mirror of
https://github.com/Xevion/Rebirth.git
synced 2025-12-06 11:16:04 -06:00
127 lines
3.3 KiB
C#
127 lines
3.3 KiB
C#
using System.Collections.Generic;
|
|
using UnityEngine;
|
|
|
|
/// <summary>
|
|
/// This script can be used to split a 2D polygon into triangles.
|
|
/// The algorithm supports concave polygons, but not polygons with holes,
|
|
/// or multiple polygons at once.
|
|
/// Taken from <see cref="http://wiki.unity3d.com/index.php?title=Triangulator"/>
|
|
/// </summary>
|
|
public class Triangulator
|
|
{
|
|
private readonly List<Vector2> _mPoints;
|
|
|
|
public Triangulator(IEnumerable<Vector2> points)
|
|
{
|
|
_mPoints = new List<Vector2>(points);
|
|
}
|
|
|
|
public int[] Triangulate()
|
|
{
|
|
var indices = new List<int>();
|
|
|
|
var n = _mPoints.Count;
|
|
if (n < 3)
|
|
return indices.ToArray();
|
|
|
|
var V = new int[n];
|
|
if (Area() > 0)
|
|
{
|
|
for (var v = 0; v < n; v++)
|
|
V[v] = v;
|
|
}
|
|
else
|
|
{
|
|
for (var v = 0; v < n; v++)
|
|
V[v] = n - 1 - v;
|
|
}
|
|
|
|
var nv = n;
|
|
var count = 2 * nv;
|
|
for (int m = 0, v = nv - 1; nv > 2;)
|
|
{
|
|
if (count-- <= 0)
|
|
return indices.ToArray();
|
|
|
|
var u = v;
|
|
if (nv <= u)
|
|
u = 0;
|
|
v = u + 1;
|
|
if (nv <= v)
|
|
v = 0;
|
|
var w = v + 1;
|
|
if (nv <= w)
|
|
w = 0;
|
|
|
|
if (Snip(u, v, w, nv, V))
|
|
{
|
|
int a, b, c, s, t;
|
|
a = V[u];
|
|
b = V[v];
|
|
c = V[w];
|
|
indices.Add(a);
|
|
indices.Add(b);
|
|
indices.Add(c);
|
|
m++;
|
|
for (s = v, t = v + 1; t < nv; s++, t++)
|
|
V[s] = V[t];
|
|
nv--;
|
|
count = 2 * nv;
|
|
}
|
|
}
|
|
|
|
indices.Reverse();
|
|
return indices.ToArray();
|
|
}
|
|
|
|
private float Area()
|
|
{
|
|
var n = _mPoints.Count;
|
|
var A = 0.0f;
|
|
for (int p = n - 1, q = 0; q < n; p = q++)
|
|
{
|
|
var pval = _mPoints[p];
|
|
var qval = _mPoints[q];
|
|
A += pval.x * qval.y - qval.x * pval.y;
|
|
}
|
|
return A * 0.5f;
|
|
}
|
|
|
|
private bool Snip(int u, int v, int w, int n, int[] V)
|
|
{
|
|
int p;
|
|
var A = _mPoints[V[u]];
|
|
var B = _mPoints[V[v]];
|
|
var C = _mPoints[V[w]];
|
|
if (Mathf.Epsilon > (B.x - A.x) * (C.y - A.y) - (B.y - A.y) * (C.x - A.x))
|
|
return false;
|
|
for (p = 0; p < n; p++)
|
|
{
|
|
if (p == u || p == v || p == w)
|
|
continue;
|
|
var P = _mPoints[V[p]];
|
|
if (InsideTriangle(A, B, C, P))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private static bool InsideTriangle(Vector2 A, Vector2 B, Vector2 C, Vector2 P)
|
|
{
|
|
float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
|
|
float cCROSSap, bCROSScp, aCROSSbp;
|
|
|
|
ax = C.x - B.x; ay = C.y - B.y;
|
|
bx = A.x - C.x; by = A.y - C.y;
|
|
cx = B.x - A.x; cy = B.y - A.y;
|
|
apx = P.x - A.x; apy = P.y - A.y;
|
|
bpx = P.x - B.x; bpy = P.y - B.y;
|
|
cpx = P.x - C.x; cpy = P.y - C.y;
|
|
|
|
aCROSSbp = ax * bpy - ay * bpx;
|
|
cCROSSap = cx * apy - cy * apx;
|
|
bCROSScp = bx * cpy - by * cpx;
|
|
|
|
return aCROSSbp >= 0.0f && bCROSScp >= 0.0f && cCROSSap >= 0.0f;
|
|
}
|
|
} |