
|
||||
void* ZSTDv07_defaultAllocFunction(void* opaque, size_t size)
|
||||
static void* ZSTDv07_defaultAllocFunction(void* opaque, size_t size)
|
||||
{
|
||||
void* address = malloc(size);
|
||||
(void)opaque;
|
||||
@@ -2712,7 +2636,7 @@ void* ZSTDv07_defaultAllocFunction(void* opaque, size_t size)
|
||||
return address;
|
||||
}
|
||||
|
||||
void ZSTDv07_defaultFreeFunction(void* opaque, void* address)
|
||||
static void ZSTDv07_defaultFreeFunction(void* opaque, void* address)
|
||||
{
|
||||
(void)opaque;
|
||||
/* if (address) printf("free %p opaque=%p \n", address, opaque); */
|
||||
@@ -3226,10 +3150,10 @@ size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src,
|
||||
const BYTE* ip = (const BYTE*)src;
|
||||
|
||||
if (srcSize < ZSTDv07_frameHeaderSize_min) return ZSTDv07_frameHeaderSize_min;
|
||||
memset(fparamsPtr, 0, sizeof(*fparamsPtr));
|
||||
if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) {
|
||||
if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTDv07_MAGIC_SKIPPABLE_START) {
|
||||
if (srcSize < ZSTDv07_skippableHeaderSize) return ZSTDv07_skippableHeaderSize; /* magic number + skippable frame length */
|
||||
memset(fparamsPtr, 0, sizeof(*fparamsPtr));
|
||||
fparamsPtr->frameContentSize = MEM_readLE32((const char *)src + 4);
|
||||
fparamsPtr->windowSize = 0; /* windowSize==0 means a frame is skippable */
|
||||
return 0;
|
||||
@@ -3251,11 +3175,13 @@ size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src,
|
||||
U32 windowSize = 0;
|
||||
U32 dictID = 0;
|
||||
U64 frameContentSize = 0;
|
||||
if ((fhdByte & 0x08) != 0) return ERROR(frameParameter_unsupported); /* reserved bits, which must be zero */
|
||||
if ((fhdByte & 0x08) != 0) /* reserved bits, which must be zero */
|
||||
return ERROR(frameParameter_unsupported);
|
||||
if (!directMode) {
|
||||
BYTE const wlByte = ip[pos++];
|
||||
U32 const windowLog = (wlByte >> 3) + ZSTDv07_WINDOWLOG_ABSOLUTEMIN;
|
||||
if (windowLog > ZSTDv07_WINDOWLOG_MAX) return ERROR(frameParameter_unsupported);
|
||||
if (windowLog > ZSTDv07_WINDOWLOG_MAX)
|
||||
return ERROR(frameParameter_unsupported);
|
||||
windowSize = (1U << windowLog);
|
||||
windowSize += (windowSize >> 3) * (wlByte&7);
|
||||
}
|
||||
@@ -3277,7 +3203,8 @@ size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src,
|
||||
case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
|
||||
}
|
||||
if (!windowSize) windowSize = (U32)frameContentSize;
|
||||
if (windowSize > windowSizeMax) return ERROR(frameParameter_unsupported);
|
||||
if (windowSize > windowSizeMax)
|
||||
return ERROR(frameParameter_unsupported);
|
||||
fparamsPtr->frameContentSize = frameContentSize;
|
||||
fparamsPtr->windowSize = windowSize;
|
||||
fparamsPtr->dictID = dictID;
|
||||
@@ -3296,11 +3223,10 @@ size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src,
|
||||
- frame header not completely provided (`srcSize` too small) */
|
||||
unsigned long long ZSTDv07_getDecompressedSize(const void* src, size_t srcSize)
|
||||
{
|
||||
{ ZSTDv07_frameParams fparams;
|
||||
size_t const frResult = ZSTDv07_getFrameParams(&fparams, src, srcSize);
|
||||
if (frResult!=0) return 0;
|
||||
return fparams.frameContentSize;
|
||||
}
|
||||
ZSTDv07_frameParams fparams;
|
||||
size_t const frResult = ZSTDv07_getFrameParams(&fparams, src, srcSize);
|
||||
if (frResult!=0) return 0;
|
||||
return fparams.frameContentSize;
|
||||
}
|
||||
|
||||
|
||||
@@ -3324,7 +3250,7 @@ typedef struct
|
||||
|
||||
/*! ZSTDv07_getcBlockSize() :
|
||||
* Provides the size of compressed block from block header `src` */
|
||||
size_t ZSTDv07_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
||||
static size_t ZSTDv07_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
||||
{
|
||||
const BYTE* const in = (const BYTE* const)src;
|
||||
U32 cSize;
|
||||
@@ -3351,7 +3277,7 @@ static size_t ZSTDv07_copyRawBlock(void* dst, size_t dstCapacity, const void* sr
|
||||
|
||||
/*! ZSTDv07_decodeLiteralsBlock() :
|
||||
@return : nb of bytes read from src (< srcSize ) */
|
||||
size_t ZSTDv07_decodeLiteralsBlock(ZSTDv07_DCtx* dctx,
|
||||
static size_t ZSTDv07_decodeLiteralsBlock(ZSTDv07_DCtx* dctx,
|
||||
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
|
||||
{
|
||||
const BYTE* const istart = (const BYTE*) src;
|
||||
@@ -3485,7 +3411,7 @@ size_t ZSTDv07_decodeLiteralsBlock(ZSTDv07_DCtx* dctx,
|
||||
@return : nb bytes read from src,
|
||||
or an error code if it fails, testable with ZSTDv07_isError()
|
||||
*/
|
||||
size_t ZSTDv07_buildSeqTable(FSEv07_DTable* DTable, U32 type, U32 max, U32 maxLog,
|
||||
static size_t ZSTDv07_buildSeqTable(FSEv07_DTable* DTable, U32 type, U32 max, U32 maxLog,
|
||||
const void* src, size_t srcSize,
|
||||
const S16* defaultNorm, U32 defaultLog, U32 flagRepeatTable)
|
||||
{
|
||||
@@ -3515,7 +3441,7 @@ size_t ZSTDv07_buildSeqTable(FSEv07_DTable* DTable, U32 type, U32 max, U32 maxLo
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTDv07_decodeSeqHeaders(int* nbSeqPtr,
|
||||
static size_t ZSTDv07_decodeSeqHeaders(int* nbSeqPtr,
|
||||
FSEv07_DTable* DTableLL, FSEv07_DTable* DTableML, FSEv07_DTable* DTableOffb, U32 flagRepeatTable,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
@@ -3847,7 +3773,7 @@ ZSTDLIBv07_API size_t ZSTDv07_insertBlock(ZSTDv07_DCtx* dctx, const void* blockS
|
||||
}
|
||||
|
||||
|
||||
size_t ZSTDv07_generateNxBytes(void* dst, size_t dstCapacity, BYTE byte, size_t length)
|
||||
static size_t ZSTDv07_generateNxBytes(void* dst, size_t dstCapacity, BYTE byte, size_t length)
|
||||
{
|
||||
if (length > dstCapacity) return ERROR(dstSize_tooSmall);
|
||||
memset(dst, byte, length);
|
||||
@@ -3927,7 +3853,7 @@ static size_t ZSTDv07_decompressFrame(ZSTDv07_DCtx* dctx,
|
||||
* It avoids reloading the dictionary each time.
|
||||
* `preparedDCtx` must have been properly initialized using ZSTDv07_decompressBegin_usingDict().
|
||||
* Requires 2 contexts : 1 for reference (preparedDCtx), which will not be modified, and 1 to run the decompression operation (dctx) */
|
||||
size_t ZSTDv07_decompress_usingPreparedDCtx(ZSTDv07_DCtx* dctx, const ZSTDv07_DCtx* refDCtx,
|
||||
static size_t ZSTDv07_decompress_usingPreparedDCtx(ZSTDv07_DCtx* dctx, const ZSTDv07_DCtx* refDCtx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
@@ -4222,7 +4148,7 @@ struct ZSTDv07_DDict_s {
|
||||
ZSTDv07_DCtx* refContext;
|
||||
}; /* typedef'd tp ZSTDv07_CDict within zstd.h */
|
||||
|
||||
ZSTDv07_DDict* ZSTDv07_createDDict_advanced(const void* dict, size_t dictSize, ZSTDv07_customMem customMem)
|
||||
static ZSTDv07_DDict* ZSTDv07_createDDict_advanced(const void* dict, size_t dictSize, ZSTDv07_customMem customMem)
|
||||
{
|
||||
if (!customMem.customAlloc && !customMem.customFree)
|
||||
customMem = defaultCustomMem;
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -30,15 +30,15 @@
|
||||
|
||||
/* === Memory management === */
|
||||
typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx;
|
||||
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbThreads);
|
||||
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbThreads,
|
||||
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers);
|
||||
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers,
|
||||
ZSTD_customMem cMem);
|
||||
ZSTDLIB_API size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
|
||||
|
||||
ZSTDLIB_API size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
|
||||
|
||||
|
||||
/* === Simple buffer-to-butter one-pass function === */
|
||||
/* === Simple one-pass compression function === */
|
||||
|
||||
ZSTDLIB_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
@@ -50,7 +50,7 @@ ZSTDLIB_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
|
||||
/* === Streaming functions === */
|
||||
|
||||
ZSTDLIB_API size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel);
|
||||
ZSTDLIB_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< pledgedSrcSize is optional and can be zero == unknown */
|
||||
ZSTDLIB_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< if srcSize is not known at reset time, use ZSTD_CONTENTSIZE_UNKNOWN. Note: for compatibility with older programs, 0 means the same as ZSTD_CONTENTSIZE_UNKNOWN, but it will change in the future to mean "empty" */
|
||||
|
||||
ZSTDLIB_API size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
|
||||
|
||||
@@ -60,15 +60,15 @@ ZSTDLIB_API size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output);
|
||||
|
||||
/* === Advanced functions and parameters === */
|
||||
|
||||
#ifndef ZSTDMT_SECTION_SIZE_MIN
|
||||
# define ZSTDMT_SECTION_SIZE_MIN (1U << 20) /* 1 MB - Minimum size of each compression job */
|
||||
#ifndef ZSTDMT_JOBSIZE_MIN
|
||||
# define ZSTDMT_JOBSIZE_MIN (1U << 20) /* 1 MB - Minimum size of each compression job */
|
||||
#endif
|
||||
|
||||
ZSTDLIB_API size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const ZSTD_CDict* cdict,
|
||||
ZSTD_parameters const params,
|
||||
ZSTD_parameters params,
|
||||
unsigned overlapLog);
|
||||
|
||||
ZSTDLIB_API size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
|
||||
@@ -84,35 +84,69 @@ ZSTDLIB_API size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
|
||||
/* ZSTDMT_parameter :
|
||||
* List of parameters that can be set using ZSTDMT_setMTCtxParameter() */
|
||||
typedef enum {
|
||||
ZSTDMT_p_sectionSize, /* size of input "section". Each section is compressed in parallel. 0 means default, which is dynamically determined within compression functions */
|
||||
ZSTDMT_p_overlapSectionLog /* Log of overlapped section; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window */
|
||||
ZSTDMT_p_jobSize, /* Each job is compressed in parallel. By default, this value is dynamically determined depending on compression parameters. Can be set explicitly here. */
|
||||
ZSTDMT_p_overlapSectionLog /* Each job may reload a part of previous job to enhance compressionr ratio; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window. This is a "sticky" parameter : its value will be re-used on next compression job */
|
||||
} ZSTDMT_parameter;
|
||||
|
||||
/* ZSTDMT_setMTCtxParameter() :
|
||||
* allow setting individual parameters, one at a time, among a list of enums defined in ZSTDMT_parameter.
|
||||
* The function must be called typically after ZSTD_createCCtx().
|
||||
* The function must be called typically after ZSTD_createCCtx() but __before ZSTDMT_init*() !__
|
||||
* Parameters not explicitly reset by ZSTDMT_init*() remain the same in consecutive compression sessions.
|
||||
* @return : 0, or an error code (which can be tested using ZSTD_isError()) */
|
||||
ZSTDLIB_API size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, unsigned value);
|
||||
|
||||
/* ZSTDMT_getMTCtxParameter() :
|
||||
* Query the ZSTDMT_CCtx for a parameter value.
|
||||
* @return : 0, or an error code (which can be tested using ZSTD_isError()) */
|
||||
ZSTDLIB_API size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, unsigned* value);
|
||||
|
||||
|
||||
/*! ZSTDMT_compressStream_generic() :
|
||||
* Combines ZSTDMT_compressStream() with ZSTDMT_flushStream() or ZSTDMT_endStream()
|
||||
* Combines ZSTDMT_compressStream() with optional ZSTDMT_flushStream() or ZSTDMT_endStream()
|
||||
* depending on flush directive.
|
||||
* @return : minimum amount of data still to be flushed
|
||||
* 0 if fully flushed
|
||||
* or an error code */
|
||||
* or an error code
|
||||
* note : needs to be init using any ZSTD_initCStream*() variant */
|
||||
ZSTDLIB_API size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
|
||||
ZSTD_outBuffer* output,
|
||||
ZSTD_inBuffer* input,
|
||||
ZSTD_EndDirective endOp);
|
||||
|
||||
|
||||
/* === Private definitions; never ever use directly === */
|
||||
/* ========================================================
|
||||
* === Private interface, for use by ZSTD_compress.c ===
|
||||
* === Not exposed in libzstd. Never invoke directly ===
|
||||
* ======================================================== */
|
||||
|
||||
/*! ZSTDMT_toFlushNow()
|
||||
* Tell how many bytes are ready to be flushed immediately.
|
||||
* Probe the oldest active job (not yet entirely flushed) and check its output buffer.
|
||||
* If return 0, it means there is no active job,
|
||||
* or, it means oldest job is still active, but everything produced has been flushed so far,
|
||||
* therefore flushing is limited by speed of oldest job. */
|
||||
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx);
|
||||
|
||||
/*! ZSTDMT_CCtxParam_setMTCtxParameter()
|
||||
* like ZSTDMT_setMTCtxParameter(), but into a ZSTD_CCtx_Params */
|
||||
size_t ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params, ZSTDMT_parameter parameter, unsigned value);
|
||||
|
||||
size_t ZSTDMT_initializeCCtxParameters(ZSTD_CCtx_params* params, unsigned nbThreads);
|
||||
/*! ZSTDMT_CCtxParam_setNbWorkers()
|
||||
* Set nbWorkers, and clamp it.
|
||||
* Also reset jobSize and overlapLog */
|
||||
size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers);
|
||||
|
||||
/*! ZSTDMT_updateCParams_whileCompressing() :
|
||||
* Updates only a selected set of compression parameters, to remain compatible with current frame.
|
||||
* New parameters will be applied to next compression job. */
|
||||
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams);
|
||||
|
||||
/*! ZSTDMT_getFrameProgression():
|
||||
* tells how much data has been consumed (input) and produced (output) for current frame.
|
||||
* able to count progression inside worker threads.
|
||||
*/
|
||||
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx);
|
||||
|
||||
|
||||
/*! ZSTDMT_initCStream_internal() :
|
||||
* Private use only. Init streaming operation.
|
||||
@@ -120,7 +154,7 @@ size_t ZSTDMT_initializeCCtxParameters(ZSTD_CCtx_params* params, unsigned nbThre
|
||||
* must receive dict, or cdict, or none, but not both.
|
||||
* @return : 0, or an error code */
|
||||
size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs,
|
||||
const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode,
|
||||
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
|
||||
const ZSTD_CDict* cdict,
|
||||
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user