Files
v1.xevion.dev/app/spotify_explicit/process.py
2020-03-08 20:21:18 -05:00

121 lines
3.9 KiB
Python

import json
import logging
import os
import dateutil.parser
import matplotlib.pyplot as plt
import numpy as np
# Gets all files in tracks folder, returns them in parsed JSON
def get_files():
folder = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tracks')
files = []
for file in os.listdir(folder):
with open(os.path.join(os.path.join(folder, file))) as file:
files.append(
json.load(file)
)
return files
# Simple function to combine a bunch of items from different files
def combine_files(files):
items = []
for file in files:
items.extend(file['items'])
return items
# Prints the data in a interesting format
def print_data(data):
for i, item in enumerate(data):
date = dateutil.parser.parse(item['added_at'])
explicit = '!' if item['track']['explicit'] else ' '
track_name = item['track']['name']
artists = ' & '.join(artist['name'] for artist in item['track']['artists'])
print('[{}] {} "{}" by {}'.format(date, explicit, track_name, artists))
def process_data(data):
# Process the data by Month/Year, then by Clean/Explicit
scores = {}
for item in data:
date = dateutil.parser.parse(item['added_at']).strftime('%b %Y')
if date not in scores.keys():
scores[date] = [0, 0]
scores[date][1 if item['track']['explicit'] else 0] += 1
# Create simplified arrays for each piece of data
months = list(scores.keys())[::-1]
clean, explicit = [], []
for item in list(scores.values())[::-1]:
clean.append(item[0])
explicit.append(item[1])
# Done processing date properly, start plotting work
logging.info('Processed data, creating plot from data')
# Weird numpy stuff
n = len(scores.values())
ind = np.arange(n)
width = 0.55
# Resizer figuresize to be 2.0 wider
plt.figure(figsize=(10.0, 6.0))
# Stacked Bars
p1 = plt.bar(ind, explicit, width)
p2 = plt.bar(ind, clean, width, bottom=explicit) # bottom= just has the bar sit on top of the explicit
# Plot labeling
plt.title('Song Count by Clean/Explicit')
plt.ylabel('Song Count')
plt.xlabel('Month')
plt.xticks(ind, months, rotation=270) # Rotation 90 will have the
plt.legend((p1[0], p2[0]), ('Explicit', 'Clean'))
fig = plt.gcf() # Magic to save to image and then show
# Save the figure, overwriting anything in your way
logging.info('Saving the figure to the \'export\' folder')
export_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'export')
if not os.path.exists(export_folder):
os.makedirs(export_folder)
plt.tight_layout()
fig.savefig(
os.path.join(
export_folder,
'export'
# datetime.datetime.now().strftime('%Y-%m-%d %H-%M-%S')
),
dpi=100,
quality=95
)
# Finally show the figure to
logging.info('Showing plot to User')
# plt.show()
# Copy the figure to your clipboard to paste in Excel
# logging.info('Copying the plot data to clipboard')
# copy(months, clean, explicit)
# Simple method for exporting data to a table like format
# Will paste into Excel very easily
def copy(months, clean, explicit):
from pyperclip import copy
top = 'Period\tClean\tExplicit\n'
copy(top + '\n'.join([
f'{item[0]}\t{item[1]}\t{item[2]}' for item in zip(months, clean, explicit)
]))
def main():
# logging.basicConfig(level=logging.INFO)
logging.info("Reading track files")
files = get_files()
logging.info(f"Read and parse {len(files)} track files")
logging.info("Combining into single track file for ease of access")
data = combine_files(files)
data.sort(key=lambda item: dateutil.parser.parse(item['added_at']).timestamp(), reverse=True)
logging.info(f'File combined with {len(data)} items')
logging.info('Processing file...')
process_data(data)