mirror of
https://github.com/Xevion/easy7zip.git
synced 2025-12-08 04:07:02 -06:00
Initialer Commit
This commit is contained in:
414
C/zstd/bitstream.h
Normal file
414
C/zstd/bitstream.h
Normal file
@@ -0,0 +1,414 @@
|
||||
/* ******************************************************************
|
||||
bitstream
|
||||
Part of FSE library
|
||||
header file (to include)
|
||||
Copyright (C) 2013-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
****************************************************************** */
|
||||
#ifndef BITSTREAM_H_MODULE
|
||||
#define BITSTREAM_H_MODULE
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* This API consists of small unitary functions, which must be inlined for best performance.
|
||||
* Since link-time-optimization is not available for all compilers,
|
||||
* these functions are defined into a .h to be included.
|
||||
*/
|
||||
|
||||
/*-****************************************
|
||||
* Dependencies
|
||||
******************************************/
|
||||
#include "mem.h" /* unaligned access routines */
|
||||
#include "error_private.h" /* error codes and messages */
|
||||
|
||||
|
||||
/*=========================================
|
||||
* Target specific
|
||||
=========================================*/
|
||||
#if defined(__BMI__) && defined(__GNUC__)
|
||||
# include <immintrin.h> /* support for bextr (experimental) */
|
||||
#endif
|
||||
|
||||
|
||||
/*-******************************************
|
||||
* bitStream encoding API (write forward)
|
||||
********************************************/
|
||||
/* bitStream can mix input from multiple sources.
|
||||
* A critical property of these streams is that they encode and decode in **reverse** direction.
|
||||
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
size_t bitContainer;
|
||||
int bitPos;
|
||||
char* startPtr;
|
||||
char* ptr;
|
||||
char* endPtr;
|
||||
} BIT_CStream_t;
|
||||
|
||||
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
|
||||
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
|
||||
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
|
||||
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
|
||||
|
||||
/* Start with initCStream, providing the size of buffer to write into.
|
||||
* bitStream will never write outside of this buffer.
|
||||
* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
|
||||
*
|
||||
* bits are first added to a local register.
|
||||
* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
|
||||
* Writing data into memory is an explicit operation, performed by the flushBits function.
|
||||
* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
|
||||
* After a flushBits, a maximum of 7 bits might still be stored into local register.
|
||||
*
|
||||
* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
|
||||
*
|
||||
* Last operation is to close the bitStream.
|
||||
* The function returns the final size of CStream in bytes.
|
||||
* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
|
||||
*/
|
||||
|
||||
|
||||
/*-********************************************
|
||||
* bitStream decoding API (read backward)
|
||||
**********************************************/
|
||||
typedef struct
|
||||
{
|
||||
size_t bitContainer;
|
||||
unsigned bitsConsumed;
|
||||
const char* ptr;
|
||||
const char* start;
|
||||
} BIT_DStream_t;
|
||||
|
||||
typedef enum { BIT_DStream_unfinished = 0,
|
||||
BIT_DStream_endOfBuffer = 1,
|
||||
BIT_DStream_completed = 2,
|
||||
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
|
||||
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
|
||||
|
||||
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
|
||||
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
|
||||
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
|
||||
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
|
||||
|
||||
|
||||
/* Start by invoking BIT_initDStream().
|
||||
* A chunk of the bitStream is then stored into a local register.
|
||||
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
||||
* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
|
||||
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
|
||||
* Otherwise, it can be less than that, so proceed accordingly.
|
||||
* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
|
||||
*/
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* unsafe API
|
||||
******************************************/
|
||||
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
|
||||
/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
|
||||
|
||||
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
|
||||
/* unsafe version; does not check buffer overflow */
|
||||
|
||||
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
|
||||
/* faster, but works only if nbBits >= 1 */
|
||||
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* Internal functions
|
||||
****************************************************************/
|
||||
MEM_STATIC unsigned BIT_highbit32 (register U32 val)
|
||||
{
|
||||
# if defined(_MSC_VER) /* Visual */
|
||||
unsigned long r=0;
|
||||
_BitScanReverse ( &r, val );
|
||||
return (unsigned) r;
|
||||
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
|
||||
return 31 - __builtin_clz (val);
|
||||
# else /* Software version */
|
||||
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
|
||||
U32 v = val;
|
||||
v |= v >> 1;
|
||||
v |= v >> 2;
|
||||
v |= v >> 4;
|
||||
v |= v >> 8;
|
||||
v |= v >> 16;
|
||||
return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
|
||||
# endif
|
||||
}
|
||||
|
||||
/*===== Local Constants =====*/
|
||||
static const unsigned BIT_mask[] = { 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF }; /* up to 26 bits */
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* bitStream encoding
|
||||
****************************************************************/
|
||||
/*! BIT_initCStream() :
|
||||
* `dstCapacity` must be > sizeof(void*)
|
||||
* @return : 0 if success,
|
||||
otherwise an error code (can be tested using ERR_isError() ) */
|
||||
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* startPtr, size_t dstCapacity)
|
||||
{
|
||||
bitC->bitContainer = 0;
|
||||
bitC->bitPos = 0;
|
||||
bitC->startPtr = (char*)startPtr;
|
||||
bitC->ptr = bitC->startPtr;
|
||||
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->ptr);
|
||||
if (dstCapacity <= sizeof(bitC->ptr)) return ERROR(dstSize_tooSmall);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*! BIT_addBits() :
|
||||
can add up to 26 bits into `bitC`.
|
||||
Does not check for register overflow ! */
|
||||
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits)
|
||||
{
|
||||
bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
|
||||
bitC->bitPos += nbBits;
|
||||
}
|
||||
|
||||
/*! BIT_addBitsFast() :
|
||||
* works only if `value` is _clean_, meaning all high bits above nbBits are 0 */
|
||||
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits)
|
||||
{
|
||||
bitC->bitContainer |= value << bitC->bitPos;
|
||||
bitC->bitPos += nbBits;
|
||||
}
|
||||
|
||||
/*! BIT_flushBitsFast() :
|
||||
* unsafe version; does not check buffer overflow */
|
||||
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
|
||||
{
|
||||
size_t const nbBytes = bitC->bitPos >> 3;
|
||||
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
|
||||
bitC->ptr += nbBytes;
|
||||
bitC->bitPos &= 7;
|
||||
bitC->bitContainer >>= nbBytes*8; /* if bitPos >= sizeof(bitContainer)*8 --> undefined behavior */
|
||||
}
|
||||
|
||||
/*! BIT_flushBits() :
|
||||
* safe version; check for buffer overflow, and prevents it.
|
||||
* note : does not signal buffer overflow. This will be revealed later on using BIT_closeCStream() */
|
||||
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
|
||||
{
|
||||
size_t const nbBytes = bitC->bitPos >> 3;
|
||||
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
|
||||
bitC->ptr += nbBytes;
|
||||
if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
|
||||
bitC->bitPos &= 7;
|
||||
bitC->bitContainer >>= nbBytes*8; /* if bitPos >= sizeof(bitContainer)*8 --> undefined behavior */
|
||||
}
|
||||
|
||||
/*! BIT_closeCStream() :
|
||||
* @return : size of CStream, in bytes,
|
||||
or 0 if it could not fit into dstBuffer */
|
||||
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
|
||||
{
|
||||
BIT_addBitsFast(bitC, 1, 1); /* endMark */
|
||||
BIT_flushBits(bitC);
|
||||
|
||||
if (bitC->ptr >= bitC->endPtr) return 0; /* doesn't fit within authorized budget : cancel */
|
||||
|
||||
return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
|
||||
}
|
||||
|
||||
|
||||
/*-********************************************************
|
||||
* bitStream decoding
|
||||
**********************************************************/
|
||||
/*! BIT_initDStream() :
|
||||
* Initialize a BIT_DStream_t.
|
||||
* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
|
||||
* `srcSize` must be the *exact* size of the bitStream, in bytes.
|
||||
* @return : size of stream (== srcSize) or an errorCode if a problem is detected
|
||||
*/
|
||||
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
|
||||
{
|
||||
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
|
||||
|
||||
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
|
||||
bitD->start = (const char*)srcBuffer;
|
||||
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
|
||||
bitD->bitContainer = MEM_readLEST(bitD->ptr);
|
||||
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
|
||||
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
|
||||
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
|
||||
} else {
|
||||
bitD->start = (const char*)srcBuffer;
|
||||
bitD->ptr = bitD->start;
|
||||
bitD->bitContainer = *(const BYTE*)(bitD->start);
|
||||
switch(srcSize)
|
||||
{
|
||||
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
|
||||
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
|
||||
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
|
||||
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
|
||||
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
|
||||
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
|
||||
default:;
|
||||
}
|
||||
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
|
||||
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
|
||||
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
|
||||
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
|
||||
}
|
||||
|
||||
return srcSize;
|
||||
}
|
||||
|
||||
MEM_STATIC size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
|
||||
{
|
||||
return bitContainer >> start;
|
||||
}
|
||||
|
||||
MEM_STATIC size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
|
||||
{
|
||||
#if defined(__BMI__) && defined(__GNUC__) /* experimental */
|
||||
# if defined(__x86_64__)
|
||||
if (sizeof(bitContainer)==8)
|
||||
return _bextr_u64(bitContainer, start, nbBits);
|
||||
else
|
||||
# endif
|
||||
return _bextr_u32(bitContainer, start, nbBits);
|
||||
#else
|
||||
return (bitContainer >> start) & BIT_mask[nbBits];
|
||||
#endif
|
||||
}
|
||||
|
||||
MEM_STATIC size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
|
||||
{
|
||||
return bitContainer & BIT_mask[nbBits];
|
||||
}
|
||||
|
||||
/*! BIT_lookBits() :
|
||||
* Provides next n bits from local register.
|
||||
* local register is not modified.
|
||||
* On 32-bits, maxNbBits==24.
|
||||
* On 64-bits, maxNbBits==56.
|
||||
* @return : value extracted
|
||||
*/
|
||||
MEM_STATIC size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
#if defined(__BMI__) && defined(__GNUC__) /* experimental; fails if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8 */
|
||||
return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
|
||||
#else
|
||||
U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
||||
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*! BIT_lookBitsFast() :
|
||||
* unsafe version; only works only if nbBits >= 1 */
|
||||
MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
||||
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
|
||||
}
|
||||
|
||||
MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
bitD->bitsConsumed += nbBits;
|
||||
}
|
||||
|
||||
/*! BIT_readBits() :
|
||||
* Read (consume) next n bits from local register and update.
|
||||
* Pay attention to not read more than nbBits contained into local register.
|
||||
* @return : extracted value.
|
||||
*/
|
||||
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
size_t const value = BIT_lookBits(bitD, nbBits);
|
||||
BIT_skipBits(bitD, nbBits);
|
||||
return value;
|
||||
}
|
||||
|
||||
/*! BIT_readBitsFast() :
|
||||
* unsafe version; only works only if nbBits >= 1 */
|
||||
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
|
||||
{
|
||||
size_t const value = BIT_lookBitsFast(bitD, nbBits);
|
||||
BIT_skipBits(bitD, nbBits);
|
||||
return value;
|
||||
}
|
||||
|
||||
/*! BIT_reloadDStream() :
|
||||
* Refill `BIT_DStream_t` from src buffer previously defined (see BIT_initDStream() ).
|
||||
* This function is safe, it guarantees it will not read beyond src buffer.
|
||||
* @return : status of `BIT_DStream_t` internal register.
|
||||
if status == unfinished, internal register is filled with >= (sizeof(bitD->bitContainer)*8 - 7) bits */
|
||||
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
|
||||
{
|
||||
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should not happen => corruption detected */
|
||||
return BIT_DStream_overflow;
|
||||
|
||||
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
|
||||
bitD->ptr -= bitD->bitsConsumed >> 3;
|
||||
bitD->bitsConsumed &= 7;
|
||||
bitD->bitContainer = MEM_readLEST(bitD->ptr);
|
||||
return BIT_DStream_unfinished;
|
||||
}
|
||||
if (bitD->ptr == bitD->start) {
|
||||
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
|
||||
return BIT_DStream_completed;
|
||||
}
|
||||
{ U32 nbBytes = bitD->bitsConsumed >> 3;
|
||||
BIT_DStream_status result = BIT_DStream_unfinished;
|
||||
if (bitD->ptr - nbBytes < bitD->start) {
|
||||
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
|
||||
result = BIT_DStream_endOfBuffer;
|
||||
}
|
||||
bitD->ptr -= nbBytes;
|
||||
bitD->bitsConsumed -= nbBytes*8;
|
||||
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
/*! BIT_endOfDStream() :
|
||||
* @return Tells if DStream has exactly reached its end (all bits consumed).
|
||||
*/
|
||||
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
|
||||
{
|
||||
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
|
||||
}
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* BITSTREAM_H_MODULE */
|
||||
231
C/zstd/entropy_common.c
Normal file
231
C/zstd/entropy_common.c
Normal file
@@ -0,0 +1,231 @@
|
||||
/*
|
||||
Common functions of New Generation Entropy library
|
||||
Copyright (C) 2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
*************************************************************************** */
|
||||
|
||||
/* *************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include "mem.h"
|
||||
#include "error_private.h" /* ERR_*, ERROR */
|
||||
#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
|
||||
#include "fse.h" /* FSE_isError, FSE_getErrorName */
|
||||
#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */
|
||||
#include "huf.h" /* HUF_isError, HUF_getErrorName */
|
||||
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* FSE Error Management
|
||||
******************************************/
|
||||
unsigned FSE_isError(size_t code) { return ERR_isError(code); }
|
||||
|
||||
const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* HUF Error Management
|
||||
****************************************************************/
|
||||
unsigned HUF_isError(size_t code) { return ERR_isError(code); }
|
||||
|
||||
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* FSE NCount encoding-decoding
|
||||
****************************************************************/
|
||||
static short FSE_abs(short a) { return a<0 ? -a : a; }
|
||||
|
||||
size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
|
||||
const void* headerBuffer, size_t hbSize)
|
||||
{
|
||||
const BYTE* const istart = (const BYTE*) headerBuffer;
|
||||
const BYTE* const iend = istart + hbSize;
|
||||
const BYTE* ip = istart;
|
||||
int nbBits;
|
||||
int remaining;
|
||||
int threshold;
|
||||
U32 bitStream;
|
||||
int bitCount;
|
||||
unsigned charnum = 0;
|
||||
int previous0 = 0;
|
||||
|
||||
if (hbSize < 4) return ERROR(srcSize_wrong);
|
||||
bitStream = MEM_readLE32(ip);
|
||||
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
|
||||
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
|
||||
bitStream >>= 4;
|
||||
bitCount = 4;
|
||||
*tableLogPtr = nbBits;
|
||||
remaining = (1<<nbBits)+1;
|
||||
threshold = 1<<nbBits;
|
||||
nbBits++;
|
||||
|
||||
while ((remaining>1) && (charnum<=*maxSVPtr)) {
|
||||
if (previous0) {
|
||||
unsigned n0 = charnum;
|
||||
while ((bitStream & 0xFFFF) == 0xFFFF) {
|
||||
n0+=24;
|
||||
if (ip < iend-5) {
|
||||
ip+=2;
|
||||
bitStream = MEM_readLE32(ip) >> bitCount;
|
||||
} else {
|
||||
bitStream >>= 16;
|
||||
bitCount+=16;
|
||||
} }
|
||||
while ((bitStream & 3) == 3) {
|
||||
n0+=3;
|
||||
bitStream>>=2;
|
||||
bitCount+=2;
|
||||
}
|
||||
n0 += bitStream & 3;
|
||||
bitCount += 2;
|
||||
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
|
||||
while (charnum < n0) normalizedCounter[charnum++] = 0;
|
||||
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
|
||||
ip += bitCount>>3;
|
||||
bitCount &= 7;
|
||||
bitStream = MEM_readLE32(ip) >> bitCount;
|
||||
}
|
||||
else
|
||||
bitStream >>= 2;
|
||||
}
|
||||
{ short const max = (short)((2*threshold-1)-remaining);
|
||||
short count;
|
||||
|
||||
if ((bitStream & (threshold-1)) < (U32)max) {
|
||||
count = (short)(bitStream & (threshold-1));
|
||||
bitCount += nbBits-1;
|
||||
} else {
|
||||
count = (short)(bitStream & (2*threshold-1));
|
||||
if (count >= threshold) count -= max;
|
||||
bitCount += nbBits;
|
||||
}
|
||||
|
||||
count--; /* extra accuracy */
|
||||
remaining -= FSE_abs(count);
|
||||
normalizedCounter[charnum++] = count;
|
||||
previous0 = !count;
|
||||
while (remaining < threshold) {
|
||||
nbBits--;
|
||||
threshold >>= 1;
|
||||
}
|
||||
|
||||
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
|
||||
ip += bitCount>>3;
|
||||
bitCount &= 7;
|
||||
} else {
|
||||
bitCount -= (int)(8 * (iend - 4 - ip));
|
||||
ip = iend - 4;
|
||||
}
|
||||
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
|
||||
} } /* while ((remaining>1) && (charnum<=*maxSVPtr)) */
|
||||
if (remaining != 1) return ERROR(GENERIC);
|
||||
*maxSVPtr = charnum-1;
|
||||
|
||||
ip += (bitCount+7)>>3;
|
||||
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
|
||||
return ip-istart;
|
||||
}
|
||||
|
||||
|
||||
/*! HUF_readStats() :
|
||||
Read compact Huffman tree, saved by HUF_writeCTable().
|
||||
`huffWeight` is destination buffer.
|
||||
@return : size read from `src` , or an error Code .
|
||||
Note : Needed by HUF_readCTable() and HUF_readDTableXn() .
|
||||
*/
|
||||
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
||||
U32* nbSymbolsPtr, U32* tableLogPtr,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
U32 weightTotal;
|
||||
const BYTE* ip = (const BYTE*) src;
|
||||
size_t iSize = ip[0];
|
||||
size_t oSize;
|
||||
|
||||
//memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
|
||||
|
||||
if (iSize >= 128) { /* special header */
|
||||
if (iSize >= (242)) { /* RLE */
|
||||
static U32 l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
|
||||
oSize = l[iSize-242];
|
||||
memset(huffWeight, 1, hwSize);
|
||||
iSize = 0;
|
||||
}
|
||||
else { /* Incompressible */
|
||||
oSize = iSize - 127;
|
||||
iSize = ((oSize+1)/2);
|
||||
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
||||
if (oSize >= hwSize) return ERROR(corruption_detected);
|
||||
ip += 1;
|
||||
{ U32 n;
|
||||
for (n=0; n<oSize; n+=2) {
|
||||
huffWeight[n] = ip[n/2] >> 4;
|
||||
huffWeight[n+1] = ip[n/2] & 15;
|
||||
} } } }
|
||||
else { /* header compressed with FSE (normal case) */
|
||||
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
||||
oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
|
||||
if (FSE_isError(oSize)) return oSize;
|
||||
}
|
||||
|
||||
/* collect weight stats */
|
||||
memset(rankStats, 0, (HUF_TABLELOG_ABSOLUTEMAX + 1) * sizeof(U32));
|
||||
weightTotal = 0;
|
||||
{ U32 n; for (n=0; n<oSize; n++) {
|
||||
if (huffWeight[n] >= HUF_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
|
||||
rankStats[huffWeight[n]]++;
|
||||
weightTotal += (1 << huffWeight[n]) >> 1;
|
||||
} }
|
||||
|
||||
/* get last non-null symbol weight (implied, total must be 2^n) */
|
||||
{ U32 const tableLog = BIT_highbit32(weightTotal) + 1;
|
||||
if (tableLog > HUF_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected);
|
||||
*tableLogPtr = tableLog;
|
||||
/* determine last weight */
|
||||
{ U32 const total = 1 << tableLog;
|
||||
U32 const rest = total - weightTotal;
|
||||
U32 const verif = 1 << BIT_highbit32(rest);
|
||||
U32 const lastWeight = BIT_highbit32(rest) + 1;
|
||||
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
|
||||
huffWeight[oSize] = (BYTE)lastWeight;
|
||||
rankStats[lastWeight]++;
|
||||
} }
|
||||
|
||||
/* check tree construction validity */
|
||||
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
|
||||
|
||||
/* results */
|
||||
*nbSymbolsPtr = (U32)(oSize+1);
|
||||
return iSize+1;
|
||||
}
|
||||
125
C/zstd/error_private.h
Normal file
125
C/zstd/error_private.h
Normal file
@@ -0,0 +1,125 @@
|
||||
/* ******************************************************************
|
||||
Error codes and messages
|
||||
Copyright (C) 2013-2016, Yann Collet
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Homepage : http://www.zstd.net
|
||||
****************************************************************** */
|
||||
/* Note : this module is expected to remain private, do not expose it */
|
||||
|
||||
#ifndef ERROR_H_MODULE
|
||||
#define ERROR_H_MODULE
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Dependencies
|
||||
******************************************/
|
||||
#include <stddef.h> /* size_t */
|
||||
#include "error_public.h" /* enum list */
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Compiler-specific
|
||||
******************************************/
|
||||
#if defined(__GNUC__)
|
||||
# define ERR_STATIC static __attribute__((unused))
|
||||
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
||||
# define ERR_STATIC static inline
|
||||
#elif defined(_MSC_VER)
|
||||
# define ERR_STATIC static __inline
|
||||
#else
|
||||
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
|
||||
#endif
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* Customization (error_public.h)
|
||||
******************************************/
|
||||
typedef ZSTD_ErrorCode ERR_enum;
|
||||
#define PREFIX(name) ZSTD_error_##name
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* Error codes handling
|
||||
******************************************/
|
||||
#ifdef ERROR
|
||||
# undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */
|
||||
#endif
|
||||
#define ERROR(name) ((size_t)-PREFIX(name))
|
||||
|
||||
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
|
||||
|
||||
ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* Error Strings
|
||||
******************************************/
|
||||
|
||||
ERR_STATIC const char* ERR_getErrorString(ERR_enum code)
|
||||
{
|
||||
static const char* notErrorCode = "Unspecified error code";
|
||||
switch( code )
|
||||
{
|
||||
case PREFIX(no_error): return "No error detected";
|
||||
case PREFIX(GENERIC): return "Error (generic)";
|
||||
case PREFIX(prefix_unknown): return "Unknown frame descriptor";
|
||||
case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
|
||||
case PREFIX(frameParameter_unsupportedBy32bits): return "Frame parameter unsupported in 32-bits mode";
|
||||
case PREFIX(compressionParameter_unsupported): return "Compression parameter is out of bound";
|
||||
case PREFIX(init_missing): return "Context should be init first";
|
||||
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
|
||||
case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
|
||||
case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
|
||||
case PREFIX(srcSize_wrong): return "Src size incorrect";
|
||||
case PREFIX(corruption_detected): return "Corrupted block detected";
|
||||
case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
|
||||
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
|
||||
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
|
||||
case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
|
||||
case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
|
||||
case PREFIX(dictionary_wrong): return "Dictionary mismatch";
|
||||
case PREFIX(maxCode):
|
||||
default: return notErrorCode;
|
||||
}
|
||||
}
|
||||
|
||||
ERR_STATIC const char* ERR_getErrorName(size_t code)
|
||||
{
|
||||
return ERR_getErrorString(ERR_getErrorCode(code));
|
||||
}
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ERROR_H_MODULE */
|
||||
73
C/zstd/error_public.h
Normal file
73
C/zstd/error_public.h
Normal file
@@ -0,0 +1,73 @@
|
||||
/* ******************************************************************
|
||||
Error codes list
|
||||
Copyright (C) 2016, Yann Collet
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Homepage : http://www.zstd.net
|
||||
****************************************************************** */
|
||||
#ifndef ERROR_PUBLIC_H_MODULE
|
||||
#define ERROR_PUBLIC_H_MODULE
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* error codes list
|
||||
******************************************/
|
||||
typedef enum {
|
||||
ZSTD_error_no_error,
|
||||
ZSTD_error_GENERIC,
|
||||
ZSTD_error_prefix_unknown,
|
||||
ZSTD_error_frameParameter_unsupported,
|
||||
ZSTD_error_frameParameter_unsupportedBy32bits,
|
||||
ZSTD_error_compressionParameter_unsupported,
|
||||
ZSTD_error_init_missing,
|
||||
ZSTD_error_memory_allocation,
|
||||
ZSTD_error_stage_wrong,
|
||||
ZSTD_error_dstSize_tooSmall,
|
||||
ZSTD_error_srcSize_wrong,
|
||||
ZSTD_error_corruption_detected,
|
||||
ZSTD_error_checksum_wrong,
|
||||
ZSTD_error_tableLog_tooLarge,
|
||||
ZSTD_error_maxSymbolValue_tooLarge,
|
||||
ZSTD_error_maxSymbolValue_tooSmall,
|
||||
ZSTD_error_dictionary_corrupted,
|
||||
ZSTD_error_dictionary_wrong,
|
||||
ZSTD_error_maxCode
|
||||
} ZSTD_ErrorCode;
|
||||
|
||||
/* note : compare with size_t function results using ZSTD_getError() */
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ERROR_PUBLIC_H_MODULE */
|
||||
628
C/zstd/fse.h
Normal file
628
C/zstd/fse.h
Normal file
@@ -0,0 +1,628 @@
|
||||
/* ******************************************************************
|
||||
FSE : Finite State Entropy codec
|
||||
Public Prototypes declaration
|
||||
Copyright (C) 2013-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
****************************************************************** */
|
||||
#ifndef FSE_H
|
||||
#define FSE_H
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/*-*****************************************
|
||||
* Dependencies
|
||||
******************************************/
|
||||
#include <stddef.h> /* size_t, ptrdiff_t */
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* FSE simple functions
|
||||
******************************************/
|
||||
/*! FSE_compress() :
|
||||
Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
|
||||
'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
|
||||
@return : size of compressed data (<= dstCapacity).
|
||||
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
|
||||
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
|
||||
if FSE_isError(return), compression failed (more details using FSE_getErrorName())
|
||||
*/
|
||||
size_t FSE_compress(void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/*! FSE_decompress():
|
||||
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
|
||||
into already allocated destination buffer 'dst', of size 'dstCapacity'.
|
||||
@return : size of regenerated data (<= maxDstSize),
|
||||
or an error code, which can be tested using FSE_isError() .
|
||||
|
||||
** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
|
||||
Why ? : making this distinction requires a header.
|
||||
Header management is intentionally delegated to the user layer, which can better manage special cases.
|
||||
*/
|
||||
size_t FSE_decompress(void* dst, size_t dstCapacity,
|
||||
const void* cSrc, size_t cSrcSize);
|
||||
|
||||
|
||||
/*-*****************************************
|
||||
* Tool functions
|
||||
******************************************/
|
||||
size_t FSE_compressBound(size_t size); /* maximum compressed size */
|
||||
|
||||
/* Error Management */
|
||||
unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
|
||||
const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
|
||||
|
||||
|
||||
/*-*****************************************
|
||||
* FSE advanced functions
|
||||
******************************************/
|
||||
/*! FSE_compress2() :
|
||||
Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
|
||||
Both parameters can be defined as '0' to mean : use default value
|
||||
@return : size of compressed data
|
||||
Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
|
||||
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
|
||||
if FSE_isError(return), it's an error code.
|
||||
*/
|
||||
size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
|
||||
/*-*****************************************
|
||||
* FSE detailed API
|
||||
******************************************/
|
||||
/*!
|
||||
FSE_compress() does the following:
|
||||
1. count symbol occurrence from source[] into table count[]
|
||||
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
|
||||
3. save normalized counters to memory buffer using writeNCount()
|
||||
4. build encoding table 'CTable' from normalized counters
|
||||
5. encode the data stream using encoding table 'CTable'
|
||||
|
||||
FSE_decompress() does the following:
|
||||
1. read normalized counters with readNCount()
|
||||
2. build decoding table 'DTable' from normalized counters
|
||||
3. decode the data stream using decoding table 'DTable'
|
||||
|
||||
The following API allows targeting specific sub-functions for advanced tasks.
|
||||
For example, it's possible to compress several blocks using the same 'CTable',
|
||||
or to save and provide normalized distribution using external method.
|
||||
*/
|
||||
|
||||
/* *** COMPRESSION *** */
|
||||
|
||||
/*! FSE_count():
|
||||
Provides the precise count of each byte within a table 'count'.
|
||||
'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
|
||||
*maxSymbolValuePtr will be updated if detected smaller than initial value.
|
||||
@return : the count of the most frequent symbol (which is not identified).
|
||||
if return == srcSize, there is only one symbol.
|
||||
Can also return an error code, which can be tested with FSE_isError(). */
|
||||
size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
|
||||
|
||||
/*! FSE_optimalTableLog():
|
||||
dynamically downsize 'tableLog' when conditions are met.
|
||||
It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
|
||||
@return : recommended tableLog (necessarily <= 'maxTableLog') */
|
||||
unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
|
||||
|
||||
/*! FSE_normalizeCount():
|
||||
normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
|
||||
'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
|
||||
@return : tableLog,
|
||||
or an errorCode, which can be tested using FSE_isError() */
|
||||
size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
|
||||
|
||||
/*! FSE_NCountWriteBound():
|
||||
Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
|
||||
Typically useful for allocation purpose. */
|
||||
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
/*! FSE_writeNCount():
|
||||
Compactly save 'normalizedCounter' into 'buffer'.
|
||||
@return : size of the compressed table,
|
||||
or an errorCode, which can be tested using FSE_isError(). */
|
||||
size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
|
||||
/*! Constructor and Destructor of FSE_CTable.
|
||||
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
|
||||
typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
|
||||
FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue);
|
||||
void FSE_freeCTable (FSE_CTable* ct);
|
||||
|
||||
/*! FSE_buildCTable():
|
||||
Builds `ct`, which must be already allocated, using FSE_createCTable().
|
||||
@return : 0, or an errorCode, which can be tested using FSE_isError() */
|
||||
size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
/*! FSE_compress_usingCTable():
|
||||
Compress `src` using `ct` into `dst` which must be already allocated.
|
||||
@return : size of compressed data (<= `dstCapacity`),
|
||||
or 0 if compressed data could not fit into `dst`,
|
||||
or an errorCode, which can be tested using FSE_isError() */
|
||||
size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
|
||||
|
||||
/*!
|
||||
Tutorial :
|
||||
----------
|
||||
The first step is to count all symbols. FSE_count() does this job very fast.
|
||||
Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
|
||||
'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
|
||||
maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
|
||||
FSE_count() will return the number of occurrence of the most frequent symbol.
|
||||
This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
|
||||
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
|
||||
|
||||
The next step is to normalize the frequencies.
|
||||
FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
|
||||
It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
|
||||
You can use 'tableLog'==0 to mean "use default tableLog value".
|
||||
If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
|
||||
which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
|
||||
|
||||
The result of FSE_normalizeCount() will be saved into a table,
|
||||
called 'normalizedCounter', which is a table of signed short.
|
||||
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
|
||||
The return value is tableLog if everything proceeded as expected.
|
||||
It is 0 if there is a single symbol within distribution.
|
||||
If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
|
||||
|
||||
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
|
||||
'buffer' must be already allocated.
|
||||
For guaranteed success, buffer size must be at least FSE_headerBound().
|
||||
The result of the function is the number of bytes written into 'buffer'.
|
||||
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
|
||||
|
||||
'normalizedCounter' can then be used to create the compression table 'CTable'.
|
||||
The space required by 'CTable' must be already allocated, using FSE_createCTable().
|
||||
You can then use FSE_buildCTable() to fill 'CTable'.
|
||||
If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
|
||||
|
||||
'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
|
||||
Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
|
||||
The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
|
||||
If it returns '0', compressed data could not fit into 'dst'.
|
||||
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
|
||||
*/
|
||||
|
||||
|
||||
/* *** DECOMPRESSION *** */
|
||||
|
||||
/*! FSE_readNCount():
|
||||
Read compactly saved 'normalizedCounter' from 'rBuffer'.
|
||||
@return : size read from 'rBuffer',
|
||||
or an errorCode, which can be tested using FSE_isError().
|
||||
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
|
||||
size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
|
||||
|
||||
/*! Constructor and Destructor of FSE_DTable.
|
||||
Note that its size depends on 'tableLog' */
|
||||
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
|
||||
FSE_DTable* FSE_createDTable(unsigned tableLog);
|
||||
void FSE_freeDTable(FSE_DTable* dt);
|
||||
|
||||
/*! FSE_buildDTable():
|
||||
Builds 'dt', which must be already allocated, using FSE_createDTable().
|
||||
return : 0, or an errorCode, which can be tested using FSE_isError() */
|
||||
size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
/*! FSE_decompress_usingDTable():
|
||||
Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
|
||||
into `dst` which must be already allocated.
|
||||
@return : size of regenerated data (necessarily <= `dstCapacity`),
|
||||
or an errorCode, which can be tested using FSE_isError() */
|
||||
size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
|
||||
|
||||
/*!
|
||||
Tutorial :
|
||||
----------
|
||||
(Note : these functions only decompress FSE-compressed blocks.
|
||||
If block is uncompressed, use memcpy() instead
|
||||
If block is a single repeated byte, use memset() instead )
|
||||
|
||||
The first step is to obtain the normalized frequencies of symbols.
|
||||
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
|
||||
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
|
||||
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
|
||||
or size the table to handle worst case situations (typically 256).
|
||||
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
|
||||
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
|
||||
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
|
||||
If there is an error, the function will return an error code, which can be tested using FSE_isError().
|
||||
|
||||
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
|
||||
This is performed by the function FSE_buildDTable().
|
||||
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
|
||||
If there is an error, the function will return an error code, which can be tested using FSE_isError().
|
||||
|
||||
`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
|
||||
`cSrcSize` must be strictly correct, otherwise decompression will fail.
|
||||
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
|
||||
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
|
||||
*/
|
||||
|
||||
|
||||
#ifdef FSE_STATIC_LINKING_ONLY
|
||||
|
||||
/* *** Dependency *** */
|
||||
#include "bitstream.h"
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* Static allocation
|
||||
*******************************************/
|
||||
/* FSE buffer bounds */
|
||||
#define FSE_NCOUNTBOUND 512
|
||||
#define FSE_BLOCKBOUND(size) (size + (size>>7))
|
||||
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
|
||||
|
||||
/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
|
||||
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
|
||||
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE advanced API
|
||||
*******************************************/
|
||||
size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
|
||||
/**< same as FSE_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr */
|
||||
|
||||
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
|
||||
/**< same as FSE_optimalTableLog(), which used `minus==2` */
|
||||
|
||||
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
|
||||
/**< build a fake FSE_CTable, designed to not compress an input, where each symbol uses nbBits */
|
||||
|
||||
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
|
||||
/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
|
||||
|
||||
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
|
||||
/**< build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
|
||||
|
||||
size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
|
||||
/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE symbol compression API
|
||||
*******************************************/
|
||||
/*!
|
||||
This API consists of small unitary functions, which highly benefit from being inlined.
|
||||
You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
|
||||
Visual seems to do it automatically.
|
||||
For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
|
||||
If none of these solutions is applicable, include "fse.c" directly.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
ptrdiff_t value;
|
||||
const void* stateTable;
|
||||
const void* symbolTT;
|
||||
unsigned stateLog;
|
||||
} FSE_CState_t;
|
||||
|
||||
static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
|
||||
|
||||
static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
|
||||
|
||||
static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
|
||||
|
||||
/**<
|
||||
These functions are inner components of FSE_compress_usingCTable().
|
||||
They allow the creation of custom streams, mixing multiple tables and bit sources.
|
||||
|
||||
A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
|
||||
So the first symbol you will encode is the last you will decode, like a LIFO stack.
|
||||
|
||||
You will need a few variables to track your CStream. They are :
|
||||
|
||||
FSE_CTable ct; // Provided by FSE_buildCTable()
|
||||
BIT_CStream_t bitStream; // bitStream tracking structure
|
||||
FSE_CState_t state; // State tracking structure (can have several)
|
||||
|
||||
|
||||
The first thing to do is to init bitStream and state.
|
||||
size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
|
||||
FSE_initCState(&state, ct);
|
||||
|
||||
Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
|
||||
You can then encode your input data, byte after byte.
|
||||
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
|
||||
Remember decoding will be done in reverse direction.
|
||||
FSE_encodeByte(&bitStream, &state, symbol);
|
||||
|
||||
At any time, you can also add any bit sequence.
|
||||
Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
|
||||
BIT_addBits(&bitStream, bitField, nbBits);
|
||||
|
||||
The above methods don't commit data to memory, they just store it into local register, for speed.
|
||||
Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
Writing data to memory is a manual operation, performed by the flushBits function.
|
||||
BIT_flushBits(&bitStream);
|
||||
|
||||
Your last FSE encoding operation shall be to flush your last state value(s).
|
||||
FSE_flushState(&bitStream, &state);
|
||||
|
||||
Finally, you must close the bitStream.
|
||||
The function returns the size of CStream in bytes.
|
||||
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
|
||||
If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
|
||||
size_t size = BIT_closeCStream(&bitStream);
|
||||
*/
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE symbol decompression API
|
||||
*******************************************/
|
||||
typedef struct
|
||||
{
|
||||
size_t state;
|
||||
const void* table; /* precise table may vary, depending on U16 */
|
||||
} FSE_DState_t;
|
||||
|
||||
|
||||
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
|
||||
|
||||
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
|
||||
|
||||
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
|
||||
|
||||
/**<
|
||||
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
|
||||
You will decode FSE-encoded symbols from the bitStream,
|
||||
and also any other bitFields you put in, **in reverse order**.
|
||||
|
||||
You will need a few variables to track your bitStream. They are :
|
||||
|
||||
BIT_DStream_t DStream; // Stream context
|
||||
FSE_DState_t DState; // State context. Multiple ones are possible
|
||||
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
|
||||
|
||||
The first thing to do is to init the bitStream.
|
||||
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
|
||||
|
||||
You should then retrieve your initial state(s)
|
||||
(in reverse flushing order if you have several ones) :
|
||||
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
|
||||
|
||||
You can then decode your data, symbol after symbol.
|
||||
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
|
||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
||||
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
|
||||
|
||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
||||
size_t bitField = BIT_readBits(&DStream, nbBits);
|
||||
|
||||
All above operations only read from local register (which size depends on size_t).
|
||||
Refueling the register from memory is manually performed by the reload method.
|
||||
endSignal = FSE_reloadDStream(&DStream);
|
||||
|
||||
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
|
||||
BIT_DStream_unfinished : there is still some data left into the DStream.
|
||||
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
||||
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
||||
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
||||
|
||||
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
||||
to properly detect the exact end of stream.
|
||||
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
||||
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
|
||||
|
||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
||||
Checking if DStream has reached its end is performed by :
|
||||
BIT_endOfDStream(&DStream);
|
||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
||||
FSE_endOfDState(&DState);
|
||||
*/
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE unsafe API
|
||||
*******************************************/
|
||||
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
|
||||
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* Implementation of inlined functions
|
||||
*******************************************/
|
||||
typedef struct {
|
||||
int deltaFindState;
|
||||
U32 deltaNbBits;
|
||||
} FSE_symbolCompressionTransform; /* total 8 bytes */
|
||||
|
||||
MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
|
||||
{
|
||||
const void* ptr = ct;
|
||||
const U16* u16ptr = (const U16*) ptr;
|
||||
const U32 tableLog = MEM_read16(ptr);
|
||||
statePtr->value = (ptrdiff_t)1<<tableLog;
|
||||
statePtr->stateTable = u16ptr+2;
|
||||
statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
|
||||
statePtr->stateLog = tableLog;
|
||||
}
|
||||
|
||||
|
||||
/*! FSE_initCState2() :
|
||||
* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
|
||||
* uses the smallest state value possible, saving the cost of this symbol */
|
||||
MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
|
||||
{
|
||||
FSE_initCState(statePtr, ct);
|
||||
{ const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
|
||||
const U16* stateTable = (const U16*)(statePtr->stateTable);
|
||||
U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
|
||||
statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
|
||||
statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
|
||||
}
|
||||
}
|
||||
|
||||
MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
|
||||
{
|
||||
const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
|
||||
const U16* const stateTable = (const U16*)(statePtr->stateTable);
|
||||
U32 nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
|
||||
BIT_addBits(bitC, statePtr->value, nbBitsOut);
|
||||
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
|
||||
}
|
||||
|
||||
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
|
||||
{
|
||||
BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
|
||||
BIT_flushBits(bitC);
|
||||
}
|
||||
|
||||
/*<===== Decompression =====>*/
|
||||
|
||||
typedef struct {
|
||||
U16 tableLog;
|
||||
U16 fastMode;
|
||||
} FSE_DTableHeader; /* sizeof U32 */
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned short newState;
|
||||
unsigned char symbol;
|
||||
unsigned char nbBits;
|
||||
} FSE_decode_t; /* size == U32 */
|
||||
|
||||
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
|
||||
{
|
||||
const void* ptr = dt;
|
||||
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
|
||||
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
|
||||
BIT_reloadDStream(bitD);
|
||||
DStatePtr->table = dt + 1;
|
||||
}
|
||||
|
||||
MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
|
||||
{
|
||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
||||
return DInfo.symbol;
|
||||
}
|
||||
|
||||
MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
||||
{
|
||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
||||
U32 const nbBits = DInfo.nbBits;
|
||||
size_t const lowBits = BIT_readBits(bitD, nbBits);
|
||||
DStatePtr->state = DInfo.newState + lowBits;
|
||||
}
|
||||
|
||||
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
||||
{
|
||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
||||
U32 const nbBits = DInfo.nbBits;
|
||||
BYTE const symbol = DInfo.symbol;
|
||||
size_t const lowBits = BIT_readBits(bitD, nbBits);
|
||||
|
||||
DStatePtr->state = DInfo.newState + lowBits;
|
||||
return symbol;
|
||||
}
|
||||
|
||||
/*! FSE_decodeSymbolFast() :
|
||||
unsafe, only works if no symbol has a probability > 50% */
|
||||
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
||||
{
|
||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
||||
U32 const nbBits = DInfo.nbBits;
|
||||
BYTE const symbol = DInfo.symbol;
|
||||
size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
|
||||
|
||||
DStatePtr->state = DInfo.newState + lowBits;
|
||||
return symbol;
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
|
||||
{
|
||||
return DStatePtr->state == 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifndef FSE_COMMONDEFS_ONLY
|
||||
|
||||
/* **************************************************************
|
||||
* Tuning parameters
|
||||
****************************************************************/
|
||||
/*!MEMORY_USAGE :
|
||||
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
|
||||
* Increasing memory usage improves compression ratio
|
||||
* Reduced memory usage can improve speed, due to cache effect
|
||||
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
|
||||
#define FSE_MAX_MEMORY_USAGE 14
|
||||
#define FSE_DEFAULT_MEMORY_USAGE 13
|
||||
|
||||
/*!FSE_MAX_SYMBOL_VALUE :
|
||||
* Maximum symbol value authorized.
|
||||
* Required for proper stack allocation */
|
||||
#define FSE_MAX_SYMBOL_VALUE 255
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* template functions type & suffix
|
||||
****************************************************************/
|
||||
#define FSE_FUNCTION_TYPE BYTE
|
||||
#define FSE_FUNCTION_EXTENSION
|
||||
#define FSE_DECODE_TYPE FSE_decode_t
|
||||
|
||||
|
||||
#endif /* !FSE_COMMONDEFS_ONLY */
|
||||
|
||||
|
||||
/* ***************************************************************
|
||||
* Constants
|
||||
*****************************************************************/
|
||||
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
|
||||
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
|
||||
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
|
||||
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
|
||||
#define FSE_MIN_TABLELOG 5
|
||||
|
||||
#define FSE_TABLELOG_ABSOLUTE_MAX 15
|
||||
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
|
||||
# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
|
||||
#endif
|
||||
|
||||
#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
|
||||
|
||||
|
||||
#endif /* FSE_STATIC_LINKING_ONLY */
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* FSE_H */
|
||||
807
C/zstd/fse_compress.c
Normal file
807
C/zstd/fse_compress.c
Normal file
@@ -0,0 +1,807 @@
|
||||
/* ******************************************************************
|
||||
FSE : Finite State Entropy encoder
|
||||
Copyright (C) 2013-2015, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
|
||||
/* **************************************************************
|
||||
* Compiler specifics
|
||||
****************************************************************/
|
||||
#ifdef _MSC_VER /* Visual Studio */
|
||||
# define FORCE_INLINE static __forceinline
|
||||
# include <intrin.h> /* For Visual 2005 */
|
||||
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
||||
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
|
||||
#else
|
||||
# ifdef __GNUC__
|
||||
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
||||
# define FORCE_INLINE static inline __attribute__((always_inline))
|
||||
# else
|
||||
# define FORCE_INLINE static inline
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Includes
|
||||
****************************************************************/
|
||||
#include <stdlib.h> /* malloc, free, qsort */
|
||||
#include <string.h> /* memcpy, memset */
|
||||
#include <stdio.h> /* printf (debug) */
|
||||
#include "bitstream.h"
|
||||
#define FSE_STATIC_LINKING_ONLY
|
||||
#include "fse.h"
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Error Management
|
||||
****************************************************************/
|
||||
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Complex types
|
||||
****************************************************************/
|
||||
typedef U32 CTable_max_t[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Templates
|
||||
****************************************************************/
|
||||
/*
|
||||
designed to be included
|
||||
for type-specific functions (template emulation in C)
|
||||
Objective is to write these functions only once, for improved maintenance
|
||||
*/
|
||||
|
||||
/* safety checks */
|
||||
#ifndef FSE_FUNCTION_EXTENSION
|
||||
# error "FSE_FUNCTION_EXTENSION must be defined"
|
||||
#endif
|
||||
#ifndef FSE_FUNCTION_TYPE
|
||||
# error "FSE_FUNCTION_TYPE must be defined"
|
||||
#endif
|
||||
|
||||
/* Function names */
|
||||
#define FSE_CAT(X,Y) X##Y
|
||||
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
|
||||
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
|
||||
|
||||
|
||||
/* Function templates */
|
||||
size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
U32 const tableSize = 1 << tableLog;
|
||||
U32 const tableMask = tableSize - 1;
|
||||
void* const ptr = ct;
|
||||
U16* const tableU16 = ( (U16*) ptr) + 2;
|
||||
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
|
||||
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
|
||||
U32 const step = FSE_TABLESTEP(tableSize);
|
||||
U32 cumul[FSE_MAX_SYMBOL_VALUE+2];
|
||||
|
||||
FSE_FUNCTION_TYPE tableSymbol[FSE_MAX_TABLESIZE]; /* memset() is not necessary, even if static analyzer complain about it */
|
||||
U32 highThreshold = tableSize-1;
|
||||
|
||||
/* CTable header */
|
||||
tableU16[-2] = (U16) tableLog;
|
||||
tableU16[-1] = (U16) maxSymbolValue;
|
||||
|
||||
/* For explanations on how to distribute symbol values over the table :
|
||||
* http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
|
||||
|
||||
/* symbol start positions */
|
||||
{ U32 u;
|
||||
cumul[0] = 0;
|
||||
for (u=1; u<=maxSymbolValue+1; u++) {
|
||||
if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
|
||||
cumul[u] = cumul[u-1] + 1;
|
||||
tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
|
||||
} else {
|
||||
cumul[u] = cumul[u-1] + normalizedCounter[u-1];
|
||||
} }
|
||||
cumul[maxSymbolValue+1] = tableSize+1;
|
||||
}
|
||||
|
||||
/* Spread symbols */
|
||||
{ U32 position = 0;
|
||||
U32 symbol;
|
||||
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
|
||||
int nbOccurences;
|
||||
for (nbOccurences=0; nbOccurences<normalizedCounter[symbol]; nbOccurences++) {
|
||||
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
|
||||
position = (position + step) & tableMask;
|
||||
while (position > highThreshold) position = (position + step) & tableMask; /* Low proba area */
|
||||
} }
|
||||
|
||||
if (position!=0) return ERROR(GENERIC); /* Must have gone through all positions */
|
||||
}
|
||||
|
||||
/* Build table */
|
||||
{ U32 u; for (u=0; u<tableSize; u++) {
|
||||
FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
|
||||
tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
|
||||
} }
|
||||
|
||||
/* Build Symbol Transformation Table */
|
||||
{ unsigned total = 0;
|
||||
unsigned s;
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
switch (normalizedCounter[s])
|
||||
{
|
||||
case 0: break;
|
||||
|
||||
case -1:
|
||||
case 1:
|
||||
symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
|
||||
symbolTT[s].deltaFindState = total - 1;
|
||||
total ++;
|
||||
break;
|
||||
default :
|
||||
{
|
||||
U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1);
|
||||
U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
|
||||
symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
|
||||
symbolTT[s].deltaFindState = total - normalizedCounter[s];
|
||||
total += normalizedCounter[s];
|
||||
} } } }
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifndef FSE_COMMONDEFS_ONLY
|
||||
|
||||
/*-**************************************************************
|
||||
* FSE NCount encoding-decoding
|
||||
****************************************************************/
|
||||
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
size_t maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3;
|
||||
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
|
||||
}
|
||||
|
||||
static short FSE_abs(short a) { return a<0 ? -a : a; }
|
||||
|
||||
static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
|
||||
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
|
||||
unsigned writeIsSafe)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*) header;
|
||||
BYTE* out = ostart;
|
||||
BYTE* const oend = ostart + headerBufferSize;
|
||||
int nbBits;
|
||||
const int tableSize = 1 << tableLog;
|
||||
int remaining;
|
||||
int threshold;
|
||||
U32 bitStream;
|
||||
int bitCount;
|
||||
unsigned charnum = 0;
|
||||
int previous0 = 0;
|
||||
|
||||
bitStream = 0;
|
||||
bitCount = 0;
|
||||
/* Table Size */
|
||||
bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
|
||||
bitCount += 4;
|
||||
|
||||
/* Init */
|
||||
remaining = tableSize+1; /* +1 for extra accuracy */
|
||||
threshold = tableSize;
|
||||
nbBits = tableLog+1;
|
||||
|
||||
while (remaining>1) { /* stops at 1 */
|
||||
if (previous0) {
|
||||
unsigned start = charnum;
|
||||
while (!normalizedCounter[charnum]) charnum++;
|
||||
while (charnum >= start+24) {
|
||||
start+=24;
|
||||
bitStream += 0xFFFFU << bitCount;
|
||||
if ((!writeIsSafe) && (out > oend-2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
out[0] = (BYTE) bitStream;
|
||||
out[1] = (BYTE)(bitStream>>8);
|
||||
out+=2;
|
||||
bitStream>>=16;
|
||||
}
|
||||
while (charnum >= start+3) {
|
||||
start+=3;
|
||||
bitStream += 3 << bitCount;
|
||||
bitCount += 2;
|
||||
}
|
||||
bitStream += (charnum-start) << bitCount;
|
||||
bitCount += 2;
|
||||
if (bitCount>16) {
|
||||
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
out[0] = (BYTE)bitStream;
|
||||
out[1] = (BYTE)(bitStream>>8);
|
||||
out += 2;
|
||||
bitStream >>= 16;
|
||||
bitCount -= 16;
|
||||
} }
|
||||
{ short count = normalizedCounter[charnum++];
|
||||
const short max = (short)((2*threshold-1)-remaining);
|
||||
remaining -= FSE_abs(count);
|
||||
if (remaining<1) return ERROR(GENERIC);
|
||||
count++; /* +1 for extra accuracy */
|
||||
if (count>=threshold) count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
|
||||
bitStream += count << bitCount;
|
||||
bitCount += nbBits;
|
||||
bitCount -= (count<max);
|
||||
previous0 = (count==1);
|
||||
while (remaining<threshold) nbBits--, threshold>>=1;
|
||||
}
|
||||
if (bitCount>16) {
|
||||
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
out[0] = (BYTE)bitStream;
|
||||
out[1] = (BYTE)(bitStream>>8);
|
||||
out += 2;
|
||||
bitStream >>= 16;
|
||||
bitCount -= 16;
|
||||
} }
|
||||
|
||||
/* flush remaining bitStream */
|
||||
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
||||
out[0] = (BYTE)bitStream;
|
||||
out[1] = (BYTE)(bitStream>>8);
|
||||
out+= (bitCount+7) /8;
|
||||
|
||||
if (charnum > maxSymbolValue + 1) return ERROR(GENERIC);
|
||||
|
||||
return (out-ostart);
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(GENERIC); /* Unsupported */
|
||||
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
|
||||
|
||||
if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
|
||||
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
|
||||
|
||||
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* Counting histogram
|
||||
****************************************************************/
|
||||
/*! FSE_count_simple
|
||||
This function just counts byte values within `src`,
|
||||
and store the histogram into table `count`.
|
||||
This function is unsafe : it doesn't check that all values within `src` can fit into `count`.
|
||||
For this reason, prefer using a table `count` with 256 elements.
|
||||
@return : count of most numerous element
|
||||
*/
|
||||
static size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*)src;
|
||||
const BYTE* const end = ip + srcSize;
|
||||
unsigned maxSymbolValue = *maxSymbolValuePtr;
|
||||
unsigned max=0;
|
||||
|
||||
|
||||
memset(count, 0, (maxSymbolValue+1)*sizeof(*count));
|
||||
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
|
||||
|
||||
while (ip<end) count[*ip++]++;
|
||||
|
||||
while (!count[maxSymbolValue]) maxSymbolValue--;
|
||||
*maxSymbolValuePtr = maxSymbolValue;
|
||||
|
||||
{ U32 s; for (s=0; s<=maxSymbolValue; s++) if (count[s] > max) max = count[s]; }
|
||||
|
||||
return (size_t)max;
|
||||
}
|
||||
|
||||
|
||||
static size_t FSE_count_parallel(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize,
|
||||
unsigned checkMax)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*)source;
|
||||
const BYTE* const iend = ip+sourceSize;
|
||||
unsigned maxSymbolValue = *maxSymbolValuePtr;
|
||||
unsigned max=0;
|
||||
|
||||
|
||||
U32 Counting1[256] = { 0 };
|
||||
U32 Counting2[256] = { 0 };
|
||||
U32 Counting3[256] = { 0 };
|
||||
U32 Counting4[256] = { 0 };
|
||||
|
||||
/* safety checks */
|
||||
if (!sourceSize) {
|
||||
memset(count, 0, maxSymbolValue + 1);
|
||||
*maxSymbolValuePtr = 0;
|
||||
return 0;
|
||||
}
|
||||
if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */
|
||||
|
||||
/* by stripes of 16 bytes */
|
||||
{ U32 cached = MEM_read32(ip); ip += 4;
|
||||
while (ip < iend-15) {
|
||||
U32 c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
c = cached; cached = MEM_read32(ip); ip += 4;
|
||||
Counting1[(BYTE) c ]++;
|
||||
Counting2[(BYTE)(c>>8) ]++;
|
||||
Counting3[(BYTE)(c>>16)]++;
|
||||
Counting4[ c>>24 ]++;
|
||||
}
|
||||
ip-=4;
|
||||
}
|
||||
|
||||
/* finish last symbols */
|
||||
while (ip<iend) Counting1[*ip++]++;
|
||||
|
||||
if (checkMax) { /* verify stats will fit into destination table */
|
||||
U32 s; for (s=255; s>maxSymbolValue; s--) {
|
||||
Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
|
||||
if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
|
||||
} }
|
||||
|
||||
{ U32 s; for (s=0; s<=maxSymbolValue; s++) {
|
||||
count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
|
||||
if (count[s] > max) max = count[s];
|
||||
}}
|
||||
|
||||
while (!count[maxSymbolValue]) maxSymbolValue--;
|
||||
*maxSymbolValuePtr = maxSymbolValue;
|
||||
return (size_t)max;
|
||||
}
|
||||
|
||||
/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
|
||||
size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize)
|
||||
{
|
||||
if (sourceSize < 1500) return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
|
||||
return FSE_count_parallel(count, maxSymbolValuePtr, source, sourceSize, 0);
|
||||
}
|
||||
|
||||
size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr,
|
||||
const void* source, size_t sourceSize)
|
||||
{
|
||||
if (*maxSymbolValuePtr <255)
|
||||
return FSE_count_parallel(count, maxSymbolValuePtr, source, sourceSize, 1);
|
||||
*maxSymbolValuePtr = 255;
|
||||
return FSE_countFast(count, maxSymbolValuePtr, source, sourceSize);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* FSE Compression Code
|
||||
****************************************************************/
|
||||
/*! FSE_sizeof_CTable() :
|
||||
FSE_CTable is a variable size structure which contains :
|
||||
`U16 tableLog;`
|
||||
`U16 maxSymbolValue;`
|
||||
`U16 nextStateNumber[1 << tableLog];` // This size is variable
|
||||
`FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];` // This size is variable
|
||||
Allocation is manual (C standard does not support variable-size structures).
|
||||
*/
|
||||
|
||||
size_t FSE_sizeof_CTable (unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
size_t size;
|
||||
FSE_STATIC_ASSERT((size_t)FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)*4 >= sizeof(CTable_max_t)); /* A compilation error here means FSE_CTABLE_SIZE_U32 is not large enough */
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(GENERIC);
|
||||
size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
|
||||
return size;
|
||||
}
|
||||
|
||||
FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
size_t size;
|
||||
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
|
||||
size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
|
||||
return (FSE_CTable*)malloc(size);
|
||||
}
|
||||
|
||||
void FSE_freeCTable (FSE_CTable* ct) { free(ct); }
|
||||
|
||||
/* provides the minimum logSize to safely represent a distribution */
|
||||
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
|
||||
{
|
||||
U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1;
|
||||
U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
|
||||
U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
|
||||
return minBits;
|
||||
}
|
||||
|
||||
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
|
||||
{
|
||||
U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
|
||||
U32 tableLog = maxTableLog;
|
||||
U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
|
||||
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
|
||||
if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
|
||||
if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
|
||||
if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
|
||||
if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
|
||||
return tableLog;
|
||||
}
|
||||
|
||||
unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
|
||||
{
|
||||
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
|
||||
}
|
||||
|
||||
|
||||
/* Secondary normalization method.
|
||||
To be used when primary method fails. */
|
||||
|
||||
static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue)
|
||||
{
|
||||
U32 s;
|
||||
U32 distributed = 0;
|
||||
U32 ToDistribute;
|
||||
|
||||
/* Init */
|
||||
U32 lowThreshold = (U32)(total >> tableLog);
|
||||
U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
|
||||
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
if (count[s] == 0) {
|
||||
norm[s]=0;
|
||||
continue;
|
||||
}
|
||||
if (count[s] <= lowThreshold) {
|
||||
norm[s] = -1;
|
||||
distributed++;
|
||||
total -= count[s];
|
||||
continue;
|
||||
}
|
||||
if (count[s] <= lowOne) {
|
||||
norm[s] = 1;
|
||||
distributed++;
|
||||
total -= count[s];
|
||||
continue;
|
||||
}
|
||||
norm[s]=-2;
|
||||
}
|
||||
ToDistribute = (1 << tableLog) - distributed;
|
||||
|
||||
if ((total / ToDistribute) > lowOne) {
|
||||
/* risk of rounding to zero */
|
||||
lowOne = (U32)((total * 3) / (ToDistribute * 2));
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
if ((norm[s] == -2) && (count[s] <= lowOne)) {
|
||||
norm[s] = 1;
|
||||
distributed++;
|
||||
total -= count[s];
|
||||
continue;
|
||||
} }
|
||||
ToDistribute = (1 << tableLog) - distributed;
|
||||
}
|
||||
|
||||
if (distributed == maxSymbolValue+1) {
|
||||
/* all values are pretty poor;
|
||||
probably incompressible data (should have already been detected);
|
||||
find max, then give all remaining points to max */
|
||||
U32 maxV = 0, maxC = 0;
|
||||
for (s=0; s<=maxSymbolValue; s++)
|
||||
if (count[s] > maxC) maxV=s, maxC=count[s];
|
||||
norm[maxV] += (short)ToDistribute;
|
||||
return 0;
|
||||
}
|
||||
|
||||
{
|
||||
U64 const vStepLog = 62 - tableLog;
|
||||
U64 const mid = (1ULL << (vStepLog-1)) - 1;
|
||||
U64 const rStep = ((((U64)1<<vStepLog) * ToDistribute) + mid) / total; /* scale on remaining */
|
||||
U64 tmpTotal = mid;
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
if (norm[s]==-2) {
|
||||
U64 end = tmpTotal + (count[s] * rStep);
|
||||
U32 sStart = (U32)(tmpTotal >> vStepLog);
|
||||
U32 sEnd = (U32)(end >> vStepLog);
|
||||
U32 weight = sEnd - sStart;
|
||||
if (weight < 1)
|
||||
return ERROR(GENERIC);
|
||||
norm[s] = (short)weight;
|
||||
tmpTotal = end;
|
||||
} } }
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
|
||||
const unsigned* count, size_t total,
|
||||
unsigned maxSymbolValue)
|
||||
{
|
||||
/* Sanity checks */
|
||||
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
|
||||
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
|
||||
if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
|
||||
|
||||
{ U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
|
||||
|
||||
U64 const scale = 62 - tableLog;
|
||||
U64 const step = ((U64)1<<62) / total; /* <== here, one division ! */
|
||||
U64 const vStep = 1ULL<<(scale-20);
|
||||
int stillToDistribute = 1<<tableLog;
|
||||
unsigned s;
|
||||
unsigned largest=0;
|
||||
short largestP=0;
|
||||
U32 lowThreshold = (U32)(total >> tableLog);
|
||||
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
if (count[s] == total) return 0; /* rle special case */
|
||||
if (count[s] == 0) { normalizedCounter[s]=0; continue; }
|
||||
if (count[s] <= lowThreshold) {
|
||||
normalizedCounter[s] = -1;
|
||||
stillToDistribute--;
|
||||
} else {
|
||||
short proba = (short)((count[s]*step) >> scale);
|
||||
if (proba<8) {
|
||||
U64 restToBeat = vStep * rtbTable[proba];
|
||||
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
|
||||
}
|
||||
if (proba > largestP) largestP=proba, largest=s;
|
||||
normalizedCounter[s] = proba;
|
||||
stillToDistribute -= proba;
|
||||
} }
|
||||
if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
|
||||
/* corner case, need another normalization method */
|
||||
size_t errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
|
||||
if (FSE_isError(errorCode)) return errorCode;
|
||||
}
|
||||
else normalizedCounter[largest] += (short)stillToDistribute;
|
||||
}
|
||||
|
||||
#if 0
|
||||
{ /* Print Table (debug) */
|
||||
U32 s;
|
||||
U32 nTotal = 0;
|
||||
for (s=0; s<=maxSymbolValue; s++)
|
||||
printf("%3i: %4i \n", s, normalizedCounter[s]);
|
||||
for (s=0; s<=maxSymbolValue; s++)
|
||||
nTotal += abs(normalizedCounter[s]);
|
||||
if (nTotal != (1U<<tableLog))
|
||||
printf("Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
|
||||
getchar();
|
||||
}
|
||||
#endif
|
||||
|
||||
return tableLog;
|
||||
}
|
||||
|
||||
|
||||
/* fake FSE_CTable, for raw (uncompressed) input */
|
||||
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
|
||||
{
|
||||
const unsigned tableSize = 1 << nbBits;
|
||||
const unsigned tableMask = tableSize - 1;
|
||||
const unsigned maxSymbolValue = tableMask;
|
||||
void* const ptr = ct;
|
||||
U16* const tableU16 = ( (U16*) ptr) + 2;
|
||||
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1); /* assumption : tableLog >= 1 */
|
||||
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
|
||||
unsigned s;
|
||||
|
||||
/* Sanity checks */
|
||||
if (nbBits < 1) return ERROR(GENERIC); /* min size */
|
||||
|
||||
/* header */
|
||||
tableU16[-2] = (U16) nbBits;
|
||||
tableU16[-1] = (U16) maxSymbolValue;
|
||||
|
||||
/* Build table */
|
||||
for (s=0; s<tableSize; s++)
|
||||
tableU16[s] = (U16)(tableSize + s);
|
||||
|
||||
/* Build Symbol Transformation Table */
|
||||
{ const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
|
||||
|
||||
for (s=0; s<=maxSymbolValue; s++) {
|
||||
symbolTT[s].deltaNbBits = deltaNbBits;
|
||||
symbolTT[s].deltaFindState = s-1;
|
||||
} }
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* fake FSE_CTable, for rle (100% always same symbol) input */
|
||||
size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
|
||||
{
|
||||
void* ptr = ct;
|
||||
U16* tableU16 = ( (U16*) ptr) + 2;
|
||||
void* FSCTptr = (U32*)ptr + 2;
|
||||
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
|
||||
|
||||
/* header */
|
||||
tableU16[-2] = (U16) 0;
|
||||
tableU16[-1] = (U16) symbolValue;
|
||||
|
||||
/* Build table */
|
||||
tableU16[0] = 0;
|
||||
tableU16[1] = 0; /* just in case */
|
||||
|
||||
/* Build Symbol Transformation Table */
|
||||
symbolTT[symbolValue].deltaNbBits = 0;
|
||||
symbolTT[symbolValue].deltaFindState = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const FSE_CTable* ct, const unsigned fast)
|
||||
{
|
||||
const BYTE* const istart = (const BYTE*) src;
|
||||
const BYTE* const iend = istart + srcSize;
|
||||
const BYTE* ip=iend;
|
||||
|
||||
|
||||
BIT_CStream_t bitC;
|
||||
FSE_CState_t CState1, CState2;
|
||||
|
||||
/* init */
|
||||
if (srcSize <= 2) return 0;
|
||||
{ size_t const errorCode = BIT_initCStream(&bitC, dst, dstSize);
|
||||
if (FSE_isError(errorCode)) return 0; }
|
||||
|
||||
#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
|
||||
|
||||
if (srcSize & 1) {
|
||||
FSE_initCState2(&CState1, ct, *--ip);
|
||||
FSE_initCState2(&CState2, ct, *--ip);
|
||||
FSE_encodeSymbol(&bitC, &CState1, *--ip);
|
||||
FSE_FLUSHBITS(&bitC);
|
||||
} else {
|
||||
FSE_initCState2(&CState2, ct, *--ip);
|
||||
FSE_initCState2(&CState1, ct, *--ip);
|
||||
}
|
||||
|
||||
/* join to mod 4 */
|
||||
srcSize -= 2;
|
||||
if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
|
||||
FSE_encodeSymbol(&bitC, &CState2, *--ip);
|
||||
FSE_encodeSymbol(&bitC, &CState1, *--ip);
|
||||
FSE_FLUSHBITS(&bitC);
|
||||
}
|
||||
|
||||
/* 2 or 4 encoding per loop */
|
||||
for ( ; ip>istart ; ) {
|
||||
|
||||
FSE_encodeSymbol(&bitC, &CState2, *--ip);
|
||||
|
||||
if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
|
||||
FSE_FLUSHBITS(&bitC);
|
||||
|
||||
FSE_encodeSymbol(&bitC, &CState1, *--ip);
|
||||
|
||||
if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
|
||||
FSE_encodeSymbol(&bitC, &CState2, *--ip);
|
||||
FSE_encodeSymbol(&bitC, &CState1, *--ip);
|
||||
}
|
||||
|
||||
FSE_FLUSHBITS(&bitC);
|
||||
}
|
||||
|
||||
FSE_flushCState(&bitC, &CState2);
|
||||
FSE_flushCState(&bitC, &CState1);
|
||||
return BIT_closeCStream(&bitC);
|
||||
}
|
||||
|
||||
size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
const FSE_CTable* ct)
|
||||
{
|
||||
const unsigned fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
|
||||
|
||||
if (fast)
|
||||
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
|
||||
else
|
||||
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
|
||||
|
||||
size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
const BYTE* const istart = (const BYTE*) src;
|
||||
const BYTE* ip = istart;
|
||||
|
||||
BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* op = ostart;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
|
||||
U32 count[FSE_MAX_SYMBOL_VALUE+1];
|
||||
S16 norm[FSE_MAX_SYMBOL_VALUE+1];
|
||||
CTable_max_t ct;
|
||||
size_t errorCode;
|
||||
|
||||
/* init conditions */
|
||||
if (srcSize <= 1) return 0; /* Uncompressible */
|
||||
if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
|
||||
if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
|
||||
|
||||
/* Scan input and build symbol stats */
|
||||
errorCode = FSE_count (count, &maxSymbolValue, ip, srcSize);
|
||||
if (FSE_isError(errorCode)) return errorCode;
|
||||
if (errorCode == srcSize) return 1;
|
||||
if (errorCode == 1) return 0; /* each symbol only present once */
|
||||
if (errorCode < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
|
||||
|
||||
tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
|
||||
errorCode = FSE_normalizeCount (norm, tableLog, count, srcSize, maxSymbolValue);
|
||||
if (FSE_isError(errorCode)) return errorCode;
|
||||
|
||||
/* Write table description header */
|
||||
errorCode = FSE_writeNCount (op, oend-op, norm, maxSymbolValue, tableLog);
|
||||
if (FSE_isError(errorCode)) return errorCode;
|
||||
op += errorCode;
|
||||
|
||||
/* Compress */
|
||||
errorCode = FSE_buildCTable (ct, norm, maxSymbolValue, tableLog);
|
||||
if (FSE_isError(errorCode)) return errorCode;
|
||||
errorCode = FSE_compress_usingCTable(op, oend - op, ip, srcSize, ct);
|
||||
if (errorCode == 0) return 0; /* not enough space for compressed data */
|
||||
op += errorCode;
|
||||
|
||||
/* check compressibility */
|
||||
if ( (size_t)(op-ostart) >= srcSize-1 )
|
||||
return 0;
|
||||
|
||||
return op-ostart;
|
||||
}
|
||||
|
||||
size_t FSE_compress (void* dst, size_t dstSize, const void* src, size_t srcSize)
|
||||
{
|
||||
return FSE_compress2(dst, dstSize, src, (U32)srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG);
|
||||
}
|
||||
|
||||
|
||||
#endif /* FSE_COMMONDEFS_ONLY */
|
||||
331
C/zstd/fse_decompress.c
Normal file
331
C/zstd/fse_decompress.c
Normal file
@@ -0,0 +1,331 @@
|
||||
/* ******************************************************************
|
||||
FSE : Finite State Entropy decoder
|
||||
Copyright (C) 2013-2015, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Compiler specifics
|
||||
****************************************************************/
|
||||
#ifdef _MSC_VER /* Visual Studio */
|
||||
# define FORCE_INLINE static __forceinline
|
||||
# include <intrin.h> /* For Visual 2005 */
|
||||
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
||||
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
|
||||
#else
|
||||
# ifdef __GNUC__
|
||||
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
||||
# define FORCE_INLINE static inline __attribute__((always_inline))
|
||||
# else
|
||||
# define FORCE_INLINE static inline
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Includes
|
||||
****************************************************************/
|
||||
#include <stdlib.h> /* malloc, free, qsort */
|
||||
#include <string.h> /* memcpy, memset */
|
||||
#include <stdio.h> /* printf (debug) */
|
||||
#include "bitstream.h"
|
||||
#define FSE_STATIC_LINKING_ONLY
|
||||
#include "fse.h"
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Error Management
|
||||
****************************************************************/
|
||||
#define FSE_isError ERR_isError
|
||||
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Complex types
|
||||
****************************************************************/
|
||||
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Templates
|
||||
****************************************************************/
|
||||
/*
|
||||
designed to be included
|
||||
for type-specific functions (template emulation in C)
|
||||
Objective is to write these functions only once, for improved maintenance
|
||||
*/
|
||||
|
||||
/* safety checks */
|
||||
#ifndef FSE_FUNCTION_EXTENSION
|
||||
# error "FSE_FUNCTION_EXTENSION must be defined"
|
||||
#endif
|
||||
#ifndef FSE_FUNCTION_TYPE
|
||||
# error "FSE_FUNCTION_TYPE must be defined"
|
||||
#endif
|
||||
|
||||
/* Function names */
|
||||
#define FSE_CAT(X,Y) X##Y
|
||||
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
|
||||
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
|
||||
|
||||
|
||||
/* Function templates */
|
||||
FSE_DTable* FSE_createDTable (unsigned tableLog)
|
||||
{
|
||||
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
|
||||
return (FSE_DTable*)malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
|
||||
}
|
||||
|
||||
void FSE_freeDTable (FSE_DTable* dt)
|
||||
{
|
||||
free(dt);
|
||||
}
|
||||
|
||||
size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
|
||||
{
|
||||
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
|
||||
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
|
||||
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
|
||||
|
||||
U32 const maxSV1 = maxSymbolValue + 1;
|
||||
U32 const tableSize = 1 << tableLog;
|
||||
U32 highThreshold = tableSize-1;
|
||||
|
||||
/* Sanity Checks */
|
||||
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
|
||||
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
||||
|
||||
/* Init, lay down lowprob symbols */
|
||||
{ FSE_DTableHeader DTableH;
|
||||
DTableH.tableLog = (U16)tableLog;
|
||||
DTableH.fastMode = 1;
|
||||
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
|
||||
U32 s;
|
||||
for (s=0; s<maxSV1; s++) {
|
||||
if (normalizedCounter[s]==-1) {
|
||||
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
|
||||
symbolNext[s] = 1;
|
||||
} else {
|
||||
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
|
||||
symbolNext[s] = normalizedCounter[s];
|
||||
} } }
|
||||
memcpy(dt, &DTableH, sizeof(DTableH));
|
||||
}
|
||||
|
||||
/* Spread symbols */
|
||||
{ U32 const tableMask = tableSize-1;
|
||||
U32 const step = FSE_TABLESTEP(tableSize);
|
||||
U32 s, position = 0;
|
||||
for (s=0; s<maxSV1; s++) {
|
||||
int i;
|
||||
for (i=0; i<normalizedCounter[s]; i++) {
|
||||
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
|
||||
position = (position + step) & tableMask;
|
||||
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
|
||||
} }
|
||||
|
||||
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
|
||||
}
|
||||
|
||||
/* Build Decoding table */
|
||||
{ U32 u;
|
||||
for (u=0; u<tableSize; u++) {
|
||||
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
|
||||
U16 nextState = symbolNext[symbol]++;
|
||||
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
|
||||
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
|
||||
} }
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifndef FSE_COMMONDEFS_ONLY
|
||||
|
||||
/*-*******************************************************
|
||||
* Decompression (Byte symbols)
|
||||
*********************************************************/
|
||||
size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
|
||||
{
|
||||
void* ptr = dt;
|
||||
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
|
||||
void* dPtr = dt + 1;
|
||||
FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
|
||||
|
||||
DTableH->tableLog = 0;
|
||||
DTableH->fastMode = 0;
|
||||
|
||||
cell->newState = 0;
|
||||
cell->symbol = symbolValue;
|
||||
cell->nbBits = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
|
||||
{
|
||||
void* ptr = dt;
|
||||
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
|
||||
void* dPtr = dt + 1;
|
||||
FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
|
||||
const unsigned tableSize = 1 << nbBits;
|
||||
const unsigned tableMask = tableSize - 1;
|
||||
const unsigned maxSV1 = tableMask+1;
|
||||
unsigned s;
|
||||
|
||||
/* Sanity checks */
|
||||
if (nbBits < 1) return ERROR(GENERIC); /* min size */
|
||||
|
||||
/* Build Decoding Table */
|
||||
DTableH->tableLog = (U16)nbBits;
|
||||
DTableH->fastMode = 1;
|
||||
for (s=0; s<maxSV1; s++) {
|
||||
dinfo[s].newState = 0;
|
||||
dinfo[s].symbol = (BYTE)s;
|
||||
dinfo[s].nbBits = (BYTE)nbBits;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
|
||||
void* dst, size_t maxDstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const FSE_DTable* dt, const unsigned fast)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* op = ostart;
|
||||
BYTE* const omax = op + maxDstSize;
|
||||
BYTE* const olimit = omax-3;
|
||||
|
||||
BIT_DStream_t bitD;
|
||||
FSE_DState_t state1;
|
||||
FSE_DState_t state2;
|
||||
|
||||
/* Init */
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
|
||||
if (FSE_isError(errorCode)) return errorCode; }
|
||||
|
||||
FSE_initDState(&state1, &bitD, dt);
|
||||
FSE_initDState(&state2, &bitD, dt);
|
||||
|
||||
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
|
||||
|
||||
/* 4 symbols per loop */
|
||||
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4) {
|
||||
op[0] = FSE_GETSYMBOL(&state1);
|
||||
|
||||
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
||||
BIT_reloadDStream(&bitD);
|
||||
|
||||
op[1] = FSE_GETSYMBOL(&state2);
|
||||
|
||||
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
||||
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
|
||||
|
||||
op[2] = FSE_GETSYMBOL(&state1);
|
||||
|
||||
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
||||
BIT_reloadDStream(&bitD);
|
||||
|
||||
op[3] = FSE_GETSYMBOL(&state2);
|
||||
}
|
||||
|
||||
/* tail */
|
||||
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
|
||||
while (1) {
|
||||
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
|
||||
|
||||
*op++ = FSE_GETSYMBOL(&state1);
|
||||
|
||||
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
|
||||
*op++ = FSE_GETSYMBOL(&state2);
|
||||
break;
|
||||
}
|
||||
|
||||
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
|
||||
|
||||
*op++ = FSE_GETSYMBOL(&state2);
|
||||
|
||||
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
|
||||
*op++ = FSE_GETSYMBOL(&state1);
|
||||
break;
|
||||
} }
|
||||
|
||||
return op-ostart;
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const FSE_DTable* dt)
|
||||
{
|
||||
const void* ptr = dt;
|
||||
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
|
||||
const U32 fastMode = DTableH->fastMode;
|
||||
|
||||
/* select fast mode (static) */
|
||||
if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
|
||||
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
|
||||
}
|
||||
|
||||
|
||||
size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
const BYTE* const istart = (const BYTE*)cSrc;
|
||||
const BYTE* ip = istart;
|
||||
short counting[FSE_MAX_SYMBOL_VALUE+1];
|
||||
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
|
||||
unsigned tableLog;
|
||||
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
|
||||
|
||||
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
|
||||
|
||||
/* normal FSE decoding mode */
|
||||
{ size_t const NCountLength = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
|
||||
if (FSE_isError(NCountLength)) return NCountLength;
|
||||
if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
|
||||
ip += NCountLength;
|
||||
cSrcSize -= NCountLength;
|
||||
}
|
||||
|
||||
{ size_t const errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
|
||||
if (FSE_isError(errorCode)) return errorCode; }
|
||||
|
||||
return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); /* always return, even if it is an error code */
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif /* FSE_COMMONDEFS_ONLY */
|
||||
389
C/zstd/fse_static.h
Normal file
389
C/zstd/fse_static.h
Normal file
@@ -0,0 +1,389 @@
|
||||
/* ******************************************************************
|
||||
FSE : Finite State Entropy coder
|
||||
header file for static linking (only)
|
||||
Copyright (C) 2013-2015, Yann Collet
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
#ifndef FSE_STATIC_H
|
||||
#define FSE_STATIC_H
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* Dependencies
|
||||
*******************************************/
|
||||
#include "fse.h"
|
||||
#include "bitstream.h"
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* Static allocation
|
||||
*******************************************/
|
||||
/* FSE buffer bounds */
|
||||
#define FSE_NCOUNTBOUND 512
|
||||
#define FSE_BLOCKBOUND(size) (size + (size>>7))
|
||||
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
|
||||
|
||||
/* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
|
||||
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
|
||||
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE advanced API
|
||||
*******************************************/
|
||||
size_t FSE_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
|
||||
/* same as FSE_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr */
|
||||
|
||||
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
|
||||
/* build a fake FSE_CTable, designed to not compress an input, where each symbol uses nbBits */
|
||||
|
||||
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
|
||||
/* build a fake FSE_CTable, designed to compress always the same symbolValue */
|
||||
|
||||
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
|
||||
/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
|
||||
|
||||
size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
|
||||
/* build a fake FSE_DTable, designed to always generate the same symbolValue */
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE symbol compression API
|
||||
*******************************************/
|
||||
/*!
|
||||
This API consists of small unitary functions, which highly benefit from being inlined.
|
||||
You will want to enable link-time-optimization to ensure these functions are properly inlined in your binary.
|
||||
Visual seems to do it automatically.
|
||||
For gcc or clang, you'll need to add -flto flag at compilation and linking stages.
|
||||
If none of these solutions is applicable, include "fse.c" directly.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
ptrdiff_t value;
|
||||
const void* stateTable;
|
||||
const void* symbolTT;
|
||||
unsigned stateLog;
|
||||
} FSE_CState_t;
|
||||
|
||||
static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
|
||||
|
||||
static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
|
||||
|
||||
static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
|
||||
|
||||
/*!
|
||||
These functions are inner components of FSE_compress_usingCTable().
|
||||
They allow the creation of custom streams, mixing multiple tables and bit sources.
|
||||
|
||||
A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
|
||||
So the first symbol you will encode is the last you will decode, like a LIFO stack.
|
||||
|
||||
You will need a few variables to track your CStream. They are :
|
||||
|
||||
FSE_CTable ct; // Provided by FSE_buildCTable()
|
||||
BIT_CStream_t bitStream; // bitStream tracking structure
|
||||
FSE_CState_t state; // State tracking structure (can have several)
|
||||
|
||||
|
||||
The first thing to do is to init bitStream and state.
|
||||
size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
|
||||
FSE_initCState(&state, ct);
|
||||
|
||||
Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
|
||||
You can then encode your input data, byte after byte.
|
||||
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
|
||||
Remember decoding will be done in reverse direction.
|
||||
FSE_encodeByte(&bitStream, &state, symbol);
|
||||
|
||||
At any time, you can also add any bit sequence.
|
||||
Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
|
||||
BIT_addBits(&bitStream, bitField, nbBits);
|
||||
|
||||
The above methods don't commit data to memory, they just store it into local register, for speed.
|
||||
Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
||||
Writing data to memory is a manual operation, performed by the flushBits function.
|
||||
BIT_flushBits(&bitStream);
|
||||
|
||||
Your last FSE encoding operation shall be to flush your last state value(s).
|
||||
FSE_flushState(&bitStream, &state);
|
||||
|
||||
Finally, you must close the bitStream.
|
||||
The function returns the size of CStream in bytes.
|
||||
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
|
||||
If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
|
||||
size_t size = BIT_closeCStream(&bitStream);
|
||||
*/
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE symbol decompression API
|
||||
*******************************************/
|
||||
typedef struct
|
||||
{
|
||||
size_t state;
|
||||
const void* table; /* precise table may vary, depending on U16 */
|
||||
} FSE_DState_t;
|
||||
|
||||
|
||||
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
|
||||
|
||||
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
|
||||
|
||||
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
|
||||
|
||||
/*!
|
||||
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
|
||||
You will decode FSE-encoded symbols from the bitStream,
|
||||
and also any other bitFields you put in, **in reverse order**.
|
||||
|
||||
You will need a few variables to track your bitStream. They are :
|
||||
|
||||
BIT_DStream_t DStream; // Stream context
|
||||
FSE_DState_t DState; // State context. Multiple ones are possible
|
||||
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
|
||||
|
||||
The first thing to do is to init the bitStream.
|
||||
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
|
||||
|
||||
You should then retrieve your initial state(s)
|
||||
(in reverse flushing order if you have several ones) :
|
||||
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
|
||||
|
||||
You can then decode your data, symbol after symbol.
|
||||
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
|
||||
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
||||
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
|
||||
|
||||
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
||||
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
||||
size_t bitField = BIT_readBits(&DStream, nbBits);
|
||||
|
||||
All above operations only read from local register (which size depends on size_t).
|
||||
Refueling the register from memory is manually performed by the reload method.
|
||||
endSignal = FSE_reloadDStream(&DStream);
|
||||
|
||||
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
|
||||
BIT_DStream_unfinished : there is still some data left into the DStream.
|
||||
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
||||
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
||||
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
||||
|
||||
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
||||
to properly detect the exact end of stream.
|
||||
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
||||
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
|
||||
|
||||
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
||||
Checking if DStream has reached its end is performed by :
|
||||
BIT_endOfDStream(&DStream);
|
||||
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
||||
FSE_endOfDState(&DState);
|
||||
*/
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* FSE unsafe API
|
||||
*******************************************/
|
||||
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
|
||||
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
|
||||
|
||||
|
||||
/* *****************************************
|
||||
* Implementation of inlined functions
|
||||
*******************************************/
|
||||
typedef struct {
|
||||
int deltaFindState;
|
||||
U32 deltaNbBits;
|
||||
} FSE_symbolCompressionTransform; /* total 8 bytes */
|
||||
|
||||
MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
|
||||
{
|
||||
const void* ptr = ct;
|
||||
const U16* u16ptr = (const U16*) ptr;
|
||||
const U32 tableLog = MEM_read16(ptr);
|
||||
statePtr->value = (ptrdiff_t)1<<tableLog;
|
||||
statePtr->stateTable = u16ptr+2;
|
||||
statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
|
||||
statePtr->stateLog = tableLog;
|
||||
}
|
||||
|
||||
MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
|
||||
{
|
||||
FSE_initCState(statePtr, ct);
|
||||
{
|
||||
const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
|
||||
const U16* stateTable = (const U16*)(statePtr->stateTable);
|
||||
U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
|
||||
statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
|
||||
statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
|
||||
{
|
||||
const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
|
||||
const U16* const stateTable = (const U16*)(statePtr->stateTable);
|
||||
U32 nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
|
||||
BIT_addBits(bitC, statePtr->value, nbBitsOut);
|
||||
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
|
||||
}
|
||||
|
||||
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
|
||||
{
|
||||
BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
|
||||
BIT_flushBits(bitC);
|
||||
}
|
||||
|
||||
/*<===== Decompression =====>*/
|
||||
|
||||
typedef struct {
|
||||
U16 tableLog;
|
||||
U16 fastMode;
|
||||
} FSE_DTableHeader; /* sizeof U32 */
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned short newState;
|
||||
unsigned char symbol;
|
||||
unsigned char nbBits;
|
||||
} FSE_decode_t; /* size == U32 */
|
||||
|
||||
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
|
||||
{
|
||||
const void* ptr = dt;
|
||||
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
|
||||
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
|
||||
BIT_reloadDStream(bitD);
|
||||
DStatePtr->table = dt + 1;
|
||||
}
|
||||
|
||||
MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
|
||||
{
|
||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
||||
return DInfo.symbol;
|
||||
}
|
||||
|
||||
MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
||||
{
|
||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
||||
U32 const nbBits = DInfo.nbBits;
|
||||
size_t const lowBits = BIT_readBits(bitD, nbBits);
|
||||
DStatePtr->state = DInfo.newState + lowBits;
|
||||
}
|
||||
|
||||
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
||||
{
|
||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
||||
U32 const nbBits = DInfo.nbBits;
|
||||
BYTE const symbol = DInfo.symbol;
|
||||
size_t const lowBits = BIT_readBits(bitD, nbBits);
|
||||
|
||||
DStatePtr->state = DInfo.newState + lowBits;
|
||||
return symbol;
|
||||
}
|
||||
|
||||
/*! FSE_decodeSymbolFast() :
|
||||
unsafe, only works if no symbol has a probability > 50% */
|
||||
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
||||
{
|
||||
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
||||
U32 const nbBits = DInfo.nbBits;
|
||||
BYTE const symbol = DInfo.symbol;
|
||||
size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
|
||||
|
||||
DStatePtr->state = DInfo.newState + lowBits;
|
||||
return symbol;
|
||||
}
|
||||
|
||||
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
|
||||
{
|
||||
return DStatePtr->state == 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifndef FSE_COMMONDEFS_ONLY
|
||||
|
||||
/* **************************************************************
|
||||
* Tuning parameters
|
||||
****************************************************************/
|
||||
/*!MEMORY_USAGE :
|
||||
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
|
||||
* Increasing memory usage improves compression ratio
|
||||
* Reduced memory usage can improve speed, due to cache effect
|
||||
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
|
||||
#define FSE_MAX_MEMORY_USAGE 14
|
||||
#define FSE_DEFAULT_MEMORY_USAGE 13
|
||||
|
||||
/*!FSE_MAX_SYMBOL_VALUE :
|
||||
* Maximum symbol value authorized.
|
||||
* Required for proper stack allocation */
|
||||
#define FSE_MAX_SYMBOL_VALUE 255
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* template functions type & suffix
|
||||
****************************************************************/
|
||||
#define FSE_FUNCTION_TYPE BYTE
|
||||
#define FSE_FUNCTION_EXTENSION
|
||||
#define FSE_DECODE_TYPE FSE_decode_t
|
||||
|
||||
|
||||
#endif /* !FSE_COMMONDEFS_ONLY */
|
||||
|
||||
|
||||
/* ***************************************************************
|
||||
* Constants
|
||||
*****************************************************************/
|
||||
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
|
||||
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
|
||||
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
|
||||
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
|
||||
#define FSE_MIN_TABLELOG 5
|
||||
|
||||
#define FSE_TABLELOG_ABSOLUTE_MAX 15
|
||||
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
|
||||
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
|
||||
#endif
|
||||
|
||||
#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* FSE_STATIC_H */
|
||||
228
C/zstd/huf.h
Normal file
228
C/zstd/huf.h
Normal file
@@ -0,0 +1,228 @@
|
||||
/* ******************************************************************
|
||||
Huffman coder, part of New Generation Entropy library
|
||||
header file
|
||||
Copyright (C) 2013-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
****************************************************************** */
|
||||
#ifndef HUF_H_298734234
|
||||
#define HUF_H_298734234
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* *** Dependencies *** */
|
||||
#include <stddef.h> /* size_t */
|
||||
|
||||
|
||||
/* *** simple functions *** */
|
||||
/**
|
||||
HUF_compress() :
|
||||
Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
|
||||
'dst' buffer must be already allocated.
|
||||
Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
|
||||
`srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
|
||||
@return : size of compressed data (<= `dstCapacity`).
|
||||
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
|
||||
if return == 1, srcData is a single repeated byte symbol (RLE compression).
|
||||
if HUF_isError(return), compression failed (more details using HUF_getErrorName())
|
||||
*/
|
||||
size_t HUF_compress(void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/**
|
||||
HUF_decompress() :
|
||||
Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
|
||||
into already allocated buffer 'dst', of minimum size 'dstSize'.
|
||||
`dstSize` : **must** be the ***exact*** size of original (uncompressed) data.
|
||||
Note : in contrast with FSE, HUF_decompress can regenerate
|
||||
RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
|
||||
because it knows size to regenerate.
|
||||
@return : size of regenerated data (== dstSize),
|
||||
or an error code, which can be tested using HUF_isError()
|
||||
*/
|
||||
size_t HUF_decompress(void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize);
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Tool functions
|
||||
******************************************/
|
||||
#define HUF_BLOCKSIZE_MAX (128 * 1024)
|
||||
size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
|
||||
|
||||
/* Error Management */
|
||||
unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
|
||||
const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
|
||||
|
||||
|
||||
/* *** Advanced function *** */
|
||||
|
||||
/** HUF_compress2() :
|
||||
* Same as HUF_compress(), but offers direct control over `maxSymbolValue` and `tableLog` */
|
||||
size_t HUF_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
|
||||
|
||||
|
||||
#ifdef HUF_STATIC_LINKING_ONLY
|
||||
|
||||
/* *** Dependencies *** */
|
||||
#include "mem.h" /* U32 */
|
||||
|
||||
|
||||
/* *** Constants *** */
|
||||
#define HUF_TABLELOG_ABSOLUTEMAX 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
|
||||
#define HUF_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
|
||||
#define HUF_TABLELOG_DEFAULT HUF_TABLELOG_MAX /* tableLog by default, when not specified */
|
||||
#define HUF_SYMBOLVALUE_MAX 255
|
||||
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
|
||||
# error "HUF_TABLELOG_MAX is too large !"
|
||||
#endif
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Static allocation
|
||||
******************************************/
|
||||
/* HUF buffer bounds */
|
||||
#define HUF_CTABLEBOUND 129
|
||||
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
|
||||
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
|
||||
|
||||
/* static allocation of HUF's Compression Table */
|
||||
#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
|
||||
U32 name##hb[maxSymbolValue+1]; \
|
||||
void* name##hv = &(name##hb); \
|
||||
HUF_CElt* name = (HUF_CElt*)(name##hv) /* no final ; */
|
||||
|
||||
/* static allocation of HUF's DTable */
|
||||
typedef U32 HUF_DTable;
|
||||
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
|
||||
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
|
||||
HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1)*0x1000001) }
|
||||
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
|
||||
HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog)*0x1000001) }
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Advanced decompression functions
|
||||
******************************************/
|
||||
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
|
||||
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
|
||||
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
|
||||
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress4X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
|
||||
size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
|
||||
size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
||||
size_t HUF_decompress1X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* HUF detailed API
|
||||
******************************************/
|
||||
/*!
|
||||
HUF_compress() does the following:
|
||||
1. count symbol occurrence from source[] into table count[] using FSE_count()
|
||||
2. (optional) refine tableLog using HUF_optimalTableLog()
|
||||
3. build Huffman table from count using HUF_buildCTable()
|
||||
4. save Huffman table to memory buffer using HUF_writeCTable()
|
||||
5. encode the data stream using HUF_compress4X_usingCTable()
|
||||
|
||||
The following API allows targeting specific sub-functions for advanced tasks.
|
||||
For example, it's possible to compress several blocks using the same 'CTable',
|
||||
or to save and regenerate 'CTable' using external methods.
|
||||
*/
|
||||
/* FSE_count() : find it within "fse.h" */
|
||||
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
|
||||
typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
|
||||
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits);
|
||||
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
||||
|
||||
|
||||
/*! HUF_readStats() :
|
||||
Read compact Huffman tree, saved by HUF_writeCTable().
|
||||
`huffWeight` is destination buffer.
|
||||
@return : size read from `src` , or an error Code .
|
||||
Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
|
||||
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
||||
U32* nbSymbolsPtr, U32* tableLogPtr,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/** HUF_readCTable() :
|
||||
* Loading a CTable saved with HUF_writeCTable() */
|
||||
size_t HUF_readCTable (HUF_CElt* CTable, unsigned maxSymbolValue, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
/*
|
||||
HUF_decompress() does the following:
|
||||
1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
|
||||
2. build Huffman table from save, using HUF_readDTableXn()
|
||||
3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
|
||||
*/
|
||||
|
||||
/** HUF_selectDecoder() :
|
||||
* Tells which decoder is likely to decode faster,
|
||||
* based on a set of pre-determined metrics.
|
||||
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
|
||||
* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
|
||||
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
|
||||
|
||||
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
||||
size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
||||
|
||||
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
|
||||
|
||||
/* single stream variants */
|
||||
|
||||
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
||||
|
||||
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
|
||||
size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
|
||||
|
||||
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
size_t HUF_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
||||
|
||||
|
||||
#endif /* HUF_STATIC_LINKING_ONLY */
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* HUF_H_298734234 */
|
||||
576
C/zstd/huf_compress.c
Normal file
576
C/zstd/huf_compress.c
Normal file
@@ -0,0 +1,576 @@
|
||||
/* ******************************************************************
|
||||
Huffman encoder, part of New Generation Entropy library
|
||||
Copyright (C) 2013-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
|
||||
/* **************************************************************
|
||||
* Compiler specifics
|
||||
****************************************************************/
|
||||
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
||||
/* inline is defined */
|
||||
#elif defined(_MSC_VER)
|
||||
# define inline __inline
|
||||
#else
|
||||
# define inline /* disable inline */
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef _MSC_VER /* Visual Studio */
|
||||
# define FORCE_INLINE static __forceinline
|
||||
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
||||
#else
|
||||
# ifdef __GNUC__
|
||||
# define FORCE_INLINE static inline __attribute__((always_inline))
|
||||
# else
|
||||
# define FORCE_INLINE static inline
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Includes
|
||||
****************************************************************/
|
||||
#include <string.h> /* memcpy, memset */
|
||||
#include <stdio.h> /* printf (debug) */
|
||||
#include "bitstream.h"
|
||||
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
|
||||
#include "fse.h" /* header compression */
|
||||
#define HUF_STATIC_LINKING_ONLY
|
||||
#include "huf.h"
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Error Management
|
||||
****************************************************************/
|
||||
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Utils
|
||||
****************************************************************/
|
||||
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
|
||||
{
|
||||
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
|
||||
}
|
||||
|
||||
|
||||
/* *******************************************************
|
||||
* HUF : Huffman block compression
|
||||
*********************************************************/
|
||||
struct HUF_CElt_s {
|
||||
U16 val;
|
||||
BYTE nbBits;
|
||||
}; /* typedef'd to HUF_CElt within huf_static.h */
|
||||
|
||||
typedef struct nodeElt_s {
|
||||
U32 count;
|
||||
U16 parent;
|
||||
BYTE byte;
|
||||
BYTE nbBits;
|
||||
} nodeElt;
|
||||
|
||||
/*! HUF_writeCTable() :
|
||||
`CTable` : huffman tree to save, using huf representation.
|
||||
@return : size of saved CTable */
|
||||
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
|
||||
const HUF_CElt* CTable, U32 maxSymbolValue, U32 huffLog)
|
||||
{
|
||||
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];
|
||||
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
|
||||
U32 n;
|
||||
BYTE* op = (BYTE*)dst;
|
||||
size_t size;
|
||||
|
||||
/* check conditions */
|
||||
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX + 1)
|
||||
return ERROR(GENERIC);
|
||||
|
||||
/* convert to weight */
|
||||
bitsToWeight[0] = 0;
|
||||
for (n=1; n<=huffLog; n++)
|
||||
bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
|
||||
for (n=0; n<maxSymbolValue; n++)
|
||||
huffWeight[n] = bitsToWeight[CTable[n].nbBits];
|
||||
|
||||
size = FSE_compress(op+1, maxDstSize-1, huffWeight, maxSymbolValue); /* don't need last symbol stat : implied */
|
||||
if (HUF_isError(size)) return size;
|
||||
if (size >= 128) return ERROR(GENERIC); /* should never happen, since maxSymbolValue <= 255 */
|
||||
if ((size <= 1) || (size >= maxSymbolValue/2)) {
|
||||
if (size==1) { /* RLE */
|
||||
/* only possible case : series of 1 (because there are at least 2) */
|
||||
/* can only be 2^n or (2^n-1), otherwise not an huffman tree */
|
||||
BYTE code;
|
||||
switch(maxSymbolValue)
|
||||
{
|
||||
case 1: code = 0; break;
|
||||
case 2: code = 1; break;
|
||||
case 3: code = 2; break;
|
||||
case 4: code = 3; break;
|
||||
case 7: code = 4; break;
|
||||
case 8: code = 5; break;
|
||||
case 15: code = 6; break;
|
||||
case 16: code = 7; break;
|
||||
case 31: code = 8; break;
|
||||
case 32: code = 9; break;
|
||||
case 63: code = 10; break;
|
||||
case 64: code = 11; break;
|
||||
case 127: code = 12; break;
|
||||
case 128: code = 13; break;
|
||||
default : return ERROR(corruption_detected);
|
||||
}
|
||||
op[0] = (BYTE)(255-13 + code);
|
||||
return 1;
|
||||
}
|
||||
/* Not compressible */
|
||||
if (maxSymbolValue > (241-128)) return ERROR(GENERIC); /* not implemented (not possible with current format) */
|
||||
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
|
||||
op[0] = (BYTE)(128 /*special case*/ + 0 /* Not Compressible */ + (maxSymbolValue-1));
|
||||
huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause issue in final combination */
|
||||
for (n=0; n<maxSymbolValue; n+=2)
|
||||
op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
|
||||
return ((maxSymbolValue+1)/2) + 1;
|
||||
}
|
||||
|
||||
/* normal header case */
|
||||
op[0] = (BYTE)size;
|
||||
return size+1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
size_t HUF_readCTable (HUF_CElt* CTable, U32 maxSymbolValue, const void* src, size_t srcSize)
|
||||
{
|
||||
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
|
||||
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
|
||||
U32 tableLog = 0;
|
||||
size_t readSize;
|
||||
U32 nbSymbols = 0;
|
||||
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
|
||||
|
||||
/* get symbol weights */
|
||||
readSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize);
|
||||
if (HUF_isError(readSize)) return readSize;
|
||||
|
||||
/* check result */
|
||||
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
|
||||
if (nbSymbols > maxSymbolValue+1) return ERROR(maxSymbolValue_tooSmall);
|
||||
|
||||
/* Prepare base value per rank */
|
||||
{ U32 n, nextRankStart = 0;
|
||||
for (n=1; n<=tableLog; n++) {
|
||||
U32 current = nextRankStart;
|
||||
nextRankStart += (rankVal[n] << (n-1));
|
||||
rankVal[n] = current;
|
||||
} }
|
||||
|
||||
/* fill nbBits */
|
||||
{ U32 n; for (n=0; n<nbSymbols; n++) {
|
||||
const U32 w = huffWeight[n];
|
||||
CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
|
||||
}}
|
||||
|
||||
/* fill val */
|
||||
{ U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
|
||||
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
|
||||
{ U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
|
||||
/* determine stating value per rank */
|
||||
{ U16 min = 0;
|
||||
U32 n; for (n=HUF_TABLELOG_MAX; n>0; n--) {
|
||||
valPerRank[n] = min; /* get starting value within each rank */
|
||||
min += nbPerRank[n];
|
||||
min >>= 1;
|
||||
} }
|
||||
/* assign value within rank, symbol order */
|
||||
{ U32 n; for (n=0; n<=maxSymbolValue; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
|
||||
}
|
||||
|
||||
return readSize;
|
||||
}
|
||||
|
||||
|
||||
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
|
||||
{
|
||||
const U32 largestBits = huffNode[lastNonNull].nbBits;
|
||||
if (largestBits <= maxNbBits) return largestBits; /* early exit : no elt > maxNbBits */
|
||||
|
||||
/* there are several too large elements (at least >= 2) */
|
||||
{ int totalCost = 0;
|
||||
const U32 baseCost = 1 << (largestBits - maxNbBits);
|
||||
U32 n = lastNonNull;
|
||||
|
||||
while (huffNode[n].nbBits > maxNbBits) {
|
||||
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
|
||||
huffNode[n].nbBits = (BYTE)maxNbBits;
|
||||
n --;
|
||||
} /* n stops at huffNode[n].nbBits <= maxNbBits */
|
||||
while (huffNode[n].nbBits == maxNbBits) n--; /* n end at index of smallest symbol using < maxNbBits */
|
||||
|
||||
/* renorm totalCost */
|
||||
totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */
|
||||
|
||||
/* repay normalized cost */
|
||||
{ U32 const noSymbol = 0xF0F0F0F0;
|
||||
U32 rankLast[HUF_TABLELOG_MAX+1];
|
||||
int pos;
|
||||
|
||||
/* Get pos of last (smallest) symbol per rank */
|
||||
memset(rankLast, 0xF0, sizeof(rankLast));
|
||||
{ U32 currentNbBits = maxNbBits;
|
||||
for (pos=n ; pos >= 0; pos--) {
|
||||
if (huffNode[pos].nbBits >= currentNbBits) continue;
|
||||
currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
|
||||
rankLast[maxNbBits-currentNbBits] = pos;
|
||||
} }
|
||||
|
||||
while (totalCost > 0) {
|
||||
U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
|
||||
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
|
||||
U32 highPos = rankLast[nBitsToDecrease];
|
||||
U32 lowPos = rankLast[nBitsToDecrease-1];
|
||||
if (highPos == noSymbol) continue;
|
||||
if (lowPos == noSymbol) break;
|
||||
{ U32 const highTotal = huffNode[highPos].count;
|
||||
U32 const lowTotal = 2 * huffNode[lowPos].count;
|
||||
if (highTotal <= lowTotal) break;
|
||||
} }
|
||||
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
|
||||
while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
|
||||
nBitsToDecrease ++;
|
||||
totalCost -= 1 << (nBitsToDecrease-1);
|
||||
if (rankLast[nBitsToDecrease-1] == noSymbol)
|
||||
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */
|
||||
huffNode[rankLast[nBitsToDecrease]].nbBits ++;
|
||||
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
|
||||
rankLast[nBitsToDecrease] = noSymbol;
|
||||
else {
|
||||
rankLast[nBitsToDecrease]--;
|
||||
if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
|
||||
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
|
||||
} } /* while (totalCost > 0) */
|
||||
|
||||
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
|
||||
if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
|
||||
while (huffNode[n].nbBits == maxNbBits) n--;
|
||||
huffNode[n+1].nbBits--;
|
||||
rankLast[1] = n+1;
|
||||
totalCost++;
|
||||
continue;
|
||||
}
|
||||
huffNode[ rankLast[1] + 1 ].nbBits--;
|
||||
rankLast[1]++;
|
||||
totalCost ++;
|
||||
} } } /* there are several too large elements (at least >= 2) */
|
||||
|
||||
return maxNbBits;
|
||||
}
|
||||
|
||||
|
||||
typedef struct {
|
||||
U32 base;
|
||||
U32 current;
|
||||
} rankPos;
|
||||
|
||||
static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
|
||||
{
|
||||
rankPos rank[32];
|
||||
U32 n;
|
||||
|
||||
memset(rank, 0, sizeof(rank));
|
||||
for (n=0; n<=maxSymbolValue; n++) {
|
||||
U32 r = BIT_highbit32(count[n] + 1);
|
||||
rank[r].base ++;
|
||||
}
|
||||
for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
|
||||
for (n=0; n<32; n++) rank[n].current = rank[n].base;
|
||||
for (n=0; n<=maxSymbolValue; n++) {
|
||||
U32 const c = count[n];
|
||||
U32 const r = BIT_highbit32(c+1) + 1;
|
||||
U32 pos = rank[r].current++;
|
||||
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
|
||||
huffNode[pos].count = c;
|
||||
huffNode[pos].byte = (BYTE)n;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
|
||||
size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
|
||||
{
|
||||
nodeElt huffNode0[2*HUF_SYMBOLVALUE_MAX+1 +1];
|
||||
nodeElt* huffNode = huffNode0 + 1;
|
||||
U32 n, nonNullRank;
|
||||
int lowS, lowN;
|
||||
U16 nodeNb = STARTNODE;
|
||||
U32 nodeRoot;
|
||||
|
||||
/* safety checks */
|
||||
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
|
||||
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(GENERIC);
|
||||
memset(huffNode0, 0, sizeof(huffNode0));
|
||||
|
||||
/* sort, decreasing order */
|
||||
HUF_sort(huffNode, count, maxSymbolValue);
|
||||
|
||||
/* init for parents */
|
||||
nonNullRank = maxSymbolValue;
|
||||
while(huffNode[nonNullRank].count == 0) nonNullRank--;
|
||||
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
|
||||
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
|
||||
huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
|
||||
nodeNb++; lowS-=2;
|
||||
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
|
||||
huffNode0[0].count = (U32)(1U<<31);
|
||||
|
||||
/* create parents */
|
||||
while (nodeNb <= nodeRoot) {
|
||||
U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
|
||||
U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
|
||||
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
|
||||
huffNode[n1].parent = huffNode[n2].parent = nodeNb;
|
||||
nodeNb++;
|
||||
}
|
||||
|
||||
/* distribute weights (unlimited tree height) */
|
||||
huffNode[nodeRoot].nbBits = 0;
|
||||
for (n=nodeRoot-1; n>=STARTNODE; n--)
|
||||
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
|
||||
for (n=0; n<=nonNullRank; n++)
|
||||
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
|
||||
|
||||
/* enforce maxTableLog */
|
||||
maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
|
||||
|
||||
/* fill result into tree (val, nbBits) */
|
||||
{ U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
|
||||
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
|
||||
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
|
||||
for (n=0; n<=nonNullRank; n++)
|
||||
nbPerRank[huffNode[n].nbBits]++;
|
||||
/* determine stating value per rank */
|
||||
{ U16 min = 0;
|
||||
for (n=maxNbBits; n>0; n--) {
|
||||
valPerRank[n] = min; /* get starting value within each rank */
|
||||
min += nbPerRank[n];
|
||||
min >>= 1;
|
||||
} }
|
||||
for (n=0; n<=maxSymbolValue; n++)
|
||||
tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
|
||||
for (n=0; n<=maxSymbolValue; n++)
|
||||
tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */
|
||||
}
|
||||
|
||||
return maxNbBits;
|
||||
}
|
||||
|
||||
static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
|
||||
{
|
||||
BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
|
||||
}
|
||||
|
||||
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
|
||||
|
||||
#define HUF_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
|
||||
|
||||
#define HUF_FLUSHBITS_1(stream) \
|
||||
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
|
||||
|
||||
#define HUF_FLUSHBITS_2(stream) \
|
||||
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
|
||||
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*) src;
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
BYTE* op = ostart;
|
||||
size_t n;
|
||||
const unsigned fast = (dstSize >= HUF_BLOCKBOUND(srcSize));
|
||||
BIT_CStream_t bitC;
|
||||
|
||||
/* init */
|
||||
if (dstSize < 8) return 0; /* not enough space to compress */
|
||||
{ size_t const errorCode = BIT_initCStream(&bitC, op, oend-op);
|
||||
if (HUF_isError(errorCode)) return 0; }
|
||||
|
||||
n = srcSize & ~3; /* join to mod 4 */
|
||||
switch (srcSize & 3)
|
||||
{
|
||||
case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
|
||||
HUF_FLUSHBITS_2(&bitC);
|
||||
case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
|
||||
HUF_FLUSHBITS_1(&bitC);
|
||||
case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
|
||||
HUF_FLUSHBITS(&bitC);
|
||||
case 0 :
|
||||
default: ;
|
||||
}
|
||||
|
||||
for (; n>0; n-=4) { /* note : n&3==0 at this stage */
|
||||
HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
|
||||
HUF_FLUSHBITS_1(&bitC);
|
||||
HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
|
||||
HUF_FLUSHBITS_2(&bitC);
|
||||
HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
|
||||
HUF_FLUSHBITS_1(&bitC);
|
||||
HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
|
||||
HUF_FLUSHBITS(&bitC);
|
||||
}
|
||||
|
||||
return BIT_closeCStream(&bitC);
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
||||
{
|
||||
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
|
||||
const BYTE* ip = (const BYTE*) src;
|
||||
const BYTE* const iend = ip + srcSize;
|
||||
BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
BYTE* op = ostart;
|
||||
|
||||
if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
|
||||
if (srcSize < 12) return 0; /* no saving possible : too small input */
|
||||
op += 6; /* jumpTable */
|
||||
|
||||
{ size_t const cSize = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
|
||||
if (HUF_isError(cSize)) return cSize;
|
||||
if (cSize==0) return 0;
|
||||
MEM_writeLE16(ostart, (U16)cSize);
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
ip += segmentSize;
|
||||
{ size_t const cSize = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
|
||||
if (HUF_isError(cSize)) return cSize;
|
||||
if (cSize==0) return 0;
|
||||
MEM_writeLE16(ostart+2, (U16)cSize);
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
ip += segmentSize;
|
||||
{ size_t const cSize = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
|
||||
if (HUF_isError(cSize)) return cSize;
|
||||
if (cSize==0) return 0;
|
||||
MEM_writeLE16(ostart+4, (U16)cSize);
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
ip += segmentSize;
|
||||
{ size_t const cSize = HUF_compress1X_usingCTable(op, oend-op, ip, iend-ip, CTable);
|
||||
if (HUF_isError(cSize)) return cSize;
|
||||
if (cSize==0) return 0;
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
return op-ostart;
|
||||
}
|
||||
|
||||
|
||||
static size_t HUF_compress_internal (
|
||||
void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog,
|
||||
unsigned singleStream)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
BYTE* op = ostart;
|
||||
|
||||
U32 count[HUF_SYMBOLVALUE_MAX+1];
|
||||
HUF_CElt CTable[HUF_SYMBOLVALUE_MAX+1];
|
||||
|
||||
/* checks & inits */
|
||||
if (!srcSize) return 0; /* Uncompressed (note : 1 means rle, so first byte must be correct) */
|
||||
if (!dstSize) return 0; /* cannot fit within dst budget */
|
||||
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
|
||||
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
|
||||
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
|
||||
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
|
||||
|
||||
/* Scan input and build symbol stats */
|
||||
{ size_t const largest = FSE_count (count, &maxSymbolValue, (const BYTE*)src, srcSize);
|
||||
if (HUF_isError(largest)) return largest;
|
||||
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* rle */
|
||||
if (largest <= (srcSize >> 7)+1) return 0; /* Fast heuristic : not compressible enough */
|
||||
}
|
||||
|
||||
/* Build Huffman Tree */
|
||||
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
|
||||
{ size_t const maxBits = HUF_buildCTable (CTable, count, maxSymbolValue, huffLog);
|
||||
if (HUF_isError(maxBits)) return maxBits;
|
||||
huffLog = (U32)maxBits;
|
||||
}
|
||||
|
||||
/* Write table description header */
|
||||
{ size_t const hSize = HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog);
|
||||
if (HUF_isError(hSize)) return hSize;
|
||||
if (hSize + 12 >= srcSize) return 0; /* not useful to try compression */
|
||||
op += hSize;
|
||||
}
|
||||
|
||||
/* Compress */
|
||||
{ size_t const cSize = (singleStream) ?
|
||||
HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) : /* single segment */
|
||||
HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
|
||||
if (HUF_isError(cSize)) return cSize;
|
||||
if (cSize==0) return 0; /* uncompressible */
|
||||
op += cSize;
|
||||
}
|
||||
|
||||
/* check compressibility */
|
||||
if ((size_t)(op-ostart) >= srcSize-1)
|
||||
return 0;
|
||||
|
||||
return op-ostart;
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_compress1X (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog)
|
||||
{
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1);
|
||||
}
|
||||
|
||||
size_t HUF_compress2 (void* dst, size_t dstSize,
|
||||
const void* src, size_t srcSize,
|
||||
unsigned maxSymbolValue, unsigned huffLog)
|
||||
{
|
||||
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0);
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
||||
{
|
||||
return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_TABLELOG_DEFAULT);
|
||||
}
|
||||
894
C/zstd/huf_decompress.c
Normal file
894
C/zstd/huf_decompress.c
Normal file
@@ -0,0 +1,894 @@
|
||||
/* ******************************************************************
|
||||
Huffman decoder, part of New Generation Entropy library
|
||||
Copyright (C) 2013-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
|
||||
/* **************************************************************
|
||||
* Compiler specifics
|
||||
****************************************************************/
|
||||
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
||||
/* inline is defined */
|
||||
#elif defined(_MSC_VER)
|
||||
# define inline __inline
|
||||
#else
|
||||
# define inline /* disable inline */
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef _MSC_VER /* Visual Studio */
|
||||
# define FORCE_INLINE static __forceinline
|
||||
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
||||
#else
|
||||
# ifdef __GNUC__
|
||||
# define FORCE_INLINE static inline __attribute__((always_inline))
|
||||
# else
|
||||
# define FORCE_INLINE static inline
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Includes
|
||||
****************************************************************/
|
||||
#include <string.h> /* memcpy, memset */
|
||||
#include "bitstream.h"
|
||||
#include "fse.h" /* header compression */
|
||||
#define HUF_STATIC_LINKING_ONLY
|
||||
#include "huf.h"
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Error Management
|
||||
****************************************************************/
|
||||
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
||||
|
||||
|
||||
/*-***************************/
|
||||
/* generic DTableDesc */
|
||||
/*-***************************/
|
||||
|
||||
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
|
||||
|
||||
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
|
||||
{
|
||||
DTableDesc dtd;
|
||||
memcpy(&dtd, table, sizeof(dtd));
|
||||
return dtd;
|
||||
}
|
||||
|
||||
|
||||
/*-***************************/
|
||||
/* single-symbol decoding */
|
||||
/*-***************************/
|
||||
|
||||
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
|
||||
|
||||
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize)
|
||||
{
|
||||
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
|
||||
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
|
||||
U32 tableLog = 0;
|
||||
U32 nbSymbols = 0;
|
||||
size_t iSize;
|
||||
void* const dtPtr = DTable + 1;
|
||||
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
|
||||
|
||||
HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
|
||||
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
|
||||
|
||||
iSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
|
||||
if (HUF_isError(iSize)) return iSize;
|
||||
|
||||
/* Table header */
|
||||
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
|
||||
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, huffman tree cannot fit in */
|
||||
dtd.tableType = 0;
|
||||
dtd.tableLog = (BYTE)tableLog;
|
||||
memcpy(DTable, &dtd, sizeof(dtd));
|
||||
}
|
||||
|
||||
/* Prepare ranks */
|
||||
{ U32 n, nextRankStart = 0;
|
||||
for (n=1; n<tableLog+1; n++) {
|
||||
U32 current = nextRankStart;
|
||||
nextRankStart += (rankVal[n] << (n-1));
|
||||
rankVal[n] = current;
|
||||
} }
|
||||
|
||||
/* fill DTable */
|
||||
{ U32 n;
|
||||
for (n=0; n<nbSymbols; n++) {
|
||||
U32 const w = huffWeight[n];
|
||||
U32 const length = (1 << w) >> 1;
|
||||
U32 i;
|
||||
HUF_DEltX2 D;
|
||||
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
|
||||
for (i = rankVal[w]; i < rankVal[w] + length; i++)
|
||||
dt[i] = D;
|
||||
rankVal[w] += length;
|
||||
} }
|
||||
|
||||
return iSize;
|
||||
}
|
||||
|
||||
|
||||
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
|
||||
{
|
||||
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
|
||||
BYTE const c = dt[val].byte;
|
||||
BIT_skipBits(Dstream, dt[val].nbBits);
|
||||
return c;
|
||||
}
|
||||
|
||||
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
|
||||
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
|
||||
|
||||
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
|
||||
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
|
||||
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
|
||||
|
||||
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
|
||||
if (MEM_64bits()) \
|
||||
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
|
||||
|
||||
static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
|
||||
{
|
||||
BYTE* const pStart = p;
|
||||
|
||||
/* up to 4 symbols at a time */
|
||||
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) {
|
||||
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
||||
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
|
||||
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
||||
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||||
}
|
||||
|
||||
/* closer to the end */
|
||||
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
|
||||
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||||
|
||||
/* no more data to retrieve from bitstream, hence no need to reload */
|
||||
while (p < pEnd)
|
||||
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||||
|
||||
return pEnd-pStart;
|
||||
}
|
||||
|
||||
static size_t HUF_decompress1X2_usingDTable_internal(
|
||||
void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
BYTE* op = (BYTE*)dst;
|
||||
BYTE* const oend = op + dstSize;
|
||||
const void* dtPtr = DTable + 1;
|
||||
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
|
||||
BIT_DStream_t bitD;
|
||||
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||||
U32 const dtLog = dtd.tableLog;
|
||||
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
|
||||
HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);
|
||||
|
||||
/* check */
|
||||
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
||||
|
||||
return dstSize;
|
||||
}
|
||||
|
||||
size_t HUF_decompress1X2_usingDTable(
|
||||
void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
DTableDesc dtd = HUF_getDTableDesc(DTable);
|
||||
if (dtd.tableType != 0) return ERROR(GENERIC);
|
||||
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
|
||||
}
|
||||
|
||||
size_t HUF_decompress1X2_DCtx (HUF_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*) cSrc;
|
||||
|
||||
size_t const hSize = HUF_readDTableX2 (DCtx, cSrc, cSrcSize);
|
||||
if (HUF_isError(hSize)) return hSize;
|
||||
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
||||
ip += hSize; cSrcSize -= hSize;
|
||||
|
||||
return HUF_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
|
||||
}
|
||||
|
||||
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
|
||||
return HUF_decompress1X2_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
|
||||
}
|
||||
|
||||
|
||||
static size_t HUF_decompress4X2_usingDTable_internal(
|
||||
void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
/* Check */
|
||||
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
||||
|
||||
{ const BYTE* const istart = (const BYTE*) cSrc;
|
||||
BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
const void* const dtPtr = DTable + 1;
|
||||
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
|
||||
|
||||
/* Init */
|
||||
BIT_DStream_t bitD1;
|
||||
BIT_DStream_t bitD2;
|
||||
BIT_DStream_t bitD3;
|
||||
BIT_DStream_t bitD4;
|
||||
size_t const length1 = MEM_readLE16(istart);
|
||||
size_t const length2 = MEM_readLE16(istart+2);
|
||||
size_t const length3 = MEM_readLE16(istart+4);
|
||||
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
||||
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
||||
const BYTE* const istart2 = istart1 + length1;
|
||||
const BYTE* const istart3 = istart2 + length2;
|
||||
const BYTE* const istart4 = istart3 + length3;
|
||||
const size_t segmentSize = (dstSize+3) / 4;
|
||||
BYTE* const opStart2 = ostart + segmentSize;
|
||||
BYTE* const opStart3 = opStart2 + segmentSize;
|
||||
BYTE* const opStart4 = opStart3 + segmentSize;
|
||||
BYTE* op1 = ostart;
|
||||
BYTE* op2 = opStart2;
|
||||
BYTE* op3 = opStart3;
|
||||
BYTE* op4 = opStart4;
|
||||
U32 endSignal;
|
||||
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||||
U32 const dtLog = dtd.tableLog;
|
||||
|
||||
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
|
||||
/* 16-32 symbols per loop (4-8 symbols per stream) */
|
||||
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
||||
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
|
||||
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
||||
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
||||
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
||||
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
||||
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
|
||||
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
|
||||
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
|
||||
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
|
||||
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
||||
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
||||
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
||||
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
||||
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
|
||||
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
|
||||
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
|
||||
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
|
||||
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
||||
}
|
||||
|
||||
/* check corruption */
|
||||
if (op1 > opStart2) return ERROR(corruption_detected);
|
||||
if (op2 > opStart3) return ERROR(corruption_detected);
|
||||
if (op3 > opStart4) return ERROR(corruption_detected);
|
||||
/* note : op4 supposed already verified within main loop */
|
||||
|
||||
/* finish bitStreams one by one */
|
||||
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
|
||||
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
|
||||
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
|
||||
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
|
||||
|
||||
/* check */
|
||||
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
||||
if (!endSignal) return ERROR(corruption_detected);
|
||||
|
||||
/* decoded size */
|
||||
return dstSize;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_decompress4X2_usingDTable(
|
||||
void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
DTableDesc dtd = HUF_getDTableDesc(DTable);
|
||||
if (dtd.tableType != 0) return ERROR(GENERIC);
|
||||
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_decompress4X2_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*) cSrc;
|
||||
|
||||
size_t const hSize = HUF_readDTableX2 (dctx, cSrc, cSrcSize);
|
||||
if (HUF_isError(hSize)) return hSize;
|
||||
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
||||
ip += hSize; cSrcSize -= hSize;
|
||||
|
||||
return HUF_decompress4X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, dctx);
|
||||
}
|
||||
|
||||
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
|
||||
return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
|
||||
}
|
||||
|
||||
|
||||
/* *************************/
|
||||
/* double-symbols decoding */
|
||||
/* *************************/
|
||||
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
|
||||
|
||||
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
|
||||
|
||||
static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
|
||||
const U32* rankValOrigin, const int minWeight,
|
||||
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
|
||||
U32 nbBitsBaseline, U16 baseSeq)
|
||||
{
|
||||
HUF_DEltX4 DElt;
|
||||
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
|
||||
|
||||
/* get pre-calculated rankVal */
|
||||
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
|
||||
|
||||
/* fill skipped values */
|
||||
if (minWeight>1) {
|
||||
U32 i, skipSize = rankVal[minWeight];
|
||||
MEM_writeLE16(&(DElt.sequence), baseSeq);
|
||||
DElt.nbBits = (BYTE)(consumed);
|
||||
DElt.length = 1;
|
||||
for (i = 0; i < skipSize; i++)
|
||||
DTable[i] = DElt;
|
||||
}
|
||||
|
||||
/* fill DTable */
|
||||
{ U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
|
||||
const U32 symbol = sortedSymbols[s].symbol;
|
||||
const U32 weight = sortedSymbols[s].weight;
|
||||
const U32 nbBits = nbBitsBaseline - weight;
|
||||
const U32 length = 1 << (sizeLog-nbBits);
|
||||
const U32 start = rankVal[weight];
|
||||
U32 i = start;
|
||||
const U32 end = start + length;
|
||||
|
||||
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
|
||||
DElt.nbBits = (BYTE)(nbBits + consumed);
|
||||
DElt.length = 2;
|
||||
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
|
||||
|
||||
rankVal[weight] += length;
|
||||
}}
|
||||
}
|
||||
|
||||
typedef U32 rankVal_t[HUF_TABLELOG_ABSOLUTEMAX][HUF_TABLELOG_ABSOLUTEMAX + 1];
|
||||
|
||||
static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
|
||||
const sortedSymbol_t* sortedList, const U32 sortedListSize,
|
||||
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
|
||||
const U32 nbBitsBaseline)
|
||||
{
|
||||
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
|
||||
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
|
||||
const U32 minBits = nbBitsBaseline - maxWeight;
|
||||
U32 s;
|
||||
|
||||
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
|
||||
|
||||
/* fill DTable */
|
||||
for (s=0; s<sortedListSize; s++) {
|
||||
const U16 symbol = sortedList[s].symbol;
|
||||
const U32 weight = sortedList[s].weight;
|
||||
const U32 nbBits = nbBitsBaseline - weight;
|
||||
const U32 start = rankVal[weight];
|
||||
const U32 length = 1 << (targetLog-nbBits);
|
||||
|
||||
if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
|
||||
U32 sortedRank;
|
||||
int minWeight = nbBits + scaleLog;
|
||||
if (minWeight < 1) minWeight = 1;
|
||||
sortedRank = rankStart[minWeight];
|
||||
HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
|
||||
rankValOrigin[nbBits], minWeight,
|
||||
sortedList+sortedRank, sortedListSize-sortedRank,
|
||||
nbBitsBaseline, symbol);
|
||||
} else {
|
||||
HUF_DEltX4 DElt;
|
||||
MEM_writeLE16(&(DElt.sequence), symbol);
|
||||
DElt.nbBits = (BYTE)(nbBits);
|
||||
DElt.length = 1;
|
||||
{ U32 u;
|
||||
const U32 end = start + length;
|
||||
for (u = start; u < end; u++) DTable[u] = DElt;
|
||||
} }
|
||||
rankVal[weight] += length;
|
||||
}
|
||||
}
|
||||
|
||||
size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize)
|
||||
{
|
||||
BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
|
||||
sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
|
||||
U32 rankStats[HUF_TABLELOG_ABSOLUTEMAX + 1] = { 0 };
|
||||
U32 rankStart0[HUF_TABLELOG_ABSOLUTEMAX + 2] = { 0 };
|
||||
U32* const rankStart = rankStart0+1;
|
||||
rankVal_t rankVal;
|
||||
U32 tableLog, maxW, sizeOfSort, nbSymbols;
|
||||
DTableDesc dtd = HUF_getDTableDesc(DTable);
|
||||
U32 const maxTableLog = dtd.maxTableLog;
|
||||
size_t iSize;
|
||||
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
|
||||
HUF_DEltX4* const dt = (HUF_DEltX4*)dtPtr;
|
||||
|
||||
HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(HUF_DTable)); /* if compilation fails here, assertion is false */
|
||||
if (maxTableLog > HUF_TABLELOG_ABSOLUTEMAX) return ERROR(tableLog_tooLarge);
|
||||
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
|
||||
|
||||
iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
|
||||
if (HUF_isError(iSize)) return iSize;
|
||||
|
||||
/* check result */
|
||||
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
|
||||
|
||||
/* find maxWeight */
|
||||
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
|
||||
|
||||
/* Get start index of each weight */
|
||||
{ U32 w, nextRankStart = 0;
|
||||
for (w=1; w<maxW+1; w++) {
|
||||
U32 current = nextRankStart;
|
||||
nextRankStart += rankStats[w];
|
||||
rankStart[w] = current;
|
||||
}
|
||||
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
|
||||
sizeOfSort = nextRankStart;
|
||||
}
|
||||
|
||||
/* sort symbols by weight */
|
||||
{ U32 s;
|
||||
for (s=0; s<nbSymbols; s++) {
|
||||
U32 const w = weightList[s];
|
||||
U32 const r = rankStart[w]++;
|
||||
sortedSymbol[r].symbol = (BYTE)s;
|
||||
sortedSymbol[r].weight = (BYTE)w;
|
||||
}
|
||||
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
|
||||
}
|
||||
|
||||
/* Build rankVal */
|
||||
{ U32* const rankVal0 = rankVal[0];
|
||||
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
|
||||
U32 nextRankVal = 0;
|
||||
U32 w;
|
||||
for (w=1; w<maxW+1; w++) {
|
||||
U32 current = nextRankVal;
|
||||
nextRankVal += rankStats[w] << (w+rescale);
|
||||
rankVal0[w] = current;
|
||||
} }
|
||||
{ U32 const minBits = tableLog+1 - maxW;
|
||||
U32 consumed;
|
||||
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
|
||||
U32* const rankValPtr = rankVal[consumed];
|
||||
U32 w;
|
||||
for (w = 1; w < maxW+1; w++) {
|
||||
rankValPtr[w] = rankVal0[w] >> consumed;
|
||||
} } } }
|
||||
|
||||
HUF_fillDTableX4(dt, maxTableLog,
|
||||
sortedSymbol, sizeOfSort,
|
||||
rankStart0, rankVal, maxW,
|
||||
tableLog+1);
|
||||
|
||||
dtd.tableLog = (BYTE)maxTableLog;
|
||||
dtd.tableType = 1;
|
||||
memcpy(DTable, &dtd, sizeof(dtd));
|
||||
return iSize;
|
||||
}
|
||||
|
||||
|
||||
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
|
||||
{
|
||||
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
||||
memcpy(op, dt+val, 2);
|
||||
BIT_skipBits(DStream, dt[val].nbBits);
|
||||
return dt[val].length;
|
||||
}
|
||||
|
||||
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
|
||||
{
|
||||
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
||||
memcpy(op, dt+val, 1);
|
||||
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
|
||||
else {
|
||||
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
|
||||
BIT_skipBits(DStream, dt[val].nbBits);
|
||||
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
|
||||
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
|
||||
} }
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
|
||||
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
||||
|
||||
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
|
||||
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
|
||||
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
||||
|
||||
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
|
||||
if (MEM_64bits()) \
|
||||
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
||||
|
||||
static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
|
||||
{
|
||||
BYTE* const pStart = p;
|
||||
|
||||
/* up to 8 symbols at a time */
|
||||
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) {
|
||||
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
|
||||
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
|
||||
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
|
||||
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
|
||||
}
|
||||
|
||||
/* closer to end : up to 2 symbols at a time */
|
||||
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
|
||||
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
|
||||
|
||||
while (p <= pEnd-2)
|
||||
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
|
||||
|
||||
if (p < pEnd)
|
||||
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
|
||||
|
||||
return p-pStart;
|
||||
}
|
||||
|
||||
|
||||
static size_t HUF_decompress1X4_usingDTable_internal(
|
||||
void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
BIT_DStream_t bitD;
|
||||
|
||||
/* Init */
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
|
||||
if (HUF_isError(errorCode)) return errorCode;
|
||||
}
|
||||
|
||||
/* decode */
|
||||
{ BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
|
||||
const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
|
||||
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||||
HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
|
||||
}
|
||||
|
||||
/* check */
|
||||
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
||||
|
||||
/* decoded size */
|
||||
return dstSize;
|
||||
}
|
||||
|
||||
size_t HUF_decompress1X4_usingDTable(
|
||||
void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
DTableDesc dtd = HUF_getDTableDesc(DTable);
|
||||
if (dtd.tableType != 1) return ERROR(GENERIC);
|
||||
return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
|
||||
}
|
||||
|
||||
size_t HUF_decompress1X4_DCtx (HUF_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*) cSrc;
|
||||
|
||||
size_t const hSize = HUF_readDTableX4 (DCtx, cSrc, cSrcSize);
|
||||
if (HUF_isError(hSize)) return hSize;
|
||||
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
||||
ip += hSize; cSrcSize -= hSize;
|
||||
|
||||
return HUF_decompress1X4_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
|
||||
}
|
||||
|
||||
size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_TABLELOG_MAX);
|
||||
return HUF_decompress1X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
|
||||
}
|
||||
|
||||
static size_t HUF_decompress4X4_usingDTable_internal(
|
||||
void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
||||
|
||||
{ const BYTE* const istart = (const BYTE*) cSrc;
|
||||
BYTE* const ostart = (BYTE*) dst;
|
||||
BYTE* const oend = ostart + dstSize;
|
||||
const void* const dtPtr = DTable+1;
|
||||
const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
|
||||
|
||||
/* Init */
|
||||
BIT_DStream_t bitD1;
|
||||
BIT_DStream_t bitD2;
|
||||
BIT_DStream_t bitD3;
|
||||
BIT_DStream_t bitD4;
|
||||
size_t const length1 = MEM_readLE16(istart);
|
||||
size_t const length2 = MEM_readLE16(istart+2);
|
||||
size_t const length3 = MEM_readLE16(istart+4);
|
||||
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
||||
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
||||
const BYTE* const istart2 = istart1 + length1;
|
||||
const BYTE* const istart3 = istart2 + length2;
|
||||
const BYTE* const istart4 = istart3 + length3;
|
||||
size_t const segmentSize = (dstSize+3) / 4;
|
||||
BYTE* const opStart2 = ostart + segmentSize;
|
||||
BYTE* const opStart3 = opStart2 + segmentSize;
|
||||
BYTE* const opStart4 = opStart3 + segmentSize;
|
||||
BYTE* op1 = ostart;
|
||||
BYTE* op2 = opStart2;
|
||||
BYTE* op3 = opStart3;
|
||||
BYTE* op4 = opStart4;
|
||||
U32 endSignal;
|
||||
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||||
U32 const dtLog = dtd.tableLog;
|
||||
|
||||
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
{ size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
||||
if (HUF_isError(errorCode)) return errorCode; }
|
||||
|
||||
/* 16-32 symbols per loop (4-8 symbols per stream) */
|
||||
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
||||
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
|
||||
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
|
||||
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
|
||||
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
|
||||
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
|
||||
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
|
||||
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
|
||||
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
|
||||
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
|
||||
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
|
||||
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
|
||||
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
|
||||
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
|
||||
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
|
||||
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
|
||||
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
|
||||
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
|
||||
|
||||
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
||||
}
|
||||
|
||||
/* check corruption */
|
||||
if (op1 > opStart2) return ERROR(corruption_detected);
|
||||
if (op2 > opStart3) return ERROR(corruption_detected);
|
||||
if (op3 > opStart4) return ERROR(corruption_detected);
|
||||
/* note : op4 supposed already verified within main loop */
|
||||
|
||||
/* finish bitStreams one by one */
|
||||
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
|
||||
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
|
||||
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
|
||||
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
|
||||
|
||||
/* check */
|
||||
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
||||
if (!endCheck) return ERROR(corruption_detected); }
|
||||
|
||||
/* decoded size */
|
||||
return dstSize;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_decompress4X4_usingDTable(
|
||||
void* dst, size_t dstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
DTableDesc dtd = HUF_getDTableDesc(DTable);
|
||||
if (dtd.tableType != 1) return ERROR(GENERIC);
|
||||
return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
|
||||
}
|
||||
|
||||
|
||||
size_t HUF_decompress4X4_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*) cSrc;
|
||||
|
||||
size_t hSize = HUF_readDTableX4 (dctx, cSrc, cSrcSize);
|
||||
if (HUF_isError(hSize)) return hSize;
|
||||
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
||||
ip += hSize; cSrcSize -= hSize;
|
||||
|
||||
return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
|
||||
}
|
||||
|
||||
size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_TABLELOG_MAX);
|
||||
return HUF_decompress4X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
|
||||
}
|
||||
|
||||
|
||||
/* ********************************/
|
||||
/* Generic decompression selector */
|
||||
/* ********************************/
|
||||
|
||||
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||||
return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
|
||||
HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
|
||||
}
|
||||
|
||||
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
|
||||
const void* cSrc, size_t cSrcSize,
|
||||
const HUF_DTable* DTable)
|
||||
{
|
||||
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||||
return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
|
||||
HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
|
||||
}
|
||||
|
||||
|
||||
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
|
||||
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
|
||||
{
|
||||
/* single, double, quad */
|
||||
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
|
||||
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
|
||||
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
|
||||
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
|
||||
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
|
||||
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
|
||||
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
|
||||
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
|
||||
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
|
||||
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
|
||||
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
|
||||
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
|
||||
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
|
||||
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
|
||||
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
|
||||
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
|
||||
};
|
||||
|
||||
/** HUF_selectDecoder() :
|
||||
* Tells which decoder is likely to decode faster,
|
||||
* based on a set of pre-determined metrics.
|
||||
* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
|
||||
* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
|
||||
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
|
||||
{
|
||||
/* decoder timing evaluation */
|
||||
U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
|
||||
U32 const D256 = (U32)(dstSize >> 8);
|
||||
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
|
||||
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
|
||||
DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */
|
||||
|
||||
return DTime1 < DTime0;
|
||||
}
|
||||
|
||||
|
||||
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
|
||||
|
||||
size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
static const decompressionAlgo decompress[2] = { HUF_decompress4X2, HUF_decompress4X4 };
|
||||
|
||||
/* validation checks */
|
||||
if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
||||
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
|
||||
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
|
||||
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
|
||||
|
||||
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
||||
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
|
||||
}
|
||||
|
||||
//return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
|
||||
//return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
|
||||
}
|
||||
|
||||
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
/* validation checks */
|
||||
if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
||||
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
|
||||
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
|
||||
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
|
||||
|
||||
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
||||
return algoNb ? HUF_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
|
||||
HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
|
||||
}
|
||||
}
|
||||
|
||||
size_t HUF_decompress4X_hufOnly (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
/* validation checks */
|
||||
if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
||||
if ((cSrcSize >= dstSize) || (cSrcSize <= 1)) return ERROR(corruption_detected); /* invalid */
|
||||
|
||||
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
||||
return algoNb ? HUF_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
|
||||
HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
|
||||
}
|
||||
}
|
||||
|
||||
size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
||||
{
|
||||
/* validation checks */
|
||||
if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
||||
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
|
||||
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
|
||||
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
|
||||
|
||||
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
||||
return algoNb ? HUF_decompress1X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
|
||||
HUF_decompress1X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
|
||||
}
|
||||
}
|
||||
227
C/zstd/huf_static.h
Normal file
227
C/zstd/huf_static.h
Normal file
@@ -0,0 +1,227 @@
|
||||
/* ******************************************************************
|
||||
Huffman codec, part of New Generation Entropy library
|
||||
header file, for static linking only
|
||||
Copyright (C) 2013-2016, Yann Collet
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
****************************************************************** */
|
||||
#ifndef HUF_STATIC_H
|
||||
#define HUF_STATIC_H
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Dependency
|
||||
******************************************/
|
||||
#include "huf.h"
|
||||
#include "fse.h"
|
||||
#include "bitstream.h"
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Static allocation
|
||||
******************************************/
|
||||
/* HUF buffer bounds */
|
||||
#define HUF_CTABLEBOUND 129
|
||||
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
|
||||
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
|
||||
|
||||
/* static allocation of HUF's Compression Table */
|
||||
#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
|
||||
U32 name##hb[maxSymbolValue+1]; \
|
||||
void* name##hv = &(name##hb); \
|
||||
HUF_CElt* name = (HUF_CElt*)(name##hv) /* no final ; */
|
||||
|
||||
/* static allocation of HUF's DTable */
|
||||
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog))
|
||||
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
|
||||
unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
|
||||
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
|
||||
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
|
||||
#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
|
||||
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Advanced decompression functions
|
||||
******************************************/
|
||||
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
|
||||
size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
|
||||
size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* quad-symbols decoder, only works for dstSize >= 64 */
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* HUF detailed API
|
||||
******************************************/
|
||||
/*!
|
||||
HUF_compress() does the following:
|
||||
1. count symbol occurrence from source[] into table count[] using FSE_count()
|
||||
2. build Huffman table from count using HUF_buildCTable()
|
||||
3. save Huffman table to memory buffer using HUF_writeCTable()
|
||||
4. encode the data stream using HUF_compress4X_usingCTable()
|
||||
|
||||
The following API allows targeting specific sub-functions for advanced tasks.
|
||||
For example, it's possible to compress several blocks using the same 'CTable',
|
||||
or to save and regenerate 'CTable' using external methods.
|
||||
*/
|
||||
/* FSE_count() : find it within "fse.h" */
|
||||
typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
|
||||
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits);
|
||||
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
|
||||
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
||||
|
||||
|
||||
/*!
|
||||
HUF_decompress() does the following:
|
||||
1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
|
||||
2. build Huffman table from save, using HUF_readDTableXn()
|
||||
3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
|
||||
*/
|
||||
size_t HUF_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
|
||||
size_t HUF_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);
|
||||
size_t HUF_readDTableX6 (unsigned* DTable, const void* src, size_t srcSize);
|
||||
|
||||
size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
|
||||
size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
|
||||
size_t HUF_decompress4X6_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
|
||||
|
||||
|
||||
/* single stream variants */
|
||||
|
||||
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
|
||||
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
||||
|
||||
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
|
||||
size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
|
||||
size_t HUF_decompress1X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* quad-symbols decoder, only works for dstSize >= 64 */
|
||||
|
||||
size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
|
||||
size_t HUF_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
|
||||
size_t HUF_decompress1X6_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
|
||||
|
||||
|
||||
/* Loading a CTable saved with HUF_writeCTable() */
|
||||
|
||||
size_t HUF_readCTable (HUF_CElt* CTable, unsigned maxSymbolValue, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* Constants
|
||||
****************************************************************/
|
||||
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
|
||||
#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
|
||||
#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
|
||||
#define HUF_MAX_SYMBOL_VALUE 255
|
||||
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
|
||||
# error "HUF_MAX_TABLELOG is too large !"
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*! HUF_readStats() :
|
||||
Read compact Huffman tree, saved by HUF_writeCTable().
|
||||
`huffWeight` is destination buffer.
|
||||
@return : size read from `src`
|
||||
*/
|
||||
MEM_STATIC size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
||||
U32* nbSymbolsPtr, U32* tableLogPtr,
|
||||
const void* src, size_t srcSize)
|
||||
{
|
||||
U32 weightTotal;
|
||||
const BYTE* ip = (const BYTE*) src;
|
||||
size_t iSize = ip[0];
|
||||
size_t oSize;
|
||||
|
||||
//memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
|
||||
|
||||
if (iSize >= 128) { /* special header */
|
||||
if (iSize >= (242)) { /* RLE */
|
||||
static U32 l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
|
||||
oSize = l[iSize-242];
|
||||
memset(huffWeight, 1, hwSize);
|
||||
iSize = 0;
|
||||
}
|
||||
else { /* Incompressible */
|
||||
oSize = iSize - 127;
|
||||
iSize = ((oSize+1)/2);
|
||||
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
||||
if (oSize >= hwSize) return ERROR(corruption_detected);
|
||||
ip += 1;
|
||||
{ U32 n;
|
||||
for (n=0; n<oSize; n+=2) {
|
||||
huffWeight[n] = ip[n/2] >> 4;
|
||||
huffWeight[n+1] = ip[n/2] & 15;
|
||||
} } } }
|
||||
else { /* header compressed with FSE (normal case) */
|
||||
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
||||
oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
|
||||
if (FSE_isError(oSize)) return oSize;
|
||||
}
|
||||
|
||||
/* collect weight stats */
|
||||
memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
|
||||
weightTotal = 0;
|
||||
{ U32 n; for (n=0; n<oSize; n++) {
|
||||
if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
|
||||
rankStats[huffWeight[n]]++;
|
||||
weightTotal += (1 << huffWeight[n]) >> 1;
|
||||
} }
|
||||
|
||||
/* get last non-null symbol weight (implied, total must be 2^n) */
|
||||
{ U32 const tableLog = BIT_highbit32(weightTotal) + 1;
|
||||
if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
|
||||
*tableLogPtr = tableLog;
|
||||
/* determine last weight */
|
||||
{ U32 const total = 1 << tableLog;
|
||||
U32 const rest = total - weightTotal;
|
||||
U32 const verif = 1 << BIT_highbit32(rest);
|
||||
U32 const lastWeight = BIT_highbit32(rest) + 1;
|
||||
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
|
||||
huffWeight[oSize] = (BYTE)lastWeight;
|
||||
rankStats[lastWeight]++;
|
||||
} }
|
||||
|
||||
/* check tree construction validity */
|
||||
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
|
||||
|
||||
/* results */
|
||||
*nbSymbolsPtr = (U32)(oSize+1);
|
||||
return iSize+1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* HUF_STATIC_H */
|
||||
377
C/zstd/mem.h
Normal file
377
C/zstd/mem.h
Normal file
@@ -0,0 +1,377 @@
|
||||
/* ******************************************************************
|
||||
mem.h
|
||||
low-level memory access routines
|
||||
Copyright (C) 2013-2015, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||||
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
****************************************************************** */
|
||||
#ifndef MEM_H_MODULE
|
||||
#define MEM_H_MODULE
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*-****************************************
|
||||
* Dependencies
|
||||
******************************************/
|
||||
#include <stddef.h> /* size_t, ptrdiff_t */
|
||||
#include <string.h> /* memcpy */
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
# include <stdlib.h> /* _byteswap_ulong */
|
||||
#endif
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* Compiler specifics
|
||||
******************************************/
|
||||
#if defined(_MSC_VER)
|
||||
# include <intrin.h> /* _byteswap_ */
|
||||
#endif
|
||||
#if defined(__GNUC__)
|
||||
# define MEM_STATIC static __attribute__((unused))
|
||||
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
||||
# define MEM_STATIC static inline
|
||||
#elif defined(_MSC_VER)
|
||||
# define MEM_STATIC static __inline
|
||||
#else
|
||||
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
|
||||
#endif
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* Basic Types
|
||||
*****************************************************************/
|
||||
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
||||
# include <stdint.h>
|
||||
typedef uint8_t BYTE;
|
||||
typedef uint16_t U16;
|
||||
typedef int16_t S16;
|
||||
typedef uint32_t U32;
|
||||
typedef int32_t S32;
|
||||
typedef uint64_t U64;
|
||||
typedef int64_t S64;
|
||||
#else
|
||||
typedef unsigned char BYTE;
|
||||
typedef unsigned short U16;
|
||||
typedef signed short S16;
|
||||
typedef unsigned int U32;
|
||||
typedef signed int S32;
|
||||
typedef unsigned long long U64;
|
||||
typedef signed long long S64;
|
||||
#endif
|
||||
|
||||
|
||||
/*-**************************************************************
|
||||
* Memory I/O
|
||||
*****************************************************************/
|
||||
/* MEM_FORCE_MEMORY_ACCESS :
|
||||
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
|
||||
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
|
||||
* The below switch allow to select different access method for improved performance.
|
||||
* Method 0 (default) : use `memcpy()`. Safe and portable.
|
||||
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
|
||||
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
|
||||
* Method 2 : direct access. This method is portable but violate C standard.
|
||||
* It can generate buggy code on targets depending on alignment.
|
||||
* In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
|
||||
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
|
||||
* Prefer these methods in priority order (0 > 1 > 2)
|
||||
*/
|
||||
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
||||
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
|
||||
# define MEM_FORCE_MEMORY_ACCESS 2
|
||||
# elif defined(__INTEL_COMPILER) || \
|
||||
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
|
||||
# define MEM_FORCE_MEMORY_ACCESS 1
|
||||
# endif
|
||||
#endif
|
||||
|
||||
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
|
||||
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
|
||||
|
||||
MEM_STATIC unsigned MEM_isLittleEndian(void)
|
||||
{
|
||||
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
|
||||
return one.c[0];
|
||||
}
|
||||
|
||||
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
|
||||
|
||||
/* violates C standard, by lying on structure alignment.
|
||||
Only use if no other choice to achieve best performance on target platform */
|
||||
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
|
||||
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
|
||||
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
|
||||
MEM_STATIC U64 MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
|
||||
|
||||
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
|
||||
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
|
||||
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
|
||||
|
||||
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
|
||||
|
||||
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
|
||||
/* currently only defined for gcc and icc */
|
||||
typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign;
|
||||
|
||||
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
|
||||
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
||||
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
|
||||
MEM_STATIC U64 MEM_readST(const void* ptr) { return ((const unalign*)ptr)->st; }
|
||||
|
||||
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
|
||||
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; }
|
||||
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; }
|
||||
|
||||
#else
|
||||
|
||||
/* default method, safe and standard.
|
||||
can sometimes prove slower */
|
||||
|
||||
MEM_STATIC U16 MEM_read16(const void* memPtr)
|
||||
{
|
||||
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
|
||||
}
|
||||
|
||||
MEM_STATIC U32 MEM_read32(const void* memPtr)
|
||||
{
|
||||
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
|
||||
}
|
||||
|
||||
MEM_STATIC U64 MEM_read64(const void* memPtr)
|
||||
{
|
||||
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
|
||||
}
|
||||
|
||||
MEM_STATIC size_t MEM_readST(const void* memPtr)
|
||||
{
|
||||
size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
|
||||
{
|
||||
memcpy(memPtr, &value, sizeof(value));
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
|
||||
{
|
||||
memcpy(memPtr, &value, sizeof(value));
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
|
||||
{
|
||||
memcpy(memPtr, &value, sizeof(value));
|
||||
}
|
||||
|
||||
#endif /* MEM_FORCE_MEMORY_ACCESS */
|
||||
|
||||
MEM_STATIC U32 MEM_swap32(U32 in)
|
||||
{
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
return _byteswap_ulong(in);
|
||||
#elif defined (__GNUC__)
|
||||
return __builtin_bswap32(in);
|
||||
#else
|
||||
return ((in << 24) & 0xff000000 ) |
|
||||
((in << 8) & 0x00ff0000 ) |
|
||||
((in >> 8) & 0x0000ff00 ) |
|
||||
((in >> 24) & 0x000000ff );
|
||||
#endif
|
||||
}
|
||||
|
||||
MEM_STATIC U64 MEM_swap64(U64 in)
|
||||
{
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
return _byteswap_uint64(in);
|
||||
#elif defined (__GNUC__)
|
||||
return __builtin_bswap64(in);
|
||||
#else
|
||||
return ((in << 56) & 0xff00000000000000ULL) |
|
||||
((in << 40) & 0x00ff000000000000ULL) |
|
||||
((in << 24) & 0x0000ff0000000000ULL) |
|
||||
((in << 8) & 0x000000ff00000000ULL) |
|
||||
((in >> 8) & 0x00000000ff000000ULL) |
|
||||
((in >> 24) & 0x0000000000ff0000ULL) |
|
||||
((in >> 40) & 0x000000000000ff00ULL) |
|
||||
((in >> 56) & 0x00000000000000ffULL);
|
||||
#endif
|
||||
}
|
||||
|
||||
MEM_STATIC size_t MEM_swapST(size_t in)
|
||||
{
|
||||
if (MEM_32bits())
|
||||
return (size_t)MEM_swap32((U32)in);
|
||||
else
|
||||
return (size_t)MEM_swap64((U64)in);
|
||||
}
|
||||
|
||||
/*=== Little endian r/w ===*/
|
||||
|
||||
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
return MEM_read16(memPtr);
|
||||
else {
|
||||
const BYTE* p = (const BYTE*)memPtr;
|
||||
return (U16)(p[0] + (p[1]<<8));
|
||||
}
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
|
||||
{
|
||||
if (MEM_isLittleEndian()) {
|
||||
MEM_write16(memPtr, val);
|
||||
} else {
|
||||
BYTE* p = (BYTE*)memPtr;
|
||||
p[0] = (BYTE)val;
|
||||
p[1] = (BYTE)(val>>8);
|
||||
}
|
||||
}
|
||||
|
||||
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
return MEM_read32(memPtr);
|
||||
else
|
||||
return MEM_swap32(MEM_read32(memPtr));
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
MEM_write32(memPtr, val32);
|
||||
else
|
||||
MEM_write32(memPtr, MEM_swap32(val32));
|
||||
}
|
||||
|
||||
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
return MEM_read64(memPtr);
|
||||
else
|
||||
return MEM_swap64(MEM_read64(memPtr));
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
MEM_write64(memPtr, val64);
|
||||
else
|
||||
MEM_write64(memPtr, MEM_swap64(val64));
|
||||
}
|
||||
|
||||
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
|
||||
{
|
||||
if (MEM_32bits())
|
||||
return (size_t)MEM_readLE32(memPtr);
|
||||
else
|
||||
return (size_t)MEM_readLE64(memPtr);
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
|
||||
{
|
||||
if (MEM_32bits())
|
||||
MEM_writeLE32(memPtr, (U32)val);
|
||||
else
|
||||
MEM_writeLE64(memPtr, (U64)val);
|
||||
}
|
||||
|
||||
/*=== Big endian r/w ===*/
|
||||
|
||||
MEM_STATIC U32 MEM_readBE32(const void* memPtr)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
return MEM_swap32(MEM_read32(memPtr));
|
||||
else
|
||||
return MEM_read32(memPtr);
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
MEM_write32(memPtr, MEM_swap32(val32));
|
||||
else
|
||||
MEM_write32(memPtr, val32);
|
||||
}
|
||||
|
||||
MEM_STATIC U64 MEM_readBE64(const void* memPtr)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
return MEM_swap64(MEM_read64(memPtr));
|
||||
else
|
||||
return MEM_read64(memPtr);
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
|
||||
{
|
||||
if (MEM_isLittleEndian())
|
||||
MEM_write64(memPtr, MEM_swap64(val64));
|
||||
else
|
||||
MEM_write64(memPtr, val64);
|
||||
}
|
||||
|
||||
MEM_STATIC size_t MEM_readBEST(const void* memPtr)
|
||||
{
|
||||
if (MEM_32bits())
|
||||
return (size_t)MEM_readBE32(memPtr);
|
||||
else
|
||||
return (size_t)MEM_readBE64(memPtr);
|
||||
}
|
||||
|
||||
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
|
||||
{
|
||||
if (MEM_32bits())
|
||||
MEM_writeBE32(memPtr, (U32)val);
|
||||
else
|
||||
MEM_writeBE64(memPtr, (U64)val);
|
||||
}
|
||||
|
||||
|
||||
/* function safe only for comparisons */
|
||||
MEM_STATIC U32 MEM_readMINMATCH(const void* memPtr, U32 length)
|
||||
{
|
||||
switch (length)
|
||||
{
|
||||
default :
|
||||
case 4 : return MEM_read32(memPtr);
|
||||
case 3 : if (MEM_isLittleEndian())
|
||||
return MEM_read32(memPtr)<<8;
|
||||
else
|
||||
return MEM_read32(memPtr)>>8;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* MEM_H_MODULE */
|
||||
|
||||
854
C/zstd/xxhash.c
Normal file
854
C/zstd/xxhash.c
Normal file
@@ -0,0 +1,854 @@
|
||||
/*
|
||||
* xxHash - Fast Hash algorithm
|
||||
* Copyright (C) 2012-2016, Yann Collet
|
||||
*
|
||||
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above
|
||||
* copyright notice, this list of conditions and the following disclaimer
|
||||
* in the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* You can contact the author at :
|
||||
* - xxHash homepage: http://www.xxhash.com
|
||||
* - xxHash source repository : https://github.com/Cyan4973/xxHash
|
||||
*/
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Tuning parameters
|
||||
***************************************/
|
||||
/*!XXH_FORCE_MEMORY_ACCESS :
|
||||
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
|
||||
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
|
||||
* The below switch allow to select different access method for improved performance.
|
||||
* Method 0 (default) : use `memcpy()`. Safe and portable.
|
||||
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
|
||||
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
|
||||
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
|
||||
* It can generate buggy code on targets which do not support unaligned memory accesses.
|
||||
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
|
||||
* See http://stackoverflow.com/a/32095106/646947 for details.
|
||||
* Prefer these methods in priority order (0 > 1 > 2)
|
||||
*/
|
||||
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
||||
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
|
||||
# define XXH_FORCE_MEMORY_ACCESS 2
|
||||
# elif defined(__INTEL_COMPILER) || \
|
||||
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
|
||||
# define XXH_FORCE_MEMORY_ACCESS 1
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*!XXH_ACCEPT_NULL_INPUT_POINTER :
|
||||
* If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
|
||||
* When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
|
||||
* By default, this option is disabled. To enable it, uncomment below define :
|
||||
*/
|
||||
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
|
||||
|
||||
/*!XXH_FORCE_NATIVE_FORMAT :
|
||||
* By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
|
||||
* Results are therefore identical for little-endian and big-endian CPU.
|
||||
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
|
||||
* Should endian-independance be of no importance for your application, you may set the #define below to 1,
|
||||
* to improve speed for Big-endian CPU.
|
||||
* This option has no impact on Little_Endian CPU.
|
||||
*/
|
||||
#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
|
||||
# define XXH_FORCE_NATIVE_FORMAT 0
|
||||
#endif
|
||||
|
||||
/*!XXH_FORCE_ALIGN_CHECK :
|
||||
* This is a minor performance trick, only useful with lots of very small keys.
|
||||
* It means : check for aligned/unaligned input.
|
||||
* The check costs one initial branch per hash; set to 0 when the input data
|
||||
* is guaranteed to be aligned.
|
||||
*/
|
||||
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
|
||||
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
|
||||
# define XXH_FORCE_ALIGN_CHECK 0
|
||||
# else
|
||||
# define XXH_FORCE_ALIGN_CHECK 1
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Includes & Memory related functions
|
||||
***************************************/
|
||||
/* Modify the local functions below should you wish to use some other memory routines */
|
||||
/* for malloc(), free() */
|
||||
#include <stdlib.h>
|
||||
static void* XXH_malloc(size_t s) { return malloc(s); }
|
||||
static void XXH_free (void* p) { free(p); }
|
||||
/* for memcpy() */
|
||||
#include <string.h>
|
||||
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
|
||||
|
||||
#define XXH_STATIC_LINKING_ONLY
|
||||
#include "xxhash.h"
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Compiler Specific Options
|
||||
***************************************/
|
||||
#ifdef _MSC_VER /* Visual Studio */
|
||||
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
||||
# define FORCE_INLINE static __forceinline
|
||||
#else
|
||||
# if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
|
||||
# ifdef __GNUC__
|
||||
# define FORCE_INLINE static inline __attribute__((always_inline))
|
||||
# else
|
||||
# define FORCE_INLINE static inline
|
||||
# endif
|
||||
# else
|
||||
# define FORCE_INLINE static
|
||||
# endif /* __STDC_VERSION__ */
|
||||
#endif
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Basic Types
|
||||
***************************************/
|
||||
#ifndef MEM_MODULE
|
||||
# define MEM_MODULE
|
||||
# if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
|
||||
# include <stdint.h>
|
||||
typedef uint8_t BYTE;
|
||||
typedef uint16_t U16;
|
||||
typedef uint32_t U32;
|
||||
typedef int32_t S32;
|
||||
typedef uint64_t U64;
|
||||
# else
|
||||
typedef unsigned char BYTE;
|
||||
typedef unsigned short U16;
|
||||
typedef unsigned int U32;
|
||||
typedef signed int S32;
|
||||
typedef unsigned long long U64;
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
||||
|
||||
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
|
||||
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
|
||||
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
|
||||
|
||||
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
||||
|
||||
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
|
||||
/* currently only defined for gcc and icc */
|
||||
typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
|
||||
|
||||
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
||||
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
|
||||
|
||||
#else
|
||||
|
||||
/* portable and safe solution. Generally efficient.
|
||||
* see : http://stackoverflow.com/a/32095106/646947
|
||||
*/
|
||||
|
||||
static U32 XXH_read32(const void* memPtr)
|
||||
{
|
||||
U32 val;
|
||||
memcpy(&val, memPtr, sizeof(val));
|
||||
return val;
|
||||
}
|
||||
|
||||
static U64 XXH_read64(const void* memPtr)
|
||||
{
|
||||
U64 val;
|
||||
memcpy(&val, memPtr, sizeof(val));
|
||||
return val;
|
||||
}
|
||||
|
||||
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
|
||||
|
||||
|
||||
/* ****************************************
|
||||
* Compiler-specific Functions and Macros
|
||||
******************************************/
|
||||
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
||||
|
||||
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
|
||||
#if defined(_MSC_VER)
|
||||
# define XXH_rotl32(x,r) _rotl(x,r)
|
||||
# define XXH_rotl64(x,r) _rotl64(x,r)
|
||||
#else
|
||||
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
|
||||
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) /* Visual Studio */
|
||||
# define XXH_swap32 _byteswap_ulong
|
||||
# define XXH_swap64 _byteswap_uint64
|
||||
#elif GCC_VERSION >= 403
|
||||
# define XXH_swap32 __builtin_bswap32
|
||||
# define XXH_swap64 __builtin_bswap64
|
||||
#else
|
||||
static U32 XXH_swap32 (U32 x)
|
||||
{
|
||||
return ((x << 24) & 0xff000000 ) |
|
||||
((x << 8) & 0x00ff0000 ) |
|
||||
((x >> 8) & 0x0000ff00 ) |
|
||||
((x >> 24) & 0x000000ff );
|
||||
}
|
||||
static U64 XXH_swap64 (U64 x)
|
||||
{
|
||||
return ((x << 56) & 0xff00000000000000ULL) |
|
||||
((x << 40) & 0x00ff000000000000ULL) |
|
||||
((x << 24) & 0x0000ff0000000000ULL) |
|
||||
((x << 8) & 0x000000ff00000000ULL) |
|
||||
((x >> 8) & 0x00000000ff000000ULL) |
|
||||
((x >> 24) & 0x0000000000ff0000ULL) |
|
||||
((x >> 40) & 0x000000000000ff00ULL) |
|
||||
((x >> 56) & 0x00000000000000ffULL);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Architecture Macros
|
||||
***************************************/
|
||||
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
|
||||
|
||||
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
|
||||
#ifndef XXH_CPU_LITTLE_ENDIAN
|
||||
static const int g_one = 1;
|
||||
# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
|
||||
#endif
|
||||
|
||||
|
||||
/* ***************************
|
||||
* Memory reads
|
||||
*****************************/
|
||||
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
|
||||
|
||||
FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
|
||||
{
|
||||
if (align==XXH_unaligned)
|
||||
return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
|
||||
else
|
||||
return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
|
||||
}
|
||||
|
||||
FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
|
||||
{
|
||||
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
|
||||
}
|
||||
|
||||
static U32 XXH_readBE32(const void* ptr)
|
||||
{
|
||||
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
|
||||
}
|
||||
|
||||
FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
|
||||
{
|
||||
if (align==XXH_unaligned)
|
||||
return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
|
||||
else
|
||||
return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
|
||||
}
|
||||
|
||||
FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
|
||||
{
|
||||
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
|
||||
}
|
||||
|
||||
static U64 XXH_readBE64(const void* ptr)
|
||||
{
|
||||
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
|
||||
}
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Macros
|
||||
***************************************/
|
||||
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Constants
|
||||
***************************************/
|
||||
static const U32 PRIME32_1 = 2654435761U;
|
||||
static const U32 PRIME32_2 = 2246822519U;
|
||||
static const U32 PRIME32_3 = 3266489917U;
|
||||
static const U32 PRIME32_4 = 668265263U;
|
||||
static const U32 PRIME32_5 = 374761393U;
|
||||
|
||||
static const U64 PRIME64_1 = 11400714785074694791ULL;
|
||||
static const U64 PRIME64_2 = 14029467366897019727ULL;
|
||||
static const U64 PRIME64_3 = 1609587929392839161ULL;
|
||||
static const U64 PRIME64_4 = 9650029242287828579ULL;
|
||||
static const U64 PRIME64_5 = 2870177450012600261ULL;
|
||||
|
||||
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
|
||||
|
||||
|
||||
/* ***************************
|
||||
* Simple Hash Functions
|
||||
*****************************/
|
||||
|
||||
static U32 XXH32_round(U32 seed, U32 input)
|
||||
{
|
||||
seed += input * PRIME32_2;
|
||||
seed = XXH_rotl32(seed, 13);
|
||||
seed *= PRIME32_1;
|
||||
return seed;
|
||||
}
|
||||
|
||||
FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
|
||||
{
|
||||
const BYTE* p = (const BYTE*)input;
|
||||
const BYTE* bEnd = p + len;
|
||||
U32 h32;
|
||||
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
|
||||
|
||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
||||
if (p==NULL) {
|
||||
len=0;
|
||||
bEnd=p=(const BYTE*)(size_t)16;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (len>=16) {
|
||||
const BYTE* const limit = bEnd - 16;
|
||||
U32 v1 = seed + PRIME32_1 + PRIME32_2;
|
||||
U32 v2 = seed + PRIME32_2;
|
||||
U32 v3 = seed + 0;
|
||||
U32 v4 = seed - PRIME32_1;
|
||||
|
||||
do {
|
||||
v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
|
||||
v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
|
||||
v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
|
||||
v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
|
||||
} while (p<=limit);
|
||||
|
||||
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
|
||||
} else {
|
||||
h32 = seed + PRIME32_5;
|
||||
}
|
||||
|
||||
h32 += (U32) len;
|
||||
|
||||
while (p+4<=bEnd) {
|
||||
h32 += XXH_get32bits(p) * PRIME32_3;
|
||||
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
|
||||
p+=4;
|
||||
}
|
||||
|
||||
while (p<bEnd) {
|
||||
h32 += (*p) * PRIME32_5;
|
||||
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
|
||||
p++;
|
||||
}
|
||||
|
||||
h32 ^= h32 >> 15;
|
||||
h32 *= PRIME32_2;
|
||||
h32 ^= h32 >> 13;
|
||||
h32 *= PRIME32_3;
|
||||
h32 ^= h32 >> 16;
|
||||
|
||||
return h32;
|
||||
}
|
||||
|
||||
|
||||
XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
|
||||
{
|
||||
#if 0
|
||||
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
||||
XXH32_CREATESTATE_STATIC(state);
|
||||
XXH32_reset(state, seed);
|
||||
XXH32_update(state, input, len);
|
||||
return XXH32_digest(state);
|
||||
#else
|
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
||||
|
||||
if (XXH_FORCE_ALIGN_CHECK) {
|
||||
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
|
||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||||
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
|
||||
else
|
||||
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
|
||||
} }
|
||||
|
||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||||
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
|
||||
else
|
||||
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static U64 XXH64_round(U64 acc, U64 input)
|
||||
{
|
||||
acc += input * PRIME64_2;
|
||||
acc = XXH_rotl64(acc, 31);
|
||||
acc *= PRIME64_1;
|
||||
return acc;
|
||||
}
|
||||
|
||||
static U64 XXH64_mergeRound(U64 acc, U64 val)
|
||||
{
|
||||
val = XXH64_round(0, val);
|
||||
acc ^= val;
|
||||
acc = acc * PRIME64_1 + PRIME64_4;
|
||||
return acc;
|
||||
}
|
||||
|
||||
FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
|
||||
{
|
||||
const BYTE* p = (const BYTE*)input;
|
||||
const BYTE* const bEnd = p + len;
|
||||
U64 h64;
|
||||
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
|
||||
|
||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
||||
if (p==NULL) {
|
||||
len=0;
|
||||
bEnd=p=(const BYTE*)(size_t)32;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (len>=32) {
|
||||
const BYTE* const limit = bEnd - 32;
|
||||
U64 v1 = seed + PRIME64_1 + PRIME64_2;
|
||||
U64 v2 = seed + PRIME64_2;
|
||||
U64 v3 = seed + 0;
|
||||
U64 v4 = seed - PRIME64_1;
|
||||
|
||||
do {
|
||||
v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
|
||||
v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
|
||||
v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
|
||||
v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
|
||||
} while (p<=limit);
|
||||
|
||||
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
||||
h64 = XXH64_mergeRound(h64, v1);
|
||||
h64 = XXH64_mergeRound(h64, v2);
|
||||
h64 = XXH64_mergeRound(h64, v3);
|
||||
h64 = XXH64_mergeRound(h64, v4);
|
||||
|
||||
} else {
|
||||
h64 = seed + PRIME64_5;
|
||||
}
|
||||
|
||||
h64 += (U64) len;
|
||||
|
||||
while (p+8<=bEnd) {
|
||||
U64 const k1 = XXH64_round(0, XXH_get64bits(p));
|
||||
h64 ^= k1;
|
||||
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
|
||||
p+=8;
|
||||
}
|
||||
|
||||
if (p+4<=bEnd) {
|
||||
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
|
||||
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
|
||||
p+=4;
|
||||
}
|
||||
|
||||
while (p<bEnd) {
|
||||
h64 ^= (*p) * PRIME64_5;
|
||||
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
|
||||
p++;
|
||||
}
|
||||
|
||||
h64 ^= h64 >> 33;
|
||||
h64 *= PRIME64_2;
|
||||
h64 ^= h64 >> 29;
|
||||
h64 *= PRIME64_3;
|
||||
h64 ^= h64 >> 32;
|
||||
|
||||
return h64;
|
||||
}
|
||||
|
||||
|
||||
XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
|
||||
{
|
||||
#if 0
|
||||
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
||||
XXH64_CREATESTATE_STATIC(state);
|
||||
XXH64_reset(state, seed);
|
||||
XXH64_update(state, input, len);
|
||||
return XXH64_digest(state);
|
||||
#else
|
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
||||
|
||||
if (XXH_FORCE_ALIGN_CHECK) {
|
||||
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
|
||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||||
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
|
||||
else
|
||||
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
|
||||
} }
|
||||
|
||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||||
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
|
||||
else
|
||||
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/* **************************************************
|
||||
* Advanced Hash Functions
|
||||
****************************************************/
|
||||
|
||||
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
|
||||
{
|
||||
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
|
||||
}
|
||||
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
|
||||
{
|
||||
XXH_free(statePtr);
|
||||
return XXH_OK;
|
||||
}
|
||||
|
||||
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
|
||||
{
|
||||
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
|
||||
}
|
||||
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
|
||||
{
|
||||
XXH_free(statePtr);
|
||||
return XXH_OK;
|
||||
}
|
||||
|
||||
|
||||
/*** Hash feed ***/
|
||||
|
||||
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
|
||||
{
|
||||
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
|
||||
memset(&state, 0, sizeof(state));
|
||||
state.seed = seed;
|
||||
state.v1 = seed + PRIME32_1 + PRIME32_2;
|
||||
state.v2 = seed + PRIME32_2;
|
||||
state.v3 = seed + 0;
|
||||
state.v4 = seed - PRIME32_1;
|
||||
memcpy(statePtr, &state, sizeof(state));
|
||||
return XXH_OK;
|
||||
}
|
||||
|
||||
|
||||
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
|
||||
{
|
||||
XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
|
||||
memset(&state, 0, sizeof(state));
|
||||
state.seed = seed;
|
||||
state.v1 = seed + PRIME64_1 + PRIME64_2;
|
||||
state.v2 = seed + PRIME64_2;
|
||||
state.v3 = seed + 0;
|
||||
state.v4 = seed - PRIME64_1;
|
||||
memcpy(statePtr, &state, sizeof(state));
|
||||
return XXH_OK;
|
||||
}
|
||||
|
||||
|
||||
FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
|
||||
{
|
||||
const BYTE* p = (const BYTE*)input;
|
||||
const BYTE* const bEnd = p + len;
|
||||
|
||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
||||
if (input==NULL) return XXH_ERROR;
|
||||
#endif
|
||||
|
||||
state->total_len += len;
|
||||
|
||||
if (state->memsize + len < 16) { /* fill in tmp buffer */
|
||||
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
|
||||
state->memsize += (U32)len;
|
||||
return XXH_OK;
|
||||
}
|
||||
|
||||
if (state->memsize) { /* some data left from previous update */
|
||||
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
|
||||
{ const U32* p32 = state->mem32;
|
||||
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
|
||||
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
|
||||
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
|
||||
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
|
||||
}
|
||||
p += 16-state->memsize;
|
||||
state->memsize = 0;
|
||||
}
|
||||
|
||||
if (p <= bEnd-16) {
|
||||
const BYTE* const limit = bEnd - 16;
|
||||
U32 v1 = state->v1;
|
||||
U32 v2 = state->v2;
|
||||
U32 v3 = state->v3;
|
||||
U32 v4 = state->v4;
|
||||
|
||||
do {
|
||||
v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
|
||||
v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
|
||||
v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
|
||||
v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
|
||||
} while (p<=limit);
|
||||
|
||||
state->v1 = v1;
|
||||
state->v2 = v2;
|
||||
state->v3 = v3;
|
||||
state->v4 = v4;
|
||||
}
|
||||
|
||||
if (p < bEnd) {
|
||||
XXH_memcpy(state->mem32, p, bEnd-p);
|
||||
state->memsize = (int)(bEnd-p);
|
||||
}
|
||||
|
||||
return XXH_OK;
|
||||
}
|
||||
|
||||
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
|
||||
{
|
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
||||
|
||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||||
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
|
||||
else
|
||||
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
|
||||
}
|
||||
|
||||
|
||||
|
||||
FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
|
||||
{
|
||||
const BYTE * p = (const BYTE*)state->mem32;
|
||||
const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
|
||||
U32 h32;
|
||||
|
||||
if (state->total_len >= 16) {
|
||||
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
|
||||
} else {
|
||||
h32 = state->seed + PRIME32_5;
|
||||
}
|
||||
|
||||
h32 += (U32) state->total_len;
|
||||
|
||||
while (p+4<=bEnd) {
|
||||
h32 += XXH_readLE32(p, endian) * PRIME32_3;
|
||||
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
|
||||
p+=4;
|
||||
}
|
||||
|
||||
while (p<bEnd) {
|
||||
h32 += (*p) * PRIME32_5;
|
||||
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
|
||||
p++;
|
||||
}
|
||||
|
||||
h32 ^= h32 >> 15;
|
||||
h32 *= PRIME32_2;
|
||||
h32 ^= h32 >> 13;
|
||||
h32 *= PRIME32_3;
|
||||
h32 ^= h32 >> 16;
|
||||
|
||||
return h32;
|
||||
}
|
||||
|
||||
|
||||
XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
|
||||
{
|
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
||||
|
||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||||
return XXH32_digest_endian(state_in, XXH_littleEndian);
|
||||
else
|
||||
return XXH32_digest_endian(state_in, XXH_bigEndian);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* **** XXH64 **** */
|
||||
|
||||
FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
|
||||
{
|
||||
const BYTE* p = (const BYTE*)input;
|
||||
const BYTE* const bEnd = p + len;
|
||||
|
||||
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
||||
if (input==NULL) return XXH_ERROR;
|
||||
#endif
|
||||
|
||||
state->total_len += len;
|
||||
|
||||
if (state->memsize + len < 32) { /* fill in tmp buffer */
|
||||
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
|
||||
state->memsize += (U32)len;
|
||||
return XXH_OK;
|
||||
}
|
||||
|
||||
if (state->memsize) { /* tmp buffer is full */
|
||||
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
|
||||
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
|
||||
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
|
||||
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
|
||||
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
|
||||
p += 32-state->memsize;
|
||||
state->memsize = 0;
|
||||
}
|
||||
|
||||
if (p+32 <= bEnd) {
|
||||
const BYTE* const limit = bEnd - 32;
|
||||
U64 v1 = state->v1;
|
||||
U64 v2 = state->v2;
|
||||
U64 v3 = state->v3;
|
||||
U64 v4 = state->v4;
|
||||
|
||||
do {
|
||||
v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
|
||||
v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
|
||||
v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
|
||||
v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
|
||||
} while (p<=limit);
|
||||
|
||||
state->v1 = v1;
|
||||
state->v2 = v2;
|
||||
state->v3 = v3;
|
||||
state->v4 = v4;
|
||||
}
|
||||
|
||||
if (p < bEnd) {
|
||||
XXH_memcpy(state->mem64, p, bEnd-p);
|
||||
state->memsize = (int)(bEnd-p);
|
||||
}
|
||||
|
||||
return XXH_OK;
|
||||
}
|
||||
|
||||
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
|
||||
{
|
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
||||
|
||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||||
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
|
||||
else
|
||||
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
|
||||
}
|
||||
|
||||
|
||||
|
||||
FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
|
||||
{
|
||||
const BYTE * p = (const BYTE*)state->mem64;
|
||||
const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
|
||||
U64 h64;
|
||||
|
||||
if (state->total_len >= 32) {
|
||||
U64 const v1 = state->v1;
|
||||
U64 const v2 = state->v2;
|
||||
U64 const v3 = state->v3;
|
||||
U64 const v4 = state->v4;
|
||||
|
||||
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
||||
h64 = XXH64_mergeRound(h64, v1);
|
||||
h64 = XXH64_mergeRound(h64, v2);
|
||||
h64 = XXH64_mergeRound(h64, v3);
|
||||
h64 = XXH64_mergeRound(h64, v4);
|
||||
} else {
|
||||
h64 = state->seed + PRIME64_5;
|
||||
}
|
||||
|
||||
h64 += (U64) state->total_len;
|
||||
|
||||
while (p+8<=bEnd) {
|
||||
U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
|
||||
h64 ^= k1;
|
||||
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
|
||||
p+=8;
|
||||
}
|
||||
|
||||
if (p+4<=bEnd) {
|
||||
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
|
||||
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
|
||||
p+=4;
|
||||
}
|
||||
|
||||
while (p<bEnd) {
|
||||
h64 ^= (*p) * PRIME64_5;
|
||||
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
|
||||
p++;
|
||||
}
|
||||
|
||||
h64 ^= h64 >> 33;
|
||||
h64 *= PRIME64_2;
|
||||
h64 ^= h64 >> 29;
|
||||
h64 *= PRIME64_3;
|
||||
h64 ^= h64 >> 32;
|
||||
|
||||
return h64;
|
||||
}
|
||||
|
||||
|
||||
XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
|
||||
{
|
||||
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
|
||||
|
||||
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||||
return XXH64_digest_endian(state_in, XXH_littleEndian);
|
||||
else
|
||||
return XXH64_digest_endian(state_in, XXH_bigEndian);
|
||||
}
|
||||
|
||||
|
||||
/* **************************
|
||||
* Canonical representation
|
||||
****************************/
|
||||
|
||||
/*! Default XXH result types are basic unsigned 32 and 64 bits.
|
||||
* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
|
||||
* These functions allow transformation of hash result into and from its canonical format.
|
||||
* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
|
||||
*/
|
||||
|
||||
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
|
||||
{
|
||||
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
|
||||
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
|
||||
memcpy(dst, &hash, sizeof(*dst));
|
||||
}
|
||||
|
||||
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
|
||||
{
|
||||
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
|
||||
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
|
||||
memcpy(dst, &hash, sizeof(*dst));
|
||||
}
|
||||
|
||||
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
|
||||
{
|
||||
return XXH_readBE32(src);
|
||||
}
|
||||
|
||||
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
|
||||
{
|
||||
return XXH_readBE64(src);
|
||||
}
|
||||
273
C/zstd/xxhash.h
Normal file
273
C/zstd/xxhash.h
Normal file
@@ -0,0 +1,273 @@
|
||||
/*
|
||||
xxHash - Extremely Fast Hash algorithm
|
||||
Header File
|
||||
Copyright (C) 2012-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- xxHash source repository : https://github.com/Cyan4973/xxHash
|
||||
*/
|
||||
|
||||
/* Notice extracted from xxHash homepage :
|
||||
|
||||
xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
|
||||
It also successfully passes all tests from the SMHasher suite.
|
||||
|
||||
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
|
||||
|
||||
Name Speed Q.Score Author
|
||||
xxHash 5.4 GB/s 10
|
||||
CrapWow 3.2 GB/s 2 Andrew
|
||||
MumurHash 3a 2.7 GB/s 10 Austin Appleby
|
||||
SpookyHash 2.0 GB/s 10 Bob Jenkins
|
||||
SBox 1.4 GB/s 9 Bret Mulvey
|
||||
Lookup3 1.2 GB/s 9 Bob Jenkins
|
||||
SuperFastHash 1.2 GB/s 1 Paul Hsieh
|
||||
CityHash64 1.05 GB/s 10 Pike & Alakuijala
|
||||
FNV 0.55 GB/s 5 Fowler, Noll, Vo
|
||||
CRC32 0.43 GB/s 9
|
||||
MD5-32 0.33 GB/s 10 Ronald L. Rivest
|
||||
SHA1-32 0.28 GB/s 10
|
||||
|
||||
Q.Score is a measure of quality of the hash function.
|
||||
It depends on successfully passing SMHasher test set.
|
||||
10 is a perfect score.
|
||||
|
||||
A 64-bits version, named XXH64, is available since r35.
|
||||
It offers much better speed, but for 64-bits applications only.
|
||||
Name Speed on 64 bits Speed on 32 bits
|
||||
XXH64 13.8 GB/s 1.9 GB/s
|
||||
XXH32 6.8 GB/s 6.0 GB/s
|
||||
*/
|
||||
|
||||
#ifndef XXHASH_H_5627135585666179
|
||||
#define XXHASH_H_5627135585666179 1
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* ****************************
|
||||
* Definitions
|
||||
******************************/
|
||||
#include <stddef.h> /* size_t */
|
||||
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
|
||||
|
||||
|
||||
/* ****************************
|
||||
* API modifier
|
||||
******************************/
|
||||
/*!XXH_PRIVATE_API
|
||||
* Transforms all publics symbols within `xxhash.c` into private ones.
|
||||
* Methodology :
|
||||
* instead of : #include "xxhash.h"
|
||||
* do :
|
||||
* #define XXH_PRIVATE_API
|
||||
* #include "xxhash.c" // note the .c , instead of .h
|
||||
* also : don't compile and link xxhash.c separately
|
||||
*/
|
||||
#ifdef XXH_PRIVATE_API
|
||||
# if defined(__GNUC__)
|
||||
# define XXH_PUBLIC_API static __attribute__((unused))
|
||||
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
||||
# define XXH_PUBLIC_API static inline
|
||||
# elif defined(_MSC_VER)
|
||||
# define XXH_PUBLIC_API static __inline
|
||||
# else
|
||||
# define XXH_PUBLIC_API static /* this version may generate warnings for unused static functions; disable the relevant warning */
|
||||
# endif
|
||||
#else
|
||||
# define XXH_PUBLIC_API /* do nothing */
|
||||
#endif
|
||||
|
||||
/*!XXH_NAMESPACE, aka Namespace Emulation :
|
||||
|
||||
If you want to include _and expose_ xxHash functions from within your own library,
|
||||
but also want to avoid symbol collisions with another library which also includes xxHash,
|
||||
|
||||
you can use XXH_NAMESPACE, to automatically prefix any public symbol from `xxhash.c`
|
||||
with the value of XXH_NAMESPACE (so avoid to keep it NULL and avoid numeric values).
|
||||
|
||||
Note that no change is required within the calling program as long as it also includes `xxhash.h` :
|
||||
regular symbol name will be automatically translated by this header.
|
||||
*/
|
||||
#ifdef XXH_NAMESPACE
|
||||
# define XXH_CAT(A,B) A##B
|
||||
# define XXH_NAME2(A,B) XXH_CAT(A,B)
|
||||
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
|
||||
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
|
||||
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
|
||||
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
|
||||
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
|
||||
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
|
||||
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
|
||||
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
|
||||
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
|
||||
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
|
||||
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
|
||||
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
|
||||
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
|
||||
#endif
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Version
|
||||
***************************************/
|
||||
#define XXH_VERSION_MAJOR 0
|
||||
#define XXH_VERSION_MINOR 6
|
||||
#define XXH_VERSION_RELEASE 0
|
||||
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
|
||||
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
|
||||
|
||||
|
||||
/* ****************************
|
||||
* Simple Hash Functions
|
||||
******************************/
|
||||
typedef unsigned int XXH32_hash_t;
|
||||
typedef unsigned long long XXH64_hash_t;
|
||||
|
||||
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed);
|
||||
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed);
|
||||
|
||||
/*!
|
||||
XXH32() :
|
||||
Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input".
|
||||
The memory between input & input+length must be valid (allocated and read-accessible).
|
||||
"seed" can be used to alter the result predictably.
|
||||
Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
|
||||
XXH64() :
|
||||
Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
|
||||
"seed" can be used to alter the result predictably.
|
||||
This function runs faster on 64-bits systems, but slower on 32-bits systems (see benchmark).
|
||||
*/
|
||||
|
||||
|
||||
/* ****************************
|
||||
* Streaming Hash Functions
|
||||
******************************/
|
||||
typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
|
||||
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
|
||||
|
||||
/*! Dynamic allocation of states
|
||||
Compatible with dynamic libraries */
|
||||
|
||||
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
|
||||
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
|
||||
|
||||
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
|
||||
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
|
||||
|
||||
|
||||
/* hash streaming */
|
||||
|
||||
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned int seed);
|
||||
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
|
||||
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
|
||||
|
||||
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, unsigned long long seed);
|
||||
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
|
||||
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
|
||||
|
||||
/*!
|
||||
These functions generate the xxHash of an input provided in multiple segments,
|
||||
as opposed to provided as a single block.
|
||||
|
||||
XXH state must first be allocated, using either static or dynamic method provided above.
|
||||
|
||||
Start a new hash by initializing state with a seed, using XXHnn_reset().
|
||||
|
||||
Then, feed the hash state by calling XXHnn_update() as many times as necessary.
|
||||
Obviously, input must be valid, hence allocated and read accessible.
|
||||
The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
|
||||
|
||||
Finally, a hash value can be produced anytime, by using XXHnn_digest().
|
||||
This function returns the nn-bits hash as an int or long long.
|
||||
|
||||
It's still possible to continue inserting input into the hash state after a digest,
|
||||
and later on generate some new hashes, by calling again XXHnn_digest().
|
||||
|
||||
When done, free XXH state space if it was allocated dynamically.
|
||||
*/
|
||||
|
||||
|
||||
/* **************************
|
||||
* Canonical representation
|
||||
****************************/
|
||||
typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
|
||||
typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
|
||||
|
||||
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
|
||||
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
|
||||
|
||||
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
|
||||
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
|
||||
|
||||
/*! Default result type for XXH functions are primitive unsigned 32 and 64 bits.
|
||||
* The canonical representation uses human-readable write convention, aka big-endian (large digits first).
|
||||
* These functions allow transformation of hash result into and from its canonical format.
|
||||
* This way, hash values can be written into a file / memory, and remain comparable on different systems and programs.
|
||||
*/
|
||||
|
||||
|
||||
#ifdef XXH_STATIC_LINKING_ONLY
|
||||
|
||||
/* This part contains definition which shall only be used with static linking.
|
||||
The prototypes / types defined here are not guaranteed to remain stable.
|
||||
They could change in a future version, becoming incompatible with a different version of the library */
|
||||
|
||||
struct XXH32_state_s {
|
||||
unsigned long long total_len;
|
||||
unsigned seed;
|
||||
unsigned v1;
|
||||
unsigned v2;
|
||||
unsigned v3;
|
||||
unsigned v4;
|
||||
unsigned mem32[4]; /* buffer defined as U32 for alignment */
|
||||
unsigned memsize;
|
||||
}; /* typedef'd to XXH32_state_t */
|
||||
|
||||
struct XXH64_state_s {
|
||||
unsigned long long total_len;
|
||||
unsigned long long seed;
|
||||
unsigned long long v1;
|
||||
unsigned long long v2;
|
||||
unsigned long long v3;
|
||||
unsigned long long v4;
|
||||
unsigned long long mem64[4]; /* buffer defined as U64 for alignment */
|
||||
unsigned memsize;
|
||||
}; /* typedef'd to XXH64_state_t */
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* XXHASH_H_5627135585666179 */
|
||||
199
C/zstd/zbuff.h
Normal file
199
C/zstd/zbuff.h
Normal file
@@ -0,0 +1,199 @@
|
||||
/*
|
||||
Buffered version of Zstd compression library
|
||||
Copyright (C) 2015-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd homepage : http://www.zstd.net/
|
||||
*/
|
||||
#ifndef ZSTD_BUFFERED_H_23987
|
||||
#define ZSTD_BUFFERED_H_23987
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* *************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include <stddef.h> /* size_t */
|
||||
|
||||
|
||||
/* ***************************************************************
|
||||
* Compiler specifics
|
||||
*****************************************************************/
|
||||
/*!
|
||||
* ZSTD_DLL_EXPORT :
|
||||
* Enable exporting of functions when building a Windows DLL
|
||||
*/
|
||||
#if defined(_WIN32) && defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
|
||||
# define ZSTDLIB_API __declspec(dllexport)
|
||||
#else
|
||||
# define ZSTDLIB_API
|
||||
#endif
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Streaming functions
|
||||
***************************************/
|
||||
typedef struct ZBUFF_CCtx_s ZBUFF_CCtx;
|
||||
ZSTDLIB_API ZBUFF_CCtx* ZBUFF_createCCtx(void);
|
||||
ZSTDLIB_API size_t ZBUFF_freeCCtx(ZBUFF_CCtx* cctx);
|
||||
|
||||
ZSTDLIB_API size_t ZBUFF_compressInit(ZBUFF_CCtx* cctx, int compressionLevel);
|
||||
ZSTDLIB_API size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
|
||||
|
||||
ZSTDLIB_API size_t ZBUFF_compressContinue(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr, const void* src, size_t* srcSizePtr);
|
||||
ZSTDLIB_API size_t ZBUFF_compressFlush(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
|
||||
ZSTDLIB_API size_t ZBUFF_compressEnd(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
|
||||
|
||||
/*-*************************************************
|
||||
* Streaming compression - howto
|
||||
*
|
||||
* A ZBUFF_CCtx object is required to track streaming operation.
|
||||
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
|
||||
* ZBUFF_CCtx objects can be reused multiple times.
|
||||
*
|
||||
* Start by initializing ZBUF_CCtx.
|
||||
* Use ZBUFF_compressInit() to start a new compression operation.
|
||||
* Use ZBUFF_compressInitDictionary() for a compression which requires a dictionary.
|
||||
*
|
||||
* Use ZBUFF_compressContinue() repetitively to consume input stream.
|
||||
* *srcSizePtr and *dstCapacityPtr can be any size.
|
||||
* The function will report how many bytes were read or written within *srcSizePtr and *dstCapacityPtr.
|
||||
* Note that it may not consume the entire input, in which case it's up to the caller to present again remaining data.
|
||||
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each call, so save its content if it matters or change @dst .
|
||||
* @return : a hint to preferred nb of bytes to use as input for next function call (it's just a hint, to improve latency)
|
||||
* or an error code, which can be tested using ZBUFF_isError().
|
||||
*
|
||||
* At any moment, it's possible to flush whatever data remains within buffer, using ZBUFF_compressFlush().
|
||||
* The nb of bytes written into `dst` will be reported into *dstCapacityPtr.
|
||||
* Note that the function cannot output more than *dstCapacityPtr,
|
||||
* therefore, some content might still be left into internal buffer if *dstCapacityPtr is too small.
|
||||
* @return : nb of bytes still present into internal buffer (0 if it's empty)
|
||||
* or an error code, which can be tested using ZBUFF_isError().
|
||||
*
|
||||
* ZBUFF_compressEnd() instructs to finish a frame.
|
||||
* It will perform a flush and write frame epilogue.
|
||||
* The epilogue is required for decoders to consider a frame completed.
|
||||
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
|
||||
* In which case, call again ZBUFF_compressFlush() to complete the flush.
|
||||
* @return : nb of bytes still present into internal buffer (0 if it's empty)
|
||||
* or an error code, which can be tested using ZBUFF_isError().
|
||||
*
|
||||
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedCInSize / ZBUFF_recommendedCOutSize
|
||||
* input : ZBUFF_recommendedCInSize==128 KB block size is the internal unit, it improves latency to use this value (skipped buffering).
|
||||
* output : ZBUFF_recommendedCOutSize==ZSTD_compressBound(128 KB) + 3 + 3 : ensures it's always possible to write/flush/end a full block. Skip some buffering.
|
||||
* By using both, it ensures that input will be entirely consumed, and output will always contain the result, reducing intermediate buffering.
|
||||
* **************************************************/
|
||||
|
||||
|
||||
typedef struct ZBUFF_DCtx_s ZBUFF_DCtx;
|
||||
ZSTDLIB_API ZBUFF_DCtx* ZBUFF_createDCtx(void);
|
||||
ZSTDLIB_API size_t ZBUFF_freeDCtx(ZBUFF_DCtx* dctx);
|
||||
|
||||
ZSTDLIB_API size_t ZBUFF_decompressInit(ZBUFF_DCtx* dctx);
|
||||
ZSTDLIB_API size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* dctx, const void* dict, size_t dictSize);
|
||||
|
||||
ZSTDLIB_API size_t ZBUFF_decompressContinue(ZBUFF_DCtx* dctx,
|
||||
void* dst, size_t* dstCapacityPtr,
|
||||
const void* src, size_t* srcSizePtr);
|
||||
|
||||
/*-***************************************************************************
|
||||
* Streaming decompression howto
|
||||
*
|
||||
* A ZBUFF_DCtx object is required to track streaming operations.
|
||||
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
|
||||
* Use ZBUFF_decompressInit() to start a new decompression operation,
|
||||
* or ZBUFF_decompressInitDictionary() if decompression requires a dictionary.
|
||||
* Note that ZBUFF_DCtx objects can be re-init multiple times.
|
||||
*
|
||||
* Use ZBUFF_decompressContinue() repetitively to consume your input.
|
||||
* *srcSizePtr and *dstCapacityPtr can be any size.
|
||||
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
|
||||
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
|
||||
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
|
||||
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
|
||||
* or 0 when a frame is completely decoded,
|
||||
* or an error code, which can be tested using ZBUFF_isError().
|
||||
*
|
||||
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize()
|
||||
* output : ZBUFF_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
|
||||
* input : ZBUFF_recommendedDInSize == 128KB + 3;
|
||||
* just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
|
||||
* *******************************************************************************/
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Tool functions
|
||||
***************************************/
|
||||
ZSTDLIB_API unsigned ZBUFF_isError(size_t errorCode);
|
||||
ZSTDLIB_API const char* ZBUFF_getErrorName(size_t errorCode);
|
||||
|
||||
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
|
||||
* These sizes are just hints, they tend to offer better latency */
|
||||
ZSTDLIB_API size_t ZBUFF_recommendedCInSize(void);
|
||||
ZSTDLIB_API size_t ZBUFF_recommendedCOutSize(void);
|
||||
ZSTDLIB_API size_t ZBUFF_recommendedDInSize(void);
|
||||
ZSTDLIB_API size_t ZBUFF_recommendedDOutSize(void);
|
||||
|
||||
|
||||
#ifdef ZBUFF_STATIC_LINKING_ONLY
|
||||
|
||||
/* ====================================================================================
|
||||
* The definitions in this section are considered experimental.
|
||||
* They should never be used in association with a dynamic library, as they may change in the future.
|
||||
* They are provided for advanced usages.
|
||||
* Use them only in association with static linking.
|
||||
* ==================================================================================== */
|
||||
|
||||
/*--- Dependency ---*/
|
||||
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters */
|
||||
#include "zstd.h"
|
||||
|
||||
|
||||
/*--- External memory ---*/
|
||||
/*! ZBUFF_createCCtx_advanced() :
|
||||
* Create a ZBUFF compression context using external alloc and free functions */
|
||||
ZSTDLIB_API ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem);
|
||||
|
||||
/*! ZBUFF_createDCtx_advanced() :
|
||||
* Create a ZBUFF decompression context using external alloc and free functions */
|
||||
ZSTDLIB_API ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem);
|
||||
|
||||
|
||||
/*--- Advanced Streaming function ---*/
|
||||
ZSTDLIB_API size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
|
||||
const void* dict, size_t dictSize,
|
||||
ZSTD_parameters params, U64 pledgedSrcSize);
|
||||
|
||||
#endif /* ZBUFF_STATIC_LINKING_ONLY */
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ZSTD_BUFFERED_H_23987 */
|
||||
329
C/zstd/zbuff_compress.c
Normal file
329
C/zstd/zbuff_compress.c
Normal file
@@ -0,0 +1,329 @@
|
||||
/*
|
||||
Buffered version of Zstd compression library
|
||||
Copyright (C) 2015-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd homepage : http://www.zstd.net/
|
||||
*/
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include <stdlib.h>
|
||||
#include "error_private.h"
|
||||
#include "zstd_internal.h" /* MIN, ZSTD_BLOCKHEADERSIZE, defaultCustomMem */
|
||||
#define ZBUFF_STATIC_LINKING_ONLY
|
||||
#include "zbuff.h"
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Constants
|
||||
***************************************/
|
||||
static size_t const ZBUFF_endFrameSize = ZSTD_BLOCKHEADERSIZE;
|
||||
|
||||
|
||||
/*_**************************************************
|
||||
* Streaming compression
|
||||
*
|
||||
* A ZBUFF_CCtx object is required to track streaming operation.
|
||||
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
|
||||
* Use ZBUFF_compressInit() to start a new compression operation.
|
||||
* ZBUFF_CCtx objects can be reused multiple times.
|
||||
*
|
||||
* Use ZBUFF_compressContinue() repetitively to consume your input.
|
||||
* *srcSizePtr and *dstCapacityPtr can be any size.
|
||||
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
|
||||
* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
|
||||
* The content of dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change dst .
|
||||
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
|
||||
* or an error code, which can be tested using ZBUFF_isError().
|
||||
*
|
||||
* ZBUFF_compressFlush() can be used to instruct ZBUFF to compress and output whatever remains within its buffer.
|
||||
* Note that it will not output more than *dstCapacityPtr.
|
||||
* Therefore, some content might still be left into its internal buffer if dst buffer is too small.
|
||||
* @return : nb of bytes still present into internal buffer (0 if it's empty)
|
||||
* or an error code, which can be tested using ZBUFF_isError().
|
||||
*
|
||||
* ZBUFF_compressEnd() instructs to finish a frame.
|
||||
* It will perform a flush and write frame epilogue.
|
||||
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
|
||||
* @return : nb of bytes still present into internal buffer (0 if it's empty)
|
||||
* or an error code, which can be tested using ZBUFF_isError().
|
||||
*
|
||||
* Hint : recommended buffer sizes (not compulsory)
|
||||
* input : ZSTD_BLOCKSIZE_MAX (128 KB), internal unit size, it improves latency to use this value.
|
||||
* output : ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize : ensures it's always possible to write/flush/end a full block at best speed.
|
||||
* **************************************************/
|
||||
|
||||
typedef enum { ZBUFFcs_init, ZBUFFcs_load, ZBUFFcs_flush, ZBUFFcs_final } ZBUFF_cStage;
|
||||
|
||||
/* *** Resources *** */
|
||||
struct ZBUFF_CCtx_s {
|
||||
ZSTD_CCtx* zc;
|
||||
char* inBuff;
|
||||
size_t inBuffSize;
|
||||
size_t inToCompress;
|
||||
size_t inBuffPos;
|
||||
size_t inBuffTarget;
|
||||
size_t blockSize;
|
||||
char* outBuff;
|
||||
size_t outBuffSize;
|
||||
size_t outBuffContentSize;
|
||||
size_t outBuffFlushedSize;
|
||||
ZBUFF_cStage stage;
|
||||
ZSTD_customMem customMem;
|
||||
}; /* typedef'd tp ZBUFF_CCtx within "zstd_buffered.h" */
|
||||
|
||||
ZBUFF_CCtx* ZBUFF_createCCtx(void)
|
||||
{
|
||||
return ZBUFF_createCCtx_advanced(defaultCustomMem);
|
||||
}
|
||||
|
||||
ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem)
|
||||
{
|
||||
ZBUFF_CCtx* zbc;
|
||||
|
||||
if (!customMem.customAlloc && !customMem.customFree)
|
||||
customMem = defaultCustomMem;
|
||||
|
||||
if (!customMem.customAlloc || !customMem.customFree)
|
||||
return NULL;
|
||||
|
||||
zbc = (ZBUFF_CCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFF_CCtx));
|
||||
if (zbc==NULL) return NULL;
|
||||
memset(zbc, 0, sizeof(ZBUFF_CCtx));
|
||||
memcpy(&zbc->customMem, &customMem, sizeof(ZSTD_customMem));
|
||||
zbc->zc = ZSTD_createCCtx_advanced(customMem);
|
||||
if (zbc->zc == NULL) { ZBUFF_freeCCtx(zbc); return NULL; }
|
||||
return zbc;
|
||||
}
|
||||
|
||||
size_t ZBUFF_freeCCtx(ZBUFF_CCtx* zbc)
|
||||
{
|
||||
if (zbc==NULL) return 0; /* support free on NULL */
|
||||
ZSTD_freeCCtx(zbc->zc);
|
||||
if (zbc->inBuff) zbc->customMem.customFree(zbc->customMem.opaque, zbc->inBuff);
|
||||
if (zbc->outBuff) zbc->customMem.customFree(zbc->customMem.opaque, zbc->outBuff);
|
||||
zbc->customMem.customFree(zbc->customMem.opaque, zbc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* *** Initialization *** */
|
||||
|
||||
size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
|
||||
const void* dict, size_t dictSize,
|
||||
ZSTD_parameters params, U64 pledgedSrcSize)
|
||||
{
|
||||
/* allocate buffers */
|
||||
{ size_t const neededInBuffSize = (size_t)1 << params.cParams.windowLog;
|
||||
if (zbc->inBuffSize < neededInBuffSize) {
|
||||
zbc->inBuffSize = neededInBuffSize;
|
||||
zbc->customMem.customFree(zbc->customMem.opaque, zbc->inBuff); /* should not be necessary */
|
||||
zbc->inBuff = (char*)zbc->customMem.customAlloc(zbc->customMem.opaque, neededInBuffSize);
|
||||
if (zbc->inBuff == NULL) return ERROR(memory_allocation);
|
||||
}
|
||||
zbc->blockSize = MIN(ZSTD_BLOCKSIZE_MAX, neededInBuffSize);
|
||||
}
|
||||
if (zbc->outBuffSize < ZSTD_compressBound(zbc->blockSize)+1) {
|
||||
zbc->outBuffSize = ZSTD_compressBound(zbc->blockSize)+1;
|
||||
zbc->customMem.customFree(zbc->customMem.opaque, zbc->outBuff); /* should not be necessary */
|
||||
zbc->outBuff = (char*)zbc->customMem.customAlloc(zbc->customMem.opaque, zbc->outBuffSize);
|
||||
if (zbc->outBuff == NULL) return ERROR(memory_allocation);
|
||||
}
|
||||
|
||||
{ size_t const errorCode = ZSTD_compressBegin_advanced(zbc->zc, dict, dictSize, params, pledgedSrcSize);
|
||||
if (ZSTD_isError(errorCode)) return errorCode; }
|
||||
|
||||
zbc->inToCompress = 0;
|
||||
zbc->inBuffPos = 0;
|
||||
zbc->inBuffTarget = zbc->blockSize;
|
||||
zbc->outBuffContentSize = zbc->outBuffFlushedSize = 0;
|
||||
zbc->stage = ZBUFFcs_load;
|
||||
return 0; /* ready to go */
|
||||
}
|
||||
|
||||
|
||||
size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* zbc, const void* dict, size_t dictSize, int compressionLevel)
|
||||
{
|
||||
ZSTD_parameters params;
|
||||
memset(¶ms, 0, sizeof(params));
|
||||
params.cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
|
||||
return ZBUFF_compressInit_advanced(zbc, dict, dictSize, params, 0);
|
||||
}
|
||||
|
||||
size_t ZBUFF_compressInit(ZBUFF_CCtx* zbc, int compressionLevel)
|
||||
{
|
||||
return ZBUFF_compressInitDictionary(zbc, NULL, 0, compressionLevel);
|
||||
}
|
||||
|
||||
|
||||
/* internal util function */
|
||||
MEM_STATIC size_t ZBUFF_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
||||
{
|
||||
size_t const length = MIN(dstCapacity, srcSize);
|
||||
memcpy(dst, src, length);
|
||||
return length;
|
||||
}
|
||||
|
||||
|
||||
/* *** Compression *** */
|
||||
|
||||
static size_t ZBUFF_compressContinue_generic(ZBUFF_CCtx* zbc,
|
||||
void* dst, size_t* dstCapacityPtr,
|
||||
const void* src, size_t* srcSizePtr,
|
||||
int flush)
|
||||
{
|
||||
U32 notDone = 1;
|
||||
const char* const istart = (const char*)src;
|
||||
const char* const iend = istart + *srcSizePtr;
|
||||
const char* ip = istart;
|
||||
char* const ostart = (char*)dst;
|
||||
char* const oend = ostart + *dstCapacityPtr;
|
||||
char* op = ostart;
|
||||
|
||||
while (notDone) {
|
||||
switch(zbc->stage)
|
||||
{
|
||||
case ZBUFFcs_init: return ERROR(init_missing); /* call ZBUFF_compressInit() first ! */
|
||||
|
||||
case ZBUFFcs_load:
|
||||
/* complete inBuffer */
|
||||
{ size_t const toLoad = zbc->inBuffTarget - zbc->inBuffPos;
|
||||
size_t const loaded = ZBUFF_limitCopy(zbc->inBuff + zbc->inBuffPos, toLoad, ip, iend-ip);
|
||||
zbc->inBuffPos += loaded;
|
||||
ip += loaded;
|
||||
if ( (zbc->inBuffPos==zbc->inToCompress) || (!flush && (toLoad != loaded)) ) {
|
||||
notDone = 0; break; /* not enough input to get a full block : stop there, wait for more */
|
||||
} }
|
||||
/* compress current block (note : this stage cannot be stopped in the middle) */
|
||||
{ void* cDst;
|
||||
size_t cSize;
|
||||
size_t const iSize = zbc->inBuffPos - zbc->inToCompress;
|
||||
size_t oSize = oend-op;
|
||||
if (oSize >= ZSTD_compressBound(iSize))
|
||||
cDst = op; /* compress directly into output buffer (avoid flush stage) */
|
||||
else
|
||||
cDst = zbc->outBuff, oSize = zbc->outBuffSize;
|
||||
cSize = ZSTD_compressContinue(zbc->zc, cDst, oSize, zbc->inBuff + zbc->inToCompress, iSize);
|
||||
if (ZSTD_isError(cSize)) return cSize;
|
||||
/* prepare next block */
|
||||
zbc->inBuffTarget = zbc->inBuffPos + zbc->blockSize;
|
||||
if (zbc->inBuffTarget > zbc->inBuffSize)
|
||||
zbc->inBuffPos = 0, zbc->inBuffTarget = zbc->blockSize; /* note : inBuffSize >= blockSize */
|
||||
zbc->inToCompress = zbc->inBuffPos;
|
||||
if (cDst == op) { op += cSize; break; } /* no need to flush */
|
||||
zbc->outBuffContentSize = cSize;
|
||||
zbc->outBuffFlushedSize = 0;
|
||||
zbc->stage = ZBUFFcs_flush; /* continue to flush stage */
|
||||
}
|
||||
|
||||
case ZBUFFcs_flush:
|
||||
{ size_t const toFlush = zbc->outBuffContentSize - zbc->outBuffFlushedSize;
|
||||
size_t const flushed = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outBuffFlushedSize, toFlush);
|
||||
op += flushed;
|
||||
zbc->outBuffFlushedSize += flushed;
|
||||
if (toFlush!=flushed) { notDone = 0; break; } /* dst too small to store flushed data : stop there */
|
||||
zbc->outBuffContentSize = zbc->outBuffFlushedSize = 0;
|
||||
zbc->stage = ZBUFFcs_load;
|
||||
break;
|
||||
}
|
||||
|
||||
case ZBUFFcs_final:
|
||||
notDone = 0; /* do nothing */
|
||||
break;
|
||||
|
||||
default:
|
||||
return ERROR(GENERIC); /* impossible */
|
||||
}
|
||||
}
|
||||
|
||||
*srcSizePtr = ip - istart;
|
||||
*dstCapacityPtr = op - ostart;
|
||||
{ size_t hintInSize = zbc->inBuffTarget - zbc->inBuffPos;
|
||||
if (hintInSize==0) hintInSize = zbc->blockSize;
|
||||
return hintInSize;
|
||||
}
|
||||
}
|
||||
|
||||
size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc,
|
||||
void* dst, size_t* dstCapacityPtr,
|
||||
const void* src, size_t* srcSizePtr)
|
||||
{
|
||||
return ZBUFF_compressContinue_generic(zbc, dst, dstCapacityPtr, src, srcSizePtr, 0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* *** Finalize *** */
|
||||
|
||||
size_t ZBUFF_compressFlush(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
|
||||
{
|
||||
size_t srcSize = 0;
|
||||
ZBUFF_compressContinue_generic(zbc, dst, dstCapacityPtr, &srcSize, &srcSize, 1); /* use a valid src address instead of NULL */
|
||||
return zbc->outBuffContentSize - zbc->outBuffFlushedSize;
|
||||
}
|
||||
|
||||
|
||||
size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
|
||||
{
|
||||
BYTE* const ostart = (BYTE*)dst;
|
||||
BYTE* const oend = ostart + *dstCapacityPtr;
|
||||
BYTE* op = ostart;
|
||||
|
||||
if (zbc->stage != ZBUFFcs_final) {
|
||||
/* flush whatever remains */
|
||||
size_t outSize = *dstCapacityPtr;
|
||||
size_t const remainingToFlush = ZBUFF_compressFlush(zbc, dst, &outSize);
|
||||
op += outSize;
|
||||
if (remainingToFlush) {
|
||||
*dstCapacityPtr = op-ostart;
|
||||
return remainingToFlush + ZBUFF_endFrameSize;
|
||||
}
|
||||
/* create epilogue */
|
||||
zbc->stage = ZBUFFcs_final;
|
||||
zbc->outBuffContentSize = ZSTD_compressEnd(zbc->zc, zbc->outBuff, zbc->outBuffSize); /* epilogue into outBuff */
|
||||
}
|
||||
|
||||
/* flush epilogue */
|
||||
{ size_t const toFlush = zbc->outBuffContentSize - zbc->outBuffFlushedSize;
|
||||
size_t const flushed = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outBuffFlushedSize, toFlush);
|
||||
op += flushed;
|
||||
zbc->outBuffFlushedSize += flushed;
|
||||
*dstCapacityPtr = op-ostart;
|
||||
if (toFlush==flushed) zbc->stage = ZBUFFcs_init; /* end reached */
|
||||
return toFlush - flushed;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Tool functions
|
||||
***************************************/
|
||||
size_t ZBUFF_recommendedCInSize(void) { return ZSTD_BLOCKSIZE_MAX; }
|
||||
size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize; }
|
||||
294
C/zstd/zbuff_decompress.c
Normal file
294
C/zstd/zbuff_decompress.c
Normal file
@@ -0,0 +1,294 @@
|
||||
/*
|
||||
Buffered version of Zstd compression library
|
||||
Copyright (C) 2015-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd homepage : http://www.zstd.net/
|
||||
*/
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include <stdlib.h>
|
||||
#include "error_private.h"
|
||||
#include "zstd_internal.h" /* MIN, ZSTD_blockHeaderSize, ZSTD_BLOCKSIZE_MAX */
|
||||
#define ZBUFF_STATIC_LINKING_ONLY
|
||||
#include "zbuff.h"
|
||||
|
||||
|
||||
/*-***************************************************************************
|
||||
* Streaming decompression howto
|
||||
*
|
||||
* A ZBUFF_DCtx object is required to track streaming operations.
|
||||
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
|
||||
* Use ZBUFF_decompressInit() to start a new decompression operation,
|
||||
* or ZBUFF_decompressInitDictionary() if decompression requires a dictionary.
|
||||
* Note that ZBUFF_DCtx objects can be re-init multiple times.
|
||||
*
|
||||
* Use ZBUFF_decompressContinue() repetitively to consume your input.
|
||||
* *srcSizePtr and *dstCapacityPtr can be any size.
|
||||
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
|
||||
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
|
||||
* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change @dst.
|
||||
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
|
||||
* or 0 when a frame is completely decoded,
|
||||
* or an error code, which can be tested using ZBUFF_isError().
|
||||
*
|
||||
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize()
|
||||
* output : ZBUFF_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
|
||||
* input : ZBUFF_recommendedDInSize == 128KB + 3;
|
||||
* just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
|
||||
* *******************************************************************************/
|
||||
|
||||
typedef enum { ZBUFFds_init, ZBUFFds_loadHeader,
|
||||
ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFF_dStage;
|
||||
|
||||
/* *** Resource management *** */
|
||||
struct ZBUFF_DCtx_s {
|
||||
ZSTD_DCtx* zd;
|
||||
ZSTD_frameParams fParams;
|
||||
ZBUFF_dStage stage;
|
||||
char* inBuff;
|
||||
size_t inBuffSize;
|
||||
size_t inPos;
|
||||
char* outBuff;
|
||||
size_t outBuffSize;
|
||||
size_t outStart;
|
||||
size_t outEnd;
|
||||
size_t blockSize;
|
||||
BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
|
||||
size_t lhSize;
|
||||
ZSTD_customMem customMem;
|
||||
}; /* typedef'd to ZBUFF_DCtx within "zstd_buffered.h" */
|
||||
|
||||
|
||||
ZBUFF_DCtx* ZBUFF_createDCtx(void)
|
||||
{
|
||||
return ZBUFF_createDCtx_advanced(defaultCustomMem);
|
||||
}
|
||||
|
||||
ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem)
|
||||
{
|
||||
ZBUFF_DCtx* zbd;
|
||||
|
||||
if (!customMem.customAlloc && !customMem.customFree)
|
||||
customMem = defaultCustomMem;
|
||||
|
||||
if (!customMem.customAlloc || !customMem.customFree)
|
||||
return NULL;
|
||||
|
||||
zbd = (ZBUFF_DCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFF_DCtx));
|
||||
if (zbd==NULL) return NULL;
|
||||
memset(zbd, 0, sizeof(ZBUFF_DCtx));
|
||||
memcpy(&zbd->customMem, &customMem, sizeof(ZSTD_customMem));
|
||||
zbd->zd = ZSTD_createDCtx_advanced(customMem);
|
||||
if (zbd->zd == NULL) { ZBUFF_freeDCtx(zbd); return NULL; }
|
||||
zbd->stage = ZBUFFds_init;
|
||||
return zbd;
|
||||
}
|
||||
|
||||
size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd)
|
||||
{
|
||||
if (zbd==NULL) return 0; /* support free on null */
|
||||
ZSTD_freeDCtx(zbd->zd);
|
||||
if (zbd->inBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
|
||||
if (zbd->outBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
|
||||
zbd->customMem.customFree(zbd->customMem.opaque, zbd);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* *** Initialization *** */
|
||||
|
||||
size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* zbd, const void* dict, size_t dictSize)
|
||||
{
|
||||
zbd->stage = ZBUFFds_loadHeader;
|
||||
zbd->lhSize = zbd->inPos = zbd->outStart = zbd->outEnd = 0;
|
||||
return ZSTD_decompressBegin_usingDict(zbd->zd, dict, dictSize);
|
||||
}
|
||||
|
||||
size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbd)
|
||||
{
|
||||
return ZBUFF_decompressInitDictionary(zbd, NULL, 0);
|
||||
}
|
||||
|
||||
|
||||
/* internal util function */
|
||||
MEM_STATIC size_t ZBUFF_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
||||
{
|
||||
size_t const length = MIN(dstCapacity, srcSize);
|
||||
memcpy(dst, src, length);
|
||||
return length;
|
||||
}
|
||||
|
||||
|
||||
/* *** Decompression *** */
|
||||
|
||||
size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbd,
|
||||
void* dst, size_t* dstCapacityPtr,
|
||||
const void* src, size_t* srcSizePtr)
|
||||
{
|
||||
const char* const istart = (const char*)src;
|
||||
const char* const iend = istart + *srcSizePtr;
|
||||
const char* ip = istart;
|
||||
char* const ostart = (char*)dst;
|
||||
char* const oend = ostart + *dstCapacityPtr;
|
||||
char* op = ostart;
|
||||
U32 notDone = 1;
|
||||
|
||||
while (notDone) {
|
||||
switch(zbd->stage)
|
||||
{
|
||||
case ZBUFFds_init :
|
||||
return ERROR(init_missing);
|
||||
|
||||
case ZBUFFds_loadHeader :
|
||||
{ size_t const hSize = ZSTD_getFrameParams(&(zbd->fParams), zbd->headerBuffer, zbd->lhSize);
|
||||
if (hSize != 0) {
|
||||
size_t const toLoad = hSize - zbd->lhSize; /* if hSize!=0, hSize > zbd->lhSize */
|
||||
if (ZSTD_isError(hSize)) return hSize;
|
||||
if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */
|
||||
memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip);
|
||||
zbd->lhSize += iend-ip; ip = iend; notDone = 0;
|
||||
*dstCapacityPtr = 0;
|
||||
return (hSize - zbd->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
|
||||
}
|
||||
memcpy(zbd->headerBuffer + zbd->lhSize, ip, toLoad); zbd->lhSize = hSize; ip += toLoad;
|
||||
break;
|
||||
} }
|
||||
|
||||
/* Consume header */
|
||||
{ size_t const h1Size = ZSTD_nextSrcSizeToDecompress(zbd->zd); /* == ZSTD_frameHeaderSize_min */
|
||||
size_t const h1Result = ZSTD_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer, h1Size);
|
||||
if (ZSTD_isError(h1Result)) return h1Result;
|
||||
if (h1Size < zbd->lhSize) { /* long header */
|
||||
size_t const h2Size = ZSTD_nextSrcSizeToDecompress(zbd->zd);
|
||||
size_t const h2Result = ZSTD_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer+h1Size, h2Size);
|
||||
if (ZSTD_isError(h2Result)) return h2Result;
|
||||
} }
|
||||
|
||||
zbd->fParams.windowSize = MAX(zbd->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
|
||||
|
||||
/* Frame header instruct buffer sizes */
|
||||
{ size_t const blockSize = MIN(zbd->fParams.windowSize, ZSTD_BLOCKSIZE_MAX);
|
||||
zbd->blockSize = blockSize;
|
||||
if (zbd->inBuffSize < blockSize) {
|
||||
zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff);
|
||||
zbd->inBuffSize = blockSize;
|
||||
zbd->inBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, blockSize);
|
||||
if (zbd->inBuff == NULL) return ERROR(memory_allocation);
|
||||
}
|
||||
{ size_t const neededOutSize = zbd->fParams.windowSize + blockSize;
|
||||
if (zbd->outBuffSize < neededOutSize) {
|
||||
zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff);
|
||||
zbd->outBuffSize = neededOutSize;
|
||||
zbd->outBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, neededOutSize);
|
||||
if (zbd->outBuff == NULL) return ERROR(memory_allocation);
|
||||
} } }
|
||||
zbd->stage = ZBUFFds_read;
|
||||
|
||||
case ZBUFFds_read:
|
||||
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zbd->zd);
|
||||
if (neededInSize==0) { /* end of frame */
|
||||
zbd->stage = ZBUFFds_init;
|
||||
notDone = 0;
|
||||
break;
|
||||
}
|
||||
if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
|
||||
const int isSkipFrame = ZSTD_isSkipFrame(zbd->zd);
|
||||
size_t const decodedSize = ZSTD_decompressContinue(zbd->zd,
|
||||
zbd->outBuff + zbd->outStart, (isSkipFrame ? 0 : zbd->outBuffSize - zbd->outStart),
|
||||
ip, neededInSize);
|
||||
if (ZSTD_isError(decodedSize)) return decodedSize;
|
||||
ip += neededInSize;
|
||||
if (!decodedSize && !isSkipFrame) break; /* this was just a header */
|
||||
zbd->outEnd = zbd->outStart + decodedSize;
|
||||
zbd->stage = ZBUFFds_flush;
|
||||
break;
|
||||
}
|
||||
if (ip==iend) { notDone = 0; break; } /* no more input */
|
||||
zbd->stage = ZBUFFds_load;
|
||||
}
|
||||
|
||||
case ZBUFFds_load:
|
||||
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zbd->zd);
|
||||
size_t const toLoad = neededInSize - zbd->inPos; /* should always be <= remaining space within inBuff */
|
||||
size_t loadedSize;
|
||||
if (toLoad > zbd->inBuffSize - zbd->inPos) return ERROR(corruption_detected); /* should never happen */
|
||||
loadedSize = ZBUFF_limitCopy(zbd->inBuff + zbd->inPos, toLoad, ip, iend-ip);
|
||||
ip += loadedSize;
|
||||
zbd->inPos += loadedSize;
|
||||
if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */
|
||||
|
||||
/* decode loaded input */
|
||||
{ const int isSkipFrame = ZSTD_isSkipFrame(zbd->zd);
|
||||
size_t const decodedSize = ZSTD_decompressContinue(zbd->zd,
|
||||
zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart,
|
||||
zbd->inBuff, neededInSize);
|
||||
if (ZSTD_isError(decodedSize)) return decodedSize;
|
||||
zbd->inPos = 0; /* input is consumed */
|
||||
if (!decodedSize && !isSkipFrame) { zbd->stage = ZBUFFds_read; break; } /* this was just a header */
|
||||
zbd->outEnd = zbd->outStart + decodedSize;
|
||||
zbd->stage = ZBUFFds_flush;
|
||||
// break; /* ZBUFFds_flush follows */
|
||||
} }
|
||||
|
||||
case ZBUFFds_flush:
|
||||
{ size_t const toFlushSize = zbd->outEnd - zbd->outStart;
|
||||
size_t const flushedSize = ZBUFF_limitCopy(op, oend-op, zbd->outBuff + zbd->outStart, toFlushSize);
|
||||
op += flushedSize;
|
||||
zbd->outStart += flushedSize;
|
||||
if (flushedSize == toFlushSize) {
|
||||
zbd->stage = ZBUFFds_read;
|
||||
if (zbd->outStart + zbd->blockSize > zbd->outBuffSize)
|
||||
zbd->outStart = zbd->outEnd = 0;
|
||||
break;
|
||||
}
|
||||
/* cannot flush everything */
|
||||
notDone = 0;
|
||||
break;
|
||||
}
|
||||
default: return ERROR(GENERIC); /* impossible */
|
||||
} }
|
||||
|
||||
/* result */
|
||||
*srcSizePtr = ip-istart;
|
||||
*dstCapacityPtr = op-ostart;
|
||||
{ size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zbd->zd);
|
||||
// if (nextSrcSizeHint > ZSTD_blockHeaderSize) nextSrcSizeHint+= ZSTD_blockHeaderSize; /* get following block header too */
|
||||
nextSrcSizeHint -= zbd->inPos; /* already loaded*/
|
||||
return nextSrcSizeHint;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Tool functions
|
||||
***************************************/
|
||||
size_t ZBUFF_recommendedDInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize /* block header size*/ ; }
|
||||
size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_BLOCKSIZE_MAX; }
|
||||
71
C/zstd/zbuff_static.h
Normal file
71
C/zstd/zbuff_static.h
Normal file
@@ -0,0 +1,71 @@
|
||||
/*
|
||||
zstd - buffered version of compression library
|
||||
experimental complementary API, for static linking only
|
||||
Copyright (C) 2015-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd homepage : http://www.zstd.net
|
||||
*/
|
||||
#ifndef ZSTD_BUFFERED_STATIC_H
|
||||
#define ZSTD_BUFFERED_STATIC_H
|
||||
|
||||
/* The objects defined into this file should be considered experimental.
|
||||
* They are not labelled stable, as their prototype may change in the future.
|
||||
* You can use them for tests, provide feedback, or if you can endure risk of future changes.
|
||||
*/
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* *************************************
|
||||
* Includes
|
||||
***************************************/
|
||||
#include "zstd_static.h" /* ZSTD_parameters */
|
||||
#include "zbuff.h"
|
||||
#include "zstd_internal.h" /* MIN */
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Advanced Streaming functions
|
||||
***************************************/
|
||||
ZSTDLIB_API size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* cctx,
|
||||
const void* dict, size_t dictSize,
|
||||
ZSTD_parameters params, U64 pledgedSrcSize);
|
||||
|
||||
MEM_STATIC size_t ZBUFF_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
||||
{
|
||||
size_t length = MIN(dstCapacity, srcSize);
|
||||
memcpy(dst, src, length);
|
||||
return length;
|
||||
}
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ZSTD_BUFFERED_STATIC_H */
|
||||
446
C/zstd/zstd.h
Normal file
446
C/zstd/zstd.h
Normal file
@@ -0,0 +1,446 @@
|
||||
/*
|
||||
zstd - standard compression library
|
||||
Header File
|
||||
Copyright (C) 2014-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd source repository : https://github.com/Cyan4973/zstd
|
||||
*/
|
||||
#ifndef ZSTD_H_235446
|
||||
#define ZSTD_H_235446
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include <stddef.h> /* size_t */
|
||||
|
||||
|
||||
/*-***************************************************************
|
||||
* Export parameters
|
||||
*****************************************************************/
|
||||
/*!
|
||||
* ZSTD_DLL_EXPORT :
|
||||
* Enable exporting of functions when building a Windows DLL
|
||||
*/
|
||||
#if defined(_WIN32) && defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
|
||||
# define ZSTDLIB_API __declspec(dllexport)
|
||||
#else
|
||||
# define ZSTDLIB_API
|
||||
#endif
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Version
|
||||
***************************************/
|
||||
#define ZSTD_VERSION_MAJOR 0
|
||||
#define ZSTD_VERSION_MINOR 7
|
||||
#define ZSTD_VERSION_RELEASE 1
|
||||
|
||||
#define ZSTD_LIB_VERSION ZSTD_VERSION_MAJOR.ZSTD_VERSION_MINOR.ZSTD_VERSION_RELEASE
|
||||
#define ZSTD_QUOTE(str) #str
|
||||
#define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str)
|
||||
#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION)
|
||||
|
||||
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
|
||||
ZSTDLIB_API unsigned ZSTD_versionNumber (void);
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Simple functions
|
||||
***************************************/
|
||||
/*! ZSTD_compress() :
|
||||
Compresses `srcSize` bytes from buffer `src` into buffer `dst` of size `dstCapacity`.
|
||||
Destination buffer must be already allocated.
|
||||
Compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
|
||||
@return : the number of bytes written into `dst`,
|
||||
or an error code if it fails (which can be tested using ZSTD_isError()) */
|
||||
ZSTDLIB_API size_t ZSTD_compress( void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
int compressionLevel);
|
||||
|
||||
/*! ZSTD_decompress() :
|
||||
`compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
|
||||
`dstCapacity` must be large enough, equal or larger than originalSize.
|
||||
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
|
||||
or an errorCode if it fails (which can be tested using ZSTD_isError()) */
|
||||
ZSTDLIB_API size_t ZSTD_decompress( void* dst, size_t dstCapacity,
|
||||
const void* src, size_t compressedSize);
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Helper functions
|
||||
***************************************/
|
||||
ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size (worst case scenario) */
|
||||
|
||||
/* Error Management */
|
||||
ZSTDLIB_API unsigned ZSTD_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
|
||||
ZSTDLIB_API const char* ZSTD_getErrorName(size_t code); /*!< provides readable string for an error code */
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Explicit memory management
|
||||
***************************************/
|
||||
/** Compression context */
|
||||
typedef struct ZSTD_CCtx_s ZSTD_CCtx; /*< incomplete type */
|
||||
ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx(void);
|
||||
ZSTDLIB_API size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx); /*!< @return : errorCode */
|
||||
|
||||
/** ZSTD_compressCCtx() :
|
||||
Same as ZSTD_compress(), but requires an already allocated ZSTD_CCtx (see ZSTD_createCCtx()) */
|
||||
ZSTDLIB_API size_t ZSTD_compressCCtx(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel);
|
||||
|
||||
/** Decompression context */
|
||||
typedef struct ZSTD_DCtx_s ZSTD_DCtx;
|
||||
ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx(void);
|
||||
ZSTDLIB_API size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx); /*!< @return : errorCode */
|
||||
|
||||
/** ZSTD_decompressDCtx() :
|
||||
* Same as ZSTD_decompress(), but requires an already allocated ZSTD_DCtx (see ZSTD_createDCtx()) */
|
||||
ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
/*-************************
|
||||
* Simple dictionary API
|
||||
***************************/
|
||||
/*! ZSTD_compress_usingDict() :
|
||||
* Compression using a pre-defined Dictionary content (see dictBuilder).
|
||||
* Note 1 : This function load the dictionary, resulting in a significant startup time.
|
||||
* Note 2 : `dict` must remain accessible and unmodified during compression operation.
|
||||
* Note 3 : `dict` can be `NULL`, in which case, it's equivalent to ZSTD_compressCCtx() */
|
||||
ZSTDLIB_API size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const void* dict,size_t dictSize,
|
||||
int compressionLevel);
|
||||
|
||||
/*! ZSTD_decompress_usingDict() :
|
||||
* Decompression using a pre-defined Dictionary content (see dictBuilder).
|
||||
* Dictionary must be identical to the one used during compression.
|
||||
* Note 1 : This function load the dictionary, resulting in a significant startup time
|
||||
* Note 2 : `dict` must remain accessible and unmodified during compression operation.
|
||||
* Note 3 : `dict` can be `NULL`, in which case, it's equivalent to ZSTD_decompressDCtx() */
|
||||
ZSTDLIB_API size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const void* dict,size_t dictSize);
|
||||
|
||||
|
||||
/*-**************************
|
||||
* Advanced Dictionary API
|
||||
****************************/
|
||||
/*! ZSTD_createCDict() :
|
||||
* Create a digested dictionary, ready to start compression operation without startup delay.
|
||||
* `dict` can be released after creation */
|
||||
typedef struct ZSTD_CDict_s ZSTD_CDict;
|
||||
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel);
|
||||
ZSTDLIB_API size_t ZSTD_freeCDict(ZSTD_CDict* CDict);
|
||||
|
||||
/*! ZSTD_compress_usingCDict() :
|
||||
* Compression using a pre-digested Dictionary.
|
||||
* Much faster than ZSTD_compress_usingDict() when same dictionary is used multiple times.
|
||||
* Note that compression level is decided during dictionary creation */
|
||||
ZSTDLIB_API size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const ZSTD_CDict* cdict);
|
||||
|
||||
/*! ZSTD_createDDict() :
|
||||
* Create a digested dictionary, ready to start decompression operation without startup delay.
|
||||
* `dict` can be released after creation */
|
||||
typedef struct ZSTD_DDict_s ZSTD_DDict;
|
||||
ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize);
|
||||
ZSTDLIB_API size_t ZSTD_freeDDict(ZSTD_DDict* ddict);
|
||||
|
||||
/*! ZSTD_decompress_usingDDict() :
|
||||
* Decompression using a pre-digested Dictionary
|
||||
* Much faster than ZSTD_decompress_usingDict() when same dictionary is used multiple times. */
|
||||
ZSTDLIB_API size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const ZSTD_DDict* ddict);
|
||||
|
||||
|
||||
|
||||
#ifdef ZSTD_STATIC_LINKING_ONLY
|
||||
|
||||
/* ====================================================================================
|
||||
* The definitions in this section are considered experimental.
|
||||
* They should never be used with a dynamic library, as they may change in the future.
|
||||
* They are provided for advanced usages.
|
||||
* Use them only in association with static linking.
|
||||
* ==================================================================================== */
|
||||
|
||||
/*--- Dependency ---*/
|
||||
#include "mem.h" /* U32 */
|
||||
|
||||
|
||||
/*--- Constants ---*/
|
||||
#define ZSTD_MAGICNUMBER 0xFD2FB527 /* v0.7 */
|
||||
#define ZSTD_MAGIC_SKIPPABLE_START 0x184D2A50U
|
||||
|
||||
#define ZSTD_WINDOWLOG_MAX ((U32)(MEM_32bits() ? 25 : 27))
|
||||
#define ZSTD_WINDOWLOG_MIN 18
|
||||
#define ZSTD_CHAINLOG_MAX (ZSTD_WINDOWLOG_MAX+1)
|
||||
#define ZSTD_CHAINLOG_MIN 4
|
||||
#define ZSTD_HASHLOG_MAX ZSTD_WINDOWLOG_MAX
|
||||
#define ZSTD_HASHLOG_MIN 12
|
||||
#define ZSTD_HASHLOG3_MAX 17
|
||||
#define ZSTD_HASHLOG3_MIN 15
|
||||
#define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1)
|
||||
#define ZSTD_SEARCHLOG_MIN 1
|
||||
#define ZSTD_SEARCHLENGTH_MAX 7
|
||||
#define ZSTD_SEARCHLENGTH_MIN 3
|
||||
#define ZSTD_TARGETLENGTH_MIN 4
|
||||
#define ZSTD_TARGETLENGTH_MAX 999
|
||||
|
||||
#define ZSTD_FRAMEHEADERSIZE_MAX 18 /* for static allocation */
|
||||
static const size_t ZSTD_frameHeaderSize_min = 5;
|
||||
static const size_t ZSTD_frameHeaderSize_max = ZSTD_FRAMEHEADERSIZE_MAX;
|
||||
static const size_t ZSTD_skippableHeaderSize = 8; /* magic number + skippable frame length */
|
||||
|
||||
|
||||
/*--- Types ---*/
|
||||
typedef enum { ZSTD_fast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2, ZSTD_btopt } ZSTD_strategy; /*< from faster to stronger */
|
||||
|
||||
typedef struct {
|
||||
U32 windowLog; /*< largest match distance : larger == more compression, more memory needed during decompression */
|
||||
U32 chainLog; /*< fully searched segment : larger == more compression, slower, more memory (useless for fast) */
|
||||
U32 hashLog; /*< dispatch table : larger == faster, more memory */
|
||||
U32 searchLog; /*< nb of searches : larger == more compression, slower */
|
||||
U32 searchLength; /*< match length searched : larger == faster decompression, sometimes less compression */
|
||||
U32 targetLength; /*< acceptable match size for optimal parser (only) : larger == more compression, slower */
|
||||
ZSTD_strategy strategy;
|
||||
} ZSTD_compressionParameters;
|
||||
|
||||
typedef struct {
|
||||
U32 contentSizeFlag; /*< 1: content size will be in frame header (if known). */
|
||||
U32 checksumFlag; /*< 1: will generate a 22-bits checksum at end of frame, to be used for error detection by decompressor */
|
||||
U32 noDictIDFlag; /*< 1: no dict ID will be saved into frame header (if dictionary compression) */
|
||||
} ZSTD_frameParameters;
|
||||
|
||||
typedef struct {
|
||||
ZSTD_compressionParameters cParams;
|
||||
ZSTD_frameParameters fParams;
|
||||
} ZSTD_parameters;
|
||||
|
||||
/* custom memory allocation functions */
|
||||
typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
|
||||
typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
|
||||
typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Advanced compression functions
|
||||
***************************************/
|
||||
/*! ZSTD_createCCtx_advanced() :
|
||||
* Create a ZSTD compression context using external alloc and free functions */
|
||||
ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem);
|
||||
|
||||
/*! ZSTD_createCDict_advanced() :
|
||||
* Create a ZSTD_CDict using external alloc and free, and customized compression parameters */
|
||||
ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize,
|
||||
ZSTD_parameters params, ZSTD_customMem customMem);
|
||||
|
||||
ZSTDLIB_API unsigned ZSTD_maxCLevel (void);
|
||||
|
||||
/*! ZSTD_getCParams() :
|
||||
* @return ZSTD_compressionParameters structure for a selected compression level and srcSize.
|
||||
* `srcSize` value is optional, select 0 if not known */
|
||||
ZSTDLIB_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, U64 srcSize, size_t dictSize);
|
||||
|
||||
/*! ZSTD_checkParams() :
|
||||
* Ensure param values remain within authorized range */
|
||||
ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
|
||||
|
||||
/*! ZSTD_adjustParams() :
|
||||
* optimize params for a given `srcSize` and `dictSize`.
|
||||
* both values are optional, select `0` if unknown. */
|
||||
ZSTDLIB_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, U64 srcSize, size_t dictSize);
|
||||
|
||||
/*! ZSTD_compress_advanced() :
|
||||
* Same as ZSTD_compress_usingDict(), with fine-tune control of each compression parameter */
|
||||
ZSTDLIB_API size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const void* dict,size_t dictSize,
|
||||
ZSTD_parameters params);
|
||||
|
||||
|
||||
/*--- Advanced Decompression functions ---*/
|
||||
|
||||
/*! ZSTD_createDCtx_advanced() :
|
||||
* Create a ZSTD decompression context using external alloc and free functions */
|
||||
ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem);
|
||||
|
||||
|
||||
/* ****************************************************************
|
||||
* Streaming functions (direct mode - synchronous and buffer-less)
|
||||
******************************************************************/
|
||||
ZSTDLIB_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
|
||||
ZSTDLIB_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
|
||||
ZSTDLIB_API size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, U64 pledgedSrcSize);
|
||||
ZSTDLIB_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx);
|
||||
|
||||
ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity);
|
||||
|
||||
/*
|
||||
A ZSTD_CCtx object is required to track streaming operations.
|
||||
Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource.
|
||||
ZSTD_CCtx object can be re-used multiple times within successive compression operations.
|
||||
|
||||
Start by initializing a context.
|
||||
Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression,
|
||||
or ZSTD_compressBegin_advanced(), for finer parameter control.
|
||||
It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx()
|
||||
|
||||
Then, consume your input using ZSTD_compressContinue().
|
||||
There are some important considerations to keep in mind when using this advanced function :
|
||||
- ZSTD_compressContinue() has no internal buffer. It uses externally provided buffer only.
|
||||
- Interface is synchronous : input will be entirely consumed and produce 1+ compressed blocks.
|
||||
- Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario.
|
||||
Worst case evaluation is provided by ZSTD_compressBound().
|
||||
ZSTD_compressContinue() doesn't guarantee recover after a failed compression.
|
||||
- ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog).
|
||||
It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks)
|
||||
- ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps.
|
||||
In which case, it will "discard" the relevant memory section from its history.
|
||||
|
||||
|
||||
Finish a frame with ZSTD_compressEnd(), which will write the epilogue.
|
||||
Without epilogue, frames will be considered unfinished (broken) by decoders.
|
||||
|
||||
You can then reuse `ZSTD_CCtx` (ZSTD_compressBegin()) to compress some new frame.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
U64 frameContentSize;
|
||||
U32 windowSize;
|
||||
U32 dictID;
|
||||
U32 checksumFlag;
|
||||
} ZSTD_frameParams;
|
||||
|
||||
ZSTDLIB_API size_t ZSTD_getFrameParams(ZSTD_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
|
||||
|
||||
ZSTDLIB_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx);
|
||||
ZSTDLIB_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
|
||||
ZSTDLIB_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx);
|
||||
|
||||
ZSTDLIB_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
|
||||
ZSTDLIB_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
/*
|
||||
Streaming decompression, direct mode (bufferless)
|
||||
|
||||
A ZSTD_DCtx object is required to track streaming operations.
|
||||
Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
|
||||
A ZSTD_DCtx object can be re-used multiple times.
|
||||
|
||||
First optional operation is to retrieve frame parameters, using ZSTD_getFrameParams(), which doesn't consume the input.
|
||||
It can provide the minimum size of rolling buffer required to properly decompress data (`windowSize`),
|
||||
and optionally the final size of uncompressed content.
|
||||
(Note : content size is an optional info that may not be present. 0 means : content size unknown)
|
||||
Frame parameters are extracted from the beginning of compressed frame.
|
||||
The amount of data to read is variable, from ZSTD_frameHeaderSize_min to ZSTD_frameHeaderSize_max (so if `srcSize` >= ZSTD_frameHeaderSize_max, it will always work)
|
||||
If `srcSize` is too small for operation to succeed, function will return the minimum size it requires to produce a result.
|
||||
Result : 0 when successful, it means the ZSTD_frameParams structure has been filled.
|
||||
>0 : means there is not enough data into `src`. Provides the expected size to successfully decode header.
|
||||
errorCode, which can be tested using ZSTD_isError()
|
||||
|
||||
Start decompression, with ZSTD_decompressBegin() or ZSTD_decompressBegin_usingDict().
|
||||
Alternatively, you can copy a prepared context, using ZSTD_copyDCtx().
|
||||
|
||||
Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
|
||||
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
|
||||
ZSTD_decompressContinue() requires this exact amount of bytes, or it will fail.
|
||||
ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize`.
|
||||
They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
|
||||
|
||||
@result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity).
|
||||
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
|
||||
|
||||
A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
|
||||
Context can then be reset to start a new decompression.
|
||||
|
||||
Skippable frames allow the integration of user-defined data into a flow of concatenated frames.
|
||||
Skippable frames will be ignored (skipped) by a decompressor. The format of skippable frame is following:
|
||||
a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F
|
||||
b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
|
||||
c) Frame Content - any content (User Data) of length equal to Frame Size
|
||||
For skippable frames ZSTD_decompressContinue() always returns 0.
|
||||
For skippable frames ZSTD_getFrameParams() returns fparamsPtr->windowLog==0 what means that a frame is skippable.
|
||||
It also returns Frame Size as fparamsPtr->frameContentSize.
|
||||
*/
|
||||
|
||||
|
||||
/* **************************************
|
||||
* Block functions
|
||||
****************************************/
|
||||
/*! Block functions produce and decode raw zstd blocks, without frame metadata.
|
||||
User will have to take in charge required information to regenerate data, such as compressed and content sizes.
|
||||
|
||||
A few rules to respect :
|
||||
- Uncompressed block size must be <= ZSTD_BLOCKSIZE_MAX (128 KB)
|
||||
- Compressing or decompressing requires a context structure
|
||||
+ Use ZSTD_createCCtx() and ZSTD_createDCtx()
|
||||
- It is necessary to init context before starting
|
||||
+ compression : ZSTD_compressBegin()
|
||||
+ decompression : ZSTD_decompressBegin()
|
||||
+ variants _usingDict() are also allowed
|
||||
+ copyCCtx() and copyDCtx() work too
|
||||
- When a block is considered not compressible enough, ZSTD_compressBlock() result will be zero.
|
||||
In which case, nothing is produced into `dst`.
|
||||
+ User must test for such outcome and deal directly with uncompressed data
|
||||
+ ZSTD_decompressBlock() doesn't accept uncompressed data as input !!
|
||||
*/
|
||||
|
||||
#define ZSTD_BLOCKSIZE_MAX (128 * 1024) /* define, for static allocation */
|
||||
ZSTDLIB_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Error management
|
||||
***************************************/
|
||||
#include "error_public.h"
|
||||
/*! ZSTD_getErrorCode() :
|
||||
convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
|
||||
which can be used to compare directly with enum list published into "error_public.h" */
|
||||
ZSTDLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
|
||||
ZSTDLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code);
|
||||
|
||||
|
||||
#endif /* ZSTD_STATIC_LINKING_ONLY */
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ZSTD_H_235446 */
|
||||
91
C/zstd/zstd_common.c
Normal file
91
C/zstd/zstd_common.c
Normal file
@@ -0,0 +1,91 @@
|
||||
/*
|
||||
Common functions of Zstd compression library
|
||||
Copyright (C) 2015-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd homepage : http://www.zstd.net/
|
||||
*/
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include <stdlib.h> /* malloc */
|
||||
#include "error_private.h"
|
||||
#define ZSTD_STATIC_LINKING_ONLY
|
||||
#include "zstd.h" /* declaration of ZSTD_isError, ZSTD_getErrorName, ZSTD_getErrorCode, ZSTD_getErrorString, ZSTD_versionNumber */
|
||||
#include "zbuff.h" /* declaration of ZBUFF_isError, ZBUFF_getErrorName */
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* Version
|
||||
******************************************/
|
||||
unsigned ZSTD_versionNumber (void) { return ZSTD_VERSION_NUMBER; }
|
||||
|
||||
|
||||
/*-****************************************
|
||||
* ZSTD Error Management
|
||||
******************************************/
|
||||
/*! ZSTD_isError() :
|
||||
* tells if a return value is an error code */
|
||||
unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
|
||||
|
||||
/*! ZSTD_getErrorName() :
|
||||
* provides error code string from function result (useful for debugging) */
|
||||
const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
|
||||
|
||||
/*! ZSTD_getError() :
|
||||
* convert a `size_t` function result into a proper ZSTD_errorCode enum */
|
||||
ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
|
||||
|
||||
/*! ZSTD_getErrorString() :
|
||||
* provides error code string from enum */
|
||||
const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorName(code); }
|
||||
|
||||
|
||||
/* **************************************************************
|
||||
* ZBUFF Error Management
|
||||
****************************************************************/
|
||||
unsigned ZBUFF_isError(size_t errorCode) { return ERR_isError(errorCode); }
|
||||
|
||||
const char* ZBUFF_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
|
||||
|
||||
|
||||
|
||||
void* ZSTD_defaultAllocFunction(void* opaque, size_t size)
|
||||
{
|
||||
void* address = malloc(size);
|
||||
(void)opaque;
|
||||
/* printf("alloc %p, %d opaque=%p \n", address, (int)size, opaque); */
|
||||
return address;
|
||||
}
|
||||
|
||||
void ZSTD_defaultFreeFunction(void* opaque, void* address)
|
||||
{
|
||||
(void)opaque;
|
||||
/* if (address) printf("free %p opaque=%p \n", address, opaque); */
|
||||
free(address);
|
||||
}
|
||||
2774
C/zstd/zstd_compress.c
Normal file
2774
C/zstd/zstd_compress.c
Normal file
File diff suppressed because it is too large
Load Diff
1346
C/zstd/zstd_decompress.c
Normal file
1346
C/zstd/zstd_decompress.c
Normal file
File diff suppressed because it is too large
Load Diff
238
C/zstd/zstd_internal.h
Normal file
238
C/zstd/zstd_internal.h
Normal file
@@ -0,0 +1,238 @@
|
||||
/*
|
||||
zstd_internal - common functions to include
|
||||
Header File for include
|
||||
Copyright (C) 2014-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd homepage : https://www.zstd.net
|
||||
*/
|
||||
#ifndef ZSTD_CCOMMON_H_MODULE
|
||||
#define ZSTD_CCOMMON_H_MODULE
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include "mem.h"
|
||||
#include "error_private.h"
|
||||
#define ZSTD_STATIC_LINKING_ONLY
|
||||
#include "zstd.h"
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Common macros
|
||||
***************************************/
|
||||
#define MIN(a,b) ((a)<(b) ? (a) : (b))
|
||||
#define MAX(a,b) ((a)>(b) ? (a) : (b))
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Common constants
|
||||
***************************************/
|
||||
#define ZSTD_OPT_DEBUG 0 // 3 = compression stats; 5 = check encoded sequences; 9 = full logs
|
||||
#include <stdio.h>
|
||||
#if defined(ZSTD_OPT_DEBUG) && ZSTD_OPT_DEBUG>=9
|
||||
#define ZSTD_LOG_PARSER(...) printf(__VA_ARGS__)
|
||||
#define ZSTD_LOG_ENCODE(...) printf(__VA_ARGS__)
|
||||
#define ZSTD_LOG_BLOCK(...) printf(__VA_ARGS__)
|
||||
#else
|
||||
#define ZSTD_LOG_PARSER(...)
|
||||
#define ZSTD_LOG_ENCODE(...)
|
||||
#define ZSTD_LOG_BLOCK(...)
|
||||
#endif
|
||||
|
||||
#define ZSTD_OPT_NUM (1<<12)
|
||||
#define ZSTD_DICT_MAGIC 0xEC30A437 /* v0.7 */
|
||||
|
||||
#define ZSTD_REP_NUM 3
|
||||
#define ZSTD_REP_INIT ZSTD_REP_NUM
|
||||
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
|
||||
static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
|
||||
|
||||
#define KB *(1 <<10)
|
||||
#define MB *(1 <<20)
|
||||
#define GB *(1U<<30)
|
||||
|
||||
#define BIT7 128
|
||||
#define BIT6 64
|
||||
#define BIT5 32
|
||||
#define BIT4 16
|
||||
#define BIT1 2
|
||||
#define BIT0 1
|
||||
|
||||
#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
|
||||
static const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
|
||||
static const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
|
||||
|
||||
#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
|
||||
static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
|
||||
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
|
||||
|
||||
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
|
||||
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
|
||||
|
||||
#define HufLog 12
|
||||
typedef enum { lbt_huffman, lbt_repeat, lbt_raw, lbt_rle } litBlockType_t;
|
||||
|
||||
#define LONGNBSEQ 0x7F00
|
||||
|
||||
#define MINMATCH 3
|
||||
#define EQUAL_READ32 4
|
||||
|
||||
#define Litbits 8
|
||||
#define MaxLit ((1<<Litbits) - 1)
|
||||
#define MaxML 52
|
||||
#define MaxLL 35
|
||||
#define MaxOff 28
|
||||
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
|
||||
#define MLFSELog 9
|
||||
#define LLFSELog 9
|
||||
#define OffFSELog 8
|
||||
|
||||
#define FSE_ENCODING_RAW 0
|
||||
#define FSE_ENCODING_RLE 1
|
||||
#define FSE_ENCODING_STATIC 2
|
||||
#define FSE_ENCODING_DYNAMIC 3
|
||||
|
||||
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
|
||||
13,14,15,16 };
|
||||
static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
|
||||
-1,-1,-1,-1 };
|
||||
static const U32 LL_defaultNormLog = 6;
|
||||
|
||||
static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
|
||||
12,13,14,15,16 };
|
||||
static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
|
||||
-1,-1,-1,-1,-1 };
|
||||
static const U32 ML_defaultNormLog = 6;
|
||||
|
||||
static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
|
||||
static const U32 OF_defaultNormLog = 5;
|
||||
|
||||
|
||||
/*-*******************************************
|
||||
* Shared functions to include for inlining
|
||||
*********************************************/
|
||||
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
|
||||
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
|
||||
|
||||
/*! ZSTD_wildcopy() :
|
||||
* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
|
||||
#define WILDCOPY_OVERLENGTH 8
|
||||
MEM_STATIC void ZSTD_wildcopy(void* dst, const void* src, size_t length)
|
||||
{
|
||||
const BYTE* ip = (const BYTE*)src;
|
||||
BYTE* op = (BYTE*)dst;
|
||||
BYTE* const oend = op + length;
|
||||
do
|
||||
COPY8(op, ip)
|
||||
while (op < oend);
|
||||
}
|
||||
|
||||
|
||||
/*-*******************************************
|
||||
* Private interfaces
|
||||
*********************************************/
|
||||
typedef struct ZSTD_stats_s ZSTD_stats_t;
|
||||
|
||||
typedef struct {
|
||||
U32 off;
|
||||
U32 len;
|
||||
} ZSTD_match_t;
|
||||
|
||||
typedef struct {
|
||||
U32 price;
|
||||
U32 off;
|
||||
U32 mlen;
|
||||
U32 litlen;
|
||||
U32 rep[ZSTD_REP_INIT];
|
||||
} ZSTD_optimal_t;
|
||||
|
||||
#if ZSTD_OPT_DEBUG == 3
|
||||
#include ".debug/zstd_stats.h"
|
||||
#else
|
||||
struct ZSTD_stats_s { U32 unused; };
|
||||
MEM_STATIC void ZSTD_statsPrint(ZSTD_stats_t* stats, U32 searchLength) { (void)stats; (void)searchLength; }
|
||||
MEM_STATIC void ZSTD_statsInit(ZSTD_stats_t* stats) { (void)stats; }
|
||||
MEM_STATIC void ZSTD_statsResetFreqs(ZSTD_stats_t* stats) { (void)stats; }
|
||||
MEM_STATIC void ZSTD_statsUpdatePrices(ZSTD_stats_t* stats, size_t litLength, const BYTE* literals, size_t offset, size_t matchLength) { (void)stats; (void)litLength; (void)literals; (void)offset; (void)matchLength; }
|
||||
#endif /* #if ZSTD_OPT_DEBUG == 3 */
|
||||
|
||||
typedef struct {
|
||||
void* buffer;
|
||||
U32* offsetStart;
|
||||
U32* offset;
|
||||
BYTE* offCodeStart;
|
||||
BYTE* litStart;
|
||||
BYTE* lit;
|
||||
U16* litLengthStart;
|
||||
U16* litLength;
|
||||
BYTE* llCodeStart;
|
||||
U16* matchLengthStart;
|
||||
U16* matchLength;
|
||||
BYTE* mlCodeStart;
|
||||
U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
|
||||
U32 longLengthPos;
|
||||
/* opt */
|
||||
ZSTD_optimal_t* priceTable;
|
||||
ZSTD_match_t* matchTable;
|
||||
U32* matchLengthFreq;
|
||||
U32* litLengthFreq;
|
||||
U32* litFreq;
|
||||
U32* offCodeFreq;
|
||||
U32 matchLengthSum;
|
||||
U32 matchSum;
|
||||
U32 litLengthSum;
|
||||
U32 litSum;
|
||||
U32 offCodeSum;
|
||||
U32 log2matchLengthSum;
|
||||
U32 log2matchSum;
|
||||
U32 log2litLengthSum;
|
||||
U32 log2litSum;
|
||||
U32 log2offCodeSum;
|
||||
U32 factor;
|
||||
U32 cachedPrice;
|
||||
U32 cachedLitLength;
|
||||
const BYTE* cachedLiterals;
|
||||
ZSTD_stats_t stats;
|
||||
} seqStore_t;
|
||||
|
||||
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx);
|
||||
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr, size_t const nbSeq);
|
||||
int ZSTD_isSkipFrame(ZSTD_DCtx* dctx);
|
||||
|
||||
/* custom memory allocation functions */
|
||||
void* ZSTD_defaultAllocFunction(void* opaque, size_t size);
|
||||
void ZSTD_defaultFreeFunction(void* opaque, void* address);
|
||||
static ZSTD_customMem const defaultCustomMem = { ZSTD_defaultAllocFunction, ZSTD_defaultFreeFunction, NULL };
|
||||
|
||||
#endif /* ZSTD_CCOMMON_H_MODULE */
|
||||
101
C/zstd/zstd_legacy.h
Normal file
101
C/zstd/zstd_legacy.h
Normal file
@@ -0,0 +1,101 @@
|
||||
/*
|
||||
zstd_legacy - decoder for legacy format
|
||||
Header File
|
||||
Copyright (C) 2015-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd source repository : https://github.com/Cyan4973/zstd
|
||||
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
|
||||
*/
|
||||
#ifndef ZSTD_LEGACY_H
|
||||
#define ZSTD_LEGACY_H
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* *************************************
|
||||
* Includes
|
||||
***************************************/
|
||||
#include "mem.h" /* MEM_STATIC */
|
||||
#include "error_private.h" /* ERROR */
|
||||
#include "zstd_v05.h"
|
||||
#include "zstd_v06.h"
|
||||
|
||||
|
||||
/** ZSTD_isLegacy() :
|
||||
@return : > 0 if supported by legacy decoder. 0 otherwise.
|
||||
return value is the version.
|
||||
*/
|
||||
MEM_STATIC unsigned ZSTD_isLegacy (U32 magicNumberLE)
|
||||
{
|
||||
switch(magicNumberLE)
|
||||
{
|
||||
case ZSTDv05_MAGICNUMBER : return 5;
|
||||
case ZSTDv06_MAGICNUMBER : return 6;
|
||||
default : return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
MEM_STATIC size_t ZSTD_decompressLegacy(
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t compressedSize,
|
||||
const void* dict,size_t dictSize,
|
||||
U32 magicNumberLE)
|
||||
{
|
||||
switch(magicNumberLE)
|
||||
{
|
||||
case ZSTDv05_MAGICNUMBER :
|
||||
{
|
||||
size_t result;
|
||||
ZSTDv05_DCtx* zd = ZSTDv05_createDCtx();
|
||||
if (zd==NULL) return ERROR(memory_allocation);
|
||||
result = ZSTDv05_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
|
||||
ZSTDv05_freeDCtx(zd);
|
||||
return result;
|
||||
}
|
||||
case ZSTDv06_MAGICNUMBER :
|
||||
{
|
||||
size_t result;
|
||||
ZSTDv06_DCtx* zd = ZSTDv06_createDCtx();
|
||||
if (zd==NULL) return ERROR(memory_allocation);
|
||||
result = ZSTDv06_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
|
||||
ZSTDv06_freeDCtx(zd);
|
||||
return result;
|
||||
}
|
||||
default :
|
||||
return ERROR(prefix_unknown);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ZSTD_LEGACY_H */
|
||||
1041
C/zstd/zstd_opt.h
Normal file
1041
C/zstd/zstd_opt.h
Normal file
File diff suppressed because it is too large
Load Diff
272
C/zstd/zstd_static.h
Normal file
272
C/zstd/zstd_static.h
Normal file
@@ -0,0 +1,272 @@
|
||||
/*
|
||||
zstd - standard compression library
|
||||
Header File for static linking only
|
||||
Copyright (C) 2014-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd homepage : http://www.zstd.net
|
||||
*/
|
||||
#ifndef ZSTD_STATIC_H
|
||||
#define ZSTD_STATIC_H
|
||||
|
||||
/* The prototypes defined within this file are considered experimental.
|
||||
* They should not be used in the context DLL as they may change in the future.
|
||||
* Prefer static linking if you need them, to control breaking version changes issues.
|
||||
*/
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include "zstd.h"
|
||||
#include "mem.h"
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Constants
|
||||
***************************************/
|
||||
#define ZSTD_MAGICNUMBER 0xFD2FB526 /* v0.6 */
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Types
|
||||
***************************************/
|
||||
#define ZSTD_WINDOWLOG_MAX ((U32)(MEM_32bits() ? 25 : 27))
|
||||
#define ZSTD_WINDOWLOG_MIN 18
|
||||
#define ZSTD_CHAINLOG_MAX (ZSTD_WINDOWLOG_MAX+1)
|
||||
#define ZSTD_CHAINLOG_MIN 4
|
||||
#define ZSTD_HASHLOG_MAX ZSTD_WINDOWLOG_MAX
|
||||
#define ZSTD_HASHLOG_MIN 12
|
||||
#define ZSTD_HASHLOG3_MAX 17
|
||||
#define ZSTD_HASHLOG3_MIN 15
|
||||
#define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1)
|
||||
#define ZSTD_SEARCHLOG_MIN 1
|
||||
#define ZSTD_SEARCHLENGTH_MAX 7
|
||||
#define ZSTD_SEARCHLENGTH_MIN 3
|
||||
#define ZSTD_TARGETLENGTH_MIN 4
|
||||
#define ZSTD_TARGETLENGTH_MAX 999
|
||||
|
||||
/* from faster to stronger */
|
||||
typedef enum { ZSTD_fast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2, ZSTD_btopt } ZSTD_strategy;
|
||||
|
||||
typedef struct {
|
||||
U32 windowLog; /* largest match distance : larger == more compression, more memory needed during decompression */
|
||||
U32 chainLog; /* fully searched segment : larger == more compression, slower, more memory (useless for fast) */
|
||||
U32 hashLog; /* dispatch table : larger == faster, more memory */
|
||||
U32 searchLog; /* nb of searches : larger == more compression, slower */
|
||||
U32 searchLength; /* match length searched : larger == faster decompression, sometimes less compression */
|
||||
U32 targetLength; /* acceptable match size for optimal parser (only) : larger == more compression, slower */
|
||||
ZSTD_strategy strategy;
|
||||
} ZSTD_compressionParameters;
|
||||
|
||||
typedef struct {
|
||||
U32 contentSizeFlag; /* 1: content size will be in frame header (if known). */
|
||||
} ZSTD_frameParameters;
|
||||
|
||||
typedef struct {
|
||||
ZSTD_compressionParameters cParams;
|
||||
ZSTD_frameParameters fParams;
|
||||
} ZSTD_parameters;
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Advanced functions
|
||||
***************************************/
|
||||
ZSTDLIB_API unsigned ZSTD_maxCLevel (void);
|
||||
|
||||
/*! ZSTD_getCParams() :
|
||||
* @return ZSTD_compressionParameters structure for a selected compression level and srcSize.
|
||||
* `srcSize` value is optional, select 0 if not known */
|
||||
ZSTDLIB_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, U64 srcSize, size_t dictSize);
|
||||
|
||||
/*! ZSTD_checkParams() :
|
||||
* Ensure param values remain within authorized range */
|
||||
ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params);
|
||||
|
||||
/*! ZSTD_adjustParams() :
|
||||
* optimize params for a given `srcSize` and `dictSize`.
|
||||
* both values are optional, select `0` if unknown. */
|
||||
ZSTDLIB_API void ZSTD_adjustCParams(ZSTD_compressionParameters* params, U64 srcSize, size_t dictSize);
|
||||
|
||||
/*! ZSTD_compress_advanced() :
|
||||
* Same as ZSTD_compress_usingDict(), with fine-tune control of each compression parameter */
|
||||
ZSTDLIB_API size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const void* dict,size_t dictSize,
|
||||
ZSTD_parameters params);
|
||||
|
||||
/*! ZSTD_compress_usingPreparedDCtx() :
|
||||
* Same as ZSTD_compress_usingDict, but using a reference context `preparedCCtx`, where dictionary has been loaded.
|
||||
* It avoids reloading the dictionary each time.
|
||||
* `preparedCCtx` must have been properly initialized using ZSTD_compressBegin_usingDict() or ZSTD_compressBegin_advanced().
|
||||
* Requires 2 contexts : 1 for reference (preparedCCtx) which will not be modified, and 1 to run the compression operation (cctx) */
|
||||
ZSTDLIB_API size_t ZSTD_compress_usingPreparedCCtx(
|
||||
ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
/*- Advanced Decompression functions -*/
|
||||
|
||||
/*! ZSTD_decompress_usingPreparedDCtx() :
|
||||
* Same as ZSTD_decompress_usingDict, but using a reference context `preparedDCtx`, where dictionary has been loaded.
|
||||
* It avoids reloading the dictionary each time.
|
||||
* `preparedDCtx` must have been properly initialized using ZSTD_decompressBegin_usingDict().
|
||||
* Requires 2 contexts : 1 for reference (preparedDCtx), which will not be modified, and 1 to run the decompression operation (dctx) */
|
||||
ZSTDLIB_API size_t ZSTD_decompress_usingPreparedDCtx(
|
||||
ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize);
|
||||
|
||||
|
||||
/* **************************************
|
||||
* Streaming functions (direct mode)
|
||||
****************************************/
|
||||
ZSTDLIB_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel);
|
||||
ZSTDLIB_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
|
||||
ZSTDLIB_API size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, U64 pledgedSrcSize);
|
||||
ZSTDLIB_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx);
|
||||
|
||||
ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity);
|
||||
|
||||
/*
|
||||
Streaming compression, synchronous mode (bufferless)
|
||||
|
||||
A ZSTD_CCtx object is required to track streaming operations.
|
||||
Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage it.
|
||||
ZSTD_CCtx object can be re-used multiple times within successive compression operations.
|
||||
|
||||
Start by initializing a context.
|
||||
Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression,
|
||||
or ZSTD_compressBegin_advanced(), for finer parameter control.
|
||||
It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx()
|
||||
|
||||
Then, consume your input using ZSTD_compressContinue().
|
||||
The interface is synchronous, so all input will be consumed and produce a compressed output.
|
||||
You must ensure there is enough space in destination buffer to store compressed data under worst case scenario.
|
||||
Worst case evaluation is provided by ZSTD_compressBound().
|
||||
|
||||
Finish a frame with ZSTD_compressEnd(), which will write the epilogue.
|
||||
Without the epilogue, frames will be considered incomplete by decoder.
|
||||
|
||||
You can then reuse ZSTD_CCtx to compress some new frame.
|
||||
*/
|
||||
|
||||
typedef struct { U64 frameContentSize; U32 windowLog; } ZSTD_frameParams;
|
||||
|
||||
#define ZSTD_FRAMEHEADERSIZE_MAX 13 /* for static allocation */
|
||||
static const size_t ZSTD_frameHeaderSize_min = 5;
|
||||
static const size_t ZSTD_frameHeaderSize_max = ZSTD_FRAMEHEADERSIZE_MAX;
|
||||
ZSTDLIB_API size_t ZSTD_getFrameParams(ZSTD_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
|
||||
|
||||
ZSTDLIB_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx);
|
||||
ZSTDLIB_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize);
|
||||
ZSTDLIB_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx);
|
||||
|
||||
ZSTDLIB_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
|
||||
ZSTDLIB_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
/*
|
||||
Streaming decompression, direct mode (bufferless)
|
||||
|
||||
A ZSTD_DCtx object is required to track streaming operations.
|
||||
Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
|
||||
A ZSTD_DCtx object can be re-used multiple times.
|
||||
|
||||
First optional operation is to retrieve frame parameters, using ZSTD_getFrameParams(), which doesn't consume the input.
|
||||
It can provide the minimum size of rolling buffer required to properly decompress data,
|
||||
and optionally the final size of uncompressed content.
|
||||
(Note : content size is an optional info that may not be present. 0 means : content size unknown)
|
||||
Frame parameters are extracted from the beginning of compressed frame.
|
||||
The amount of data to read is variable, from ZSTD_frameHeaderSize_min to ZSTD_frameHeaderSize_max (so if `srcSize` >= ZSTD_frameHeaderSize_max, it will always work)
|
||||
If `srcSize` is too small for operation to succeed, function will return the minimum size it requires to produce a result.
|
||||
Result : 0 when successful, it means the ZSTD_frameParams structure has been filled.
|
||||
>0 : means there is not enough data into `src`. Provides the expected size to successfully decode header.
|
||||
errorCode, which can be tested using ZSTD_isError()
|
||||
|
||||
Start decompression, with ZSTD_decompressBegin() or ZSTD_decompressBegin_usingDict().
|
||||
Alternatively, you can copy a prepared context, using ZSTD_copyDCtx().
|
||||
|
||||
Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
|
||||
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
|
||||
ZSTD_decompressContinue() requires this exact amount of bytes, or it will fail.
|
||||
ZSTD_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
|
||||
They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
|
||||
|
||||
@result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity)
|
||||
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
|
||||
|
||||
A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
|
||||
Context can then be reset to start a new decompression.
|
||||
*/
|
||||
|
||||
|
||||
/* **************************************
|
||||
* Block functions
|
||||
****************************************/
|
||||
/*! Block functions produce and decode raw zstd blocks, without frame metadata.
|
||||
User will have to take in charge required information to regenerate data, such as compressed and content sizes.
|
||||
|
||||
A few rules to respect :
|
||||
- Uncompressed block size must be <= ZSTD_BLOCKSIZE_MAX (128 KB)
|
||||
- Compressing or decompressing requires a context structure
|
||||
+ Use ZSTD_createCCtx() and ZSTD_createDCtx()
|
||||
- It is necessary to init context before starting
|
||||
+ compression : ZSTD_compressBegin()
|
||||
+ decompression : ZSTD_decompressBegin()
|
||||
+ variants _usingDict() are also allowed
|
||||
+ copyCCtx() and copyDCtx() work too
|
||||
- When a block is considered not compressible enough, ZSTD_compressBlock() result will be zero.
|
||||
In which case, nothing is produced into `dst`.
|
||||
+ User must test for such outcome and deal directly with uncompressed data
|
||||
+ ZSTD_decompressBlock() doesn't accept uncompressed data as input !!
|
||||
*/
|
||||
|
||||
#define ZSTD_BLOCKSIZE_MAX (128 * 1024) /* define, for static allocation */
|
||||
ZSTDLIB_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Error management
|
||||
***************************************/
|
||||
#include "error_public.h"
|
||||
/*! ZSTD_getErrorCode() :
|
||||
convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
|
||||
which can be used to compare directly with enum list published into "error_public.h" */
|
||||
ZSTDLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
|
||||
ZSTDLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code);
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ZSTD_STATIC_H */
|
||||
4726
C/zstd/zstd_v05.c
Normal file
4726
C/zstd/zstd_v05.c
Normal file
File diff suppressed because it is too large
Load Diff
156
C/zstd/zstd_v05.h
Normal file
156
C/zstd/zstd_v05.h
Normal file
@@ -0,0 +1,156 @@
|
||||
/*
|
||||
zstd_v05 - decoder for 0.5 format
|
||||
Header File
|
||||
Copyright (C) 2014-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd source repository : https://github.com/Cyan4973/zstd
|
||||
*/
|
||||
#ifndef ZSTDv05_H
|
||||
#define ZSTDv05_H
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include <stddef.h> /* size_t */
|
||||
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Simple functions
|
||||
***************************************/
|
||||
/*! ZSTDv05_decompress() :
|
||||
`compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
|
||||
`dstCapacity` must be large enough, equal or larger than originalSize.
|
||||
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
|
||||
or an errorCode if it fails (which can be tested using ZSTDv05_isError()) */
|
||||
size_t ZSTDv05_decompress( void* dst, size_t dstCapacity,
|
||||
const void* src, size_t compressedSize);
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Helper functions
|
||||
***************************************/
|
||||
/* Error Management */
|
||||
unsigned ZSTDv05_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
|
||||
const char* ZSTDv05_getErrorName(size_t code); /*!< provides readable string for an error code */
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Explicit memory management
|
||||
***************************************/
|
||||
/** Decompression context */
|
||||
typedef struct ZSTDv05_DCtx_s ZSTDv05_DCtx;
|
||||
ZSTDv05_DCtx* ZSTDv05_createDCtx(void);
|
||||
size_t ZSTDv05_freeDCtx(ZSTDv05_DCtx* dctx); /*!< @return : errorCode */
|
||||
|
||||
/** ZSTDv05_decompressDCtx() :
|
||||
* Same as ZSTDv05_decompress(), but requires an already allocated ZSTDv05_DCtx (see ZSTDv05_createDCtx()) */
|
||||
size_t ZSTDv05_decompressDCtx(ZSTDv05_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
/*-***********************
|
||||
* Dictionary API
|
||||
*************************/
|
||||
/*! ZSTDv05_decompress_usingDict() :
|
||||
* Decompression using a pre-defined Dictionary content (see dictBuilder).
|
||||
* Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted.
|
||||
* Note : dict can be NULL, in which case, it's equivalent to ZSTDv05_decompressDCtx() */
|
||||
size_t ZSTDv05_decompress_usingDict(ZSTDv05_DCtx* dctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const void* dict,size_t dictSize);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
typedef struct ZBUFFv05_DCtx_s ZBUFFv05_DCtx;
|
||||
ZBUFFv05_DCtx* ZBUFFv05_createDCtx(void);
|
||||
size_t ZBUFFv05_freeDCtx(ZBUFFv05_DCtx* dctx);
|
||||
|
||||
size_t ZBUFFv05_decompressInit(ZBUFFv05_DCtx* dctx);
|
||||
size_t ZBUFFv05_decompressInitDictionary(ZBUFFv05_DCtx* dctx, const void* dict, size_t dictSize);
|
||||
|
||||
size_t ZBUFFv05_decompressContinue(ZBUFFv05_DCtx* dctx,
|
||||
void* dst, size_t* dstCapacityPtr,
|
||||
const void* src, size_t* srcSizePtr);
|
||||
|
||||
/*-***************************************************************************
|
||||
* Streaming decompression
|
||||
*
|
||||
* A ZBUFFv05_DCtx object is required to track streaming operations.
|
||||
* Use ZBUFFv05_createDCtx() and ZBUFFv05_freeDCtx() to create/release resources.
|
||||
* Use ZBUFFv05_decompressInit() to start a new decompression operation,
|
||||
* or ZBUFFv05_decompressInitDictionary() if decompression requires a dictionary.
|
||||
* Note that ZBUFFv05_DCtx objects can be reused multiple times.
|
||||
*
|
||||
* Use ZBUFFv05_decompressContinue() repetitively to consume your input.
|
||||
* *srcSizePtr and *dstCapacityPtr can be any size.
|
||||
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
|
||||
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
|
||||
* The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change @dst.
|
||||
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency)
|
||||
* or 0 when a frame is completely decoded
|
||||
* or an error code, which can be tested using ZBUFFv05_isError().
|
||||
*
|
||||
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv05_recommendedDInSize() / ZBUFFv05_recommendedDOutSize()
|
||||
* output : ZBUFFv05_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
|
||||
* input : ZBUFFv05_recommendedDInSize==128Kb+3; just follow indications from ZBUFFv05_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
|
||||
* *******************************************************************************/
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Tool functions
|
||||
***************************************/
|
||||
unsigned ZBUFFv05_isError(size_t errorCode);
|
||||
const char* ZBUFFv05_getErrorName(size_t errorCode);
|
||||
|
||||
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
|
||||
* These sizes are just hints, and tend to offer better latency */
|
||||
size_t ZBUFFv05_recommendedDInSize(void);
|
||||
size_t ZBUFFv05_recommendedDOutSize(void);
|
||||
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Constants
|
||||
***************************************/
|
||||
#define ZSTDv05_MAGICNUMBER 0xFD2FB525 /* v0.5 */
|
||||
|
||||
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ZSTDv0505_H */
|
||||
4583
C/zstd/zstd_v06.c
Normal file
4583
C/zstd/zstd_v06.c
Normal file
File diff suppressed because it is too large
Load Diff
185
C/zstd/zstd_v06.h
Normal file
185
C/zstd/zstd_v06.h
Normal file
@@ -0,0 +1,185 @@
|
||||
/*
|
||||
zstd_v06 - decoder for 0.6 format
|
||||
Header File
|
||||
Copyright (C) 2014-2016, Yann Collet.
|
||||
|
||||
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
You can contact the author at :
|
||||
- zstd source repository : https://github.com/Cyan4973/zstd
|
||||
*/
|
||||
#ifndef ZSTDv06_H
|
||||
#define ZSTDv06_H
|
||||
|
||||
#if defined (__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*-*************************************
|
||||
* Dependencies
|
||||
***************************************/
|
||||
#include <stddef.h> /* size_t */
|
||||
|
||||
|
||||
/*-***************************************************************
|
||||
* Export parameters
|
||||
*****************************************************************/
|
||||
/*!
|
||||
* ZSTDv06_DLL_EXPORT :
|
||||
* Enable exporting of functions when building a Windows DLL
|
||||
*/
|
||||
#if defined(_WIN32) && defined(ZSTDv06_DLL_EXPORT) && (ZSTDv06_DLL_EXPORT==1)
|
||||
# define ZSTDLIB_API __declspec(dllexport)
|
||||
#else
|
||||
# define ZSTDLIB_API
|
||||
#endif
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Simple functions
|
||||
***************************************/
|
||||
/*! ZSTDv06_decompress() :
|
||||
`compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail.
|
||||
`dstCapacity` must be large enough, equal or larger than originalSize.
|
||||
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
|
||||
or an errorCode if it fails (which can be tested using ZSTDv06_isError()) */
|
||||
ZSTDLIB_API size_t ZSTDv06_decompress( void* dst, size_t dstCapacity,
|
||||
const void* src, size_t compressedSize);
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Helper functions
|
||||
***************************************/
|
||||
ZSTDLIB_API size_t ZSTDv06_compressBound(size_t srcSize); /*!< maximum compressed size (worst case scenario) */
|
||||
|
||||
/* Error Management */
|
||||
ZSTDLIB_API unsigned ZSTDv06_isError(size_t code); /*!< tells if a `size_t` function result is an error code */
|
||||
ZSTDLIB_API const char* ZSTDv06_getErrorName(size_t code); /*!< provides readable string for an error code */
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Explicit memory management
|
||||
***************************************/
|
||||
/** Decompression context */
|
||||
typedef struct ZSTDv06_DCtx_s ZSTDv06_DCtx;
|
||||
ZSTDLIB_API ZSTDv06_DCtx* ZSTDv06_createDCtx(void);
|
||||
ZSTDLIB_API size_t ZSTDv06_freeDCtx(ZSTDv06_DCtx* dctx); /*!< @return : errorCode */
|
||||
|
||||
/** ZSTDv06_decompressDCtx() :
|
||||
* Same as ZSTDv06_decompress(), but requires an already allocated ZSTDv06_DCtx (see ZSTDv06_createDCtx()) */
|
||||
ZSTDLIB_API size_t ZSTDv06_decompressDCtx(ZSTDv06_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
/*-***********************
|
||||
* Dictionary API
|
||||
*************************/
|
||||
/*! ZSTDv06_decompress_usingDict() :
|
||||
* Decompression using a pre-defined Dictionary content (see dictBuilder).
|
||||
* Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted.
|
||||
* Note : dict can be NULL, in which case, it's equivalent to ZSTDv06_decompressDCtx() */
|
||||
ZSTDLIB_API size_t ZSTDv06_decompress_usingDict(ZSTDv06_DCtx* dctx,
|
||||
void* dst, size_t dstCapacity,
|
||||
const void* src, size_t srcSize,
|
||||
const void* dict,size_t dictSize);
|
||||
|
||||
|
||||
/*-************************
|
||||
* Advanced Streaming API
|
||||
***************************/
|
||||
|
||||
typedef struct ZSTDv06_frameParams_s ZSTDv06_frameParams;
|
||||
|
||||
ZSTDLIB_API size_t ZSTDv06_getFrameParams(ZSTDv06_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */
|
||||
ZSTDLIB_API size_t ZSTDv06_decompressBegin_usingDict(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize);
|
||||
ZSTDLIB_API void ZSTDv06_copyDCtx(ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* preparedDCtx);
|
||||
|
||||
ZSTDLIB_API size_t ZSTDv06_nextSrcSizeToDecompress(ZSTDv06_DCtx* dctx);
|
||||
ZSTDLIB_API size_t ZSTDv06_decompressContinue(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
|
||||
|
||||
|
||||
|
||||
/* *************************************
|
||||
* ZBUFF API
|
||||
***************************************/
|
||||
|
||||
typedef struct ZBUFFv06_DCtx_s ZBUFFv06_DCtx;
|
||||
ZSTDLIB_API ZBUFFv06_DCtx* ZBUFFv06_createDCtx(void);
|
||||
ZSTDLIB_API size_t ZBUFFv06_freeDCtx(ZBUFFv06_DCtx* dctx);
|
||||
|
||||
ZSTDLIB_API size_t ZBUFFv06_decompressInit(ZBUFFv06_DCtx* dctx);
|
||||
ZSTDLIB_API size_t ZBUFFv06_decompressInitDictionary(ZBUFFv06_DCtx* dctx, const void* dict, size_t dictSize);
|
||||
|
||||
ZSTDLIB_API size_t ZBUFFv06_decompressContinue(ZBUFFv06_DCtx* dctx,
|
||||
void* dst, size_t* dstCapacityPtr,
|
||||
const void* src, size_t* srcSizePtr);
|
||||
|
||||
/*-***************************************************************************
|
||||
* Streaming decompression howto
|
||||
*
|
||||
* A ZBUFFv06_DCtx object is required to track streaming operations.
|
||||
* Use ZBUFFv06_createDCtx() and ZBUFFv06_freeDCtx() to create/release resources.
|
||||
* Use ZBUFFv06_decompressInit() to start a new decompression operation,
|
||||
* or ZBUFFv06_decompressInitDictionary() if decompression requires a dictionary.
|
||||
* Note that ZBUFFv06_DCtx objects can be re-init multiple times.
|
||||
*
|
||||
* Use ZBUFFv06_decompressContinue() repetitively to consume your input.
|
||||
* *srcSizePtr and *dstCapacityPtr can be any size.
|
||||
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
|
||||
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
|
||||
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
|
||||
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency),
|
||||
* or 0 when a frame is completely decoded,
|
||||
* or an error code, which can be tested using ZBUFFv06_isError().
|
||||
*
|
||||
* Hint : recommended buffer sizes (not compulsory) : ZBUFFv06_recommendedDInSize() and ZBUFFv06_recommendedDOutSize()
|
||||
* output : ZBUFFv06_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
|
||||
* input : ZBUFFv06_recommendedDInSize == 128KB + 3;
|
||||
* just follow indications from ZBUFFv06_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
|
||||
* *******************************************************************************/
|
||||
|
||||
|
||||
/* *************************************
|
||||
* Tool functions
|
||||
***************************************/
|
||||
ZSTDLIB_API unsigned ZBUFFv06_isError(size_t errorCode);
|
||||
ZSTDLIB_API const char* ZBUFFv06_getErrorName(size_t errorCode);
|
||||
|
||||
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
|
||||
* These sizes are just hints, they tend to offer better latency */
|
||||
ZSTDLIB_API size_t ZBUFFv06_recommendedDInSize(void);
|
||||
ZSTDLIB_API size_t ZBUFFv06_recommendedDOutSize(void);
|
||||
|
||||
|
||||
/*-*************************************
|
||||
* Constants
|
||||
***************************************/
|
||||
#define ZSTDv06_MAGICNUMBER 0xFD2FB526 /* v0.6 */
|
||||
|
||||
|
||||
|
||||
#if defined (__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* ZSTDv06_BUFFERED_H */
|
||||
Reference in New Issue
Block a user