// Crypto/HASH/SHA256/SHA256.cpp // This code is based on code from Wei Dai's Crypto++ library. #include "StdAfx.h" #include "SHA256.h" #include "Windows/Defs.h" const int kBufferSize = 1 << 17; namespace NCrypto { namespace NSHA256 { template static inline T rotrFixed(T x, unsigned int y) { // assert(y < sizeof(T)*8); return (x>>y) | (x<<(sizeof(T)*8-y)); } #define blk0(i) (W[i] = data[i]) void SHA256::Init() { m_digest[0] = 0x6a09e667; m_digest[1] = 0xbb67ae85; m_digest[2] = 0x3c6ef372; m_digest[3] = 0xa54ff53a; m_digest[4] = 0x510e527f; m_digest[5] = 0x9b05688c; m_digest[6] = 0x1f83d9ab; m_digest[7] = 0x5be0cd19; m_count = 0; } #define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15])) #define Ch(x,y,z) (z^(x&(y^z))) #define Maj(x,y,z) ((x&y)|(z&(x|y))) #define a(i) T[(0-i)&7] #define b(i) T[(1-i)&7] #define c(i) T[(2-i)&7] #define d(i) T[(3-i)&7] #define e(i) T[(4-i)&7] #define f(i) T[(5-i)&7] #define g(i) T[(6-i)&7] #define h(i) T[(7-i)&7] #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+K[i+j]+(j?blk2(i):blk0(i));\ d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)) // for SHA256 #define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22)) #define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25)) #define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3)) #define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10)) void SHA256::Transform(UINT32 *state, const UINT32 *data) { UINT32 W[16]; UINT32 T[8]; /* Copy context->state[] to working vars */ // memcpy(T, state, sizeof(T)); for (int s = 0; s < 8; s++) T[s] = state[s]; /* 64 operations, partially loop unrolled */ for (unsigned int j = 0; j < 64; j += 16) { for (unsigned int i = 0; i < 16; i++) { R(i); } /* R( 0); R( 1); R( 2); R( 3); R( 4); R( 5); R( 6); R( 7); R( 8); R( 9); R(10); R(11); R(12); R(13); R(14); R(15); */ } /* Add the working vars back into context.state[] */ /* state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); */ for (int i = 0; i < 8; i++) state[i] += T[i]; /* Wipe variables */ // memset(W, 0, sizeof(W)); // memset(T, 0, sizeof(T)); } const UINT32 SHA256::K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; #undef S0 #undef S1 #undef s0 #undef s1 void SHA256::WriteByteBlock() { UINT32 data32[16]; for (int i = 0; i < 16; i++) { data32[i] = (UINT32(_buffer[i * 4]) << 24) + (UINT32(_buffer[i * 4 + 1]) << 16) + (UINT32(_buffer[i * 4 + 2]) << 8) + UINT32(_buffer[i * 4 + 3]); } Transform(m_digest, data32); } void SHA256::Update(const BYTE *data, UINT32 size) { UINT32 curBufferPos = UINT32(m_count) & 0x3F; while (size > 0) { while(curBufferPos < 64 && size > 0) { _buffer[curBufferPos++] = *data++; m_count++; size--; } if (curBufferPos == 64) { curBufferPos = 0; WriteByteBlock(); } } } void SHA256::Final(BYTE *digest) { UINT64 lenInBits = (m_count << 3); UINT32 curBufferPos = UINT32(m_count) & 0x3F; _buffer[curBufferPos++] = 0x80; while (curBufferPos != (64 - 8)) { curBufferPos &= 0x3F; if (curBufferPos == 0) WriteByteBlock(); _buffer[curBufferPos++] = 0; } for (int i = 0; i < 8; i++) { _buffer[curBufferPos++] = BYTE(lenInBits >> 56); lenInBits <<= 8; } WriteByteBlock(); for (int j = 0; j < 8; j++) { *digest++ = m_digest[j] >> 24; *digest++ = m_digest[j] >> 16; *digest++ = m_digest[j] >> 8; *digest++ = m_digest[j]; } Init(); } }}