Files
easy7zip/C/hashes/sha3.c
Tino Reichardt e19abb2958 shunf4 cherry-picking hash related commits from zstd. The following commits from 7-zip-zstd repository (https://github.com/mcmilk/7-Zip-zstd) is picked:
commit add56b5aed
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Thu Nov 1 23:08:00 2018 +0100

    Add MD5 hash function

commit 36a17a5184
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Sat Nov 3 00:18:33 2018 +0100

    Add some hash functions
    - new: md2, md4, md5, sha384, sha512, xxhash-32, xxhash-64
    - put Blake2sp hash stuff back to rar code
    - added the hashes to GUI and Explorer Menu code

commit 576c5df947
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Tue Apr 6 19:35:46 2021 +0200

    Add BLAKE3 hash function

commit 6b2a151549
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Tue Apr 6 19:51:01 2021 +0200

    Remove unneeded file HashesReg.cpp

commit dddf507557
Author: Tino Reichardt <milky-7zip@mcmilk.de>
Date:   Sun Jun 18 09:13:59 2023 +0200

    Add SHA3 hashing

    - added these variants: SHA3-256, SHA3-384, SHA3-512
    - reordered also the hashing id's
    - added some notes about them in DOC/Hashes.txt

    Signed-off-by: Tino Reichardt <milky-7zip@mcmilk.de>

The cherry-picking was a chaos; they're not applied in order, and some
commits even got cherry-picked twice (1->4->0->2->4->3). So subsequent fixes and
adjustments were applied to make it build.
2024-05-13 22:20:40 +08:00

240 lines
6.8 KiB
C

/**
* Canonical implementation of Init/Update/Finalize for SHA-3 byte input.
* Based on code from https://github.com/brainhub/SHA3IUF/
*
* This work is released into the public domain with CC0 1.0.
*
* Copyright (c) 2015. Andrey Jivsov <crypto@brainhub.org>
* Copyright (c) 2023 Tino Reichardt <milky-7zip@mcmilk.de>
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "sha3.h"
#define SHA3_ASSERT( x )
#if defined(_MSC_VER)
#define SHA3_CONST(x) x
#else
#define SHA3_CONST(x) x##L
#endif
/*
* This flag is used to configure "pure" Keccak, as opposed to NIST SHA3.
*/
#define SHA3_USE_KECCAK_FLAG 0x80000000
#define SHA3_CW(x) ((x) & (~SHA3_USE_KECCAK_FLAG))
#ifndef SHA3_ROTL64
#define SHA3_ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y))))
#endif
static const uint64_t keccakf_rndc[24] = {
SHA3_CONST(0x0000000000000001UL), SHA3_CONST(0x0000000000008082UL),
SHA3_CONST(0x800000000000808aUL), SHA3_CONST(0x8000000080008000UL),
SHA3_CONST(0x000000000000808bUL), SHA3_CONST(0x0000000080000001UL),
SHA3_CONST(0x8000000080008081UL), SHA3_CONST(0x8000000000008009UL),
SHA3_CONST(0x000000000000008aUL), SHA3_CONST(0x0000000000000088UL),
SHA3_CONST(0x0000000080008009UL), SHA3_CONST(0x000000008000000aUL),
SHA3_CONST(0x000000008000808bUL), SHA3_CONST(0x800000000000008bUL),
SHA3_CONST(0x8000000000008089UL), SHA3_CONST(0x8000000000008003UL),
SHA3_CONST(0x8000000000008002UL), SHA3_CONST(0x8000000000000080UL),
SHA3_CONST(0x000000000000800aUL), SHA3_CONST(0x800000008000000aUL),
SHA3_CONST(0x8000000080008081UL), SHA3_CONST(0x8000000000008080UL),
SHA3_CONST(0x0000000080000001UL), SHA3_CONST(0x8000000080008008UL)
};
static const unsigned keccakf_rotc[24] = {
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62,
18, 39, 61, 20, 44
};
static const unsigned keccakf_piln[24] = {
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20,
14, 22, 9, 6, 1
};
/* generally called after SHA3_KECCAK_SPONGE_WORDS-ctx->capacityWords words
* are XORed into the state s
*/
static void keccakf(uint64_t s[25])
{
int i, j, round;
uint64_t t, bc[5];
#define KECCAK_ROUNDS 24
for (round = 0; round < KECCAK_ROUNDS; round++) {
/* Theta */
for (i = 0; i < 5; i++)
bc[i] =
s[i] ^ s[i + 5] ^ s[i + 10] ^ s[i + 15] ^ s[i + 20];
for (i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ SHA3_ROTL64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5)
s[j + i] ^= t;
}
/* Rho Pi */
t = s[1];
for (i = 0; i < 24; i++) {
j = keccakf_piln[i];
bc[0] = s[j];
s[j] = SHA3_ROTL64(t, keccakf_rotc[i]);
t = bc[0];
}
/* Chi */
for (j = 0; j < 25; j += 5) {
for (i = 0; i < 5; i++)
bc[i] = s[j + i];
for (i = 0; i < 5; i++)
s[j + i] ^=
(~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
/* Iota */
s[0] ^= keccakf_rndc[round];
}
}
/* *************************** Public Inteface ************************ */
void SHA3_Init(SHA3_CTX * ctx, unsigned bitSize)
{
memset(ctx, 0, sizeof(*ctx));
ctx->digest_length = bitSize;
ctx->capacityWords = 2 * bitSize / (8 * sizeof(uint64_t));
}
void SHA3_Update(SHA3_CTX * ctx, void const *bufIn, size_t len)
{
/* 0...7 -- how much is needed to have a word */
unsigned old_tail = (8 - ctx->byteIndex) & 7;
size_t words;
size_t tail;
size_t i;
const uint8_t *buf = bufIn;
SHA3_ASSERT(ctx->byteIndex < 8);
SHA3_ASSERT(ctx->wordIndex < sizeof(ctx->u.s) / sizeof(ctx->u.s[0]));
if (len < old_tail) { /* have no complete word or haven't started
* the word yet */
/* endian-independent code follows: */
while (len--)
ctx->saved |=
(uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);
SHA3_ASSERT(ctx->byteIndex < 8);
return;
}
if (old_tail) { /* will have one word to process */
/* endian-independent code follows: */
len -= old_tail;
while (old_tail--)
ctx->saved |=
(uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);
/* now ready to add saved to the sponge */
ctx->u.s[ctx->wordIndex] ^= ctx->saved;
SHA3_ASSERT(ctx->byteIndex == 8);
ctx->byteIndex = 0;
ctx->saved = 0;
if (++ctx->wordIndex ==
(SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords))) {
keccakf(ctx->u.s);
ctx->wordIndex = 0;
}
}
/* now work in full words directly from input */
SHA3_ASSERT(ctx->byteIndex == 0);
words = len / sizeof(uint64_t);
tail = len - words * sizeof(uint64_t);
for (i = 0; i < words; i++, buf += sizeof(uint64_t)) {
const uint64_t t = (uint64_t) (buf[0]) |
((uint64_t) (buf[1]) << 8 * 1) |
((uint64_t) (buf[2]) << 8 * 2) |
((uint64_t) (buf[3]) << 8 * 3) |
((uint64_t) (buf[4]) << 8 * 4) |
((uint64_t) (buf[5]) << 8 * 5) |
((uint64_t) (buf[6]) << 8 * 6) |
((uint64_t) (buf[7]) << 8 * 7);
#if defined(__x86_64__ ) || defined(__i386__)
SHA3_ASSERT(memcmp(&t, buf, 8) == 0);
#endif
ctx->u.s[ctx->wordIndex] ^= t;
if (++ctx->wordIndex ==
(SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords))) {
keccakf(ctx->u.s);
ctx->wordIndex = 0;
}
}
/* finally, save the partial word */
SHA3_ASSERT(ctx->byteIndex == 0 && tail < 8);
while (tail--) {
ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);
}
SHA3_ASSERT(ctx->byteIndex < 8);
}
/* This is simply the 'update' with the padding block.
* The padding block is 0x01 || 0x00* || 0x80. First 0x01 and last 0x80
* bytes are always present, but they can be the same byte.
*/
void SHA3_Final(void *res, SHA3_CTX * ctx)
{
/* Append 2-bit suffix 01, per SHA-3 spec. Instead of 1 for padding we
* use 1<<2 below. The 0x02 below corresponds to the suffix 01.
* Overall, we feed 0, then 1, and finally 1 to start padding. Without
* M || 01, we would simply use 1 to start padding. */
uint64_t t;
/* SHA3 version */
t = (uint64_t) (((uint64_t) (0x02 | (1 << 2))) <<
((ctx->byteIndex) * 8));
ctx->u.s[ctx->wordIndex] ^= ctx->saved ^ t;
ctx->u.s[SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords) - 1] ^=
SHA3_CONST(0x8000000000000000UL);
keccakf(ctx->u.s);
/* Return first bytes of the ctx->s. This conversion is not needed for
* little-endian platforms e.g. wrap with #if !defined(__BYTE_ORDER__)
* || !defined(__ORDER_LITTLE_ENDIAN__) || __BYTE_ORDER__!=__ORDER_LITTLE_ENDIAN__
* ... the conversion below ...
* #endif */
{
unsigned i;
for (i = 0; i < SHA3_KECCAK_SPONGE_WORDS; i++) {
const unsigned t1 = (uint32_t) ctx->u.s[i];
const unsigned t2 =
(uint32_t) ((ctx->u.s[i] >> 16) >> 16);
ctx->u.sb[i * 8 + 0] = (uint8_t) (t1);
ctx->u.sb[i * 8 + 1] = (uint8_t) (t1 >> 8);
ctx->u.sb[i * 8 + 2] = (uint8_t) (t1 >> 16);
ctx->u.sb[i * 8 + 3] = (uint8_t) (t1 >> 24);
ctx->u.sb[i * 8 + 4] = (uint8_t) (t2);
ctx->u.sb[i * 8 + 5] = (uint8_t) (t2 >> 8);
ctx->u.sb[i * 8 + 6] = (uint8_t) (t2 >> 16);
ctx->u.sb[i * 8 + 7] = (uint8_t) (t2 >> 24);
}
}
memcpy(res, ctx->u.sb, ctx->digest_length/8);
}