Update to 7-Zip 17.01 Beta from Igor Pavlov

- Minor speed optimization for LZMA2 (xz and 7z) multi-threading compression.
  7-Zip now uses additional memory buffers for multi-block LZMA2 compression.
  CPU utilization was slightly improved.
- 7-zip now creates multi-block xz archives by default. Block size can be
  specified with -ms[Size]{m|g} switch.
- xz decoder now can unpack random block from multi-block xz archives.  7-Zip
  File Manager now can open nested multi-block xz archives (for example,
  image.iso.xz) without full unpacking of xz archive.
- 7-Zip now can create zip archives from stdin to stdout.
- 7-Zip command line: @listfile now doesn't work after -- switch.  Use
  -i@listfile before -- switch instead.

fixed bugs:
- 7-Zip could add unrequired alternate file streams to WIM archives, for
  commands that contain filename wildcards and -sns switch.
- 7-Zip 17.00 beta crashed for commands that write anti-item to 7z archive.
- 7-Zip 17.00 beta ignored "Use large memory pages" option.
This commit is contained in:
Tino Reichardt
2017-08-28 16:34:04 +02:00
parent 7c1f566312
commit ef790b5209
112 changed files with 4712 additions and 1705 deletions

View File

@@ -1,9 +1,8 @@
/* Lzma2Enc.c -- LZMA2 Encoder
2017-04-03 : Igor Pavlov : Public domain */
2017-08-28 : Igor Pavlov : Public domain */
#include "Precomp.h"
/* #include <stdio.h> */
#include <string.h>
/* #define _7ZIP_ST */
@@ -13,7 +12,7 @@
#ifndef _7ZIP_ST
#include "MtCoder.h"
#else
#define NUM_MT_CODER_THREADS_MAX 1
#define MTCODER__THREADS_MAX 1
#endif
#define LZMA2_CONTROL_LZMA (1 << 7)
@@ -35,30 +34,83 @@
#define PRF(x) /* x */
/* ---------- CLimitedSeqInStream ---------- */
typedef struct
{
ISeqInStream vt;
ISeqInStream *realStream;
UInt64 limit;
UInt64 processed;
int finished;
} CLimitedSeqInStream;
static void LimitedSeqInStream_Init(CLimitedSeqInStream *p)
{
p->limit = (UInt64)(Int64)-1;
p->processed = 0;
p->finished = 0;
}
static SRes LimitedSeqInStream_Read(const ISeqInStream *pp, void *data, size_t *size)
{
CLimitedSeqInStream *p = CONTAINER_FROM_VTBL(pp, CLimitedSeqInStream, vt);
size_t size2 = *size;
SRes res = SZ_OK;
if (p->limit != (UInt64)(Int64)-1)
{
UInt64 rem = p->limit - p->processed;
if (size2 > rem)
size2 = (size_t)rem;
}
if (size2 != 0)
{
res = ISeqInStream_Read(p->realStream, data, &size2);
p->finished = (size2 == 0 ? 1 : 0);
p->processed += size2;
}
*size = size2;
return res;
}
/* ---------- CLzma2EncInt ---------- */
typedef struct
{
CLzmaEncHandle enc;
Byte propsAreSet;
Byte propsByte;
Byte needInitState;
Byte needInitProp;
UInt64 srcPos;
Byte props;
Bool needInitState;
Bool needInitProp;
} CLzma2EncInt;
static SRes Lzma2EncInt_Init(CLzma2EncInt *p, const CLzma2EncProps *props)
static SRes Lzma2EncInt_InitStream(CLzma2EncInt *p, const CLzma2EncProps *props)
{
Byte propsEncoded[LZMA_PROPS_SIZE];
SizeT propsSize = LZMA_PROPS_SIZE;
RINOK(LzmaEnc_SetProps(p->enc, &props->lzmaProps));
RINOK(LzmaEnc_WriteProperties(p->enc, propsEncoded, &propsSize));
p->srcPos = 0;
p->props = propsEncoded[0];
p->needInitState = True;
p->needInitProp = True;
if (!p->propsAreSet)
{
SizeT propsSize = LZMA_PROPS_SIZE;
Byte propsEncoded[LZMA_PROPS_SIZE];
RINOK(LzmaEnc_SetProps(p->enc, &props->lzmaProps));
RINOK(LzmaEnc_WriteProperties(p->enc, propsEncoded, &propsSize));
p->propsByte = propsEncoded[0];
p->propsAreSet = True;
}
return SZ_OK;
}
static void Lzma2EncInt_InitBlock(CLzma2EncInt *p)
{
p->srcPos = 0;
p->needInitState = True;
p->needInitProp = True;
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp, ISeqInStream *inStream, UInt32 keepWindowSize,
ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
@@ -70,6 +122,9 @@ void LzmaEnc_Finish(CLzmaEncHandle pp);
void LzmaEnc_SaveState(CLzmaEncHandle pp);
void LzmaEnc_RestoreState(CLzmaEncHandle pp);
/*
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp);
*/
static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
size_t *packSizeRes, ISeqOutStream *outStream)
@@ -154,7 +209,7 @@ static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
outBuf[destPos++] = (Byte)pm;
if (p->needInitProp)
outBuf[destPos++] = p->props;
outBuf[destPos++] = p->propsByte;
p->needInitProp = False;
p->needInitState = False;
@@ -176,14 +231,16 @@ static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
void Lzma2EncProps_Init(CLzma2EncProps *p)
{
LzmaEncProps_Init(&p->lzmaProps);
p->blockSize = LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO;
p->numBlockThreads_Reduced = -1;
p->numBlockThreads_Max = -1;
p->numTotalThreads = -1;
p->numBlockThreads = -1;
p->blockSize = 0;
}
void Lzma2EncProps_Normalize(CLzma2EncProps *p)
{
int t1, t1n, t2, t3;
UInt64 fileSize;
int t1, t1n, t2, t2r, t3;
{
CLzmaEncProps lzmaProps = p->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
@@ -191,11 +248,11 @@ void Lzma2EncProps_Normalize(CLzma2EncProps *p)
}
t1 = p->lzmaProps.numThreads;
t2 = p->numBlockThreads;
t2 = p->numBlockThreads_Max;
t3 = p->numTotalThreads;
if (t2 > NUM_MT_CODER_THREADS_MAX)
t2 = NUM_MT_CODER_THREADS_MAX;
if (t2 > MTCODER__THREADS_MAX)
t2 = MTCODER__THREADS_MAX;
if (t3 <= 0)
{
@@ -211,8 +268,8 @@ void Lzma2EncProps_Normalize(CLzma2EncProps *p)
t1 = 1;
t2 = t3;
}
if (t2 > NUM_MT_CODER_THREADS_MAX)
t2 = NUM_MT_CODER_THREADS_MAX;
if (t2 > MTCODER__THREADS_MAX)
t2 = MTCODER__THREADS_MAX;
}
else if (t1 <= 0)
{
@@ -225,39 +282,64 @@ void Lzma2EncProps_Normalize(CLzma2EncProps *p)
p->lzmaProps.numThreads = t1;
t2r = t2;
fileSize = p->lzmaProps.reduceSize;
if ( p->blockSize != LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID
&& p->blockSize != LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO
&& (p->blockSize < fileSize || fileSize == (UInt64)(Int64)-1))
p->lzmaProps.reduceSize = p->blockSize;
LzmaEncProps_Normalize(&p->lzmaProps);
p->lzmaProps.reduceSize = fileSize;
t1 = p->lzmaProps.numThreads;
if (p->blockSize == 0)
if (p->blockSize == LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID)
{
UInt32 dictSize = p->lzmaProps.dictSize;
UInt64 blockSize = (UInt64)dictSize << 2;
const UInt32 kMinSize = (UInt32)1 << 20;
const UInt32 kMaxSize = (UInt32)1 << 28;
if (blockSize < kMinSize) blockSize = kMinSize;
if (blockSize > kMaxSize) blockSize = kMaxSize;
if (blockSize < dictSize) blockSize = dictSize;
p->blockSize = (size_t)blockSize;
t2r = t2 = 1;
t3 = t1;
}
if (t2 > 1 && p->lzmaProps.reduceSize != (UInt64)(Int64)-1)
else if (p->blockSize == LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO && t2 <= 1)
{
UInt64 temp = p->lzmaProps.reduceSize + p->blockSize - 1;
if (temp > p->lzmaProps.reduceSize)
/* if there is no block multi-threading, we use SOLID block */
p->blockSize = LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID;
}
else
{
if (p->blockSize == LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO)
{
UInt64 numBlocks = temp / p->blockSize;
const UInt32 kMinSize = (UInt32)1 << 20;
const UInt32 kMaxSize = (UInt32)1 << 28;
const UInt32 dictSize = p->lzmaProps.dictSize;
UInt64 blockSize = (UInt64)dictSize << 2;
if (blockSize < kMinSize) blockSize = kMinSize;
if (blockSize > kMaxSize) blockSize = kMaxSize;
if (blockSize < dictSize) blockSize = dictSize;
blockSize += (kMinSize - 1);
blockSize &= ~(UInt64)(kMinSize - 1);
p->blockSize = blockSize;
}
if (t2 > 1 && fileSize != (UInt64)(Int64)-1)
{
UInt64 numBlocks = fileSize / p->blockSize;
if (numBlocks * p->blockSize != fileSize)
numBlocks++;
if (numBlocks < (unsigned)t2)
{
t2 = (unsigned)numBlocks;
if (t2 == 0)
t2 = 1;
t3 = t1 * t2;
t2r = (unsigned)numBlocks;
if (t2r == 0)
t2r = 1;
t3 = t1 * t2r;
}
}
}
p->numBlockThreads = t2;
p->numBlockThreads_Max = t2;
p->numBlockThreads_Reduced = t2r;
p->numTotalThreads = t3;
}
@@ -274,134 +356,30 @@ typedef struct
{
Byte propEncoded;
CLzma2EncProps props;
UInt64 expectedDataSize;
Byte *outBuf;
Byte *tempBufLzma;
ISzAllocPtr alloc;
ISzAllocPtr allocBig;
CLzma2EncInt coders[NUM_MT_CODER_THREADS_MAX];
CLzma2EncInt coders[MTCODER__THREADS_MAX];
#ifndef _7ZIP_ST
ISeqOutStream *outStream;
Byte *outBuf;
size_t outBufSize;
size_t outBufsDataSizes[MTCODER__BLOCKS_MAX];
Bool mtCoder_WasConstructed;
CMtCoder mtCoder;
Byte *outBufs[MTCODER__BLOCKS_MAX];
#endif
} CLzma2Enc;
/* ---------- Lzma2EncThread ---------- */
static SRes Lzma2Enc_EncodeMt1(CLzma2EncInt *p, CLzma2Enc *mainEncoder,
ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress)
{
UInt64 packTotal = 0;
SRes res = SZ_OK;
if (!mainEncoder->outBuf)
{
mainEncoder->outBuf = (Byte *)ISzAlloc_Alloc(mainEncoder->alloc, LZMA2_CHUNK_SIZE_COMPRESSED_MAX);
if (!mainEncoder->outBuf)
return SZ_ERROR_MEM;
}
RINOK(Lzma2EncInt_Init(p, &mainEncoder->props));
RINOK(LzmaEnc_PrepareForLzma2(p->enc, inStream, LZMA2_KEEP_WINDOW_SIZE,
mainEncoder->alloc, mainEncoder->allocBig));
for (;;)
{
size_t packSize = LZMA2_CHUNK_SIZE_COMPRESSED_MAX;
res = Lzma2EncInt_EncodeSubblock(p, mainEncoder->outBuf, &packSize, outStream);
if (res != SZ_OK)
break;
packTotal += packSize;
res = Progress(progress, p->srcPos, packTotal);
if (res != SZ_OK)
break;
if (packSize == 0)
break;
}
LzmaEnc_Finish(p->enc);
if (res == SZ_OK)
{
Byte b = 0;
if (ISeqOutStream_Write(outStream, &b, 1) != 1)
return SZ_ERROR_WRITE;
}
return res;
}
#ifndef _7ZIP_ST
typedef struct
{
IMtCoderCallback funcTable;
CLzma2Enc *lzma2Enc;
} CMtCallbackImp;
static SRes MtCallbackImp_Code(const IMtCoderCallback *pp, unsigned index, Byte *dest, size_t *destSize,
const Byte *src, size_t srcSize, int finished)
{
CMtCallbackImp *imp = CONTAINER_FROM_VTBL(pp, CMtCallbackImp, funcTable);
CLzma2Enc *mainEncoder = imp->lzma2Enc;
CLzma2EncInt *p = &mainEncoder->coders[index];
SRes res = SZ_OK;
{
size_t destLim = *destSize;
*destSize = 0;
if (srcSize != 0)
{
RINOK(Lzma2EncInt_Init(p, &mainEncoder->props));
RINOK(LzmaEnc_MemPrepare(p->enc, src, srcSize, LZMA2_KEEP_WINDOW_SIZE,
mainEncoder->alloc, mainEncoder->allocBig));
while (p->srcPos < srcSize)
{
size_t packSize = destLim - *destSize;
res = Lzma2EncInt_EncodeSubblock(p, dest + *destSize, &packSize, NULL);
if (res != SZ_OK)
break;
*destSize += packSize;
if (packSize == 0)
{
res = SZ_ERROR_FAIL;
break;
}
if (MtProgress_Set(&mainEncoder->mtCoder.mtProgress, index, p->srcPos, *destSize) != SZ_OK)
{
res = SZ_ERROR_PROGRESS;
break;
}
}
LzmaEnc_Finish(p->enc);
if (res != SZ_OK)
return res;
}
if (finished)
{
if (*destSize == destLim)
return SZ_ERROR_OUTPUT_EOF;
dest[(*destSize)++] = 0;
}
}
return res;
}
#endif
/* ---------- Lzma2Enc ---------- */
CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
@@ -410,44 +388,78 @@ CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig)
return NULL;
Lzma2EncProps_Init(&p->props);
Lzma2EncProps_Normalize(&p->props);
p->outBuf = 0;
p->expectedDataSize = (UInt64)(Int64)-1;
p->tempBufLzma = NULL;
p->alloc = alloc;
p->allocBig = allocBig;
{
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
p->coders[i].enc = 0;
for (i = 0; i < MTCODER__THREADS_MAX; i++)
p->coders[i].enc = NULL;
}
#ifndef _7ZIP_ST
MtCoder_Construct(&p->mtCoder);
p->mtCoder_WasConstructed = False;
{
unsigned i;
for (i = 0; i < MTCODER__BLOCKS_MAX; i++)
p->outBufs[i] = NULL;
p->outBufSize = 0;
}
#endif
return p;
}
#ifndef _7ZIP_ST
static void Lzma2Enc_FreeOutBufs(CLzma2Enc *p)
{
unsigned i;
for (i = 0; i < MTCODER__BLOCKS_MAX; i++)
if (p->outBufs[i])
{
ISzAlloc_Free(p->alloc, p->outBufs[i]);
p->outBufs[i] = NULL;
}
p->outBufSize = 0;
}
#endif
void Lzma2Enc_Destroy(CLzma2EncHandle pp)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
unsigned i;
for (i = 0; i < NUM_MT_CODER_THREADS_MAX; i++)
for (i = 0; i < MTCODER__THREADS_MAX; i++)
{
CLzma2EncInt *t = &p->coders[i];
if (t->enc)
{
LzmaEnc_Destroy(t->enc, p->alloc, p->allocBig);
t->enc = 0;
t->enc = NULL;
}
}
#ifndef _7ZIP_ST
MtCoder_Destruct(&p->mtCoder);
if (p->mtCoder_WasConstructed)
{
MtCoder_Destruct(&p->mtCoder);
p->mtCoder_WasConstructed = False;
}
Lzma2Enc_FreeOutBufs(p);
#endif
ISzAlloc_Free(p->alloc, p->outBuf);
ISzAlloc_Free(p->alloc, p->tempBufLzma);
p->tempBufLzma = NULL;
ISzAlloc_Free(p->alloc, pp);
}
SRes Lzma2Enc_SetProps(CLzma2EncHandle pp, const CLzma2EncProps *props)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
@@ -460,6 +472,14 @@ SRes Lzma2Enc_SetProps(CLzma2EncHandle pp, const CLzma2EncProps *props)
return SZ_OK;
}
void Lzma2Enc_SetDataSize(CLzmaEncHandle pp, UInt64 expectedDataSiize)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
p->expectedDataSize = expectedDataSiize;
}
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle pp)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
@@ -471,50 +491,310 @@ Byte Lzma2Enc_WriteProperties(CLzma2EncHandle pp)
return (Byte)i;
}
SRes Lzma2Enc_Encode(CLzma2EncHandle pp,
ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
int i;
for (i = 0; i < p->props.numBlockThreads; i++)
static SRes Lzma2Enc_EncodeMt1(
CLzma2Enc *me,
CLzma2EncInt *p,
ISeqOutStream *outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
const Byte *inData, size_t inDataSize,
int finished,
ICompressProgress *progress)
{
UInt64 unpackTotal = 0;
UInt64 packTotal = 0;
size_t outLim = 0;
CLimitedSeqInStream limitedInStream;
if (outBuf)
{
CLzma2EncInt *t = &p->coders[(unsigned)i];
if (!t->enc)
outLim = *outBufSize;
*outBufSize = 0;
}
if (!p->enc)
{
p->propsAreSet = False;
p->enc = LzmaEnc_Create(me->alloc);
if (!p->enc)
return SZ_ERROR_MEM;
}
limitedInStream.realStream = inStream;
if (inStream)
{
limitedInStream.vt.Read = LimitedSeqInStream_Read;
}
if (!outBuf)
{
// outStream version works only in one thread. So we use CLzma2Enc::tempBufLzma
if (!me->tempBufLzma)
{
t->enc = LzmaEnc_Create(p->alloc);
if (!t->enc)
me->tempBufLzma = (Byte *)ISzAlloc_Alloc(me->alloc, LZMA2_CHUNK_SIZE_COMPRESSED_MAX);
if (!me->tempBufLzma)
return SZ_ERROR_MEM;
}
}
#ifndef _7ZIP_ST
if (p->props.numBlockThreads > 1)
{
CMtCallbackImp mtCallback;
RINOK(Lzma2EncInt_InitStream(p, &me->props));
mtCallback.funcTable.Code = MtCallbackImp_Code;
mtCallback.lzma2Enc = p;
for (;;)
{
SRes res = SZ_OK;
size_t inSizeCur = 0;
Lzma2EncInt_InitBlock(p);
LimitedSeqInStream_Init(&limitedInStream);
limitedInStream.limit = me->props.blockSize;
if (inStream)
{
UInt64 expected = (UInt64)(Int64)-1;
// inStream version works only in one thread. So we use CLzma2Enc::expectedDataSize
if (me->expectedDataSize != (UInt64)(Int64)-1
&& me->expectedDataSize >= unpackTotal)
expected = me->expectedDataSize - unpackTotal;
if (me->props.blockSize != LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID
&& expected > me->props.blockSize)
expected = (size_t)me->props.blockSize;
LzmaEnc_SetDataSize(p->enc, expected);
RINOK(LzmaEnc_PrepareForLzma2(p->enc,
&limitedInStream.vt,
LZMA2_KEEP_WINDOW_SIZE,
me->alloc,
me->allocBig));
}
else
{
inSizeCur = inDataSize - (size_t)unpackTotal;
if (me->props.blockSize != LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID
&& inSizeCur > me->props.blockSize)
inSizeCur = (size_t)me->props.blockSize;
// LzmaEnc_SetDataSize(p->enc, inSizeCur);
RINOK(LzmaEnc_MemPrepare(p->enc,
inData + (size_t)unpackTotal, inSizeCur,
LZMA2_KEEP_WINDOW_SIZE,
me->alloc,
me->allocBig));
}
for (;;)
{
size_t packSize = LZMA2_CHUNK_SIZE_COMPRESSED_MAX;
if (outBuf)
packSize = outLim - (size_t)packTotal;
res = Lzma2EncInt_EncodeSubblock(p,
outBuf ? outBuf + (size_t)packTotal : me->tempBufLzma, &packSize,
outBuf ? NULL : outStream);
if (res != SZ_OK)
break;
packTotal += packSize;
if (outBuf)
*outBufSize = (size_t)packTotal;
res = Progress(progress, unpackTotal + p->srcPos, packTotal);
if (res != SZ_OK)
break;
/*
if (LzmaEnc_GetNumAvailableBytes(p->enc) == 0)
break;
*/
if (packSize == 0)
break;
}
LzmaEnc_Finish(p->enc);
unpackTotal += p->srcPos;
RINOK(res);
if (p->srcPos != (inStream ? limitedInStream.processed : inSizeCur))
return SZ_ERROR_FAIL;
if (inStream ? limitedInStream.finished : (unpackTotal == inDataSize))
{
if (finished)
{
if (outBuf)
{
size_t destPos = *outBufSize;
if (destPos >= outLim)
return SZ_ERROR_OUTPUT_EOF;
outBuf[destPos] = 0;
*outBufSize = destPos + 1;
}
else
{
Byte b = 0;
if (ISeqOutStream_Write(outStream, &b, 1) != 1)
return SZ_ERROR_WRITE;
}
}
return SZ_OK;
}
}
}
#ifndef _7ZIP_ST
static SRes Lzma2Enc_MtCallback_Code(void *pp, unsigned coderIndex, unsigned outBufIndex,
const Byte *src, size_t srcSize, int finished)
{
CLzma2Enc *me = (CLzma2Enc *)pp;
size_t destSize = me->outBufSize;
SRes res;
CMtProgressThunk progressThunk;
Byte *dest = me->outBufs[outBufIndex];
me->outBufsDataSizes[outBufIndex] = 0;
if (!dest)
{
dest = ISzAlloc_Alloc(me->alloc, me->outBufSize);
if (!dest)
return SZ_ERROR_MEM;
me->outBufs[outBufIndex] = dest;
}
MtProgressThunk_CreateVTable(&progressThunk);
progressThunk.mtProgress = &me->mtCoder.mtProgress;
progressThunk.index = coderIndex;
res = Lzma2Enc_EncodeMt1(me,
&me->coders[coderIndex],
NULL, dest, &destSize,
NULL, src, srcSize,
finished,
&progressThunk.vt);
me->outBufsDataSizes[outBufIndex] = destSize;
return res;
}
static SRes Lzma2Enc_MtCallback_Write(void *pp, unsigned outBufIndex)
{
CLzma2Enc *me = (CLzma2Enc *)pp;
size_t size = me->outBufsDataSizes[outBufIndex];
const Byte *data = me->outBufs[outBufIndex];
if (me->outStream)
return ISeqOutStream_Write(me->outStream, data, size) == size ? SZ_OK : SZ_ERROR_WRITE;
if (size > me->outBufSize)
return SZ_ERROR_OUTPUT_EOF;
memcpy(me->outBuf, data, size);
me->outBufSize -= size;
me->outBuf += size;
return SZ_OK;
}
#endif
SRes Lzma2Enc_Encode2(CLzma2EncHandle pp,
ISeqOutStream *outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
const Byte *inData, size_t inDataSize,
ICompressProgress *progress)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
if (inStream && inData)
return E_INVALIDARG;
if (outStream && outBuf)
return E_INVALIDARG;
{
unsigned i;
for (i = 0; i < MTCODER__THREADS_MAX; i++)
p->coders[i].propsAreSet = False;
}
#ifndef _7ZIP_ST
if (p->props.numBlockThreads_Reduced > 1)
{
IMtCoderCallback2 vt;
if (!p->mtCoder_WasConstructed)
{
p->mtCoder_WasConstructed = True;
MtCoder_Construct(&p->mtCoder);
}
vt.Code = Lzma2Enc_MtCallback_Code;
vt.Write = Lzma2Enc_MtCallback_Write;
p->outStream = outStream;
p->outBuf = NULL;
p->outBufSize = 0;
if (!outStream)
{
p->outBuf = outBuf;
p->outBufSize = *outBufSize;
*outBufSize = 0;
}
p->mtCoder.allocBig = p->allocBig;
p->mtCoder.progress = progress;
p->mtCoder.inStream = inStream;
p->mtCoder.outStream = outStream;
p->mtCoder.alloc = p->alloc;
p->mtCoder.mtCallback = &mtCallback.funcTable;
p->mtCoder.inData = inData;
p->mtCoder.inDataSize = inDataSize;
p->mtCoder.mtCallback = &vt;
p->mtCoder.mtCallbackObject = p;
p->mtCoder.blockSize = (size_t)p->props.blockSize;
if (p->mtCoder.blockSize != p->props.blockSize)
return SZ_ERROR_PARAM; /* SZ_ERROR_MEM */
p->mtCoder.blockSize = p->props.blockSize;
p->mtCoder.destBlockSize = p->props.blockSize + (p->props.blockSize >> 10) + 16;
if (p->mtCoder.destBlockSize < p->props.blockSize)
{
p->mtCoder.destBlockSize = (size_t)0 - 1;
if (p->mtCoder.destBlockSize < p->props.blockSize)
return SZ_ERROR_FAIL;
size_t destBlockSize = p->mtCoder.blockSize + (p->mtCoder.blockSize >> 10) + 16;
if (destBlockSize < p->mtCoder.blockSize)
return SZ_ERROR_PARAM;
if (p->outBufSize != destBlockSize)
Lzma2Enc_FreeOutBufs(p);
p->outBufSize = destBlockSize;
}
p->mtCoder.numThreads = p->props.numBlockThreads;
p->mtCoder.numThreadsMax = p->props.numBlockThreads_Max;
p->mtCoder.expectedDataSize = p->expectedDataSize;
return MtCoder_Code(&p->mtCoder);
{
SRes res = MtCoder_Code(&p->mtCoder);
if (!outStream)
*outBufSize = p->outBuf - outBuf;
return res;
}
}
#endif
return Lzma2Enc_EncodeMt1(&p->coders[0], p, outStream, inStream, progress);
return Lzma2Enc_EncodeMt1(p,
&p->coders[0],
outStream, outBuf, outBufSize,
inStream, inData, inDataSize,
True, /* finished */
progress);
}