This commit is contained in:
Igor Pavlov
2003-12-11 00:00:00 +00:00
committed by Kornel Lesiński
commit 8c1b5c7b7e
982 changed files with 118799 additions and 0 deletions

157
7zip/Crypto/RarAES/RarAES.cpp Executable file
View File

@@ -0,0 +1,157 @@
// Crypto/RarAES/RarAES.h
// This code is based on UnRar sources
#include "StdAfx.h"
#include "../../Common/StreamObjects.h"
#include "../../Archive/Common/CoderLoader.h"
#include "Windows/Defs.h"
#include "RarAES.h"
#include "sha1.h"
extern void GetCryptoFolderPrefix(TCHAR *path);
// {23170F69-40C1-278B-0601-010000000000}
DEFINE_GUID(CLSID_CCrypto_AES128_Decoder,
0x23170F69, 0x40C1, 0x278B, 0x06, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00);
namespace NCrypto {
namespace NRar29 {
CDecoder::CDecoder():
_thereIsSalt(false),
_needCalculate(true)
{
for (int i = 0; i < sizeof(_salt); i++)
_salt[i] = 0;
}
STDMETHODIMP CDecoder::SetDecoderProperties(ISequentialInStream *inStream)
{
bool thereIsSaltPrev = _thereIsSalt;
_thereIsSalt = false;
UINT32 processedSize;
BYTE salt[8];
RINOK(inStream->Read(salt, sizeof(salt), &processedSize));
if (processedSize == 0)
_thereIsSalt = false;
if (processedSize != sizeof(salt))
return E_INVALIDARG;
_thereIsSalt = true;
bool same = false;
if (_thereIsSalt == thereIsSaltPrev)
{
same = true;
if (_thereIsSalt)
{
for (int i = 0; i < sizeof(_salt); i++)
if (_salt[i] != salt[i])
{
same = false;
break;
}
}
}
for (int i = 0; i < sizeof(_salt); i++)
_salt[i] = salt[i];
if (!_needCalculate && !same)
_needCalculate = true;
return S_OK;
}
STDMETHODIMP CDecoder::CryptoSetPassword(const BYTE *data, UINT32 size)
{
bool same = false;
if (size == buffer.GetCapacity())
{
same = true;
for (UINT32 i = 0; i < size; i++)
if (data[i] != buffer[i])
{
same = false;
break;
}
}
if (!_needCalculate && !same)
_needCalculate = true;
buffer.SetCapacity(size);
memcpy(buffer, data, size);
return S_OK;
}
STDMETHODIMP CDecoder::Code(ISequentialInStream *inStream,
ISequentialOutStream *outStream, UINT64 const *inSize,
const UINT64 *outSize,ICompressProgressInfo *progress)
{
if (_needCalculate)
{
const MAXPASSWORD = 128;
const SALT_SIZE = 8;
BYTE rawPassword[2 * MAXPASSWORD+ SALT_SIZE];
memcpy(rawPassword, buffer, buffer.GetCapacity());
int rawLength = buffer.GetCapacity();
if (_thereIsSalt)
{
memcpy(rawPassword + rawLength, _salt, SALT_SIZE);
rawLength += SALT_SIZE;
}
hash_context c;
hash_initial(&c);
const int hashRounds = 0x40000;
int i;
for (i = 0; i < hashRounds; i++)
{
hash_process(&c, rawPassword, rawLength);
BYTE pswNum[3];
pswNum[0] = (BYTE)i;
pswNum[1] = (BYTE)(i >> 8);
pswNum[2] = (BYTE)(i >> 16);
hash_process(&c, pswNum, 3);
if (i % (hashRounds / 16) == 0)
{
hash_context tempc = c;
UINT32 digest[5];
hash_final(&tempc, digest);
aesInit[i / (hashRounds / 16)] = (BYTE)digest[4];
}
}
UINT32 digest[5];
hash_final(&c, digest);
for (i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
aesKey[i * 4 + j] = (BYTE)(digest[i] >> (j * 8));
}
_needCalculate = false;
TCHAR aesLibPath[MAX_PATH + 64];
GetCryptoFolderPrefix(aesLibPath);
lstrcat(aesLibPath, TEXT("AES.dll"));
CCoderLibrary aesLib;
CMyComPtr<ICompressCoder2> aesDecoder;
RINOK(aesLib.LoadAndCreateCoder2(aesLibPath, CLSID_CCrypto_AES128_Decoder, &aesDecoder));
CSequentialInStreamImp *ivStreamSpec = new CSequentialInStreamImp;
CMyComPtr<ISequentialInStream> ivStream(ivStreamSpec);
ivStreamSpec->Init(aesInit, 16);
CSequentialInStreamImp *keyStreamSpec = new CSequentialInStreamImp;
CMyComPtr<ISequentialInStream> keyStream(keyStreamSpec);
keyStreamSpec->Init(aesKey, 16);
ISequentialInStream *inStreams[3] = { inStream, ivStream, keyStream };
UINT64 ivSize = 16;
UINT64 keySize = 16;
const UINT64 *inSizes[3] = { inSize, &ivSize, &ivSize, };
return aesDecoder->Code(inStreams, inSizes, 3,
&outStream, &outSize, 1, progress);
}
}}

48
7zip/Crypto/RarAES/RarAES.h Executable file
View File

@@ -0,0 +1,48 @@
// Crypto/CRarAES/RarAES.h
#ifndef __CRYPTO_RARAES_H
#define __CRYPTO_RARAES_H
#include "Common/MyCom.h"
#include "../../ICoder.h"
#include "../../IPassword.h"
#include "Common/Types.h"
#include "Common/Buffer.h"
namespace NCrypto {
namespace NRar29 {
class CDecoder:
public ICompressCoder,
public ICompressSetDecoderProperties,
public ICryptoSetPassword,
public CMyUnknownImp
{
BYTE _salt[8];
bool _thereIsSalt;
CByteBuffer buffer;
BYTE aesKey[16];
BYTE aesInit[16];
bool _needCalculate;
public:
MY_UNKNOWN_IMP2(
ICryptoSetPassword,
ICompressSetDecoderProperties)
STDMETHOD(Code)(ISequentialInStream *inStream,
ISequentialOutStream *outStream, UINT64 const *inSize,
const UINT64 *outSize,ICompressProgressInfo *progress);
STDMETHOD(CryptoSetPassword)(const BYTE *aData, UINT32 aSize);
// ICompressSetDecoderProperties
STDMETHOD(SetDecoderProperties)(ISequentialInStream *inStream);
CDecoder();
};
}}
#endif

214
7zip/Crypto/RarAES/sha1.cpp Executable file
View File

@@ -0,0 +1,214 @@
// sha1.cpp
// This file from UnRar sources
#include "StdAfx.h"
#include "sha1.h"
/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
Test Vectors (from FIPS PUB 180-1)
"abc"
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
A million repetitions of "a"
34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
#if !defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
#if defined(_M_IX86) || defined(_M_I86) || defined(__alpha)
#define LITTLE_ENDIAN
#else
#error "LITTLE_ENDIAN or BIG_ENDIAN must be defined"
#endif
#endif
/* #define SHA1HANDSOFF * Copies data before messing with it. */
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#ifdef LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) {z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);}
#define R1(v,w,x,y,z,i) {z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);}
#define R2(v,w,x,y,z,i) {z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);}
#define R3(v,w,x,y,z,i) {z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);}
#define R4(v,w,x,y,z,i) {z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);}
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(UINT32 state[5], unsigned char buffer[64])
{
UINT32 a, b, c, d, e;
typedef union {
unsigned char c[64];
UINT32 l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
#ifdef SHA1HANDSOFF
static unsigned char workspace[64];
block = (CHAR64LONG16*)workspace;
memcpy(block, buffer, 64);
#else
block = (CHAR64LONG16*)buffer;
#endif
#ifdef SFX_MODULE
static int pos[80][5];
static bool pinit=false;
if (!pinit)
{
for (int I=0,P=0;I<80;I++,P=(P ? P-1:4))
{
pos[I][0]=P;
pos[I][1]=(P+1)%5;
pos[I][2]=(P+2)%5;
pos[I][3]=(P+3)%5;
pos[I][4]=(P+4)%5;
}
pinit=true;
}
UINT32 s[5];
for (int I=0;I<sizeof(s)/sizeof(s[0]);I++)
s[I]=state[I];
for (int I=0;I<16;I++)
R0(s[pos[I][0]],s[pos[I][1]],s[pos[I][2]],s[pos[I][3]],s[pos[I][4]],I);
for (int I=16;I<20;I++)
R1(s[pos[I][0]],s[pos[I][1]],s[pos[I][2]],s[pos[I][3]],s[pos[I][4]],I);
for (int I=20;I<40;I++)
R2(s[pos[I][0]],s[pos[I][1]],s[pos[I][2]],s[pos[I][3]],s[pos[I][4]],I);
for (int I=40;I<60;I++)
R3(s[pos[I][0]],s[pos[I][1]],s[pos[I][2]],s[pos[I][3]],s[pos[I][4]],I);
for (int I=60;I<80;I++)
R4(s[pos[I][0]],s[pos[I][1]],s[pos[I][2]],s[pos[I][3]],s[pos[I][4]],I);
for (int I=0;I<sizeof(s)/sizeof(s[0]);I++)
state[I]+=s[I];
#else
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
memset(&a,0,sizeof(a));
#endif
}
/* Initialize new context */
void hash_initial(hash_context* context)
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Run your data through this. */
void hash_process( hash_context * context, unsigned char * data, unsigned len )
{
unsigned int i, j;
UINT32 blen = ((UINT32)len)<<3;
j = (context->count[0] >> 3) & 63;
if ((context->count[0] += blen) < blen ) context->count[1]++;
context->count[1] += (len >> 29);
if ((j + len) > 63) {
memcpy(&context->buffer[j], data, (i = 64-j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64) {
SHA1Transform(context->state, &data[i]);
}
j = 0;
}
else i = 0;
if (len > i)
memcpy(&context->buffer[j], &data[i], len - i);
}
/* Add padding and return the message digest. */
void hash_final( hash_context* context, UINT32 digest[5] )
{
UINT32 i, j;
unsigned char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
unsigned char ch='\200';
hash_process(context, &ch, 1);
while ((context->count[0] & 504) != 448) {
ch=0;
hash_process(context, &ch, 1);
}
hash_process(context, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 5; i++) {
digest[i] = context->state[i] & 0xffffffff;
}
/* Wipe variables */
memset(&i,0,sizeof(i));
memset(&j,0,sizeof(j));
memset(context->buffer, 0, 64);
memset(context->state, 0, 20);
memset(context->count, 0, 8);
memset(&finalcount, 0, 8);
#ifdef SHA1HANDSOFF /* make SHA1Transform overwrite it's own static vars */
SHA1Transform(context->state, context->buffer);
#endif
}

19
7zip/Crypto/RarAES/sha1.h Executable file
View File

@@ -0,0 +1,19 @@
// sha1.h
// This file from UnRar sources
#ifndef _RAR_SHA1_
#define _RAR_SHA1_
#define HW 5
typedef struct {
UINT32 state[5];
UINT32 count[2];
unsigned char buffer[64];
} hash_context;
void hash_initial( hash_context * c );
void hash_process( hash_context * c, unsigned char * data, unsigned len );
void hash_final( hash_context * c, UINT32[HW] );
#endif