Files
easy7zip/7zip/Crypto/7zAES/7zAES.cpp
Igor Pavlov 8c1b5c7b7e 3.13
2016-05-28 00:15:41 +01:00

356 lines
8.8 KiB
C++
Executable File

// 7z_AES.h
#include "StdAfx.h"
#include "Windows/Defs.h"
#include "Windows/Synchronization.h"
#include "../../Common/StreamObjects.h"
#include "7zAES.h"
// #include "../../Hash/Common/CryptoHashInterface.h"
#ifdef CRYPTO_AES
#include "../AES/MyAES.h"
#endif
#include "SHA256.h"
using namespace NWindows;
#ifndef CRYPTO_AES
extern HINSTANCE g_hInstance;
#endif
namespace NCrypto {
namespace NSevenZ {
bool CKeyInfo::IsEqualTo(const CKeyInfo &a) const
{
if (SaltSize != a.SaltSize || NumCyclesPower != a.NumCyclesPower)
return false;
for (UINT32 i = 0; i < SaltSize; i++)
if (Salt[i] != a.Salt[i])
return false;
return (Password == a.Password);
}
void CKeyInfo::CalculateDigest()
{
if (NumCyclesPower == 0x3F)
{
UINT32 pos;
for (pos = 0; pos < SaltSize; pos++)
Key[pos] = Salt[pos];
for (UINT32 i = 0; i < Password.GetCapacity() && pos < kKeySize; i++)
Key[pos++] = Password[i];
for (; pos < kKeySize; pos++)
Key[pos] = 0;
}
else
{
/*
CMyComPtr<ICryptoHash> sha;
RINOK(sha.CoCreateInstance(CLSID_CCrypto_Hash_SHA256));
RINOK(sha->Init());
*/
NCrypto::NSHA256::SHA256 sha;
const UINT64 numRounds = UINT64(1) << (NumCyclesPower);
for (UINT64 round = 0; round < numRounds; round++)
{
/*
RINOK(sha->Update(Salt, SaltSize));
RINOK(sha->Update(Password, Password.GetCapacity()));
// change it if big endian;
RINOK(sha->Update(&round, sizeof(round)));
*/
// sha.Update(Salt, sizeof(Salt));
sha.Update(Salt, SaltSize);
sha.Update(Password, Password.GetCapacity());
// change it if big endian;
sha.Update((const BYTE *)&round, sizeof(round));
}
// return sha->GetDigest(Key);
sha.Final(Key);
}
}
bool CKeyInfoCache::Find(CKeyInfo &key)
{
for (int i = 0; i < Keys.Size(); i++)
{
const CKeyInfo &cached = Keys[i];
if (key.IsEqualTo(cached))
{
for (int j = 0; j < kKeySize; j++)
key.Key[j] = cached.Key[j];
if (i != 0)
{
Keys.Insert(0, cached);
Keys.Delete(i+1);
}
return true;
}
}
return false;
}
void CKeyInfoCache::Add(CKeyInfo &key)
{
if (Find(key))
return;
if (Keys.Size() >= Size)
Keys.DeleteBack();
Keys.Insert(0, key);
}
static CKeyInfoCache g_GlobalKeyCache(32);
static NSynchronization::CCriticalSection g_GlobalKeyCacheCriticalSection;
CBase::CBase():
_cachedKeys(16)
{
for (int i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
}
void CBase::CalculateDigest()
{
NSynchronization::CCriticalSectionLock lock(g_GlobalKeyCacheCriticalSection);
if (_cachedKeys.Find(_key))
g_GlobalKeyCache.Add(_key);
else
{
if (!g_GlobalKeyCache.Find(_key))
{
_key.CalculateDigest();
g_GlobalKeyCache.Add(_key);
}
_cachedKeys.Add(_key);
}
}
/*
static void GetRandomData(BYTE *data)
{
// probably we don't need truly random.
// it's enough to prevent dictionary attack;
// but it gives some info about time when compressing
// was made.
UINT64 tempValue;
SYSTEMTIME systemTime;
FILETIME fileTime;
::GetSystemTime(&systemTime);
::SystemTimeToFileTime(&systemTime, &fileTime);
tempValue = *(const UINT64 *)&fileTime;
LARGE_INTEGER counter;
::QueryPerformanceCounter(&counter);
tempValue += *(const UINT64 *)&counter;
tempValue += (UINT64)(GetTickCount()) << 32;
*(UINT64 *)data = tempValue;
}
*/
STDMETHODIMP CEncoder::WriteCoderProperties(ISequentialOutStream *outStream)
{
_key.Init();
for (UINT32 i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
_key.SaltSize = 0;
// _key.SaltSize = 8;
// GetRandomData(_key.Salt);
int ivSize = 0;
// _key.NumCyclesPower = 0x3F;
_key.NumCyclesPower = 18;
BYTE firstByte = _key.NumCyclesPower |
(((_key.SaltSize == 0) ? 0 : 1) << 7) |
(((ivSize == 0) ? 0 : 1) << 6);
RINOK(outStream->Write(&firstByte, sizeof(firstByte), NULL));
if (_key.SaltSize == 0 && ivSize == 0)
return S_OK;
BYTE saltSizeSpec = (_key.SaltSize == 0) ? 0 : (_key.SaltSize - 1);
BYTE ivSizeSpec = (ivSize == 0) ? 0 : (ivSize - 1);
BYTE secondByte = ((saltSizeSpec) << 4) | ivSizeSpec;
RINOK(outStream->Write(&secondByte, sizeof(secondByte), NULL));
if (_key.SaltSize > 0)
{
RINOK(outStream->Write(_key.Salt, _key.SaltSize, NULL));
}
if (ivSize > 0)
{
RINOK(outStream->Write(_iv, ivSize, NULL));
}
return S_OK;
}
STDMETHODIMP CEncoder::SetDecoderProperties(ISequentialInStream *inStream)
{
return S_OK;
}
STDMETHODIMP CDecoder::SetDecoderProperties(ISequentialInStream *inStream)
{
_key.Init();
for (int i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
UINT32 processedSize;
BYTE firstByte;
RINOK(inStream->Read(&firstByte, sizeof(firstByte), &processedSize));
if (processedSize == 0)
return S_OK;
_key.NumCyclesPower = firstByte & 0x3F;
if ((firstByte & 0xC0) == 0)
return S_OK;
_key.SaltSize = (firstByte >> 7) & 1;
UINT32 ivSize = (firstByte >> 6) & 1;
BYTE secondByte;
RINOK(inStream->Read(&secondByte, sizeof(secondByte), &processedSize));
if (processedSize == 0)
return E_INVALIDARG;
_key.SaltSize += (secondByte >> 4);
ivSize += (secondByte & 0x0F);
RINOK(inStream->Read(_key.Salt,
_key.SaltSize, &processedSize));
if (processedSize != _key.SaltSize)
return E_INVALIDARG;
RINOK(inStream->Read(_iv, ivSize, &processedSize));
if (processedSize != ivSize)
return E_INVALIDARG;
return S_OK;
}
STDMETHODIMP CEncoder::CryptoSetPassword(const BYTE *data, UINT32 size)
{
_key.Password.SetCapacity(size);
memcpy(_key.Password, data, size);
return S_OK;
}
STDMETHODIMP CDecoder::CryptoSetPassword(const BYTE *data, UINT32 size)
{
_key.Password.SetCapacity(size);
memcpy(_key.Password, data, size);
return S_OK;
}
/*
static BYTE *WideToRaw(const wchar_t *src, BYTE *dest, int destSize=0x10000000)
{
for (int i = 0; i < destSize; i++, src++)
{
dest[i * 2] = (BYTE)*src;
dest[i * 2 + 1]= (BYTE)(*src >> 8);
if (*src == 0)
break;
}
return(dest);
}
*/
#ifndef CRYPTO_AES
bool GetAESLibPath(TCHAR *path)
{
TCHAR fullPath[MAX_PATH + 1];
if (::GetModuleFileName(g_hInstance, fullPath, MAX_PATH) == 0)
return false;
LPTSTR fileNamePointer;
DWORD needLength = ::GetFullPathName(fullPath, MAX_PATH + 1,
path, &fileNamePointer);
if (needLength == 0 || needLength >= MAX_PATH)
return false;
lstrcpy(fileNamePointer, TEXT("AES.dll"));
return true;
}
#endif
STDMETHODIMP CEncoder::Code(ISequentialInStream *inStream,
ISequentialOutStream *outStream, UINT64 const *inSize,
const UINT64 *outSize,ICompressProgressInfo *progress)
{
CalculateDigest();
if (_aesEncoder == 0)
{
#ifdef CRYPTO_AES
_aesEncoder = new CAES256_CBC_Encoder;
#else
if ((HMODULE)_aesEncoderLibrary == 0)
{
TCHAR filePath[MAX_PATH + 2];
if (!GetAESLibPath(filePath))
return ::GetLastError();
RINOK(_aesEncoderLibrary.LoadAndCreateCoder2(filePath,
CLSID_CCrypto_AES256_Encoder, &_aesEncoder));
}
#endif
}
CSequentialInStreamImp *ivStreamSpec = new CSequentialInStreamImp;
CMyComPtr<ISequentialInStream> ivStream(ivStreamSpec);
ivStreamSpec->Init(_iv, sizeof(_iv));
CSequentialInStreamImp *keyStreamSpec = new CSequentialInStreamImp;
CMyComPtr<ISequentialInStream> keyStream(keyStreamSpec);
keyStreamSpec->Init(_key.Key, sizeof(_key.Key));
ISequentialInStream *inStreams[3] = { inStream, ivStream, keyStream };
UINT64 ivSize = sizeof(_iv);
UINT64 keySize = sizeof(_key.Key);
const UINT64 *inSizes[3] = { inSize, &ivSize, &ivSize, };
return _aesEncoder->Code(inStreams, inSizes, 3,
&outStream, &outSize, 1, progress);
}
STDMETHODIMP CDecoder::Code(ISequentialInStream *inStream,
ISequentialOutStream *outStream, UINT64 const *inSize,
const UINT64 *outSize,ICompressProgressInfo *progress)
{
CalculateDigest();
if (_aesDecoder == 0)
{
#ifdef CRYPTO_AES
_aesDecoder = new CAES256_CBC_Decoder;
#else
if ((HMODULE)_aesDecoderLibrary == 0)
{
TCHAR filePath[MAX_PATH + 2];
if (!GetAESLibPath(filePath))
return ::GetLastError();
RINOK(_aesDecoderLibrary.LoadAndCreateCoder2(filePath,
CLSID_CCrypto_AES256_Decoder, &_aesDecoder));
}
#endif
}
CSequentialInStreamImp *ivStreamSpec = new CSequentialInStreamImp;
CMyComPtr<ISequentialInStream> ivStream(ivStreamSpec);
ivStreamSpec->Init(_iv, sizeof(_iv));
CSequentialInStreamImp *keyStreamSpec = new CSequentialInStreamImp;
CMyComPtr<ISequentialInStream> keyStream(keyStreamSpec);
keyStreamSpec->Init(_key.Key, sizeof(_key.Key));
ISequentialInStream *inStreams[3] = { inStream, ivStream, keyStream };
UINT64 ivSize = sizeof(_iv);
UINT64 keySize = sizeof(_key.Key);
const UINT64 *inSizes[3] = { inSize, &ivSize, &ivSize, };
return _aesDecoder->Code(inStreams, inSizes, 3,
&outStream, &outSize, 1, progress);
}
}}