Compare commits

..

4 Commits

11 changed files with 644 additions and 431 deletions

View File

@@ -1,4 +1,4 @@
//! This module provides a simple animation system for textures.
//! This module provides a simple animation and atlas system for textures.
use sdl2::{
rect::Rect,
render::{Canvas, Texture},
@@ -7,144 +7,75 @@ use sdl2::{
use crate::direction::Direction;
/// An animated texture, which is a texture that is rendered as a series of
/// frames.
///
/// This struct manages the state of an animated texture, including the current
/// frame and the number of frames in the animation.
pub struct AnimatedTexture<'a> {
// Parameters
raw_texture: Texture<'a>,
offset: (i32, i32),
ticks_per_frame: u32,
frame_count: u32,
width: u32,
height: u32,
// State
ticker: u32,
reversed: bool,
/// Trait for drawable atlas-based textures
pub trait FrameDrawn {
fn render(
&self,
canvas: &mut Canvas<Window>,
position: (i32, i32),
direction: Direction,
frame: Option<u32>,
);
}
impl<'a> AnimatedTexture<'a> {
/// A texture atlas abstraction for static (non-animated) rendering.
pub struct AtlasTexture<'a> {
pub raw_texture: Texture<'a>,
pub offset: (i32, i32),
pub frame_count: u32,
pub frame_width: u32,
pub frame_height: u32,
}
impl<'a> AtlasTexture<'a> {
pub fn new(
texture: Texture<'a>,
ticks_per_frame: u32,
frame_count: u32,
width: u32,
height: u32,
frame_width: u32,
frame_height: u32,
offset: Option<(i32, i32)>,
) -> Self {
AnimatedTexture {
AtlasTexture {
raw_texture: texture,
ticker: 0,
reversed: false,
ticks_per_frame,
frame_count,
width,
height,
frame_width,
frame_height,
offset: offset.unwrap_or((0, 0)),
}
}
fn current_frame(&self) -> u32 {
self.ticker / self.ticks_per_frame
}
/// Advances the animation by one tick.
///
/// This method updates the internal ticker that tracks the current frame
/// of the animation. The animation automatically reverses direction when
/// it reaches the end, creating a ping-pong effect.
///
/// When `reversed` is `false`, the ticker increments until it reaches
/// the total number of ticks for all frames, then reverses direction.
/// When `reversed` is `true`, the ticker decrements until it reaches 0,
/// then reverses direction again.
pub fn tick(&mut self) {
if self.reversed {
self.ticker -= 1;
if self.ticker == 0 {
self.reversed = !self.reversed;
}
} else {
self.ticker += 1;
if self.ticker + 1 == self.ticks_per_frame * self.frame_count {
self.reversed = !self.reversed;
}
}
}
/// Gets the source rectangle for a specific frame of the animated texture.
///
/// This method calculates the position and dimensions of a frame within the
/// texture atlas. Frames are arranged horizontally in a single row, so the
/// rectangle's x-coordinate is calculated by multiplying the frame index
/// by the frame width.
///
/// # Arguments
///
/// * `frame` - The frame index to get the rectangle for (0-based)
///
/// # Returns
///
/// A `Rect` representing the source rectangle for the specified frame
fn get_frame_rect(&self, frame: u32) -> Option<Rect> {
pub fn get_frame_rect(&self, frame: u32) -> Option<Rect> {
if frame >= self.frame_count {
return None;
}
Some(Rect::new(
frame as i32 * self.width as i32,
frame as i32 * self.frame_width as i32,
0,
self.width,
self.height,
self.frame_width,
self.frame_height,
))
}
pub fn render(
&mut self,
canvas: &mut Canvas<Window>,
position: (i32, i32),
direction: Direction,
) {
self.render_static(canvas, position, direction, Some(self.current_frame()));
self.tick();
pub fn set_color_modulation(&mut self, r: u8, g: u8, b: u8) {
self.raw_texture.set_color_mod(r, g, b);
}
}
/// Renders a specific frame of the animated texture to the canvas.
///
/// This method renders a static frame without advancing the animation ticker.
/// It's useful for displaying a specific frame, such as when an entity is stopped
/// or when you want to manually control which frame is displayed.
///
/// # Arguments
///
/// * `canvas` - The SDL canvas to render to
/// * `position` - The pixel position where the texture should be rendered
/// * `direction` - The direction to rotate the texture based on entity facing
/// * `frame` - Optional specific frame to render. If `None`, uses the current frame
///
/// # Panics
///
/// Panics if the specified frame is out of bounds for this texture.
pub fn render_static(
&mut self,
impl<'a> FrameDrawn for AtlasTexture<'a> {
fn render(
&self,
canvas: &mut Canvas<Window>,
position: (i32, i32),
direction: Direction,
frame: Option<u32>,
) {
let texture_source_frame_rect =
self.get_frame_rect(frame.unwrap_or_else(|| self.current_frame()));
let texture_source_frame_rect = self.get_frame_rect(frame.unwrap_or(0));
let canvas_destination_rect = Rect::new(
position.0 + self.offset.0,
position.1 + self.offset.1,
self.width,
self.height,
self.frame_width,
self.frame_height,
);
canvas
.copy_ex(
&self.raw_texture,
@@ -157,9 +88,83 @@ impl<'a> AnimatedTexture<'a> {
)
.expect("Could not render texture on canvas");
}
}
/// An animated texture using a texture atlas.
pub struct AnimatedAtlasTexture<'a> {
pub atlas: AtlasTexture<'a>,
pub ticks_per_frame: u32,
pub ticker: u32,
pub reversed: bool,
pub paused: bool,
}
impl<'a> AnimatedAtlasTexture<'a> {
pub fn new(
texture: Texture<'a>,
ticks_per_frame: u32,
frame_count: u32,
width: u32,
height: u32,
offset: Option<(i32, i32)>,
) -> Self {
AnimatedAtlasTexture {
atlas: AtlasTexture::new(texture, frame_count, width, height, offset),
ticks_per_frame,
ticker: 0,
reversed: false,
paused: false,
}
}
fn current_frame(&self) -> u32 {
self.ticker / self.ticks_per_frame
}
/// Advances the animation by one tick, unless paused.
pub fn tick(&mut self) {
if self.paused {
return;
}
if self.reversed {
if self.ticker > 0 {
self.ticker -= 1;
}
if self.ticker == 0 {
self.reversed = !self.reversed;
}
} else {
self.ticker += 1;
if self.ticker + 1 == self.ticks_per_frame * self.atlas.frame_count {
self.reversed = !self.reversed;
}
}
}
pub fn pause(&mut self) {
self.paused = true;
}
pub fn resume(&mut self) {
self.paused = false;
}
pub fn is_paused(&self) -> bool {
self.paused
}
/// Sets the color modulation for the texture.
pub fn set_color_modulation(&mut self, r: u8, g: u8, b: u8) {
self.raw_texture.set_color_mod(r, g, b);
self.atlas.set_color_modulation(r, g, b);
}
}
impl<'a> FrameDrawn for AnimatedAtlasTexture<'a> {
fn render(
&self,
canvas: &mut Canvas<Window>,
position: (i32, i32),
direction: Direction,
frame: Option<u32>,
) {
let frame = frame.unwrap_or_else(|| self.current_frame());
self.atlas.render(canvas, position, direction, Some(frame));
}
}

View File

@@ -36,6 +36,45 @@ pub enum MapTile {
Tunnel,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[repr(u8)]
pub enum FruitType {
Cherry,
Strawberry,
Orange,
Apple,
Melon,
Galaxian,
Bell,
Key,
}
impl FruitType {
pub const ALL: [FruitType; 8] = [
FruitType::Cherry,
FruitType::Strawberry,
FruitType::Orange,
FruitType::Apple,
FruitType::Melon,
FruitType::Galaxian,
FruitType::Bell,
FruitType::Key,
];
pub fn score(self) -> u32 {
match self {
FruitType::Cherry => 100,
FruitType::Strawberry => 300,
FruitType::Orange => 500,
FruitType::Apple => 700,
FruitType::Melon => 1000,
FruitType::Galaxian => 2000,
FruitType::Bell => 3000,
FruitType::Key => 5000,
}
}
}
/// The raw layout of the game board, as a 2D array of characters.
pub const RAW_BOARD: [&str; BOARD_HEIGHT as usize] = [
"############################",

80
src/debug.rs Normal file
View File

@@ -0,0 +1,80 @@
//! Debug rendering utilities for Pac-Man.
use crate::{
constants::{MapTile, BOARD_HEIGHT, BOARD_WIDTH},
direction::Direction,
ghosts::blinky::Blinky,
map::Map,
};
use sdl2::{pixels::Color, render::Canvas, video::Window};
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum DebugMode {
None,
Grid,
Pathfinding,
ValidPositions,
}
pub struct DebugRenderer;
impl DebugRenderer {
pub fn draw_cell(canvas: &mut Canvas<Window>, map: &Map, cell: (u32, u32), color: Color) {
let position = Map::cell_to_pixel(cell);
canvas.set_draw_color(color);
canvas
.draw_rect(sdl2::rect::Rect::new(
position.0 as i32,
position.1 as i32,
24,
24,
))
.expect("Could not draw rectangle");
}
pub fn draw_debug_grid(canvas: &mut Canvas<Window>, map: &Map, pacman_cell: (u32, u32)) {
for x in 0..BOARD_WIDTH {
for y in 0..BOARD_HEIGHT {
let tile = map.get_tile((x as i32, y as i32)).unwrap_or(MapTile::Empty);
let mut color = None;
if (x, y) == pacman_cell {
Self::draw_cell(canvas, map, (x, y), Color::CYAN);
} else {
color = match tile {
MapTile::Empty => None,
MapTile::Wall => Some(Color::BLUE),
MapTile::Pellet => Some(Color::RED),
MapTile::PowerPellet => Some(Color::MAGENTA),
MapTile::StartingPosition(_) => Some(Color::GREEN),
MapTile::Tunnel => Some(Color::CYAN),
};
}
if let Some(color) = color {
Self::draw_cell(canvas, map, (x, y), color);
}
}
}
}
pub fn draw_next_cell(canvas: &mut Canvas<Window>, map: &Map, next_cell: (u32, u32)) {
Self::draw_cell(canvas, map, next_cell, Color::YELLOW);
}
pub fn draw_valid_positions(canvas: &mut Canvas<Window>, map: &mut Map) {
let valid_positions_vec = map.get_valid_playable_positions().clone();
for &pos in &valid_positions_vec {
Self::draw_cell(canvas, map, (pos.x, pos.y), Color::RGB(255, 140, 0));
// ORANGE
}
}
pub fn draw_pathfinding(canvas: &mut Canvas<Window>, blinky: &Blinky, map: &Map) {
if let Some((path, _)) = blinky.get_path_to_target({
let (tx, ty) = blinky.get_target_tile();
(tx as u32, ty as u32)
}) {
for &(x, y) in &path {
Self::draw_cell(canvas, map, (x, y), Color::YELLOW);
}
}
}
}

90
src/edible.rs Normal file
View File

@@ -0,0 +1,90 @@
//! Edible entity for Pac-Man: pellets, power pellets, and fruits.
use crate::animation::{AtlasTexture, FrameDrawn};
use crate::constants::{FruitType, MapTile, BOARD_HEIGHT, BOARD_WIDTH};
use crate::direction::Direction;
use crate::entity::{Entity, Renderable};
use crate::map::Map;
use sdl2::{render::Canvas, video::Window};
use std::cell::RefCell;
use std::rc::Rc;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum EdibleKind {
Pellet,
PowerPellet,
Fruit(FruitType),
}
pub struct Edible<'a> {
pub base: crate::entity::StaticEntity,
pub kind: EdibleKind,
pub sprite: std::rc::Rc<AtlasTexture<'a>>,
}
impl<'a> Edible<'a> {
pub fn new(
kind: EdibleKind,
cell_position: (u32, u32),
sprite: std::rc::Rc<AtlasTexture<'a>>,
) -> Self {
let pixel_position = crate::map::Map::cell_to_pixel(cell_position);
Edible {
base: crate::entity::StaticEntity::new(pixel_position, cell_position),
kind,
sprite,
}
}
/// Checks collision with Pac-Man (or any entity)
pub fn collide(&self, pacman: &dyn crate::entity::Entity) -> bool {
self.base.is_colliding(pacman)
}
}
impl<'a> Entity for Edible<'a> {
fn base(&self) -> &crate::entity::StaticEntity {
&self.base
}
}
impl<'a> Renderable for Edible<'a> {
fn render(&self, canvas: &mut Canvas<Window>) {
self.sprite
.render(canvas, self.base.pixel_position, Direction::Right, Some(0));
}
}
/// Reconstruct all edibles from the original map layout
pub fn reconstruct_edibles<'a>(
map: Rc<RefCell<Map>>,
pellet_sprite: std::rc::Rc<AtlasTexture<'a>>,
power_pellet_sprite: std::rc::Rc<AtlasTexture<'a>>,
fruit_sprite: std::rc::Rc<AtlasTexture<'a>>,
) -> Vec<Edible<'a>> {
let mut edibles = Vec::new();
for x in 0..BOARD_WIDTH {
for y in 0..BOARD_HEIGHT {
let tile = map.borrow().get_tile((x as i32, y as i32));
let cell = (x, y);
match tile {
Some(MapTile::Pellet) => {
edibles.push(Edible::new(
EdibleKind::Pellet,
cell,
Rc::clone(&pellet_sprite),
));
}
Some(MapTile::PowerPellet) => {
edibles.push(Edible::new(
EdibleKind::PowerPellet,
cell,
Rc::clone(&power_pellet_sprite),
));
}
// Fruits can be added here if you have fruit positions
_ => {}
}
}
}
edibles
}

View File

@@ -9,8 +9,8 @@ use std::rc::Rc;
/// A trait for game objects that can be moved and rendered.
pub trait Entity {
/// Returns a reference to the base MovableEntity.
fn base(&self) -> &MovableEntity;
/// Returns a reference to the base entity (position, etc).
fn base(&self) -> &StaticEntity;
/// Returns true if the entity is colliding with the other entity.
fn is_colliding(&self, other: &dyn Entity) -> bool {
@@ -18,31 +18,45 @@ pub trait Entity {
let (other_x, other_y) = other.base().pixel_position;
x == other_x && y == other_y
}
}
/// Ticks the entity, which updates its state and position.
fn tick(&mut self);
/// A trait for entities that can move and interact with the map.
pub trait Moving {
fn move_forward(&mut self);
fn update_cell_position(&mut self);
fn next_cell(&self, direction: Option<Direction>) -> (i32, i32);
fn is_wall_ahead(&self, direction: Option<Direction>) -> bool;
fn handle_tunnel(&mut self) -> bool;
fn is_grid_aligned(&self) -> bool;
fn set_direction_if_valid(&mut self, new_direction: Direction) -> bool;
}
/// A struct for static (non-moving) entities with position only.
pub struct StaticEntity {
pub pixel_position: (i32, i32),
pub cell_position: (u32, u32),
}
impl StaticEntity {
pub fn new(pixel_position: (i32, i32), cell_position: (u32, u32)) -> Self {
Self {
pixel_position,
cell_position,
}
}
}
/// A struct for movable game entities with position, direction, speed, and modulation.
pub struct MovableEntity {
/// The absolute position of the entity on the board, in pixels.
pub pixel_position: (i32, i32),
/// The position of the entity on the board, in grid coordinates.
pub cell_position: (u32, u32),
/// The current direction of the entity.
pub base: StaticEntity,
pub direction: Direction,
/// Movement speed (pixels per tick).
pub speed: u32,
/// Movement modulator for controlling speed.
pub modulation: SimpleTickModulator,
/// Whether the entity is currently in a tunnel.
pub in_tunnel: bool,
/// Reference to the game map.
pub map: Rc<RefCell<Map>>,
}
impl MovableEntity {
/// Creates a new MovableEntity.
pub fn new(
pixel_position: (i32, i32),
cell_position: (u32, u32),
@@ -52,8 +66,7 @@ impl MovableEntity {
map: Rc<RefCell<Map>>,
) -> Self {
Self {
pixel_position,
cell_position,
base: StaticEntity::new(pixel_position, cell_position),
direction,
speed,
modulation,
@@ -65,89 +78,79 @@ impl MovableEntity {
/// Returns the position within the current cell, in pixels.
pub fn internal_position(&self) -> (u32, u32) {
(
self.pixel_position.0 as u32 % CELL_SIZE,
self.pixel_position.1 as u32 % CELL_SIZE,
self.base.pixel_position.0 as u32 % CELL_SIZE,
self.base.pixel_position.1 as u32 % CELL_SIZE,
)
}
}
/// Move the entity in its current direction by its speed.
pub fn move_forward(&mut self) {
impl Entity for MovableEntity {
fn base(&self) -> &StaticEntity {
&self.base
}
}
impl Moving for MovableEntity {
fn move_forward(&mut self) {
let speed = self.speed as i32;
match self.direction {
Direction::Right => self.pixel_position.0 += speed,
Direction::Left => self.pixel_position.0 -= speed,
Direction::Up => self.pixel_position.1 -= speed,
Direction::Down => self.pixel_position.1 += speed,
Direction::Right => self.base.pixel_position.0 += speed,
Direction::Left => self.base.pixel_position.0 -= speed,
Direction::Up => self.base.pixel_position.1 -= speed,
Direction::Down => self.base.pixel_position.1 += speed,
}
}
/// Updates the cell position based on the current pixel position.
pub fn update_cell_position(&mut self) {
self.cell_position = (
(self.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
fn update_cell_position(&mut self) {
self.base.cell_position = (
(self.base.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.base.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
);
}
/// Calculates the next cell in the given direction.
pub fn next_cell(&self, direction: Option<Direction>) -> (i32, i32) {
fn next_cell(&self, direction: Option<Direction>) -> (i32, i32) {
let (x, y) = direction.unwrap_or(self.direction).offset();
(
self.cell_position.0 as i32 + x,
self.cell_position.1 as i32 + y,
self.base.cell_position.0 as i32 + x,
self.base.cell_position.1 as i32 + y,
)
}
/// Returns true if the next cell in the given direction is a wall.
pub fn is_wall_ahead(&self, direction: Option<Direction>) -> bool {
fn is_wall_ahead(&self, direction: Option<Direction>) -> bool {
let next_cell = self.next_cell(direction);
matches!(self.map.borrow().get_tile(next_cell), Some(MapTile::Wall))
}
/// Handles tunnel movement and wrapping.
/// Returns true if the entity is in a tunnel and was handled.
pub fn handle_tunnel(&mut self) -> bool {
fn handle_tunnel(&mut self) -> bool {
if !self.in_tunnel {
let current_tile = self
.map
.borrow()
.get_tile((self.cell_position.0 as i32, self.cell_position.1 as i32));
let current_tile = self.map.borrow().get_tile((
self.base.cell_position.0 as i32,
self.base.cell_position.1 as i32,
));
if matches!(current_tile, Some(MapTile::Tunnel)) {
self.in_tunnel = true;
}
}
if self.in_tunnel {
// If out of bounds, teleport to the opposite side and exit tunnel
if self.cell_position.0 == 0 {
self.cell_position.0 = BOARD_WIDTH - 2;
self.pixel_position =
Map::cell_to_pixel((self.cell_position.0, self.cell_position.1));
if self.base.cell_position.0 == 0 {
self.base.cell_position.0 = BOARD_WIDTH - 2;
self.base.pixel_position =
Map::cell_to_pixel((self.base.cell_position.0, self.base.cell_position.1));
self.in_tunnel = false;
true
} else if self.cell_position.0 == BOARD_WIDTH - 1 {
self.cell_position.0 = 1;
self.pixel_position =
Map::cell_to_pixel((self.cell_position.0, self.cell_position.1));
} else if self.base.cell_position.0 == BOARD_WIDTH - 1 {
self.base.cell_position.0 = 1;
self.base.pixel_position =
Map::cell_to_pixel((self.base.cell_position.0, self.base.cell_position.1));
self.in_tunnel = false;
true
} else {
// Still in tunnel, keep moving
true
}
} else {
false
}
}
/// Returns true if the entity is aligned with the grid.
pub fn is_grid_aligned(&self) -> bool {
fn is_grid_aligned(&self) -> bool {
self.internal_position() == (0, 0)
}
/// Attempts to set the direction if the next cell is not a wall.
/// Returns true if the direction was changed.
pub fn set_direction_if_valid(&mut self, new_direction: Direction) -> bool {
fn set_direction_if_valid(&mut self, new_direction: Direction) -> bool {
if new_direction == self.direction {
return false;
}
@@ -159,8 +162,13 @@ impl MovableEntity {
}
}
impl Entity for StaticEntity {
fn base(&self) -> &StaticEntity {
self
}
}
/// A trait for entities that can be rendered to the screen.
pub trait Renderable {
/// Renders the entity to the canvas.
fn render(&mut self, canvas: &mut sdl2::render::Canvas<sdl2::video::Window>);
fn render(&self, canvas: &mut sdl2::render::Canvas<sdl2::video::Window>);
}

View File

@@ -14,6 +14,7 @@ use tracing::event;
use crate::audio::Audio;
use crate::{
animation::{AtlasTexture, FrameDrawn},
constants::{MapTile, BOARD_HEIGHT, BOARD_WIDTH, RAW_BOARD},
direction::Direction,
entity::{Entity, Renderable},
@@ -22,6 +23,9 @@ use crate::{
pacman::Pacman,
};
use crate::debug::{DebugMode, DebugRenderer};
use crate::edible::{reconstruct_edibles, Edible, EdibleKind};
// Embed texture data directly into the executable
static PACMAN_TEXTURE_DATA: &[u8] = include_bytes!("../assets/32/pacman.png");
static PELLET_TEXTURE_DATA: &[u8] = include_bytes!("../assets/24/pellet.png");
@@ -37,27 +41,19 @@ static GHOST_EYES_TEXTURE_DATA: &[u8] = include_bytes!("../assets/32/ghost_eyes.
///
/// This struct contains all the information necessary to run the game, including
/// the canvas, textures, fonts, game objects, and the current score.
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum DebugMode {
None,
Grid,
Pathfinding,
ValidPositions,
}
pub struct Game<'a> {
canvas: &'a mut Canvas<Window>,
map_texture: Texture<'a>,
pellet_texture: Texture<'a>,
power_pellet_texture: Texture<'a>,
pellet_texture: Rc<AtlasTexture<'a>>,
power_pellet_texture: Rc<AtlasTexture<'a>>,
font: Font<'a, 'static>,
pacman: Rc<RefCell<Pacman<'a>>>,
map: Rc<std::cell::RefCell<Map>>,
debug_mode: DebugMode,
score: u32,
audio: crate::audio::Audio,
// Add ghost
blinky: Blinky<'a>,
edibles: Vec<Edible<'a>>,
}
impl Game<'_> {
@@ -105,14 +101,24 @@ impl Game<'_> {
);
// Load pellet texture from embedded data
let pellet_texture = texture_creator
.load_texture_bytes(PELLET_TEXTURE_DATA)
.expect("Could not load pellet texture from embedded data");
// Load power pellet texture from embedded data
let power_pellet_texture = texture_creator
.load_texture_bytes(POWER_PELLET_TEXTURE_DATA)
.expect("Could not load power pellet texture from embedded data");
let pellet_texture = Rc::new(AtlasTexture::new(
texture_creator
.load_texture_bytes(PELLET_TEXTURE_DATA)
.expect("Could not load pellet texture from embedded data"),
1,
24,
24,
None,
));
let power_pellet_texture = Rc::new(AtlasTexture::new(
texture_creator
.load_texture_bytes(POWER_PELLET_TEXTURE_DATA)
.expect("Could not load power pellet texture from embedded data"),
1,
24,
24,
None,
));
// Load font from embedded data
let font_rwops = RWops::from_bytes(FONT_DATA).expect("Failed to create RWops for font");
@@ -128,6 +134,13 @@ impl Game<'_> {
.expect("Could not load map texture from embedded data");
map_texture.set_color_mod(0, 0, 255);
let edibles = reconstruct_edibles(
Rc::clone(&map),
Rc::clone(&pellet_texture),
Rc::clone(&power_pellet_texture),
Rc::clone(&pellet_texture), // placeholder for fruit sprite
);
Game {
canvas,
pacman,
@@ -140,6 +153,7 @@ impl Game<'_> {
score: 0,
audio,
blinky,
edibles,
}
}
@@ -151,7 +165,10 @@ impl Game<'_> {
pub fn keyboard_event(&mut self, keycode: Keycode) {
// Change direction
let direction = Direction::from_keycode(keycode);
self.pacman.borrow_mut().next_direction = direction;
if direction.is_some() {
self.pacman.borrow_mut().next_direction = direction;
return;
}
// Toggle debug mode
if keycode == Keycode::Space {
@@ -161,11 +178,13 @@ impl Game<'_> {
DebugMode::Pathfinding => DebugMode::ValidPositions,
DebugMode::ValidPositions => DebugMode::None,
};
return;
}
// Reset game
if keycode == Keycode::R {
self.reset();
return;
}
}
@@ -189,72 +208,76 @@ impl Game<'_> {
// Reset the score
self.score = 0;
// Get valid positions from the cached flood fill
let mut map = self.map.borrow_mut();
let valid_positions = map.get_valid_playable_positions();
let mut rng = rand::rng();
// Get valid positions from the cached flood fill and randomize positions in a single block
{
let mut map = self.map.borrow_mut();
let valid_positions = map.get_valid_playable_positions();
let mut rng = rand::rng();
// Randomize Pac-Man position
if let Some(pos) = valid_positions.iter().choose(&mut rng) {
let mut pacman = self.pacman.borrow_mut();
pacman.base.pixel_position = Map::cell_to_pixel((pos.x, pos.y));
pacman.base.cell_position = (pos.x, pos.y);
pacman.base.in_tunnel = false;
pacman.base.direction = Direction::Right;
pacman.next_direction = None;
pacman.stopped = false;
// Randomize Pac-Man position
if let Some(pos) = valid_positions.iter().choose(&mut rng) {
let mut pacman = self.pacman.borrow_mut();
pacman.base.base.pixel_position = Map::cell_to_pixel((pos.x, pos.y));
pacman.base.base.cell_position = (pos.x, pos.y);
pacman.base.in_tunnel = false;
pacman.base.direction = Direction::Right;
pacman.next_direction = None;
pacman.stopped = false;
}
// Randomize ghost position
if let Some(pos) = valid_positions.iter().choose(&mut rng) {
self.blinky.base.base.pixel_position = Map::cell_to_pixel((pos.x, pos.y));
self.blinky.base.base.cell_position = (pos.x, pos.y);
self.blinky.base.in_tunnel = false;
self.blinky.base.direction = Direction::Left;
self.blinky.mode = crate::ghost::GhostMode::Chase;
}
}
// Randomize ghost position
if let Some(pos) = valid_positions.iter().choose(&mut rng) {
self.blinky.base.pixel_position = Map::cell_to_pixel((pos.x, pos.y));
self.blinky.base.cell_position = (pos.x, pos.y);
self.blinky.base.in_tunnel = false;
self.blinky.base.direction = Direction::Left;
self.blinky.mode = crate::ghost::GhostMode::Chase;
}
self.edibles = reconstruct_edibles(
Rc::clone(&self.map),
Rc::clone(&self.pellet_texture),
Rc::clone(&self.power_pellet_texture),
Rc::clone(&self.pellet_texture), // placeholder for fruit sprite
);
}
/// Advances the game by one tick.
pub fn tick(&mut self) {
self.check_pellet_eating();
self.pacman.borrow_mut().tick();
self.blinky.tick();
}
// Advance animation frames for Pacman and Blinky
self.pacman.borrow_mut().sprite.tick();
self.blinky.body_sprite.tick();
self.blinky.eyes_sprite.tick();
/// Checks if Pac-Man is currently eating a pellet and updates the game state
/// accordingly.
fn check_pellet_eating(&mut self) {
let cell_pos = self.pacman.borrow().base.cell_position;
// Check if there's a pellet at the current position
let tile = {
let map = self.map.borrow();
map.get_tile((cell_pos.0 as i32, cell_pos.1 as i32))
};
if let Some(tile) = tile {
let pellet_value = match tile {
MapTile::Pellet => Some(10),
MapTile::PowerPellet => Some(50),
_ => None,
};
if let Some(value) = pellet_value {
{
let mut map = self.map.borrow_mut();
map.set_tile((cell_pos.0 as i32, cell_pos.1 as i32), MapTile::Empty);
}
self.add_score(value);
self.audio.eat();
event!(
tracing::Level::DEBUG,
"Pellet eaten at ({}, {})",
cell_pos.0,
cell_pos.1
);
let pacman = self.pacman.borrow();
let mut eaten_indices = vec![];
for (i, edible) in self.edibles.iter().enumerate() {
if edible.collide(&*pacman) {
eaten_indices.push(i);
}
}
drop(pacman); // Release immutable borrow before mutably borrowing self
for &i in eaten_indices.iter().rev() {
let edible = &self.edibles[i];
match edible.kind {
EdibleKind::Pellet => {
self.add_score(10);
self.audio.eat();
}
EdibleKind::PowerPellet => {
self.add_score(50);
self.audio.eat();
}
EdibleKind::Fruit(_fruit) => {
self.add_score(100);
self.audio.eat();
}
}
self.edibles.remove(i);
}
self.pacman.borrow_mut().tick();
self.blinky.tick();
}
/// Draws the entire game to the canvas.
@@ -268,33 +291,13 @@ impl Game<'_> {
.copy(&self.map_texture, None, None)
.expect("Could not render texture on canvas");
// Render pellets
for x in 0..BOARD_WIDTH {
for y in 0..BOARD_HEIGHT {
let tile = self
.map
.borrow()
.get_tile((x as i32, y as i32))
.unwrap_or(MapTile::Empty);
let texture = match tile {
MapTile::Pellet => Some(&self.pellet_texture),
MapTile::PowerPellet => Some(&self.power_pellet_texture),
_ => None,
};
if let Some(texture) = texture {
let position = Map::cell_to_pixel((x, y));
let dst_rect = sdl2::rect::Rect::new(position.0, position.1, 24, 24);
self.canvas
.copy(texture, None, Some(dst_rect))
.expect("Could not render pellet");
}
}
// Render all edibles
for edible in &self.edibles {
edible.render(self.canvas);
}
// Render Pac-Man
self.pacman.borrow_mut().render(self.canvas);
self.pacman.borrow().render(self.canvas);
// Render ghost
self.blinky.render(self.canvas);
@@ -303,88 +306,34 @@ impl Game<'_> {
self.render_ui();
// Draw the debug grid
if self.debug_mode == DebugMode::Grid {
for x in 0..BOARD_WIDTH {
for y in 0..BOARD_HEIGHT {
let tile = self
.map
.borrow()
.get_tile((x as i32, y as i32))
.unwrap_or(MapTile::Empty);
let mut color = None;
if (x, y) == self.pacman.borrow().base.cell_position {
self.draw_cell((x, y), Color::CYAN);
} else {
color = match tile {
MapTile::Empty => None,
MapTile::Wall => Some(Color::BLUE),
MapTile::Pellet => Some(Color::RED),
MapTile::PowerPellet => Some(Color::MAGENTA),
MapTile::StartingPosition(_) => Some(Color::GREEN),
MapTile::Tunnel => Some(Color::CYAN),
};
}
if let Some(color) = color {
self.draw_cell((x, y), color);
}
}
match self.debug_mode {
DebugMode::Grid => {
DebugRenderer::draw_debug_grid(
self.canvas,
&self.map.borrow(),
self.pacman.borrow().base.base.cell_position,
);
let next_cell =
<Pacman as crate::entity::Moving>::next_cell(&*self.pacman.borrow(), None);
DebugRenderer::draw_next_cell(
self.canvas,
&self.map.borrow(),
(next_cell.0 as u32, next_cell.1 as u32),
);
}
// Draw the next cell
let next_cell = self.pacman.borrow().base.next_cell(None);
self.draw_cell((next_cell.0 as u32, next_cell.1 as u32), Color::YELLOW);
}
// Show valid playable positions
if self.debug_mode == DebugMode::ValidPositions {
let valid_positions_vec = {
let mut map = self.map.borrow_mut();
map.get_valid_playable_positions().clone()
};
for &pos in &valid_positions_vec {
self.draw_cell((pos.x, pos.y), Color::RGB(255, 140, 0)); // ORANGE
DebugMode::ValidPositions => {
DebugRenderer::draw_valid_positions(self.canvas, &mut self.map.borrow_mut());
}
}
// Pathfinding debug mode
if self.debug_mode == DebugMode::Pathfinding {
// Show the current path for Blinky
if let Some((path, _)) = self.blinky.get_path_to_target({
let (tx, ty) = self.blinky.get_target_tile();
(tx as u32, ty as u32)
}) {
for &(x, y) in &path {
self.draw_cell((x, y), Color::YELLOW);
}
DebugMode::Pathfinding => {
DebugRenderer::draw_pathfinding(self.canvas, &self.blinky, &self.map.borrow());
}
DebugMode::None => {}
}
// Present the canvas
self.canvas.present();
}
/// Draws a single cell to the canvas with the given color.
///
/// # Arguments
///
/// * `cell` - The cell to draw, in grid coordinates.
/// * `color` - The color to draw the cell with.
fn draw_cell(&mut self, cell: (u32, u32), color: Color) {
let position = Map::cell_to_pixel(cell);
self.canvas.set_draw_color(color);
self.canvas
.draw_rect(sdl2::rect::Rect::new(
position.0 as i32,
position.1 as i32,
24,
24,
))
.expect("Could not draw rectangle");
}
/// Renders the user interface, including the score and lives.
fn render_ui(&mut self) {
let lives = 3;

View File

@@ -2,10 +2,10 @@ use pathfinding::prelude::dijkstra;
use rand::Rng;
use crate::{
animation::AnimatedTexture,
animation::{AnimatedAtlasTexture, FrameDrawn},
constants::{MapTile, BOARD_WIDTH},
direction::Direction,
entity::{Entity, MovableEntity, Renderable},
entity::{Entity, MovableEntity, Moving, Renderable, StaticEntity},
map::Map,
modulation::{SimpleTickModulator, TickModulator},
pacman::Pacman,
@@ -57,10 +57,8 @@ pub struct Ghost<'a> {
pub ghost_type: GhostType,
/// Reference to Pac-Man for targeting
pub pacman: std::rc::Rc<std::cell::RefCell<Pacman<'a>>>,
/// Ghost body sprite
body_sprite: AnimatedTexture<'a>,
/// Ghost eyes sprite
eyes_sprite: AnimatedTexture<'a>,
pub body_sprite: AnimatedAtlasTexture<'a>,
pub eyes_sprite: AnimatedAtlasTexture<'a>,
}
impl Ghost<'_> {
@@ -74,7 +72,7 @@ impl Ghost<'_> {
pacman: std::rc::Rc<std::cell::RefCell<Pacman<'a>>>,
) -> Ghost<'a> {
let color = ghost_type.color();
let mut body_sprite = AnimatedTexture::new(body_texture, 8, 2, 32, 32, Some((-4, -4)));
let mut body_sprite = AnimatedAtlasTexture::new(body_texture, 8, 2, 32, 32, Some((-4, -4)));
body_sprite.set_color_modulation(color.r, color.g, color.b);
let pixel_position = Map::cell_to_pixel(starting_position);
Ghost {
@@ -90,7 +88,7 @@ impl Ghost<'_> {
ghost_type,
pacman,
body_sprite,
eyes_sprite: AnimatedTexture::new(eyes_texture, 1, 4, 32, 32, Some((-4, -4))),
eyes_sprite: AnimatedAtlasTexture::new(eyes_texture, 1, 4, 32, 32, Some((-4, -4))),
}
}
@@ -162,7 +160,6 @@ impl Ghost<'_> {
/// Gets this ghost's chase mode target (to be implemented by each ghost type)
fn get_chase_target(&self) -> (i32, i32) {
// Default implementation just targets Pac-Man directly
let pacman = self.pacman.borrow();
let cell = pacman.base().cell_position;
(cell.0 as i32, cell.1 as i32)
@@ -170,7 +167,7 @@ impl Ghost<'_> {
/// Calculates the path to the target tile using the A* algorithm.
pub fn get_path_to_target(&self, target: (u32, u32)) -> Option<(Vec<(u32, u32)>, u32)> {
let start = self.base.cell_position;
let start = self.base.base.cell_position;
let map = self.base.map.borrow();
dijkstra(
@@ -229,14 +226,8 @@ impl Ghost<'_> {
.set_direction_if_valid(self.base.direction.opposite());
}
}
}
impl Entity for Ghost<'_> {
fn base(&self) -> &MovableEntity {
&self.base
}
fn tick(&mut self) {
pub fn tick(&mut self) {
if self.mode == GhostMode::House {
// For now, do nothing in the house
return;
@@ -253,7 +244,7 @@ impl Entity for Ghost<'_> {
{
if path.len() > 1 {
let next_move = path[1];
let (x, y) = self.base.cell_position;
let (x, y) = self.base.base.cell_position;
let dx = next_move.0 as i32 - x as i32;
let dy = next_move.1 as i32 - y as i32;
let new_direction = if dx > 0 {
@@ -286,23 +277,35 @@ impl Entity for Ghost<'_> {
}
}
impl<'a> Moving for Ghost<'a> {
fn move_forward(&mut self) {
self.base.move_forward();
}
fn update_cell_position(&mut self) {
self.base.update_cell_position();
}
fn next_cell(&self, direction: Option<Direction>) -> (i32, i32) {
self.base.next_cell(direction)
}
fn is_wall_ahead(&self, direction: Option<Direction>) -> bool {
self.base.is_wall_ahead(direction)
}
fn handle_tunnel(&mut self) -> bool {
self.base.handle_tunnel()
}
fn is_grid_aligned(&self) -> bool {
self.base.is_grid_aligned()
}
fn set_direction_if_valid(&mut self, new_direction: Direction) -> bool {
self.base.set_direction_if_valid(new_direction)
}
}
impl Renderable for Ghost<'_> {
fn render(&mut self, canvas: &mut sdl2::render::Canvas<sdl2::video::Window>) {
// Render body
if self.mode != GhostMode::Eyes {
let color = if self.mode == GhostMode::Frightened {
sdl2::pixels::Color::RGB(0, 0, 255)
} else {
self.ghost_type.color()
};
self.body_sprite
.set_color_modulation(color.r, color.g, color.b);
self.body_sprite
.render(canvas, self.base.pixel_position, Direction::Right);
}
// Always render eyes on top
fn render(&self, canvas: &mut sdl2::render::Canvas<sdl2::video::Window>) {
let pos = self.base.base.pixel_position;
self.body_sprite.render(canvas, pos, Direction::Right, None);
// Inline the eye_frame logic here
let eye_frame = if self.mode == GhostMode::Frightened {
4 // Frightened frame
} else {
@@ -313,12 +316,7 @@ impl Renderable for Ghost<'_> {
Direction::Down => 3,
}
};
self.eyes_sprite.render_static(
canvas,
self.base.pixel_position,
Direction::Right,
Some(eye_frame),
);
self.eyes_sprite
.render(canvas, pos, Direction::Right, Some(eye_frame));
}
}

View File

@@ -46,22 +46,44 @@ impl<'a> Blinky<'a> {
self.ghost.set_mode(mode);
}
pub fn render(&mut self, canvas: &mut Canvas<Window>) {
Renderable::render(&mut self.ghost, canvas);
pub fn tick(&mut self) {
self.ghost.tick();
}
}
impl<'a> Entity for Blinky<'a> {
fn base(&self) -> &MovableEntity {
self.ghost.base()
impl<'a> crate::entity::Entity for Blinky<'a> {
fn base(&self) -> &crate::entity::StaticEntity {
self.ghost.base.base()
}
}
fn is_colliding(&self, other: &dyn Entity) -> bool {
self.ghost.is_colliding(other)
impl<'a> crate::entity::Renderable for Blinky<'a> {
fn render(&self, canvas: &mut Canvas<Window>) {
self.ghost.render(canvas);
}
}
fn tick(&mut self) {
self.ghost.tick()
impl<'a> crate::entity::Moving for Blinky<'a> {
fn move_forward(&mut self) {
self.ghost.move_forward();
}
fn update_cell_position(&mut self) {
self.ghost.update_cell_position();
}
fn next_cell(&self, direction: Option<crate::direction::Direction>) -> (i32, i32) {
self.ghost.next_cell(direction)
}
fn is_wall_ahead(&self, direction: Option<crate::direction::Direction>) -> bool {
self.ghost.is_wall_ahead(direction)
}
fn handle_tunnel(&mut self) -> bool {
self.ghost.handle_tunnel()
}
fn is_grid_aligned(&self) -> bool {
self.ghost.is_grid_aligned()
}
fn set_direction_if_valid(&mut self, new_direction: crate::direction::Direction) -> bool {
self.ghost.set_direction_if_valid(new_direction)
}
}

View File

@@ -64,6 +64,8 @@ mod helper;
mod map;
mod modulation;
mod pacman;
mod debug;
mod edible;
/// The main entry point of the application.
///

View File

@@ -28,6 +28,12 @@ impl Add<SignedPosition> for Position {
}
}
impl PartialEq<(u32, u32)> for Position {
fn eq(&self, other: &(u32, u32)) -> bool {
self.x == other.0 && self.y == other.1
}
}
impl Position {
pub fn as_i32(&self) -> (i32, i32) {
(self.x as i32, self.y as i32)

View File

@@ -9,9 +9,9 @@ use sdl2::{
use tracing::event;
use crate::{
animation::AnimatedTexture,
animation::{AnimatedAtlasTexture, FrameDrawn},
direction::Direction,
entity::{Entity, MovableEntity, Renderable},
entity::{Entity, MovableEntity, Moving, Renderable, StaticEntity},
map::Map,
modulation::{SimpleTickModulator, TickModulator},
};
@@ -24,7 +24,37 @@ pub struct Pacman<'a> {
pub next_direction: Option<Direction>,
/// Whether Pac-Man is currently stopped.
pub stopped: bool,
sprite: AnimatedTexture<'a>,
pub sprite: AnimatedAtlasTexture<'a>,
}
impl<'a> Entity for Pacman<'a> {
fn base(&self) -> &StaticEntity {
&self.base.base
}
}
impl<'a> Moving for Pacman<'a> {
fn move_forward(&mut self) {
self.base.move_forward();
}
fn update_cell_position(&mut self) {
self.base.update_cell_position();
}
fn next_cell(&self, direction: Option<Direction>) -> (i32, i32) {
self.base.next_cell(direction)
}
fn is_wall_ahead(&self, direction: Option<Direction>) -> bool {
self.base.is_wall_ahead(direction)
}
fn handle_tunnel(&mut self) -> bool {
self.base.handle_tunnel()
}
fn is_grid_aligned(&self) -> bool {
self.base.is_grid_aligned()
}
fn set_direction_if_valid(&mut self, new_direction: Direction) -> bool {
self.base.set_direction_if_valid(new_direction)
}
}
impl Pacman<'_> {
@@ -46,7 +76,7 @@ impl Pacman<'_> {
),
next_direction: None,
stopped: false,
sprite: AnimatedTexture::new(atlas, 2, 3, 32, 32, Some((-4, -4))),
sprite: AnimatedAtlasTexture::new(atlas, 2, 3, 32, 32, Some((-4, -4))),
}
}
@@ -55,7 +85,7 @@ impl Pacman<'_> {
match self.next_direction {
None => return false,
Some(next_direction) => {
if self.base.set_direction_if_valid(next_direction) {
if <Pacman as Moving>::set_direction_if_valid(self, next_direction) {
self.next_direction = None;
return true;
}
@@ -69,53 +99,37 @@ impl Pacman<'_> {
let (x, y) = self.base.internal_position();
((x / 2u32) * 2u32, (y / 2u32) * 2u32)
}
}
impl Entity for Pacman<'_> {
fn base(&self) -> &MovableEntity {
&self.base
}
fn tick(&mut self) {
pub fn tick(&mut self) {
let can_change = self.internal_position_even() == (0, 0);
if can_change {
self.base.update_cell_position();
if !self.base.handle_tunnel() {
// Handle direction change as normal if not in tunnel
<Pacman as Moving>::update_cell_position(self);
if !<Pacman as Moving>::handle_tunnel(self) {
self.handle_direction_change();
// Check if the next tile in the current direction is a wall
if !self.stopped && self.base.is_wall_ahead(None) {
if !self.stopped && <Pacman as Moving>::is_wall_ahead(self, None) {
self.stopped = true;
} else if self.stopped && !self.base.is_wall_ahead(None) {
} else if self.stopped && !<Pacman as Moving>::is_wall_ahead(self, None) {
self.stopped = false;
}
}
}
if !self.stopped && self.base.modulation.next() {
self.base.move_forward();
<Pacman as Moving>::move_forward(self);
if self.internal_position_even() == (0, 0) {
self.base.update_cell_position();
<Pacman as Moving>::update_cell_position(self);
}
}
}
}
impl Renderable for Pacman<'_> {
fn render(&mut self, canvas: &mut Canvas<Window>) {
fn render(&self, canvas: &mut Canvas<Window>) {
let pos = self.base.base.pixel_position;
let dir = self.base.direction;
if self.stopped {
self.sprite.render_static(
canvas,
self.base.pixel_position,
self.base.direction,
Some(2),
);
self.sprite.render(canvas, pos, dir, Some(2));
} else {
self.sprite
.render(canvas, self.base.pixel_position, self.base.direction);
self.sprite.render(canvas, pos, dir, None);
}
}
}