Compare commits

...

7 Commits

8 changed files with 681 additions and 210 deletions

View File

@@ -41,4 +41,4 @@ samply:
# Build the project for Emscripten
web:
bun run web.build.ts
bun run web.build.ts; caddy file-server --root dist

View File

@@ -13,15 +13,18 @@ use crate::systems::blinking::Blinking;
use crate::systems::components::{GhostAnimation, GhostState, LastAnimationState};
use crate::systems::movement::{BufferedDirection, Position, Velocity};
use crate::systems::profiling::SystemId;
use crate::systems::render::touch_ui_render_system;
use crate::systems::render::RenderDirty;
use crate::systems::{self, ghost_collision_system, present_system, Hidden, LinearAnimation, MovementModifiers, NodeId};
use crate::systems::{
audio_system, blinking_system, collision_system, debug_render_system, directional_render_system, dirty_render_system,
eaten_ghost_system, ghost_movement_system, ghost_state_system, hud_render_system, item_system, linear_render_system, profile,
render_system, AudioEvent, AudioResource, AudioState, BackbufferResource, Collider, DebugState, DebugTextureResource,
DeltaTime, DirectionalAnimation, EntityType, Frozen, Ghost, GhostAnimations, GhostBundle, GhostCollider, GlobalState,
ItemBundle, ItemCollider, MapTextureResource, PacmanCollider, PlayerBundle, PlayerControlled, Renderable, ScoreResource,
StartupSequence, SystemTimings,
self, combined_render_system, ghost_collision_system, present_system, Hidden, LinearAnimation, MovementModifiers, NodeId,
};
use crate::systems::{
audio_system, blinking_system, collision_system, directional_render_system, dirty_render_system, eaten_ghost_system,
ghost_movement_system, ghost_state_system, hud_render_system, item_system, linear_render_system, profile, AudioEvent,
AudioResource, AudioState, BackbufferResource, Collider, DebugState, DebugTextureResource, DeltaTime, DirectionalAnimation,
EntityType, Frozen, Ghost, GhostAnimations, GhostBundle, GhostCollider, GlobalState, ItemBundle, ItemCollider,
MapTextureResource, PacmanCollider, PlayerBundle, PlayerControlled, Renderable, ScoreResource, StartupSequence,
SystemTimings,
};
use crate::texture::animated::{DirectionalTiles, TileSequence};
use crate::texture::sprite::AtlasTile;
@@ -29,8 +32,9 @@ use bevy_ecs::event::EventRegistry;
use bevy_ecs::observer::Trigger;
use bevy_ecs::schedule::common_conditions::resource_changed;
use bevy_ecs::schedule::{Condition, IntoScheduleConfigs, Schedule, SystemSet};
use bevy_ecs::system::ResMut;
use bevy_ecs::system::{Local, ResMut};
use bevy_ecs::world::World;
use glam::UVec2;
use sdl2::event::EventType;
use sdl2::image::LoadTexture;
use sdl2::render::{BlendMode, Canvas, ScaleMode, TextureCreator};
@@ -42,7 +46,7 @@ use crate::{
asset::{get_asset_bytes, Asset},
events::GameCommand,
map::render::MapRenderer,
systems::debug::TtfAtlasResource,
systems::debug::{BatchedLinesResource, TtfAtlasResource},
systems::input::{Bindings, CursorPosition},
texture::sprite::{AtlasMapper, SpriteAtlas},
};
@@ -105,9 +109,9 @@ impl Game {
EventType::ControllerTouchpadDown,
EventType::ControllerTouchpadMotion,
EventType::ControllerTouchpadUp,
EventType::FingerDown,
EventType::FingerUp,
EventType::FingerMotion,
// EventType::FingerDown, // Enable for touch controls
// EventType::FingerUp, // Enable for touch controls
// EventType::FingerMotion, // Enable for touch controls
EventType::DollarGesture,
EventType::DollarRecord,
EventType::MultiGesture,
@@ -126,10 +130,9 @@ impl Game {
EventType::Display,
EventType::Window,
EventType::MouseWheel,
EventType::MouseMotion,
EventType::MouseButtonDown,
EventType::MouseButtonUp,
EventType::MouseButtonDown,
// EventType::MouseMotion,
// EventType::MouseButtonDown, // Enable for desktop touch testing
// EventType::MouseButtonUp, // Enable for desktop touch testing
EventType::AppDidEnterBackground,
EventType::AppWillEnterForeground,
EventType::AppWillEnterBackground,
@@ -156,7 +159,7 @@ impl Game {
// Create debug texture at output resolution for crisp debug rendering
let output_size = canvas.output_size().unwrap();
let mut debug_texture = texture_creator
.create_texture_target(None, output_size.0, output_size.1)
.create_texture_target(Some(sdl2::pixels::PixelFormatEnum::ARGB8888), output_size.0, output_size.1)
.map_err(|e| GameError::Sdl(e.to_string()))?;
// Debug texture is copied over the backbuffer, it requires transparency abilities
@@ -299,6 +302,10 @@ impl Game {
EventRegistry::register_event::<GameEvent>(&mut world);
EventRegistry::register_event::<AudioEvent>(&mut world);
let scale =
(UVec2::from(canvas.output_size().unwrap()).as_vec2() / UVec2::from(canvas.logical_size()).as_vec2()).min_element();
world.insert_resource(BatchedLinesResource::new(&map, scale));
world.insert_resource(Self::create_ghost_animations(&atlas)?);
world.insert_resource(map);
world.insert_resource(GlobalState { exit: false });
@@ -310,6 +317,7 @@ impl Game {
world.insert_resource(DebugState::default());
world.insert_resource(AudioState::default());
world.insert_resource(CursorPosition::default());
world.insert_resource(systems::input::TouchState::default());
world.insert_resource(StartupSequence::new(
constants::startup::STARTUP_FRAMES,
constants::startup::STARTUP_TICKS_PER_FRAME,
@@ -347,9 +355,7 @@ impl Game {
let directional_render_system = profile(SystemId::DirectionalRender, directional_render_system);
let linear_render_system = profile(SystemId::LinearRender, linear_render_system);
let dirty_render_system = profile(SystemId::DirtyRender, dirty_render_system);
let render_system = profile(SystemId::Render, render_system);
let hud_render_system = profile(SystemId::HudRender, hud_render_system);
let debug_render_system = profile(SystemId::DebugRender, debug_render_system);
let present_system = profile(SystemId::Present, present_system);
let unified_ghost_state_system = profile(SystemId::GhostStateAnimation, ghost_state_system);
@@ -360,7 +366,11 @@ impl Game {
schedule.add_systems((
forced_dirty_system.run_if(resource_changed::<ScoreResource>.or(resource_changed::<StartupSequence>)),
(
input_system,
input_system.run_if(|mut local: Local<u8>| {
*local = local.wrapping_add(1u8);
// run every nth frame
*local % 2 == 0
}),
player_control_system,
player_movement_system,
startup_stage_system,
@@ -377,9 +387,9 @@ impl Game {
directional_render_system,
linear_render_system,
dirty_render_system,
render_system,
combined_render_system,
hud_render_system,
debug_render_system,
touch_ui_render_system,
present_system,
)
.chain(),

View File

@@ -29,6 +29,7 @@ pub fn requires_console() -> bool {
false
}
#[allow(dead_code)]
pub fn get_canvas_size() -> Option<(u32, u32)> {
let mut width = 0.0;
let mut height = 0.0;

View File

@@ -1,17 +1,20 @@
//! Debug rendering system
use std::cmp::Ordering;
use crate::constants::BOARD_PIXEL_OFFSET;
use crate::constants::{BOARD_PIXEL_OFFSET, CANVAS_SIZE};
use crate::map::builder::Map;
use crate::systems::{Collider, CursorPosition, NodeId, Position, SystemTimings};
use crate::texture::ttf::{TtfAtlas, TtfRenderer};
use bevy_ecs::resource::Resource;
use bevy_ecs::system::{NonSendMut, Query, Res};
use bevy_ecs::system::{Query, Res};
use glam::{IVec2, UVec2, Vec2};
use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect};
use sdl2::render::{Canvas, Texture};
use sdl2::video::Window;
use smallvec::SmallVec;
use std::collections::{HashMap, HashSet};
use tracing::warn;
#[derive(Resource, Default, Debug, Copy, Clone)]
pub struct DebugState {
@@ -28,6 +31,118 @@ pub struct DebugTextureResource(pub Texture);
/// Resource to hold the TTF text atlas
pub struct TtfAtlasResource(pub TtfAtlas);
/// Resource to hold pre-computed batched line segments
#[derive(Resource, Default, Debug, Clone)]
pub struct BatchedLinesResource {
horizontal_lines: Vec<(i32, i32, i32)>, // (y, x_start, x_end)
vertical_lines: Vec<(i32, i32, i32)>, // (x, y_start, y_end)
}
impl BatchedLinesResource {
/// Computes and caches batched line segments for the map graph
pub fn new(map: &Map, scale: f32) -> Self {
let mut horizontal_segments: HashMap<i32, Vec<(i32, i32)>> = HashMap::new();
let mut vertical_segments: HashMap<i32, Vec<(i32, i32)>> = HashMap::new();
let mut processed_edges: HashSet<(u16, u16)> = HashSet::new();
// Process all edges and group them by axis
for (start_node_id, edge) in map.graph.edges() {
// Acquire a stable key for the edge (from < to)
let edge_key = (start_node_id.min(edge.target), start_node_id.max(edge.target));
// Skip if we've already processed this edge in the reverse direction
if processed_edges.contains(&edge_key) {
continue;
}
processed_edges.insert(edge_key);
let start_pos = map.graph.get_node(start_node_id).unwrap().position;
let end_pos = map.graph.get_node(edge.target).unwrap().position;
let start = transform_position_with_offset(start_pos, scale);
let end = transform_position_with_offset(end_pos, scale);
// Determine if this is a horizontal or vertical line
if (start.y - end.y).abs() < 2 {
// Horizontal line (allowing for slight vertical variance)
let y = start.y;
let x_min = start.x.min(end.x);
let x_max = start.x.max(end.x);
horizontal_segments.entry(y).or_default().push((x_min, x_max));
} else if (start.x - end.x).abs() < 2 {
// Vertical line (allowing for slight horizontal variance)
let x = start.x;
let y_min = start.y.min(end.y);
let y_max = start.y.max(end.y);
vertical_segments.entry(x).or_default().push((y_min, y_max));
}
}
/// Merges overlapping or adjacent segments into continuous lines
fn merge_segments(segments: Vec<(i32, i32)>) -> Vec<(i32, i32)> {
if segments.is_empty() {
return Vec::new();
}
let mut merged = Vec::new();
let mut current_start = segments[0].0;
let mut current_end = segments[0].1;
for &(start, end) in segments.iter().skip(1) {
if start <= current_end + 1 {
// Adjacent or overlapping
current_end = current_end.max(end);
} else {
merged.push((current_start, current_end));
current_start = start;
current_end = end;
}
}
merged.push((current_start, current_end));
merged
}
// Convert to flat vectors for fast iteration during rendering
let horizontal_lines = horizontal_segments
.into_iter()
.flat_map(|(y, mut segments)| {
segments.sort_unstable_by_key(|(start, _)| *start);
let merged = merge_segments(segments);
merged.into_iter().map(move |(x_start, x_end)| (y, x_start, x_end))
})
.collect::<Vec<_>>();
let vertical_lines = vertical_segments
.into_iter()
.flat_map(|(x, mut segments)| {
segments.sort_unstable_by_key(|(start, _)| *start);
let merged = merge_segments(segments);
merged.into_iter().map(move |(y_start, y_end)| (x, y_start, y_end))
})
.collect::<Vec<_>>();
Self {
horizontal_lines,
vertical_lines,
}
}
pub fn render(&self, canvas: &mut Canvas<Window>) {
// Render horizontal lines
for &(y, x_start, x_end) in &self.horizontal_lines {
let points = [Point::new(x_start, y), Point::new(x_end, y)];
let _ = canvas.draw_lines(&points[..]);
}
// Render vertical lines
for &(x, y_start, y_end) in &self.vertical_lines {
let points = [Point::new(x, y_start), Point::new(x, y_end)];
let _ = canvas.draw_lines(&points[..]);
}
}
}
/// Transforms a position from logical canvas coordinates to output canvas coordinates (with board offset)
fn transform_position_with_offset(pos: Vec2, scale: f32) -> IVec2 {
((pos + BOARD_PIXEL_OFFSET.as_vec2()) * scale).as_ivec2()
@@ -88,124 +203,135 @@ fn render_timing_display(
#[allow(clippy::too_many_arguments)]
pub fn debug_render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
mut debug_texture: NonSendMut<DebugTextureResource>,
mut ttf_atlas: NonSendMut<TtfAtlasResource>,
debug_state: Res<DebugState>,
timings: Res<SystemTimings>,
map: Res<Map>,
colliders: Query<(&Collider, &Position)>,
cursor: Res<CursorPosition>,
canvas: &mut Canvas<Window>,
ttf_atlas: &mut TtfAtlasResource,
batched_lines: &Res<BatchedLinesResource>,
debug_state: &Res<DebugState>,
timings: &Res<SystemTimings>,
map: &Res<Map>,
colliders: &Query<(&Collider, &Position)>,
cursor: &Res<CursorPosition>,
) {
if !debug_state.enabled {
return;
}
let scale =
(UVec2::from(canvas.output_size().unwrap()).as_vec2() / UVec2::from(canvas.logical_size()).as_vec2()).min_element();
let output = UVec2::from(canvas.output_size().unwrap()).as_vec2();
let logical = CANVAS_SIZE.as_vec2();
let scale = (output / logical).min_element();
// Create debug text renderer
let text_renderer = TtfRenderer::new(1.0);
let cursor_world_pos = match *cursor {
let cursor_world_pos = match &**cursor {
CursorPosition::None => None,
CursorPosition::Some { position, .. } => Some(position - BOARD_PIXEL_OFFSET.as_vec2()),
};
// Draw debug info on the high-resolution debug texture
canvas
.with_texture_canvas(&mut debug_texture.0, |debug_canvas| {
// Clear the debug canvas
debug_canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
debug_canvas.clear();
// Clear the debug canvas
canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
canvas.clear();
// Find the closest node to the cursor
let closest_node = if let Some(cursor_world_pos) = cursor_world_pos {
map.graph
.nodes()
.map(|node| node.position.distance(cursor_world_pos))
.enumerate()
.min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Less))
.map(|(id, _)| id)
} else {
None
};
// Find the closest node to the cursor
let closest_node = if let Some(cursor_world_pos) = cursor_world_pos {
map.graph
.nodes()
.map(|node| node.position.distance(cursor_world_pos))
.enumerate()
.min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Less))
.map(|(id, _)| id)
} else {
None
};
debug_canvas.set_draw_color(Color::GREEN);
for (collider, position) in colliders.iter() {
canvas.set_draw_color(Color::GREEN);
{
let rects = colliders
.iter()
.map(|(collider, position)| {
let pos = position.get_pixel_position(&map.graph).unwrap();
// Transform position and size using common methods
let pos = (pos * scale).as_ivec2();
let size = (collider.size * scale) as u32;
let rect = Rect::from_center(Point::from((pos.x, pos.y)), size, size);
debug_canvas.draw_rect(rect).unwrap();
}
Rect::from_center(Point::from((pos.x, pos.y)), size, size)
})
.collect::<SmallVec<[Rect; 100]>>();
if rects.len() > rects.capacity() {
warn!(
capacity = rects.capacity(),
count = rects.len(),
"Collider rects capacity exceeded"
);
}
canvas.draw_rects(&rects).unwrap();
}
debug_canvas.set_draw_color(Color {
a: f32_to_u8(0.4),
..Color::RED
});
debug_canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
for (start_node, end_node) in map.graph.edges() {
let start_node_model = map.graph.get_node(start_node).unwrap();
let end_node = map.graph.get_node(end_node.target).unwrap().position;
canvas.set_draw_color(Color {
a: f32_to_u8(0.6),
..Color::RED
});
canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
// Transform positions using common method
let start = transform_position_with_offset(start_node_model.position, scale);
let end = transform_position_with_offset(end_node, scale);
// Use cached batched line segments
batched_lines.render(canvas);
debug_canvas
.draw_line(Point::from((start.x, start.y)), Point::from((end.x, end.y)))
.unwrap();
}
for (id, node) in map.graph.nodes().enumerate() {
let pos = node.position;
// Set color based on whether the node is the closest to the cursor
debug_canvas.set_draw_color(Color {
a: f32_to_u8(if Some(id) == closest_node { 0.75 } else { 0.6 }),
..(if Some(id) == closest_node {
Color::YELLOW
} else {
Color::BLUE
})
});
// Transform position using common method
let pos = transform_position_with_offset(pos, scale);
let size = (2.0 * scale) as u32;
debug_canvas
.fill_rect(Rect::new(pos.x - (size as i32 / 2), pos.y - (size as i32 / 2), size, size))
.unwrap();
}
// Render node ID if a node is highlighted
if let Some(closest_node_id) = closest_node {
let node = map.graph.get_node(closest_node_id as NodeId).unwrap();
{
let rects: Vec<_> = map
.graph
.nodes()
.enumerate()
.filter_map(|(id, node)| {
let pos = transform_position_with_offset(node.position, scale);
let size = (2.0 * scale) as u32;
let rect = Rect::new(pos.x - (size as i32 / 2), pos.y - (size as i32 / 2), size, size);
let node_id_text = closest_node_id.to_string();
let text_pos = Vec2::new((pos.x + 10) as f32, (pos.y - 5) as f32);
// If the node is the one closest to the cursor, draw it immediately
if closest_node == Some(id) {
canvas.set_draw_color(Color::YELLOW);
canvas.fill_rect(rect).unwrap();
return None;
}
text_renderer
.render_text(
debug_canvas,
&mut ttf_atlas.0,
&node_id_text,
text_pos,
Color {
a: f32_to_u8(0.4),
..Color::WHITE
},
)
.unwrap();
}
Some(rect)
})
.collect();
// Render timing information in the top-left corner
render_timing_display(debug_canvas, &timings, &text_renderer, &mut ttf_atlas.0);
})
.unwrap();
if rects.len() > rects.capacity() {
warn!(
capacity = rects.capacity(),
count = rects.len(),
"Node rects capacity exceeded"
);
}
// Draw the non-closest nodes all at once in blue
canvas.set_draw_color(Color::BLUE);
canvas.fill_rects(&rects).unwrap();
}
// Render node ID if a node is highlighted
if let Some(closest_node_id) = closest_node {
let node = map.graph.get_node(closest_node_id as NodeId).unwrap();
let pos = transform_position_with_offset(node.position, scale);
let node_id_text = closest_node_id.to_string();
let text_pos = Vec2::new((pos.x + 10) as f32, (pos.y - 5) as f32);
text_renderer
.render_text(
canvas,
&mut ttf_atlas.0,
&node_id_text,
text_pos,
Color {
a: f32_to_u8(0.4),
..Color::WHITE
},
)
.unwrap();
}
// Render timing information in the top-left corner
render_timing_display(canvas, timings, &text_renderer, &mut ttf_atlas.0);
}

View File

@@ -25,6 +25,59 @@ pub enum CursorPosition {
},
}
#[derive(Resource, Default, Debug)]
pub struct TouchState {
pub active_touch: Option<TouchData>,
}
#[derive(Debug, Clone)]
pub struct TouchData {
pub finger_id: i64,
pub start_pos: Vec2,
pub current_pos: Vec2,
pub current_direction: Option<Direction>,
}
impl TouchData {
pub fn new(finger_id: i64, start_pos: Vec2) -> Self {
Self {
finger_id,
start_pos,
current_pos: start_pos,
current_direction: None,
}
}
pub fn update_position(&mut self, new_pos: Vec2) -> Option<Direction> {
self.current_pos = new_pos;
let delta = new_pos - self.start_pos;
// Minimum threshold for direction detection (in pixels)
const THRESHOLD: f32 = 20.0;
if delta.length() < THRESHOLD {
self.current_direction = None;
return None;
}
// Determine primary direction based on larger component
let direction = if delta.x.abs() > delta.y.abs() {
if delta.x > 0.0 {
Direction::Right
} else {
Direction::Left
}
} else if delta.y > 0.0 {
Direction::Down
} else {
Direction::Up
};
self.current_direction = Some(direction);
Some(direction)
}
}
#[derive(Resource, Debug, Clone)]
pub struct Bindings {
key_bindings: HashMap<Keycode, GameCommand>,
@@ -131,6 +184,7 @@ pub fn input_system(
mut writer: EventWriter<GameEvent>,
mut pump: NonSendMut<EventPump>,
mut cursor: ResMut<CursorPosition>,
mut touch_state: ResMut<TouchState>,
) {
let mut cursor_seen = false;
// Collect all events for this frame.
@@ -159,6 +213,47 @@ pub fn input_system(
remaining_time: 0.20,
};
cursor_seen = true;
// Handle mouse motion as touch motion for desktop testing
if let Some(ref mut touch_data) = touch_state.active_touch {
if let Some(direction) = touch_data.update_position(Vec2::new(x as f32, y as f32)) {
writer.write(GameEvent::Command(GameCommand::MovePlayer(direction)));
}
}
}
// Handle mouse events as touch for desktop testing
Event::MouseButtonDown { x, y, .. } => {
let pos = Vec2::new(x as f32, y as f32);
touch_state.active_touch = Some(TouchData::new(0, pos)); // Use ID 0 for mouse
}
Event::MouseButtonUp { .. } => {
touch_state.active_touch = None;
}
// Handle actual touch events for mobile
Event::FingerDown { finger_id, x, y, .. } => {
// Convert normalized coordinates (0.0-1.0) to screen coordinates
let screen_x = x * crate::constants::CANVAS_SIZE.x as f32;
let screen_y = y * crate::constants::CANVAS_SIZE.y as f32;
let pos = Vec2::new(screen_x, screen_y);
touch_state.active_touch = Some(TouchData::new(finger_id, pos));
}
Event::FingerMotion { finger_id, x, y, .. } => {
if let Some(ref mut touch_data) = touch_state.active_touch {
if touch_data.finger_id == finger_id {
let screen_x = x * crate::constants::CANVAS_SIZE.x as f32;
let screen_y = y * crate::constants::CANVAS_SIZE.y as f32;
if let Some(direction) = touch_data.update_position(Vec2::new(screen_x, screen_y)) {
writer.write(GameEvent::Command(GameCommand::MovePlayer(direction)));
}
}
}
}
Event::FingerUp { finger_id, .. } => {
if let Some(ref touch_data) = touch_state.active_touch {
if touch_data.finger_id == finger_id {
touch_state.active_touch = None;
}
}
}
Event::KeyDown { keycode, repeat, .. } => {
if let Some(key) = keycode {

View File

@@ -3,7 +3,7 @@ use bevy_ecs::{resource::Resource, system::System};
use circular_buffer::CircularBuffer;
use micromap::Map;
use num_width::NumberWidth;
use parking_lot::{Mutex, RwLock};
use parking_lot::Mutex;
use smallvec::SmallVec;
use std::fmt::Display;
use std::time::Duration;
@@ -46,7 +46,7 @@ impl Display for SystemId {
}
}
#[derive(Resource, Default, Debug)]
#[derive(Resource, Debug)]
pub struct SystemTimings {
/// Map of system names to a queue of durations, using a circular buffer.
///
@@ -55,42 +55,54 @@ pub struct SystemTimings {
///
/// Also, we use a micromap::Map as the number of systems is generally quite small.
/// Just make sure to set the capacity appropriately, or it will panic.
pub timings: RwLock<Map<SystemId, Mutex<CircularBuffer<TIMING_WINDOW_SIZE, Duration>>, MAX_SYSTEMS>>,
///
/// Pre-populated with all SystemId variants during initialization to avoid runtime allocations
/// and allow systems to have default zero timings when they don't submit data.
pub timings: Map<SystemId, Mutex<CircularBuffer<TIMING_WINDOW_SIZE, Duration>>, MAX_SYSTEMS>,
}
impl Default for SystemTimings {
fn default() -> Self {
let mut timings = Map::new();
// Pre-populate with all SystemId variants to avoid runtime allocations
// and provide default zero timings for systems that don't submit data
for id in SystemId::iter() {
timings.insert(id, Mutex::new(CircularBuffer::new()));
}
Self { timings }
}
}
impl SystemTimings {
pub fn add_timing(&self, id: SystemId, duration: Duration) {
// acquire a upgradable read lock
let mut timings = self.timings.upgradable_read();
// happy path, the name is already in the map (no need to mutate the hashmap)
if timings.contains_key(&id) {
let queue = timings
.get(&id)
.expect("System name not found in map after contains_key check");
let mut queue = queue.lock();
queue.push_back(duration);
return;
}
// otherwise, acquire a write lock and insert a new queue
timings.with_upgraded(|timings| {
let queue = timings.entry(id).or_insert_with(|| Mutex::new(CircularBuffer::new()));
queue.lock().push_back(duration);
});
// Since all SystemId variants are pre-populated, we can use a simple read lock
let queue = self
.timings
.get(&id)
.expect("SystemId not found in pre-populated map - this is a bug");
queue.lock().push_back(duration);
}
pub fn get_stats(&self) -> Map<SystemId, (Duration, Duration), MAX_SYSTEMS> {
let timings = self.timings.read();
let mut stats = Map::new();
for (id, queue) in timings.iter() {
if queue.lock().is_empty() {
// Iterate over all SystemId variants to ensure every system has an entry
for id in SystemId::iter() {
let queue = self
.timings
.get(&id)
.expect("SystemId not found in pre-populated map - this is a bug");
let queue_guard = queue.lock();
if queue_guard.is_empty() {
// Return zero timing for systems that haven't submitted any data
stats.insert(id, (Duration::ZERO, Duration::ZERO));
continue;
}
let durations: Vec<f64> = queue.lock().iter().map(|d| d.as_secs_f64() * 1000.0).collect();
let durations: Vec<f64> = queue_guard.iter().map(|d| d.as_secs_f64() * 1000.0).collect();
let count = durations.len() as f64;
let sum: f64 = durations.iter().sum();
@@ -100,7 +112,7 @@ impl SystemTimings {
let std_dev = variance.sqrt();
stats.insert(
*id,
id,
(
Duration::from_secs_f64(mean / 1000.0),
Duration::from_secs_f64(std_dev / 1000.0),
@@ -113,8 +125,7 @@ impl SystemTimings {
pub fn get_total_stats(&self) -> (Duration, Duration) {
let duration_sums = {
let timings = self.timings.read();
timings
self.timings
.iter()
.map(|(_, queue)| queue.lock().iter().sum::<Duration>())
.collect::<Vec<_>>()

View File

@@ -1,9 +1,11 @@
use crate::constants::CANVAS_SIZE;
use crate::error::{GameError, TextureError};
use crate::map::builder::Map;
use crate::systems::input::TouchState;
use crate::systems::{
DebugState, DebugTextureResource, DeltaTime, DirectionalAnimation, LinearAnimation, Position, Renderable, ScoreResource,
StartupSequence, Velocity,
debug_render_system, BatchedLinesResource, Collider, CursorPosition, DebugState, DebugTextureResource, DeltaTime,
DirectionalAnimation, LinearAnimation, Position, Renderable, ScoreResource, StartupSequence, SystemId, SystemTimings,
TtfAtlasResource, Velocity,
};
use crate::texture::sprite::SpriteAtlas;
use crate::texture::text::TextTexture;
@@ -18,6 +20,7 @@ use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect};
use sdl2::render::{BlendMode, Canvas, Texture};
use sdl2::video::Window;
use std::time::Instant;
#[derive(Resource, Default)]
pub struct RenderDirty(pub bool);
@@ -25,6 +28,13 @@ pub struct RenderDirty(pub bool);
#[derive(Component)]
pub struct Hidden;
/// Enum to identify which texture is being rendered to in the combined render system
#[derive(Debug, Clone, Copy)]
enum RenderTarget {
Backbuffer,
Debug,
}
#[allow(clippy::type_complexity)]
pub fn dirty_render_system(
mut dirty: ResMut<RenderDirty>,
@@ -105,6 +115,79 @@ pub struct MapTextureResource(pub Texture);
/// A non-send resource for the backbuffer texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource.
pub struct BackbufferResource(pub Texture);
/// Renders touch UI overlay for mobile/testing.
pub fn touch_ui_render_system(
mut backbuffer: NonSendMut<BackbufferResource>,
mut canvas: NonSendMut<&mut Canvas<Window>>,
touch_state: Res<TouchState>,
mut errors: EventWriter<GameError>,
) {
if let Some(ref touch_data) = touch_state.active_touch {
let _ = canvas.with_texture_canvas(&mut backbuffer.0, |canvas| {
// Set blend mode for transparency
canvas.set_blend_mode(BlendMode::Blend);
// Draw semi-transparent circle at touch start position
canvas.set_draw_color(Color::RGBA(255, 255, 255, 100));
let center = Point::new(touch_data.start_pos.x as i32, touch_data.start_pos.y as i32);
// Draw a simple circle by drawing filled rectangles (basic approach)
let radius = 30;
for dy in -radius..=radius {
for dx in -radius..=radius {
if dx * dx + dy * dy <= radius * radius {
let point = Point::new(center.x + dx, center.y + dy);
if let Err(e) = canvas.draw_point(point) {
errors.write(TextureError::RenderFailed(format!("Touch UI render error: {}", e)).into());
return;
}
}
}
}
// Draw direction indicator if we have a direction
if let Some(direction) = touch_data.current_direction {
canvas.set_draw_color(Color::RGBA(0, 255, 0, 150));
// Draw arrow indicating direction
let arrow_length = 40;
let (dx, dy) = match direction {
crate::map::direction::Direction::Up => (0, -arrow_length),
crate::map::direction::Direction::Down => (0, arrow_length),
crate::map::direction::Direction::Left => (-arrow_length, 0),
crate::map::direction::Direction::Right => (arrow_length, 0),
};
let end_point = Point::new(center.x + dx, center.y + dy);
if let Err(e) = canvas.draw_line(center, end_point) {
errors.write(TextureError::RenderFailed(format!("Touch arrow render error: {}", e)).into());
}
// Draw arrowhead (simple approach)
let arrow_size = 8;
match direction {
crate::map::direction::Direction::Up => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y + arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y + arrow_size));
}
crate::map::direction::Direction::Down => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y - arrow_size));
}
crate::map::direction::Direction::Left => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y + arrow_size));
}
crate::map::direction::Direction::Right => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y + arrow_size));
}
}
}
});
}
}
/// Renders the HUD (score, lives, etc.) on top of the game.
pub fn hud_render_system(
mut backbuffer: NonSendMut<BackbufferResource>,
@@ -172,59 +255,138 @@ pub fn hud_render_system(
#[allow(clippy::too_many_arguments)]
pub fn render_system(
canvas: &mut Canvas<Window>,
map_texture: &NonSendMut<MapTextureResource>,
atlas: &mut SpriteAtlas,
map: &Res<Map>,
dirty: &Res<RenderDirty>,
renderables: &Query<(Entity, &Renderable, &Position), Without<Hidden>>,
errors: &mut EventWriter<GameError>,
) {
if !dirty.0 {
return;
}
// Clear the backbuffer
canvas.set_draw_color(sdl2::pixels::Color::BLACK);
canvas.clear();
// Copy the pre-rendered map texture to the backbuffer
if let Err(e) = canvas.copy(&map_texture.0, None, None) {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Render all entities to the backbuffer
for (_, renderable, position) in renderables
.iter()
.sort_by_key::<(Entity, &Renderable, &Position), _>(|(_, renderable, _)| renderable.layer)
.rev()
{
let pos = position.get_pixel_position(&map.graph);
match pos {
Ok(pos) => {
let dest = Rect::from_center(
Point::from((pos.x as i32, pos.y as i32)),
renderable.sprite.size.x as u32,
renderable.sprite.size.y as u32,
);
renderable
.sprite
.render(canvas, atlas, dest)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
}
Err(e) => {
errors.write(e);
}
}
}
}
/// Combined render system that renders to both backbuffer and debug textures in a single
/// with_multiple_texture_canvas call for reduced overhead
#[allow(clippy::too_many_arguments)]
pub fn combined_render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
map_texture: NonSendMut<MapTextureResource>,
mut backbuffer: NonSendMut<BackbufferResource>,
mut debug_texture: NonSendMut<DebugTextureResource>,
mut atlas: NonSendMut<SpriteAtlas>,
mut ttf_atlas: NonSendMut<TtfAtlasResource>,
batched_lines: Res<BatchedLinesResource>,
debug_state: Res<DebugState>,
timings: Res<SystemTimings>,
map: Res<Map>,
dirty: Res<RenderDirty>,
renderables: Query<(Entity, &Renderable, &Position), Without<Hidden>>,
colliders: Query<(&Collider, &Position)>,
cursor: Res<CursorPosition>,
mut errors: EventWriter<GameError>,
) {
if !dirty.0 {
return;
}
// Render to backbuffer
canvas
.with_texture_canvas(&mut backbuffer.0, |backbuffer_canvas| {
// Clear the backbuffer
backbuffer_canvas.set_draw_color(sdl2::pixels::Color::BLACK);
backbuffer_canvas.clear();
// Copy the pre-rendered map texture to the backbuffer
if let Err(e) = backbuffer_canvas.copy(&map_texture.0, None, None) {
errors.write(TextureError::RenderFailed(e.to_string()).into());
// Prepare textures and render targets
let textures = [
(&mut backbuffer.0, RenderTarget::Backbuffer),
(&mut debug_texture.0, RenderTarget::Debug),
];
// Record timing for each system independently
let mut render_duration = None;
let mut debug_render_duration = None;
let result = canvas.with_multiple_texture_canvas(textures.iter(), |texture_canvas, render_target| match render_target {
RenderTarget::Backbuffer => {
let start_time = Instant::now();
render_system(
texture_canvas,
&map_texture,
&mut atlas,
&map,
&dirty,
&renderables,
&mut errors,
);
render_duration = Some(start_time.elapsed());
}
RenderTarget::Debug => {
if !debug_state.enabled {
return;
}
// Render all entities to the backbuffer
for (_, renderable, position) in renderables
.iter()
.sort_by_key::<(Entity, &Renderable, &Position), _>(|(_, renderable, _)| renderable.layer)
.rev()
{
let pos = position.get_pixel_position(&map.graph);
match pos {
Ok(pos) => {
let dest = Rect::from_center(
Point::from((pos.x as i32, pos.y as i32)),
renderable.sprite.size.x as u32,
renderable.sprite.size.y as u32,
);
let start_time = Instant::now();
renderable
.sprite
.render(backbuffer_canvas, &mut atlas, dest)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
}
Err(e) => {
errors.write(e);
}
}
}
})
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
debug_render_system(
texture_canvas,
&mut ttf_atlas,
&batched_lines,
&debug_state,
&timings,
&map,
&colliders,
&cursor,
);
debug_render_duration = Some(start_time.elapsed());
}
});
if let Err(e) = result {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Record timings for each system independently
if let Some(duration) = render_duration {
timings.add_timing(SystemId::Render, duration);
}
if let Some(duration) = debug_render_duration {
timings.add_timing(SystemId::DebugRender, duration);
}
}
pub fn present_system(

View File

@@ -1,5 +1,22 @@
use pacman::systems::profiling::{SystemId, SystemTimings};
use std::time::Duration;
use strum::IntoEnumIterator;
macro_rules! assert_close {
($actual:expr, $expected:expr, $concern:expr) => {
let tolerance = Duration::from_micros(500);
let diff = $actual.abs_diff($expected);
assert!(
diff < tolerance,
"Expected {expected:?} ± {tolerance:.0?}, got {actual:?}, off by {diff:?} ({concern})",
concern = $concern,
expected = $expected,
actual = $actual,
tolerance = tolerance,
diff = diff
);
};
}
#[test]
fn test_timing_statistics() {
@@ -15,30 +32,79 @@ fn test_timing_statistics() {
timings.add_timing(SystemId::Blinking, Duration::from_millis(2));
timings.add_timing(SystemId::Blinking, Duration::from_millis(1));
fn close_enough(a: Duration, b: Duration) -> bool {
if a > b {
a - b < Duration::from_micros(500) // 0.1ms
} else {
b - a < Duration::from_micros(500)
}
{
let stats = timings.get_stats();
let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap();
assert_close!(*avg, Duration::from_millis(10), "PlayerControls average timing");
assert_close!(*std_dev, Duration::from_millis(2), "PlayerControls standard deviation timing");
}
let stats = timings.get_stats();
let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap();
// Average should be 10ms, standard deviation should be small
assert!(close_enough(*avg, Duration::from_millis(10)), "avg: {:?}", avg);
assert!(close_enough(*std_dev, Duration::from_millis(2)), "std_dev: {:?}", std_dev);
let (total_avg, total_std) = timings.get_total_stats();
assert!(
close_enough(total_avg, Duration::from_millis(18)),
"total_avg: {:?}",
total_avg
);
assert!(
close_enough(total_std, Duration::from_millis(17)),
"total_std: {:?}",
total_std
);
{
let (total_avg, total_std) = timings.get_total_stats();
assert_close!(total_avg, Duration::from_millis(2), "Total average timing across all systems");
assert_close!(
total_std,
Duration::from_millis(7),
"Total standard deviation timing across all systems"
);
}
}
#[test]
fn test_default_zero_timing_for_unused_systems() {
let timings = SystemTimings::default();
// Add timing data for only one system
timings.add_timing(SystemId::PlayerControls, Duration::from_millis(5));
let stats = timings.get_stats();
// Verify all SystemId variants are present in the stats
let expected_count = SystemId::iter().count();
assert_eq!(stats.len(), expected_count, "All SystemId variants should be in stats");
// Verify that the system with data has non-zero timing
let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap();
assert_close!(*avg, Duration::from_millis(5), "System with data should have correct timing");
assert_close!(*std_dev, Duration::ZERO, "Single measurement should have zero std dev");
// Verify that all other systems have zero timing
for id in SystemId::iter() {
if id != SystemId::PlayerControls {
let (avg, std_dev) = stats.get(&id).unwrap();
assert_close!(
*avg,
Duration::ZERO,
format!("Unused system {:?} should have zero avg timing", id)
);
assert_close!(
*std_dev,
Duration::ZERO,
format!("Unused system {:?} should have zero std dev", id)
);
}
}
}
#[test]
fn test_pre_populated_timing_entries() {
let timings = SystemTimings::default();
// Verify that we can add timing to any SystemId without panicking
// (this would fail with the old implementation if the entry didn't exist)
for id in SystemId::iter() {
timings.add_timing(id, Duration::from_nanos(1));
}
// Verify all systems now have non-zero timing
let stats = timings.get_stats();
for id in SystemId::iter() {
let (avg, _) = stats.get(&id).unwrap();
assert!(
*avg > Duration::ZERO,
"System {:?} should have non-zero timing after add_timing",
id
);
}
}