mirror of
https://github.com/Xevion/exercism.git
synced 2025-12-06 01:14:56 -06:00
spiral matrix and prime factors exercise
This commit is contained in:
1
python/prime-factors/.exercism/metadata.json
Normal file
1
python/prime-factors/.exercism/metadata.json
Normal file
@@ -0,0 +1 @@
|
||||
{"track":"python","exercise":"prime-factors","id":"8594f50d455a42c2bcaaf99a23da57ec","url":"https://exercism.io/my/solutions/8594f50d455a42c2bcaaf99a23da57ec","handle":"Xevion","is_requester":true,"auto_approve":false}
|
||||
79
python/prime-factors/README.md
Normal file
79
python/prime-factors/README.md
Normal file
@@ -0,0 +1,79 @@
|
||||
# Prime Factors
|
||||
|
||||
Compute the prime factors of a given natural number.
|
||||
|
||||
A prime number is only evenly divisible by itself and 1.
|
||||
|
||||
Note that 1 is not a prime number.
|
||||
|
||||
## Example
|
||||
|
||||
What are the prime factors of 60?
|
||||
|
||||
- Our first divisor is 2. 2 goes into 60, leaving 30.
|
||||
- 2 goes into 30, leaving 15.
|
||||
- 2 doesn't go cleanly into 15. So let's move on to our next divisor, 3.
|
||||
- 3 goes cleanly into 15, leaving 5.
|
||||
- 3 does not go cleanly into 5. The next possible factor is 4.
|
||||
- 4 does not go cleanly into 5. The next possible factor is 5.
|
||||
- 5 does go cleanly into 5.
|
||||
- We're left only with 1, so now, we're done.
|
||||
|
||||
Our successful divisors in that computation represent the list of prime
|
||||
factors of 60: 2, 2, 3, and 5.
|
||||
|
||||
You can check this yourself:
|
||||
|
||||
- 2 * 2 * 3 * 5
|
||||
- = 4 * 15
|
||||
- = 60
|
||||
- Success!
|
||||
|
||||
## Exception messages
|
||||
|
||||
Sometimes it is necessary to raise an exception. When you do this, you should include a meaningful error message to
|
||||
indicate what the source of the error is. This makes your code more readable and helps significantly with debugging. Not
|
||||
every exercise will require you to raise an exception, but for those that do, the tests will only pass if you include
|
||||
a message.
|
||||
|
||||
To raise a message with an exception, just write it as an argument to the exception type. For example, instead of
|
||||
`raise Exception`, you should write:
|
||||
|
||||
```python
|
||||
raise Exception("Meaningful message indicating the source of the error")
|
||||
```
|
||||
|
||||
## Running the tests
|
||||
|
||||
To run the tests, run the appropriate command below ([why they are different](https://github.com/pytest-dev/pytest/issues/1629#issue-161422224)):
|
||||
|
||||
- Python 2.7: `py.test prime_factors_test.py`
|
||||
- Python 3.4+: `pytest prime_factors_test.py`
|
||||
|
||||
Alternatively, you can tell Python to run the pytest module (allowing the same command to be used regardless of Python version):
|
||||
`python -m pytest prime_factors_test.py`
|
||||
|
||||
### Common `pytest` options
|
||||
|
||||
- `-v` : enable verbose output
|
||||
- `-x` : stop running tests on first failure
|
||||
- `--ff` : run failures from previous test before running other test cases
|
||||
|
||||
For other options, see `python -m pytest -h`
|
||||
|
||||
## Submitting Exercises
|
||||
|
||||
Note that, when trying to submit an exercise, make sure the solution is in the `$EXERCISM_WORKSPACE/python/prime-factors` directory.
|
||||
|
||||
You can find your Exercism workspace by running `exercism debug` and looking for the line that starts with `Workspace`.
|
||||
|
||||
For more detailed information about running tests, code style and linting,
|
||||
please see [Running the Tests](http://exercism.io/tracks/python/tests).
|
||||
|
||||
## Source
|
||||
|
||||
The Prime Factors Kata by Uncle Bob [http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata](http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata)
|
||||
|
||||
## Submitting Incomplete Solutions
|
||||
|
||||
It's possible to submit an incomplete solution so you can see how others have completed the exercise.
|
||||
8
python/prime-factors/prime_factors.py
Normal file
8
python/prime-factors/prime_factors.py
Normal file
@@ -0,0 +1,8 @@
|
||||
def factors(value):
|
||||
factors, n = [], 2
|
||||
while value > 1:
|
||||
while value % n == 0:
|
||||
factors.append(n)
|
||||
value /= n
|
||||
n += 1
|
||||
return factors
|
||||
32
python/prime-factors/prime_factors_test.py
Normal file
32
python/prime-factors/prime_factors_test.py
Normal file
@@ -0,0 +1,32 @@
|
||||
import unittest
|
||||
|
||||
from prime_factors import factors
|
||||
|
||||
|
||||
# Tests adapted from `problem-specifications//canonical-data.json` @ v1.1.0
|
||||
|
||||
class PrimeFactorsTest(unittest.TestCase):
|
||||
def test_no_factors(self):
|
||||
self.assertEqual(factors(1), [])
|
||||
|
||||
def test_prime_number(self):
|
||||
self.assertEqual(factors(2), [2])
|
||||
|
||||
def test_square_of_a_prime(self):
|
||||
self.assertEqual(factors(9), [3, 3])
|
||||
|
||||
def test_cube_of_a_prime(self):
|
||||
self.assertEqual(factors(8), [2, 2, 2])
|
||||
|
||||
def test_product_of_primes_and_non_primes(self):
|
||||
self.assertEqual(factors(12), [2, 2, 3])
|
||||
|
||||
def test_product_of_primes(self):
|
||||
self.assertEqual(factors(901255), [5, 17, 23, 461])
|
||||
|
||||
def test_factors_include_a_large_prime(self):
|
||||
self.assertEqual(factors(93819012551), [11, 9539, 894119])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
1
python/simple-cipher/.exercism/metadata.json
Normal file
1
python/simple-cipher/.exercism/metadata.json
Normal file
@@ -0,0 +1 @@
|
||||
{"track":"python","exercise":"simple-cipher","id":"6d5485599e744039a9d97ab829528b7f","url":"https://exercism.io/my/solutions/6d5485599e744039a9d97ab829528b7f","handle":"Xevion","is_requester":true,"auto_approve":false}
|
||||
146
python/simple-cipher/README.md
Normal file
146
python/simple-cipher/README.md
Normal file
@@ -0,0 +1,146 @@
|
||||
# Simple Cipher
|
||||
|
||||
Implement a simple shift cipher like Caesar and a more secure substitution cipher.
|
||||
|
||||
## Step 1
|
||||
|
||||
"If he had anything confidential to say, he wrote it in cipher, that is,
|
||||
by so changing the order of the letters of the alphabet, that not a word
|
||||
could be made out. If anyone wishes to decipher these, and get at their
|
||||
meaning, he must substitute the fourth letter of the alphabet, namely D,
|
||||
for A, and so with the others."
|
||||
—Suetonius, Life of Julius Caesar
|
||||
|
||||
Ciphers are very straight-forward algorithms that allow us to render
|
||||
text less readable while still allowing easy deciphering. They are
|
||||
vulnerable to many forms of cryptoanalysis, but we are lucky that
|
||||
generally our little sisters are not cryptoanalysts.
|
||||
|
||||
The Caesar Cipher was used for some messages from Julius Caesar that
|
||||
were sent afield. Now Caesar knew that the cipher wasn't very good, but
|
||||
he had one ally in that respect: almost nobody could read well. So even
|
||||
being a couple letters off was sufficient so that people couldn't
|
||||
recognize the few words that they did know.
|
||||
|
||||
Your task is to create a simple shift cipher like the Caesar Cipher.
|
||||
This image is a great example of the Caesar Cipher:
|
||||
|
||||
![Caesar Cipher][1]
|
||||
|
||||
For example:
|
||||
|
||||
Giving "iamapandabear" as input to the encode function returns the cipher "ldpdsdqgdehdu". Obscure enough to keep our message secret in transit.
|
||||
|
||||
When "ldpdsdqgdehdu" is put into the decode function it would return
|
||||
the original "iamapandabear" letting your friend read your original
|
||||
message.
|
||||
|
||||
## Step 2
|
||||
|
||||
Shift ciphers are no fun though when your kid sister figures it out. Try
|
||||
amending the code to allow us to specify a key and use that for the
|
||||
shift distance. This is called a substitution cipher.
|
||||
|
||||
Here's an example:
|
||||
|
||||
Given the key "aaaaaaaaaaaaaaaaaa", encoding the string "iamapandabear"
|
||||
would return the original "iamapandabear".
|
||||
|
||||
Given the key "ddddddddddddddddd", encoding our string "iamapandabear"
|
||||
would return the obscured "ldpdsdqgdehdu"
|
||||
|
||||
In the example above, we've set a = 0 for the key value. So when the
|
||||
plaintext is added to the key, we end up with the same message coming
|
||||
out. So "aaaa" is not an ideal key. But if we set the key to "dddd", we
|
||||
would get the same thing as the Caesar Cipher.
|
||||
|
||||
## Step 3
|
||||
|
||||
The weakest link in any cipher is the human being. Let's make your
|
||||
substitution cipher a little more fault tolerant by providing a source
|
||||
of randomness and ensuring that the key contains only lowercase letters.
|
||||
|
||||
If someone doesn't submit a key at all, generate a truly random key of
|
||||
at least 100 characters in length.
|
||||
|
||||
## Extensions
|
||||
|
||||
Shift ciphers work by making the text slightly odd, but are vulnerable
|
||||
to frequency analysis. Substitution ciphers help that, but are still
|
||||
very vulnerable when the key is short or if spaces are preserved. Later
|
||||
on you'll see one solution to this problem in the exercise
|
||||
"crypto-square".
|
||||
|
||||
If you want to go farther in this field, the questions begin to be about
|
||||
how we can exchange keys in a secure way. Take a look at [Diffie-Hellman
|
||||
on Wikipedia][dh] for one of the first implementations of this scheme.
|
||||
|
||||
[1]: https://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Caesar_cipher_left_shift_of_3.svg/320px-Caesar_cipher_left_shift_of_3.svg.png
|
||||
[dh]: http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
|
||||
|
||||
## Should I use random or secrets?
|
||||
|
||||
Python, as of version 3.6, includes two different random modules.
|
||||
|
||||
The module called `random` is pseudo-random, meaning it does not generate
|
||||
true randomness, but follows an algorithm that simulates randomness.
|
||||
Since random numbers are generated through a known algorithm, they are not truly random.
|
||||
|
||||
The `random` module is not correctly suited for cryptography and should not be used,
|
||||
precisely because it is pseudo-random.
|
||||
|
||||
For this reason, in version 3.6, Python introduced the `secrets` module, which generates
|
||||
cryptographically strong random numbers that provide the greater security required for cryptography.
|
||||
|
||||
Since this is only an exercise, `random` is fine to use, but note that **it would be
|
||||
very insecure if actually used for cryptography.**
|
||||
|
||||
|
||||
## Exception messages
|
||||
|
||||
Sometimes it is necessary to raise an exception. When you do this, you should include a meaningful error message to
|
||||
indicate what the source of the error is. This makes your code more readable and helps significantly with debugging. Not
|
||||
every exercise will require you to raise an exception, but for those that do, the tests will only pass if you include
|
||||
a message.
|
||||
|
||||
To raise a message with an exception, just write it as an argument to the exception type. For example, instead of
|
||||
`raise Exception`, you should write:
|
||||
|
||||
```python
|
||||
raise Exception("Meaningful message indicating the source of the error")
|
||||
```
|
||||
|
||||
## Running the tests
|
||||
|
||||
To run the tests, run the appropriate command below ([why they are different](https://github.com/pytest-dev/pytest/issues/1629#issue-161422224)):
|
||||
|
||||
- Python 2.7: `py.test simple_cipher_test.py`
|
||||
- Python 3.4+: `pytest simple_cipher_test.py`
|
||||
|
||||
Alternatively, you can tell Python to run the pytest module (allowing the same command to be used regardless of Python version):
|
||||
`python -m pytest simple_cipher_test.py`
|
||||
|
||||
### Common `pytest` options
|
||||
|
||||
- `-v` : enable verbose output
|
||||
- `-x` : stop running tests on first failure
|
||||
- `--ff` : run failures from previous test before running other test cases
|
||||
|
||||
For other options, see `python -m pytest -h`
|
||||
|
||||
## Submitting Exercises
|
||||
|
||||
Note that, when trying to submit an exercise, make sure the solution is in the `$EXERCISM_WORKSPACE/python/simple-cipher` directory.
|
||||
|
||||
You can find your Exercism workspace by running `exercism debug` and looking for the line that starts with `Workspace`.
|
||||
|
||||
For more detailed information about running tests, code style and linting,
|
||||
please see [Running the Tests](http://exercism.io/tracks/python/tests).
|
||||
|
||||
## Source
|
||||
|
||||
Substitution Cipher at Wikipedia [http://en.wikipedia.org/wiki/Substitution_cipher](http://en.wikipedia.org/wiki/Substitution_cipher)
|
||||
|
||||
## Submitting Incomplete Solutions
|
||||
|
||||
It's possible to submit an incomplete solution so you can see how others have completed the exercise.
|
||||
26
python/simple-cipher/simple_cipher.py
Normal file
26
python/simple-cipher/simple_cipher.py
Normal file
@@ -0,0 +1,26 @@
|
||||
from string import ascii_lowercase as low
|
||||
|
||||
class Cipher(object):
|
||||
def __init__(self, key=None):
|
||||
self.key = key
|
||||
self.shift = 27 - (sum([low.index(char) for char in self.key]) % 25)
|
||||
shifted = low[self.shift:] + low[:self.shift]
|
||||
print(low)
|
||||
print(shifted)
|
||||
self.encode_ = str.maketrans(low, shifted)
|
||||
self.decode_ = str.maketrans(shifted, low)
|
||||
|
||||
def encode(self, text):
|
||||
return text.translate(self.encode_)
|
||||
|
||||
def decode(self, text):
|
||||
return text.translate(self.decode_)
|
||||
|
||||
x = list(zip('iamapandabear', 'ldpdsdqgdehdu'))
|
||||
x = sorted(dict.fromkeys(x))
|
||||
x =
|
||||
from pprint import PrettyPrinter
|
||||
print = PrettyPrinter().pprint
|
||||
|
||||
# c = Cipher('d' * 18)
|
||||
# print(c.encode('iamapandabear'))
|
||||
78
python/simple-cipher/simple_cipher_test.py
Normal file
78
python/simple-cipher/simple_cipher_test.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import unittest
|
||||
import re
|
||||
|
||||
from simple_cipher import Cipher
|
||||
|
||||
|
||||
# Tests adapted from `problem-specifications//canonical-data.json` @ v2.0.0
|
||||
|
||||
class SimpleCipherTest(unittest.TestCase):
|
||||
# Utility functions
|
||||
def setUp(self):
|
||||
try:
|
||||
self.assertRaisesRegex
|
||||
except AttributeError:
|
||||
self.assertRaisesRegex = self.assertRaisesRegexp
|
||||
|
||||
def assertRaisesWithMessage(self, exception):
|
||||
return self.assertRaisesRegex(exception, r".+")
|
||||
|
||||
|
||||
class RandomKeyCipherTest(SimpleCipherTest):
|
||||
def test_can_encode(self):
|
||||
cipher = Cipher()
|
||||
plaintext = 'aaaaaaaaaa'
|
||||
self.assertEqual(cipher.encode(plaintext), cipher.key[:len(plaintext)])
|
||||
|
||||
def test_can_decode(self):
|
||||
cipher = Cipher()
|
||||
plaintext = 'aaaaaaaaaa'
|
||||
self.assertEqual(cipher.decode(cipher.key[:len(plaintext)]), plaintext)
|
||||
|
||||
def test_is_reversible(self):
|
||||
cipher = Cipher()
|
||||
plaintext = 'abcdefghij'
|
||||
self.assertEqual(cipher.decode(cipher.encode(plaintext)), plaintext)
|
||||
|
||||
def test_key_is_only_made_of_lowercase_letters(self):
|
||||
self.assertIsNotNone(re.match('^[a-z]+$', Cipher().key))
|
||||
|
||||
|
||||
class SubstitutionCipherTest(SimpleCipherTest):
|
||||
def test_can_encode(self):
|
||||
cipher = Cipher('abcdefghij')
|
||||
self.assertEqual(cipher.encode('aaaaaaaaaa'), cipher.key)
|
||||
|
||||
def test_can_decode(self):
|
||||
cipher = Cipher('abcdefghij')
|
||||
self.assertEqual(cipher.decode(cipher.key), 'aaaaaaaaaa')
|
||||
|
||||
def test_is_reversible(self):
|
||||
cipher = Cipher('abcdefghij')
|
||||
plaintext = 'abcdefghij'
|
||||
self.assertEqual(cipher.decode(cipher.encode(plaintext)), plaintext)
|
||||
|
||||
def test_can_double_shift_encode(self):
|
||||
plaintext = 'iamapandabear'
|
||||
cipher = Cipher(plaintext)
|
||||
self.assertEqual(cipher.encode(plaintext), 'qayaeaagaciai')
|
||||
|
||||
def test_can_wrap_on_encode(self):
|
||||
cipher = Cipher('abcdefghij')
|
||||
self.assertEqual(cipher.encode('zzzzzzzzzz'), 'zabcdefghi')
|
||||
|
||||
def test_can_wrap_on_decode(self):
|
||||
cipher = Cipher('abcdefghij')
|
||||
self.assertEqual(cipher.decode('zabcdefghi'), 'zzzzzzzzzz')
|
||||
|
||||
def test_can_encode_messages_longer_than_key(self):
|
||||
cipher = Cipher('abc')
|
||||
self.assertEqual(cipher.encode('iamapandabear'), 'iboaqcnecbfcr')
|
||||
|
||||
def test_can_decode_messages_longer_than_key(self):
|
||||
cipher = Cipher('abc')
|
||||
self.assertEqual(cipher.decode('iboaqcnecbfcr'), 'iamapandabear')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
1
python/spiral-matrix/.exercism/metadata.json
Normal file
1
python/spiral-matrix/.exercism/metadata.json
Normal file
@@ -0,0 +1 @@
|
||||
{"track":"python","exercise":"spiral-matrix","id":"e351192377fc41329076c9d6636ef233","url":"https://exercism.io/my/solutions/e351192377fc41329076c9d6636ef233","handle":"Xevion","is_requester":true,"auto_approve":false}
|
||||
73
python/spiral-matrix/README.md
Normal file
73
python/spiral-matrix/README.md
Normal file
@@ -0,0 +1,73 @@
|
||||
# Spiral Matrix
|
||||
|
||||
Given the size, return a square matrix of numbers in spiral order.
|
||||
|
||||
The matrix should be filled with natural numbers, starting from 1
|
||||
in the top-left corner, increasing in an inward, clockwise spiral order,
|
||||
like these examples:
|
||||
|
||||
###### Spiral matrix of size 3
|
||||
|
||||
```text
|
||||
1 2 3
|
||||
8 9 4
|
||||
7 6 5
|
||||
```
|
||||
|
||||
###### Spiral matrix of size 4
|
||||
|
||||
```text
|
||||
1 2 3 4
|
||||
12 13 14 5
|
||||
11 16 15 6
|
||||
10 9 8 7
|
||||
```
|
||||
|
||||
## Exception messages
|
||||
|
||||
Sometimes it is necessary to raise an exception. When you do this, you should include a meaningful error message to
|
||||
indicate what the source of the error is. This makes your code more readable and helps significantly with debugging. Not
|
||||
every exercise will require you to raise an exception, but for those that do, the tests will only pass if you include
|
||||
a message.
|
||||
|
||||
To raise a message with an exception, just write it as an argument to the exception type. For example, instead of
|
||||
`raise Exception`, you should write:
|
||||
|
||||
```python
|
||||
raise Exception("Meaningful message indicating the source of the error")
|
||||
```
|
||||
|
||||
## Running the tests
|
||||
|
||||
To run the tests, run the appropriate command below ([why they are different](https://github.com/pytest-dev/pytest/issues/1629#issue-161422224)):
|
||||
|
||||
- Python 2.7: `py.test spiral_matrix_test.py`
|
||||
- Python 3.4+: `pytest spiral_matrix_test.py`
|
||||
|
||||
Alternatively, you can tell Python to run the pytest module (allowing the same command to be used regardless of Python version):
|
||||
`python -m pytest spiral_matrix_test.py`
|
||||
|
||||
### Common `pytest` options
|
||||
|
||||
- `-v` : enable verbose output
|
||||
- `-x` : stop running tests on first failure
|
||||
- `--ff` : run failures from previous test before running other test cases
|
||||
|
||||
For other options, see `python -m pytest -h`
|
||||
|
||||
## Submitting Exercises
|
||||
|
||||
Note that, when trying to submit an exercise, make sure the solution is in the `$EXERCISM_WORKSPACE/python/spiral-matrix` directory.
|
||||
|
||||
You can find your Exercism workspace by running `exercism debug` and looking for the line that starts with `Workspace`.
|
||||
|
||||
For more detailed information about running tests, code style and linting,
|
||||
please see [Running the Tests](http://exercism.io/tracks/python/tests).
|
||||
|
||||
## Source
|
||||
|
||||
Reddit r/dailyprogrammer challenge #320 [Easy] Spiral Ascension. [https://www.reddit.com/r/dailyprogrammer/comments/6i60lr/20170619_challenge_320_easy_spiral_ascension/](https://www.reddit.com/r/dailyprogrammer/comments/6i60lr/20170619_challenge_320_easy_spiral_ascension/)
|
||||
|
||||
## Submitting Incomplete Solutions
|
||||
|
||||
It's possible to submit an incomplete solution so you can see how others have completed the exercise.
|
||||
53
python/spiral-matrix/spiral_matrix.py
Normal file
53
python/spiral-matrix/spiral_matrix.py
Normal file
@@ -0,0 +1,53 @@
|
||||
# Two lines, dude. ez.
|
||||
def spiral_matrix(size):
|
||||
return [] if size < 1 else Matrix(size).matrix
|
||||
|
||||
# Class for a pathfinding based spiral generation
|
||||
class Matrix:
|
||||
def __init__(self, size):
|
||||
self.size = size
|
||||
self.matrix = [[None for y in range(size)] for x in range(size)]
|
||||
self.i = 1
|
||||
self.cur = (0, 0)
|
||||
self.cardinals = [(0, 1), (1, 0), (-1, 0), (0, -1)]
|
||||
self.dir_index = 0
|
||||
self.loop()
|
||||
|
||||
# Loop that builds the spiral matrix
|
||||
def loop(self):
|
||||
# While the current number is less than the maximum number
|
||||
while self.i < (self.size ** 2):
|
||||
# If the next position is not valid, turn
|
||||
if not self.valid(self.nextpos):
|
||||
self.dir_index = (self.dir_index + 1) % 4
|
||||
else:
|
||||
self.access()
|
||||
self.cur = self.nextpos
|
||||
self.access()
|
||||
|
||||
# Access a position and increment the counter
|
||||
def access(self):
|
||||
self.matrix[self.cur[0]][self.cur[1]] = self.i
|
||||
self.i += 1
|
||||
|
||||
# Just the current direction (as an offset)
|
||||
@property
|
||||
def direction(self):
|
||||
return self.cardinals[self.dir_index]
|
||||
|
||||
# Next position for access based on the current direction
|
||||
@property
|
||||
def nextpos(self):
|
||||
return (self.cur[0] + self.direction[0], self.cur[1] + self.direction[1])
|
||||
|
||||
# Determine whether a position is valid to be approached
|
||||
def valid(self, pos):
|
||||
return self.validxy(pos[0], pos[1]) and not self.matrix[pos[0]][pos[1]]
|
||||
|
||||
# Determine whether a position is
|
||||
def validxy(self, x, y):
|
||||
return x >= 0 and x < self.size and y >= 0 and y < self.size
|
||||
|
||||
# Printable Matrix with proper character space justification
|
||||
def __repr__(self):
|
||||
return '\n'.join([' '.join(map(lambda item : str(item or '?').rjust(len(str(self.size ** 2))), sub)) for sub in self.matrix])
|
||||
51
python/spiral-matrix/spiral_matrix_test.py
Normal file
51
python/spiral-matrix/spiral_matrix_test.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import unittest
|
||||
|
||||
from spiral_matrix import spiral_matrix
|
||||
|
||||
|
||||
# Tests adapted from `problem-specifications//canonical-data.json` @ v1.1.0
|
||||
|
||||
|
||||
class SpiralMatrixTest(unittest.TestCase):
|
||||
def test_empty_spiral(self):
|
||||
self.assertEqual(spiral_matrix(0), [
|
||||
])
|
||||
|
||||
def test_trivial_spiral(self):
|
||||
self.assertEqual(spiral_matrix(1), [
|
||||
[1]
|
||||
])
|
||||
|
||||
def test_spiral_of_size_2(self):
|
||||
self.assertEqual(spiral_matrix(2), [
|
||||
[1, 2],
|
||||
[4, 3]
|
||||
])
|
||||
|
||||
def test_spiral_of_size_3(self):
|
||||
self.assertEqual(spiral_matrix(3), [
|
||||
[1, 2, 3],
|
||||
[8, 9, 4],
|
||||
[7, 6, 5]
|
||||
])
|
||||
|
||||
def test_spiral_of_size_4(self):
|
||||
self.assertEqual(spiral_matrix(4), [
|
||||
[1, 2, 3, 4],
|
||||
[12, 13, 14, 5],
|
||||
[11, 16, 15, 6],
|
||||
[10, 9, 8, 7]
|
||||
])
|
||||
|
||||
def test_spiral_of_size_5(self):
|
||||
self.assertEqual(spiral_matrix(5), [
|
||||
[1, 2, 3, 4, 5],
|
||||
[16, 17, 18, 19, 6],
|
||||
[15, 24, 25, 20, 7],
|
||||
[14, 23, 22, 21, 8],
|
||||
[13, 12, 11, 10, 9]
|
||||
])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Reference in New Issue
Block a user