Files
Pac-Man/src/map/builder.rs

376 lines
15 KiB
Rust

//! Map construction and building functionality.
use crate::constants::{MapTile, BOARD_CELL_SIZE, CELL_SIZE};
use crate::entity::direction::Direction;
use crate::entity::graph::{EdgePermissions, Graph, Node, NodeId};
use crate::map::parser::MapTileParser;
use crate::map::render::MapRenderer;
use crate::texture::sprite::{AtlasTile, SpriteAtlas};
use glam::{IVec2, UVec2, Vec2};
use sdl2::render::{Canvas, RenderTarget};
use std::collections::{HashMap, VecDeque};
use tracing::debug;
/// The starting positions of the entities in the game.
#[allow(dead_code)]
pub struct NodePositions {
pub pacman: NodeId,
pub blinky: NodeId,
pub pinky: NodeId,
pub inky: NodeId,
pub clyde: NodeId,
}
/// The main map structure containing the game board and navigation graph.
pub struct Map {
/// The current state of the map.
#[allow(dead_code)]
current: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
/// The node map for entity movement.
pub graph: Graph,
/// A mapping from grid positions to node IDs.
pub grid_to_node: HashMap<IVec2, NodeId>,
/// A mapping of the starting positions of the entities.
#[allow(dead_code)]
pub start_positions: NodePositions,
/// Pac-Man's starting position.
pacman_start: Option<IVec2>,
}
impl Map {
/// Creates a new `Map` instance from a raw board layout.
///
/// This constructor initializes the map tiles based on the provided character layout
/// and then generates a navigation graph from the walkable areas.
///
/// # Panics
///
/// This function will panic if the board layout contains unknown characters or if
/// the house door is not defined by exactly two '=' characters.
pub fn new(raw_board: [&str; BOARD_CELL_SIZE.y as usize]) -> Map {
let parsed_map = MapTileParser::parse_board(raw_board).expect("Failed to parse board layout");
let map = parsed_map.tiles;
let house_door = parsed_map.house_door;
let tunnel_ends = parsed_map.tunnel_ends;
let pacman_start = parsed_map.pacman_start;
let mut graph = Graph::new();
let mut grid_to_node = HashMap::new();
let cell_offset = Vec2::splat(CELL_SIZE as f32 / 2.0);
// Find a starting point for the graph generation, preferably Pac-Man's position.
let start_pos = pacman_start.expect("Pac-Man's starting position not found");
// Add the starting position to the graph/queue
let mut queue = VecDeque::new();
queue.push_back(start_pos);
let pos = Vec2::new(
(start_pos.x * CELL_SIZE as i32) as f32,
(start_pos.y * CELL_SIZE as i32) as f32,
) + cell_offset;
let node_id = graph.add_node(Node { position: pos });
grid_to_node.insert(start_pos, node_id);
// Iterate over the queue, adding nodes to the graph and connecting them to their neighbors
while let Some(source_position) = queue.pop_front() {
for dir in Direction::DIRECTIONS {
let new_position = source_position + dir.as_ivec2();
// Skip if the new position is out of bounds
if new_position.x < 0
|| new_position.x >= BOARD_CELL_SIZE.x as i32
|| new_position.y < 0
|| new_position.y >= BOARD_CELL_SIZE.y as i32
{
continue;
}
// Skip if the new position is already in the graph
if grid_to_node.contains_key(&new_position) {
continue;
}
// Skip if the new position is not a walkable tile
if matches!(
map[new_position.x as usize][new_position.y as usize],
MapTile::Pellet | MapTile::PowerPellet | MapTile::Empty | MapTile::Tunnel
) {
// Add the new position to the graph/queue
let pos = Vec2::new(
(new_position.x * CELL_SIZE as i32) as f32,
(new_position.y * CELL_SIZE as i32) as f32,
) + cell_offset;
let new_node_id = graph.add_node(Node { position: pos });
grid_to_node.insert(new_position, new_node_id);
queue.push_back(new_position);
// Connect the new node to the source node
let source_node_id = grid_to_node
.get(&source_position)
.unwrap_or_else(|| panic!("Source node not found for {source_position}"));
// Connect the new node to the source node
graph
.connect(*source_node_id, new_node_id, false, None, dir)
.expect("Failed to add edge");
}
}
}
// While most nodes are already connected to their neighbors, some may not be, so we need to connect them
for (grid_pos, &node_id) in &grid_to_node {
for dir in Direction::DIRECTIONS {
// If the node doesn't have an edge in this direction, look for a neighbor in that direction
if graph.adjacency_list[node_id].get(dir).is_none() {
let neighbor = grid_pos + dir.as_ivec2();
// If the neighbor exists, connect the node to it
if let Some(&neighbor_id) = grid_to_node.get(&neighbor) {
graph
.connect(node_id, neighbor_id, false, None, dir)
.expect("Failed to add edge");
}
}
}
}
// Build house structure
let (house_entrance_node_id, left_center_node_id, center_center_node_id, right_center_node_id) =
Self::build_house(&mut graph, &grid_to_node, &house_door);
let start_positions = NodePositions {
pacman: grid_to_node[&start_pos],
blinky: house_entrance_node_id,
pinky: left_center_node_id,
inky: right_center_node_id,
clyde: center_center_node_id,
};
// Build tunnel connections
Self::build_tunnels(&mut graph, &grid_to_node, &tunnel_ends);
Map {
current: map,
graph,
grid_to_node,
start_positions,
pacman_start,
}
}
/// Finds the starting position for a given entity ID.
///
/// # Arguments
///
/// * `entity_id` - The entity ID (0 for Pac-Man, 1-4 for ghosts)
///
/// # Returns
///
/// The starting position as a grid coordinate (`UVec2`), or `None` if not found.
pub fn find_starting_position(&self, entity_id: u8) -> Option<UVec2> {
// For now, only Pac-Man (entity_id 0) is supported
if entity_id == 0 {
return self.pacman_start.map(|pos| UVec2::new(pos.x as u32, pos.y as u32));
}
None
}
/// Renders the map to the given canvas.
///
/// This function draws the static map texture to the screen at the correct
/// position and scale.
pub fn render<T: RenderTarget>(&self, canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, map_texture: &mut AtlasTile) {
MapRenderer::render_map(canvas, atlas, map_texture);
}
/// Renders a debug visualization with cursor-based highlighting.
///
/// This function provides interactive debugging by highlighting the nearest node
/// to the cursor, showing its ID, and highlighting its connections.
pub fn debug_render_with_cursor<T: RenderTarget>(
&self,
canvas: &mut Canvas<T>,
text_renderer: &mut crate::texture::text::TextTexture,
atlas: &mut SpriteAtlas,
cursor_pos: glam::Vec2,
) {
MapRenderer::debug_render_with_cursor(&self.graph, canvas, text_renderer, atlas, cursor_pos);
}
/// Builds the house structure in the graph.
fn build_house(
graph: &mut Graph,
grid_to_node: &HashMap<IVec2, NodeId>,
house_door: &[Option<IVec2>; 2],
) -> (usize, usize, usize, usize) {
// Calculate the position of the house entrance node
let (house_entrance_node_id, house_entrance_node_position) = {
// Translate the grid positions to the actual node ids
let left_node = grid_to_node
.get(&(house_door[0].expect("First house door position not acquired") + Direction::Left.as_ivec2()))
.expect("Left house door node not found");
let right_node = grid_to_node
.get(&(house_door[1].expect("Second house door position not acquired") + Direction::Right.as_ivec2()))
.expect("Right house door node not found");
// Calculate the position of the house node
let (node_id, node_position) = {
let left_pos = graph.get_node(*left_node).unwrap().position;
let right_pos = graph.get_node(*right_node).unwrap().position;
let house_node = graph.add_node(Node {
position: left_pos.lerp(right_pos, 0.5),
});
(house_node, left_pos.lerp(right_pos, 0.5))
};
// Connect the house door to the left and right nodes
graph
.connect(node_id, *left_node, true, None, Direction::Left)
.expect("Failed to connect house door to left node");
graph
.connect(node_id, *right_node, true, None, Direction::Right)
.expect("Failed to connect house door to right node");
(node_id, node_position)
};
// A helper function to help create the various 'lines' of nodes within the house
let create_house_line = |graph: &mut Graph, center_pos: Vec2| -> (NodeId, NodeId) {
// Place the nodes at, above, and below the center position
let center_node_id = graph.add_node(Node { position: center_pos });
let top_node_id = graph.add_node(Node {
position: center_pos + (Direction::Up.as_ivec2() * (CELL_SIZE as i32 / 2)).as_vec2(),
});
let bottom_node_id = graph.add_node(Node {
position: center_pos + (Direction::Down.as_ivec2() * (CELL_SIZE as i32 / 2)).as_vec2(),
});
// Connect the center node to the top and bottom nodes
graph
.connect(center_node_id, top_node_id, false, None, Direction::Up)
.expect("Failed to connect house line to left node");
graph
.connect(center_node_id, bottom_node_id, false, None, Direction::Down)
.expect("Failed to connect house line to right node");
(center_node_id, top_node_id)
};
// Calculate the position of the center line's center node
let center_line_center_position =
house_entrance_node_position + (Direction::Down.as_ivec2() * (3 * CELL_SIZE as i32)).as_vec2();
// Create the center line
let (center_center_node_id, center_top_node_id) = create_house_line(graph, center_line_center_position);
// Create a ghost-only, two-way connection for the house door.
// This prevents Pac-Man from entering or exiting through the door.
graph
.add_edge(
house_entrance_node_id,
center_top_node_id,
false,
None,
Direction::Down,
EdgePermissions::GhostsOnly,
)
.expect("Failed to create ghost-only entrance to house");
graph
.add_edge(
center_top_node_id,
house_entrance_node_id,
false,
None,
Direction::Up,
EdgePermissions::GhostsOnly,
)
.expect("Failed to create ghost-only exit from house");
// Create the left line
let (left_center_node_id, _) = create_house_line(
graph,
center_line_center_position + (Direction::Left.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
);
// Create the right line
let (right_center_node_id, _) = create_house_line(
graph,
center_line_center_position + (Direction::Right.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
);
debug!("Left center node id: {left_center_node_id}");
// Connect the center line to the left and right lines
graph
.connect(center_center_node_id, left_center_node_id, false, None, Direction::Left)
.expect("Failed to connect house entrance to left top line");
graph
.connect(center_center_node_id, right_center_node_id, false, None, Direction::Right)
.expect("Failed to connect house entrance to right top line");
debug!("House entrance node id: {house_entrance_node_id}");
(
house_entrance_node_id,
left_center_node_id,
center_center_node_id,
right_center_node_id,
)
}
/// Builds the tunnel connections in the graph.
fn build_tunnels(graph: &mut Graph, grid_to_node: &HashMap<IVec2, NodeId>, tunnel_ends: &[Option<IVec2>; 2]) {
// Create the hidden tunnel nodes
let left_tunnel_hidden_node_id = {
let left_tunnel_entrance_node_id = grid_to_node[&tunnel_ends[0].expect("Left tunnel end not found")];
let left_tunnel_entrance_node = graph
.get_node(left_tunnel_entrance_node_id)
.expect("Left tunnel entrance node not found");
graph
.connect_node(
left_tunnel_entrance_node_id,
Direction::Left,
Node {
position: left_tunnel_entrance_node.position
+ (Direction::Left.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
},
)
.expect("Failed to connect left tunnel entrance to left tunnel hidden node")
};
// Create the right tunnel nodes
let right_tunnel_hidden_node_id = {
let right_tunnel_entrance_node_id = grid_to_node[&tunnel_ends[1].expect("Right tunnel end not found")];
let right_tunnel_entrance_node = graph
.get_node(right_tunnel_entrance_node_id)
.expect("Right tunnel entrance node not found");
graph
.connect_node(
right_tunnel_entrance_node_id,
Direction::Right,
Node {
position: right_tunnel_entrance_node.position
+ (Direction::Right.as_ivec2() * (CELL_SIZE as i32 * 2)).as_vec2(),
},
)
.expect("Failed to connect right tunnel entrance to right tunnel hidden node")
};
// Connect the left tunnel hidden node to the right tunnel hidden node
graph
.connect(
left_tunnel_hidden_node_id,
right_tunnel_hidden_node_id,
false,
Some(0.0),
Direction::Left,
)
.expect("Failed to connect left tunnel hidden node to right tunnel hidden node");
}
}