Files
easy7zip/C/fast-lzma2/radix_mf.c
2018-11-05 21:22:10 +10:00

673 lines
26 KiB
C

/*
* Copyright (c) 2018, Conor McCarthy
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <stdlib.h> /* malloc, free */
#include "fast-lzma2.h"
#include "mem.h" /* U32, U64, MEM_64bits */
#include "fl2_internal.h"
#include "radix_internal.h"
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" /* warning: 'rpt_head_next' may be used uninitialized in this function */
#elif defined(_MSC_VER)
# pragma warning(disable : 4701) /* disable: C4701: potentially uninitialized local variable */
#endif
#define MIN_MATCH_BUFFER_SIZE 256U /* min buffer size at least FL2_SEARCH_DEPTH_MAX + 2 for bounded build */
#define MAX_MATCH_BUFFER_SIZE (1UL << 24) /* max buffer size constrained by 24-bit link values */
#define REPEAT_CHECK_TABLE ((1 << 1) | (1 << 2) | (1 << 4) | (1 << 8) | (1 << 16) | (1ULL << 32))
static void RMF_initTailTable(RMF_builder* const tbl)
{
for (size_t i = 0; i < RADIX8_TABLE_SIZE; i += 2) {
tbl->tails_8[i].prev_index = RADIX_NULL_LINK;
tbl->tails_8[i + 1].prev_index = RADIX_NULL_LINK;
}
for (size_t i = 0; i < RADIX16_TABLE_SIZE; i += 2) {
tbl->tails_16[i].prev_index = RADIX_NULL_LINK;
tbl->tails_16[i + 1].prev_index = RADIX_NULL_LINK;
}
}
static RMF_builder* RMF_createBuilder(size_t match_buffer_size)
{
match_buffer_size = MIN(match_buffer_size, MAX_MATCH_BUFFER_SIZE);
match_buffer_size = MAX(match_buffer_size, MIN_MATCH_BUFFER_SIZE);
{ RMF_builder* const builder = (RMF_builder*)malloc(
sizeof(RMF_builder) + (match_buffer_size - 1) * sizeof(RMF_buildMatch));
builder->match_buffer_size = match_buffer_size;
builder->match_buffer_limit = match_buffer_size;
RMF_initTailTable(builder);
return builder;
}
}
static void RMF_freeBuilderTable(RMF_builder** const builders, unsigned const size)
{
if (builders == NULL)
return;
for (unsigned i = 0; i < size; ++i) {
free(builders[i]);
}
free(builders);
}
static RMF_builder** RMF_createBuilderTable(U32* const matchTable, size_t const match_buffer_size, unsigned const max_len, unsigned const size)
{
RMF_builder** builders = (RMF_builder**)malloc(size * sizeof(RMF_builder*));
DEBUGLOG(3, "RMF_createBuilderTable : match_buffer_size %u, builders %u", (U32)match_buffer_size, size);
if (builders == NULL)
return NULL;
for (unsigned i = 0; i < size; ++i)
builders[i] = NULL;
for (unsigned i = 0; i < size; ++i) {
builders[i] = RMF_createBuilder(match_buffer_size);
if (builders[i] == NULL) {
RMF_freeBuilderTable(builders, i);
return NULL;
}
builders[i]->table = matchTable;
builders[i]->max_len = max_len;
}
return builders;
}
static int RMF_isStruct(unsigned dictionary_log, unsigned depth)
{
return dictionary_log > RADIX_LINK_BITS || depth > BITPACK_MAX_LENGTH;
}
static int RMF_isStructParam(const RMF_parameters* const params)
{
return RMF_isStruct(params->dictionary_log, params->depth);
}
/** RMF_clampCParams() :
* make CParam values within valid range.
* @return : valid CParams */
static RMF_parameters RMF_clampParams(RMF_parameters params)
{
# define CLAMP(val,min,max) { \
if (val<(min)) val=(min); \
else if (val>(max)) val=(max); \
}
CLAMP(params.dictionary_log, DICTIONARY_LOG_MIN, MEM_64bits() ? DICTIONARY_LOG_MAX_64 : DICTIONARY_LOG_MAX_32);
CLAMP(params.match_buffer_log, FL2_BUFFER_SIZE_LOG_MIN, FL2_BUFFER_SIZE_LOG_MAX);
CLAMP(params.overlap_fraction, FL2_BLOCK_OVERLAP_MIN, FL2_BLOCK_OVERLAP_MAX);
CLAMP(params.depth, FL2_SEARCH_DEPTH_MIN, FL2_SEARCH_DEPTH_MAX);
return params;
}
static size_t RMF_applyParameters_internal(FL2_matchTable* const tbl, const RMF_parameters* const params)
{
int const isStruct = RMF_isStructParam(params);
unsigned const dictionary_log = tbl->params.dictionary_log;
/* dictionary is allocated with the struct and is immutable */
if (params->dictionary_log > tbl->params.dictionary_log
|| (params->dictionary_log == tbl->params.dictionary_log && isStruct > tbl->allocStruct))
return FL2_ERROR(parameter_unsupported);
{ size_t const match_buffer_size = (size_t)1 << (params->dictionary_log - params->match_buffer_log);
tbl->params = *params;
tbl->params.dictionary_log = dictionary_log;
tbl->isStruct = isStruct;
if (tbl->builders == NULL
|| match_buffer_size > tbl->builders[0]->match_buffer_size)
{
RMF_freeBuilderTable(tbl->builders, tbl->thread_count);
tbl->builders = RMF_createBuilderTable(tbl->table, match_buffer_size, tbl->isStruct ? STRUCTURED_MAX_LENGTH : BITPACK_MAX_LENGTH, tbl->thread_count);
if (tbl->builders == NULL) {
return FL2_ERROR(memory_allocation);
}
}
else {
for (unsigned i = 0; i < tbl->thread_count; ++i) {
tbl->builders[i]->match_buffer_limit = match_buffer_size;
tbl->builders[i]->max_len = tbl->isStruct ? STRUCTURED_MAX_LENGTH : BITPACK_MAX_LENGTH;
}
}
}
return 0;
}
static void RMF_reduceDict(RMF_parameters* const params, size_t const dict_reduce)
{
if (dict_reduce)
while (params->dictionary_log > DICTIONARY_LOG_MIN && (size_t)1 << (params->dictionary_log - 1) >= dict_reduce) {
--params->dictionary_log;
params->match_buffer_log = MAX(params->match_buffer_log - 1, FL2_BUFFER_SIZE_LOG_MIN);
}
}
FL2_matchTable* RMF_createMatchTable(const RMF_parameters* const p, size_t const dict_reduce, unsigned const thread_count)
{
int isStruct;
size_t dictionary_size;
size_t table_bytes;
FL2_matchTable* tbl;
RMF_parameters params = RMF_clampParams(*p);
RMF_reduceDict(&params, dict_reduce);
isStruct = RMF_isStructParam(&params);
dictionary_size = (size_t)1 << params.dictionary_log;
DEBUGLOG(3, "RMF_createMatchTable : isStruct %d, dict %u", isStruct, (U32)dictionary_size);
table_bytes = isStruct ? ((dictionary_size + 3U) / 4U) * sizeof(RMF_unit)
: dictionary_size * sizeof(U32);
tbl = (FL2_matchTable*)malloc(
sizeof(FL2_matchTable) + table_bytes - sizeof(U32));
if (!tbl) return NULL;
tbl->isStruct = isStruct;
tbl->allocStruct = isStruct;
tbl->thread_count = thread_count + !thread_count;
tbl->params = params;
tbl->builders = NULL;
RMF_applyParameters_internal(tbl, &params);
for (size_t i = 0; i < RADIX16_TABLE_SIZE; i += 2) {
tbl->list_heads[i].head = RADIX_NULL_LINK;
tbl->list_heads[i].count = 0;
tbl->list_heads[i + 1].head = RADIX_NULL_LINK;
tbl->list_heads[i + 1].count = 0;
}
return tbl;
}
void RMF_freeMatchTable(FL2_matchTable* const tbl)
{
if (tbl == NULL)
return;
DEBUGLOG(3, "RMF_freeMatchTable");
RMF_freeBuilderTable(tbl->builders, tbl->thread_count);
free(tbl);
}
BYTE RMF_compatibleParameters(const FL2_matchTable* const tbl, const RMF_parameters * const p, size_t const dict_reduce)
{
RMF_parameters params = RMF_clampParams(*p);
RMF_reduceDict(&params, dict_reduce);
return tbl->params.dictionary_log > params.dictionary_log
|| (tbl->params.dictionary_log == params.dictionary_log && tbl->allocStruct >= RMF_isStructParam(&params));
}
size_t RMF_applyParameters(FL2_matchTable* const tbl, const RMF_parameters* const p, size_t const dict_reduce)
{
RMF_parameters params = RMF_clampParams(*p);
RMF_reduceDict(&params, dict_reduce);
return RMF_applyParameters_internal(tbl, &params);
}
size_t RMF_threadCount(const FL2_matchTable* const tbl)
{
return tbl->thread_count;
}
size_t RMF_initTable(FL2_matchTable* const tbl, const void* const data, size_t const start, size_t const end)
{
DEBUGLOG(5, "RMF_initTable : start %u, size %u", (U32)start, (U32)end);
if (tbl->isStruct) {
return RMF_structuredInit(tbl, data, start, end);
}
else {
return RMF_bitpackInit(tbl, data, start, end);
}
}
static void HandleRepeat(RMF_buildMatch* const match_buffer,
const BYTE* const data_block,
size_t const next,
U32 count,
U32 const rpt_len,
U32 const depth,
U32 const max_len)
{
size_t index = next;
size_t next_i;
U32 length = depth + rpt_len;
const BYTE* const data = data_block + match_buffer[index].from;
const BYTE* const data_2 = data - rpt_len;
while (data[length] == data_2[length] && length < max_len)
++length;
for (; length <= max_len && count; --count) {
next_i = match_buffer[index].next & 0xFFFFFF;
match_buffer[index].next = (U32)next_i | (length << 24);
length += rpt_len;
index = next_i;
}
for (; count; --count) {
next_i = match_buffer[index].next & 0xFFFFFF;
match_buffer[index].next = (U32)next_i | (max_len << 24);
index = next_i;
}
}
typedef struct
{
size_t index;
const BYTE* data_src;
union src_data_u src;
} BruteForceMatch;
static void BruteForceBuffered(RMF_builder* const tbl,
const BYTE* const data_block,
size_t const block_start,
size_t index,
size_t list_count,
size_t const slot,
size_t const depth,
size_t const max_depth)
{
BruteForceMatch buffer[MAX_BRUTE_FORCE_LIST_SIZE + 1];
const BYTE* data_src = data_block + depth;
size_t limit = max_depth - depth;
const BYTE* start = data_src + block_start;
size_t i = 0;
for (;;) {
buffer[i].index = index;
buffer[i].data_src = data_src + tbl->match_buffer[index].from;
buffer[i].src.u32 = tbl->match_buffer[index].src.u32;
if (++i >= list_count) {
break;
}
index = tbl->match_buffer[index].next & 0xFFFFFF;
}
i = 0;
do {
size_t longest = 0;
size_t j = i + 1;
size_t longest_index = j;
const BYTE* data = buffer[i].data_src;
do {
size_t len_test = slot;
while (len_test < 4 && buffer[i].src.chars[len_test] == buffer[j].src.chars[len_test] && len_test - slot < limit) {
++len_test;
}
len_test -= slot;
if (len_test) {
const BYTE* data_2 = buffer[j].data_src;
while (data[len_test] == data_2[len_test] && len_test < limit) {
++len_test;
}
}
if (len_test > longest) {
longest_index = j;
longest = len_test;
if (len_test >= limit) {
break;
}
}
} while (++j < list_count);
if (longest > 0) {
index = buffer[i].index;
tbl->match_buffer[index].next = (U32)(buffer[longest_index].index | ((depth + longest) << 24));
}
++i;
} while (i < list_count - 1 && buffer[i].data_src >= start);
}
FORCE_INLINE_TEMPLATE
void RMF_recurseListChunk_generic(RMF_builder* const tbl,
const BYTE* const data_block,
size_t const block_start,
BYTE depth,
BYTE const max_depth,
U32 list_count,
size_t const stack_base)
{
/* Create an offset data buffer pointer for reading the next bytes */
const BYTE base_depth = depth;
size_t st_index = stack_base;
size_t index = 0;
++depth;
/* The last element is done separately and won't be copied back at the end */
--list_count;
do {
size_t const radix_8 = tbl->match_buffer[index].src.chars[0];
/* Seen this char before? */
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev != RADIX_NULL_LINK) {
++tbl->tails_8[radix_8].list_count;
/* Link the previous occurrence to this one and record the new length */
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
else {
tbl->tails_8[radix_8].list_count = 1;
/* Add the new sub list to the stack */
tbl->stack[st_index].head = (U32)index;
/* This will be converted to a count at the end */
tbl->stack[st_index].count = (U32)radix_8;
++st_index;
}
tbl->tails_8[radix_8].prev_index = (U32)index;
++index;
} while (index < list_count);
{ /* Do the last element */
size_t const radix_8 = tbl->match_buffer[index].src.chars[0];
/* Nothing to do if there was no previous */
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev != RADIX_NULL_LINK) {
++tbl->tails_8[radix_8].list_count;
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
}
/* Convert radix values on the stack to counts and reset any used tail slots */
for (size_t j = stack_base; j < st_index; ++j) {
tbl->tails_8[tbl->stack[j].count].prev_index = RADIX_NULL_LINK;
tbl->stack[j].count = (U32)tbl->tails_8[tbl->stack[j].count].list_count;
}
while (st_index > stack_base) {
const BYTE* data_src;
size_t link;
size_t slot;
U32 test;
/* Pop an item off the stack */
--st_index;
list_count = tbl->stack[st_index].count;
if (list_count < 2) {
/* Nothing to match with */
continue;
}
index = tbl->stack[st_index].head;
link = tbl->match_buffer[index].from;
if (link < block_start) {
/* Chain starts in the overlap region which is already encoded */
continue;
}
/* Check stack space. The first comparison is unnecessary but it's a constant so should be faster */
if (st_index > STACK_SIZE - RADIX8_TABLE_SIZE
&& st_index > STACK_SIZE - list_count)
{
/* Stack may not be able to fit all possible new items. This is very rare. */
continue;
}
depth = tbl->match_buffer[index].next >> 24;
slot = (depth - base_depth) & 3;
if (list_count <= MAX_BRUTE_FORCE_LIST_SIZE) {
/* Quicker to use brute force, each string compared with all previous strings */
BruteForceBuffered(tbl,
data_block,
block_start,
index,
list_count,
slot,
depth,
max_depth);
continue;
}
/* check for repeats at depth 4,8,16,32 etc */
test = max_depth != 6 && ((depth & 3) == 0) && ((REPEAT_CHECK_TABLE >> ((depth >> 2) & 31)) & 1) && (max_depth >= depth + (depth >> 1));
++depth;
/* Update the offset data buffer pointer */
data_src = data_block + depth;
/* Last pass is done separately */
if (!test && depth < max_depth) {
size_t const prev_st_index = st_index;
/* Last element done separately */
--list_count;
/* slot is the char cache index. If 3 then chars need to be loaded. */
if (slot == 3 && max_depth != 6) do {
size_t const radix_8 = tbl->match_buffer[index].src.chars[3];
size_t const next_index = tbl->match_buffer[index].next & BUFFER_LINK_MASK;
/* Pre-load the next link and data bytes to avoid waiting for RAM access */
tbl->match_buffer[index].src.u32 = MEM_read32(data_src + link);
size_t const next_link = tbl->match_buffer[next_index].from;
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev!=RADIX_NULL_LINK) {
++tbl->tails_8[radix_8].list_count;
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
else {
tbl->tails_8[radix_8].list_count = 1;
tbl->stack[st_index].head = (U32)index;
tbl->stack[st_index].count = (U32)radix_8;
++st_index;
}
tbl->tails_8[radix_8].prev_index = (U32)index;
index = next_index;
link = next_link;
} while (--list_count != 0);
else do {
size_t const radix_8 = tbl->match_buffer[index].src.chars[slot];
size_t const next_index = tbl->match_buffer[index].next & BUFFER_LINK_MASK;
/* Pre-load the next link to avoid waiting for RAM access */
size_t const next_link = tbl->match_buffer[next_index].from;
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev != RADIX_NULL_LINK) {
++tbl->tails_8[radix_8].list_count;
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
else {
tbl->tails_8[radix_8].list_count = 1;
tbl->stack[st_index].head = (U32)index;
tbl->stack[st_index].count = (U32)radix_8;
++st_index;
}
tbl->tails_8[radix_8].prev_index = (U32)index;
index = next_index;
link = next_link;
} while (--list_count != 0);
{ size_t const radix_8 = tbl->match_buffer[index].src.chars[slot];
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev != RADIX_NULL_LINK) {
if (slot == 3) {
tbl->match_buffer[index].src.u32 = MEM_read32(data_src + link);
}
++tbl->tails_8[radix_8].list_count;
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
}
for (size_t j = prev_st_index; j < st_index; ++j) {
tbl->tails_8[tbl->stack[j].count].prev_index = RADIX_NULL_LINK;
tbl->stack[j].count = (U32)tbl->tails_8[tbl->stack[j].count].list_count;
}
}
else if (test) {
S32 rpt = -1;
size_t rpt_head_next;
U32 rpt_dist = 0;
size_t const prev_st_index = st_index;
U32 const rpt_depth = depth - 1;
/* Last element done separately */
--list_count;
do {
size_t const radix_8 = tbl->match_buffer[index].src.chars[slot];
size_t const next_index = tbl->match_buffer[index].next & BUFFER_LINK_MASK;
size_t const next_link = tbl->match_buffer[next_index].from;
if ((link - next_link) > rpt_depth) {
if (rpt > 0) {
HandleRepeat(tbl->match_buffer, data_block, rpt_head_next, rpt, rpt_dist, rpt_depth, tbl->max_len);
}
rpt = -1;
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev != RADIX_NULL_LINK) {
++tbl->tails_8[radix_8].list_count;
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
else {
tbl->tails_8[radix_8].list_count = 1;
tbl->stack[st_index].head = (U32)index;
tbl->stack[st_index].count = (U32)radix_8;
++st_index;
}
tbl->tails_8[radix_8].prev_index = (U32)index;
index = next_index;
link = next_link;
}
else {
U32 const dist = (U32)(link - next_link);
if (rpt < 0 || dist != rpt_dist) {
if (rpt > 0) {
HandleRepeat(tbl->match_buffer, data_block, rpt_head_next, rpt, rpt_dist, rpt_depth, tbl->max_len);
}
rpt = 0;
rpt_head_next = next_index;
rpt_dist = dist;
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev != RADIX_NULL_LINK) {
++tbl->tails_8[radix_8].list_count;
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
else {
tbl->tails_8[radix_8].list_count = 1;
tbl->stack[st_index].head = (U32)index;
tbl->stack[st_index].count = (U32)radix_8;
++st_index;
}
tbl->tails_8[radix_8].prev_index = (U32)index;
}
else {
++rpt;
}
index = next_index;
link = next_link;
}
} while (--list_count != 0);
if (rpt > 0) {
HandleRepeat(tbl->match_buffer, data_block, rpt_head_next, rpt, rpt_dist, rpt_depth, tbl->max_len);
}
{ size_t const radix_8 = tbl->match_buffer[index].src.chars[slot];
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev != RADIX_NULL_LINK) {
if (slot == 3) {
tbl->match_buffer[index].src.u32 = MEM_read32(data_src + link);
}
++tbl->tails_8[radix_8].list_count;
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
}
for (size_t j = prev_st_index; j < st_index; ++j) {
tbl->tails_8[tbl->stack[j].count].prev_index = RADIX_NULL_LINK;
tbl->stack[j].count = (U32)tbl->tails_8[tbl->stack[j].count].list_count;
}
}
else {
size_t prev_st_index = st_index;
/* The last pass at max_depth */
do {
size_t const radix_8 = tbl->match_buffer[index].src.chars[slot];
size_t const next_index = tbl->match_buffer[index].next & BUFFER_LINK_MASK;
/* Pre-load the next link. */
/* The last element in tbl->match_buffer is circular so this is never an access violation. */
size_t const next_link = tbl->match_buffer[next_index].from;
U32 const prev = tbl->tails_8[radix_8].prev_index;
if (prev != RADIX_NULL_LINK) {
tbl->match_buffer[prev].next = (U32)index | ((U32)depth << 24);
}
else {
tbl->stack[st_index].count = (U32)radix_8;
++st_index;
}
tbl->tails_8[radix_8].prev_index = (U32)index;
index = next_index;
link = next_link;
} while (--list_count != 0);
for (size_t j = prev_st_index; j < st_index; ++j) {
tbl->tails_8[tbl->stack[j].count].prev_index = RADIX_NULL_LINK;
}
st_index = prev_st_index;
}
}
}
void RMF_recurseListChunk(RMF_builder* const tbl,
const BYTE* const data_block,
size_t const block_start,
BYTE const depth,
BYTE const max_depth,
U32 const list_count,
size_t const stack_base)
{
if (max_depth > 6) {
RMF_recurseListChunk_generic(tbl, data_block, block_start, depth, max_depth, list_count, stack_base);
}
else {
RMF_recurseListChunk_generic(tbl, data_block, block_start, depth, 6, list_count, stack_base);
}
}
/* Iterate the head table concurrently with other threads, and recurse each list until max_depth is reached */
int RMF_buildTable(FL2_matchTable* const tbl,
size_t const job,
unsigned const multi_thread,
FL2_dataBlock const block,
FL2_progressFn progress, void* opaque, U32 weight, size_t init_done)
{
DEBUGLOG(5, "RMF_buildTable : thread %u", (U32)job);
if (tbl->isStruct) {
return RMF_structuredBuildTable(tbl, job, multi_thread, block, progress, opaque, weight, init_done);
}
else {
return RMF_bitpackBuildTable(tbl, job, multi_thread, block, progress, opaque, weight, init_done);
}
}
int RMF_integrityCheck(const FL2_matchTable* const tbl, const BYTE* const data, size_t const index, size_t const end, unsigned const max_depth)
{
if (tbl->isStruct) {
return RMF_structuredIntegrityCheck(tbl, data, index, end, max_depth);
}
else {
return RMF_bitpackIntegrityCheck(tbl, data, index, end, max_depth);
}
}
size_t RMF_getMatch(FL2_matchTable* const tbl,
const BYTE* const data,
size_t const index,
size_t const limit,
unsigned max_depth,
size_t* const offset_ptr)
{
if (tbl->isStruct) {
return RMF_structuredGetMatch(tbl, data, index, limit, max_depth, offset_ptr);
}
else {
return RMF_bitpackGetMatch(tbl, data, index, limit, max_depth, offset_ptr);
}
}
void RMF_limitLengths(FL2_matchTable* const tbl, size_t const index)
{
if (tbl->isStruct) {
RMF_structuredLimitLengths(tbl, index);
}
else {
RMF_bitpackLimitLengths(tbl, index);
}
}
BYTE* RMF_getTableAsOutputBuffer(FL2_matchTable* const tbl, size_t const index)
{
if (tbl->isStruct) {
return RMF_structuredAsOutputBuffer(tbl, index);
}
else {
return RMF_bitpackAsOutputBuffer(tbl, index);
}
}
size_t RMF_memoryUsage(unsigned const dict_log, unsigned const buffer_log, unsigned const depth, unsigned thread_count)
{
size_t size = (size_t)(4U + RMF_isStruct(dict_log, depth)) << dict_log;
U32 buf_size = (U32)1 << (dict_log - buffer_log);
size += ((buf_size - 1) * sizeof(RMF_buildMatch) + sizeof(RMF_builder)) * thread_count;
return size;
}