/*MIT License Copyright(c) 2018 Vili Volčini / viliwonka Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define KDTREE_VISUAL_DEBUG using System.Collections.Generic; using UnityEngine; using System; namespace DataStructures.ViliWonka.KDTree { using Heap; public partial class KDQuery { SortedList> _heaps = new SortedList>(); /// /// Returns indices to k closest points, and optionaly can return distances /// /// Tree to do search on /// Position /// Max number of points /// List where resulting indices will be stored /// Optional list where resulting distances will be stored public void KNearest(KDTree tree, Vector3 queryPosition, int k, List resultIndices, List resultDistances = null) { // pooled heap arrays KSmallestHeap kHeap; _heaps.TryGetValue(k, out kHeap); if(kHeap == null) { kHeap = new KSmallestHeap(k); _heaps.Add(k, kHeap); } kHeap.Clear(); Reset(); Vector3[] points = tree.Points; int[] permutation = tree.Permutation; ///Biggest Smallest Squared Radius float BSSR = Single.PositiveInfinity; var rootNode = tree.RootNode; Vector3 rootClosestPoint = rootNode.bounds.ClosestPoint(queryPosition); PushToHeap(rootNode, rootClosestPoint, queryPosition); KDQueryNode queryNode = null; KDNode node = null; int partitionAxis; float partitionCoord; Vector3 tempClosestPoint; // searching while(minHeap.Count > 0) { queryNode = PopFromHeap(); if(queryNode.distance > BSSR) continue; node = queryNode.node; if(!node.Leaf) { partitionAxis = node.partitionAxis; partitionCoord = node.partitionCoordinate; tempClosestPoint = queryNode.tempClosestPoint; if((tempClosestPoint[partitionAxis] - partitionCoord) < 0) { // we already know we are on the side of negative bound/node, // so we don't need to test for distance // push to stack for later querying PushToHeap(node.negativeChild, tempClosestPoint, queryPosition); // project the tempClosestPoint to other bound tempClosestPoint[partitionAxis] = partitionCoord; if(node.positiveChild.Count != 0) { PushToHeap(node.positiveChild, tempClosestPoint, queryPosition); } } else { // we already know we are on the side of positive bound/node, // so we don't need to test for distance // push to stack for later querying PushToHeap(node.positiveChild, tempClosestPoint, queryPosition); // project the tempClosestPoint to other bound tempClosestPoint[partitionAxis] = partitionCoord; if(node.positiveChild.Count != 0) { PushToHeap(node.negativeChild, tempClosestPoint, queryPosition); } } } else { float sqrDist; // LEAF for(int i = node.start; i < node.end; i++) { int index = permutation[i]; sqrDist = Vector3.SqrMagnitude(points[index] - queryPosition); if(sqrDist <= BSSR) { kHeap.PushObj(index, sqrDist); if(kHeap.Full) { BSSR = kHeap.HeadValue; } } } } } kHeap.FlushResult(resultIndices, resultDistances); } } }