Files
Pac-Man/src/game/mod.rs
Xevion c1c5dae6f2 refactor: restructure game logic and state management into separate modules
- Moved game logic from `game.rs` to `game/mod.rs` and `game/state.rs` for better organization.
- Updated `App` to utilize the new `Game` struct and its state management.
- Refactored error handling
- Removed unused audio subsystem references
2025-08-12 14:40:48 -05:00

328 lines
12 KiB
Rust

//! This module contains the main game logic and state.
use glam::{UVec2, Vec2};
use rand::{rngs::SmallRng, Rng, SeedableRng};
use sdl2::{
keyboard::Keycode,
pixels::Color,
render::{Canvas, RenderTarget, Texture, TextureCreator},
video::WindowContext,
};
use crate::error::{EntityError, GameError, GameResult};
use crate::entity::{
collision::{Collidable, CollisionSystem, EntityId},
ghost::{Ghost, GhostType},
pacman::Pacman,
r#trait::Entity,
};
pub mod state;
use state::GameState;
/// The `Game` struct is the main entry point for the game.
///
/// It contains the game's state and logic, and is responsible for
/// handling user input, updating the game state, and rendering the game.
pub struct Game {
state: GameState,
}
impl Game {
pub fn new(texture_creator: &'static TextureCreator<WindowContext>) -> GameResult<Game> {
let state = GameState::new(texture_creator)?;
Ok(Game { state })
}
pub fn keyboard_event(&mut self, keycode: Keycode) {
self.state.pacman.handle_key(keycode);
if keycode == Keycode::M {
self.state.audio.set_mute(!self.state.audio.is_muted());
}
if keycode == Keycode::R {
if let Err(e) = self.reset_game_state() {
tracing::error!("Failed to reset game state: {}", e);
}
}
}
/// Resets the game state, randomizing ghost positions and resetting Pac-Man
fn reset_game_state(&mut self) -> GameResult<()> {
let pacman_start_node = self.state.map.start_positions.pacman;
self.state.pacman = Pacman::new(&self.state.map.graph, pacman_start_node, &self.state.atlas)?;
// Reset items
self.state.items = self.state.map.generate_items(&self.state.atlas)?;
// Randomize ghost positions
let ghost_types = [GhostType::Blinky, GhostType::Pinky, GhostType::Inky, GhostType::Clyde];
let mut rng = SmallRng::from_os_rng();
for (i, ghost) in self.state.ghosts.iter_mut().enumerate() {
let random_node = rng.random_range(0..self.state.map.graph.node_count());
*ghost = Ghost::new(&self.state.map.graph, random_node, ghost_types[i], &self.state.atlas)?;
}
// Reset collision system
self.state.collision_system = CollisionSystem::default();
// Re-register Pac-Man
self.state.pacman_id = self.state.collision_system.register_entity(self.state.pacman.position());
// Re-register items
self.state.item_ids.clear();
for item in &self.state.items {
let item_id = self.state.collision_system.register_entity(item.position());
self.state.item_ids.push(item_id);
}
// Re-register ghosts
self.state.ghost_ids.clear();
for ghost in &self.state.ghosts {
let ghost_id = self.state.collision_system.register_entity(ghost.position());
self.state.ghost_ids.push(ghost_id);
}
Ok(())
}
pub fn tick(&mut self, dt: f32) {
self.state.pacman.tick(dt, &self.state.map.graph);
// Update all ghosts
for ghost in &mut self.state.ghosts {
ghost.tick(dt, &self.state.map.graph);
}
// Update collision system positions
self.update_collision_positions();
// Check for collisions
self.check_collisions();
}
/// Toggles the debug mode on and off.
///
/// When debug mode is enabled, the game will render additional information
/// that is useful for debugging, such as the collision grid and entity paths.
pub fn toggle_debug_mode(&mut self) {
self.state.debug_mode = !self.state.debug_mode;
}
fn update_collision_positions(&mut self) {
// Update Pac-Man's position
self.state
.collision_system
.update_position(self.state.pacman_id, self.state.pacman.position());
// Update ghost positions
for (ghost, &ghost_id) in self.state.ghosts.iter().zip(&self.state.ghost_ids) {
self.state.collision_system.update_position(ghost_id, ghost.position());
}
}
fn check_collisions(&mut self) {
// Check Pac-Man vs Items
let potential_collisions = self
.state
.collision_system
.potential_collisions(&self.state.pacman.position());
for entity_id in potential_collisions {
if entity_id != self.state.pacman_id {
// Check if this is an item collision
if let Some(item_index) = self.find_item_by_id(entity_id) {
let item = &mut self.state.items[item_index];
if !item.is_collected() {
item.collect();
self.state.score += item.get_score();
self.state.audio.eat();
// Handle energizer effects
if matches!(item.item_type, crate::entity::item::ItemType::Energizer) {
// TODO: Make ghosts frightened
tracing::info!("Energizer collected! Ghosts should become frightened.");
}
}
}
// Check if this is a ghost collision
if let Some(_ghost_index) = self.find_ghost_by_id(entity_id) {
// TODO: Handle Pac-Man being eaten by ghost
tracing::info!("Pac-Man collided with ghost!");
}
}
}
}
fn find_item_by_id(&self, entity_id: EntityId) -> Option<usize> {
self.state.item_ids.iter().position(|&id| id == entity_id)
}
fn find_ghost_by_id(&self, entity_id: EntityId) -> Option<usize> {
self.state.ghost_ids.iter().position(|&id| id == entity_id)
}
pub fn draw<T: RenderTarget>(&mut self, canvas: &mut Canvas<T>, backbuffer: &mut Texture) -> GameResult<()> {
canvas
.with_texture_canvas(backbuffer, |canvas| {
canvas.set_draw_color(Color::BLACK);
canvas.clear();
self.state
.map
.render(canvas, &mut self.state.atlas, &mut self.state.map_texture);
// Render all items
for item in &self.state.items {
if let Err(e) = item.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
tracing::error!("Failed to render item: {}", e);
}
}
// Render all ghosts
for ghost in &self.state.ghosts {
if let Err(e) = ghost.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
tracing::error!("Failed to render ghost: {}", e);
}
}
if let Err(e) = self.state.pacman.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
tracing::error!("Failed to render pacman: {}", e);
}
})
.map_err(|e| GameError::Sdl(e.to_string()))?;
Ok(())
}
pub fn present_backbuffer<T: RenderTarget>(
&mut self,
canvas: &mut Canvas<T>,
backbuffer: &Texture,
cursor_pos: glam::Vec2,
) -> GameResult<()> {
canvas
.copy(backbuffer, None, None)
.map_err(|e| GameError::Sdl(e.to_string()))?;
if self.state.debug_mode {
if let Err(e) =
self.state
.map
.debug_render_with_cursor(canvas, &mut self.state.text_texture, &mut self.state.atlas, cursor_pos)
{
tracing::error!("Failed to render debug cursor: {}", e);
}
self.render_pathfinding_debug(canvas)?;
}
self.draw_hud(canvas)?;
canvas.present();
Ok(())
}
/// Renders pathfinding debug lines from each ghost to Pac-Man.
///
/// Each ghost's path is drawn in its respective color with a small offset
/// to prevent overlapping lines.
fn render_pathfinding_debug<T: RenderTarget>(&self, canvas: &mut Canvas<T>) -> GameResult<()> {
let pacman_node = self.state.pacman.current_node_id();
for ghost in self.state.ghosts.iter() {
if let Ok(path) = ghost.calculate_path_to_target(&self.state.map.graph, pacman_node) {
if path.len() < 2 {
continue; // Skip if path is too short
}
// Set the ghost's color
canvas.set_draw_color(ghost.debug_color());
// Calculate offset based on ghost index to prevent overlapping lines
// let offset = (i as f32) * 2.0 - 3.0; // Offset range: -3.0 to 3.0
// Calculate a consistent offset direction for the entire path
// let first_node = self.map.graph.get_node(path[0]).unwrap();
// let last_node = self.map.graph.get_node(path[path.len() - 1]).unwrap();
// Use the overall direction from start to end to determine the perpendicular offset
let offset = match ghost.ghost_type {
GhostType::Blinky => Vec2::new(0.25, 0.5),
GhostType::Pinky => Vec2::new(-0.25, -0.25),
GhostType::Inky => Vec2::new(0.5, -0.5),
GhostType::Clyde => Vec2::new(-0.5, 0.25),
} * 5.0;
// Calculate offset positions for all nodes using the same perpendicular direction
let mut offset_positions = Vec::new();
for &node_id in &path {
let node = self
.state
.map
.graph
.get_node(node_id)
.ok_or(GameError::Entity(EntityError::NodeNotFound(node_id)))?;
let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
offset_positions.push(pos + offset);
}
// Draw lines between the offset positions
for window in offset_positions.windows(2) {
if let (Some(from), Some(to)) = (window.first(), window.get(1)) {
// Skip if the distance is too far (used for preventing lines between tunnel portals)
if from.distance_squared(*to) > (crate::constants::CELL_SIZE * 16).pow(2) as f32 {
continue;
}
// Draw the line
canvas
.draw_line((from.x as i32, from.y as i32), (to.x as i32, to.y as i32))
.map_err(|e| GameError::Sdl(e.to_string()))?;
}
}
}
}
Ok(())
}
fn draw_hud<T: RenderTarget>(&mut self, canvas: &mut Canvas<T>) -> GameResult<()> {
let lives = 3;
let score_text = format!("{:02}", self.state.score);
let x_offset = 4;
let y_offset = 2;
let lives_offset = 3;
let score_offset = 7 - (score_text.len() as i32);
self.state.text_texture.set_scale(1.0);
if let Err(e) = self.state.text_texture.render(
canvas,
&mut self.state.atlas,
&format!("{lives}UP HIGH SCORE "),
UVec2::new(8 * lives_offset as u32 + x_offset, y_offset),
) {
tracing::error!("Failed to render HUD text: {}", e);
}
if let Err(e) = self.state.text_texture.render(
canvas,
&mut self.state.atlas,
&score_text,
UVec2::new(8 * score_offset as u32 + x_offset, 8 + y_offset),
) {
tracing::error!("Failed to render score text: {}", e);
}
// Display FPS information in top-left corner
// let fps_text = format!("FPS: {:.1} (1s) / {:.1} (10s)", self.fps_1s, self.fps_10s);
// self.render_text_on(
// canvas,
// &*texture_creator,
// &fps_text,
// IVec2::new(10, 10),
// Color::RGB(255, 255, 0), // Yellow color for FPS display
// );
Ok(())
}
}