positional letter mapping snake game

This commit is contained in:
Xevion
2019-09-17 00:16:39 -05:00
parent 493352a14f
commit 6a166e3fca
3 changed files with 44 additions and 28 deletions

View File

@@ -3,7 +3,6 @@ import math, time, random
class Node(object):
def __init__(self, parent=None, position=None):
self.parent, self.position = parent, position
self.g, self.h, self.f = 0, 0, 0
def __eq__(self, other):
@@ -21,7 +20,9 @@ class Node(object):
class SnakeGrid(object):
def __init__(self, x, y, length=3):
self.x, self.y, self.length, self.sleepTime = x, y, length, 0.0
# Right, Down, Up, Left
self.offsets = [[0, 1], [1, 0], [-1, 0], [0, -1]]
self.offsetLetters = list("RDUL")
self.generate()
def sleep(self, seconds):
@@ -85,7 +86,6 @@ class SnakeGrid(object):
def bestPellet(self, curpos, blacklist=[]):
potential = self.pellets()
if blacklist:
print(curpos, blacklist)
potential = list(filter(lambda item : item not in blacklist, potential))
# Returns None if no potential pellets are in due to blacklist
if not potential:
@@ -96,29 +96,42 @@ class SnakeGrid(object):
def merge(self, pos1, pos2):
return [pos1[0] + pos2[0], pos1[1] + pos2[1]]
def solution(self, maxdist=20):
path = self.generateSolutions()
def solution(self, maxdist=20, startpos=None):
pelletCount, path = self.generateSolutions(maxdist=maxdist, startpos=startpos)
for i, pos in enumerate(path):
if self.available(pos):
self.mark(pos, str(i + 1))
return path
self.mark(pos, str(i))
return pelletCount, self.mapPositions(path)
def mapPositions(self, positions):
letters = []
curpos = positions.pop(0)
while len(positions) > 0:
nextpos = positions.pop(0)
offset = [nextpos[0] - curpos[0], nextpos[1] - curpos[1]]
letters.append(offset)
curpos = nextpos
letters = list(map(lambda item : self.offsetLetters[self.offsets.index(item)], letters))
return ''.join(letters)
# Generater a solution for the maz
def generateSolutions(self, maxdist=30):
def generateSolutions(self, maxdist=20, startpos=None):
def build_path(current_node):
path = []
current = current_node
while current is not None:
path.append(current.position)
current = current.parent
return path[::-1]
return (pelletCount, path[::-1])
# Pathfinding initial constants
start_node = Node(None, self.positions[-1])
end_node = Node(None, self.bestPellet(start_node.position))
open_list, closed_list = [start_node], []
end_node = Node(None, startpos or self.bestPellet(start_node.position))
open_list = [start_node]
closed_list = [Node(position=pos) for pos in self.pellets(char='X')]
finished_end_nodes = []
pathdist = 0
pelletCount = 1
output = ""
while len(open_list) > 0:
@@ -141,6 +154,7 @@ class SnakeGrid(object):
open_list = [start_node]
closed_list.append(end_node)
end_node = position=self.bestPellet(current_node.position, blacklist=Node.positionify(finished_end_nodes))
pelletCount += 1
# if we've acquired all pellets by chance
if end_node is None:
return build_path(current_node)
@@ -165,8 +179,6 @@ class SnakeGrid(object):
# Ensure that child node is
if child not in open_list:
open_list.append(child)
return output
# Quick method for getting a position with the offsets provided
def getPos(self, xoffset=0, yoffset=0):
@@ -174,6 +186,8 @@ class SnakeGrid(object):
# Quick method for marking a postiion
def mark(self, pos, marker='X'):
if self.matrix[pos[0]][pos[1]] != ' ':
print(f'Overwritten {self.matrix[pos[0][pos[1]]]} with \'{marker}\'')
self.matrix[pos[0]][pos[1]] = marker
# Mechansim for determining whether a position is in the boundaries of the matrix
@@ -206,17 +220,20 @@ if __name__ == "__main__":
# Build and prints matrixes
for x in range(iterations):
snakegrid = SnakeGrid(size[0], size[1], 3)
solution = snakegrid.solution()
print(dividerCustom.format(str(x+1).zfill(len(str(iterations)))))
print(snakegrid)
for position in snakegrid.pellets():
pelletCount, solution = snakegrid.solution(startpos=position)
print(f'{solution} - {pelletCount}')
print(dividerTotal)
print(solution)
time.sleep(timing)
print(snakegrid)
# snakegrid.sleep(timing)
print(dividerTotal)
# Finish and print timing statistics
t2 = time.time()
print(f'Processing Time : {roundTime(t2 - t1 - (timing * iterations) - snakegrid.sleepTime)}')
print(f'Artificial Time : {roundTime((timing * iterations) + snakegrid.sleepTime)}')
print(f'Processing Time : {roundTime(t2 - t1 - snakegrid.sleepTime)}')
print(f'Artificial Time : {roundTime(snakegrid.sleepTime)}')
print(f'Total Time : {roundTime(t2 - t1)}')
print(dividerTotal)