Files
Pac-Man/src/ghost.rs

403 lines
14 KiB
Rust

use pathfinding::prelude::dijkstra;
use sdl2::{
pixels::Color,
render::{Canvas, Texture},
video::Window,
};
use std::cell::RefCell;
use std::rc::Rc;
use rand::Rng;
use crate::{
animation::AnimatedTexture,
constants::{MapTile, BOARD_OFFSET, BOARD_WIDTH, CELL_SIZE},
direction::Direction,
entity::Entity,
map::Map,
modulation::{SimpleTickModulator, TickModulator},
pacman::Pacman,
};
/// The different modes a ghost can be in
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum GhostMode {
/// Chase mode - ghost actively pursues Pac-Man using its unique strategy
Chase,
/// Scatter mode - ghost heads to its home corner
Scatter,
/// Frightened mode - ghost moves randomly and can be eaten
Frightened,
/// Eyes mode - ghost returns to the ghost house after being eaten
Eyes,
/// House mode - ghost is in the ghost house, waiting to exit
House,
}
/// The different ghost personalities
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum GhostType {
Blinky, // Red - Shadow
Pinky, // Pink - Speedy
Inky, // Cyan - Bashful
Clyde, // Orange - Pokey
}
impl GhostType {
/// Returns the color of the ghost.
pub fn color(&self) -> Color {
match self {
GhostType::Blinky => Color::RGB(255, 0, 0),
GhostType::Pinky => Color::RGB(255, 184, 255),
GhostType::Inky => Color::RGB(0, 255, 255),
GhostType::Clyde => Color::RGB(255, 184, 82),
}
}
}
/// Base ghost struct that contains common functionality
pub struct Ghost<'a> {
/// The absolute position of the ghost on the board, in pixels
pub pixel_position: (i32, i32),
/// The position of the ghost on the board, in grid coordinates
pub cell_position: (u32, u32),
/// The current direction of the ghost
pub direction: Direction,
/// The current mode of the ghost
pub mode: GhostMode,
/// The type/personality of this ghost
pub ghost_type: GhostType,
/// Reference to the game map
pub map: Rc<RefCell<Map>>,
/// Reference to Pac-Man for targeting
pub pacman: Rc<RefCell<Pacman<'a>>>,
/// Movement speed
speed: u32,
/// Movement modulator
modulation: SimpleTickModulator,
/// Ghost body sprite
body_sprite: AnimatedTexture<'a>,
/// Ghost eyes sprite
eyes_sprite: AnimatedTexture<'a>,
/// Whether the ghost is currently in a tunnel
pub in_tunnel: bool,
}
impl Ghost<'_> {
/// Creates a new ghost instance
pub fn new<'a>(
ghost_type: GhostType,
starting_position: (u32, u32),
body_texture: Texture<'a>,
eyes_texture: Texture<'a>,
map: Rc<RefCell<Map>>,
pacman: Rc<RefCell<Pacman<'a>>>,
) -> Ghost<'a> {
let color = ghost_type.color();
let mut body_sprite = AnimatedTexture::new(body_texture, 8, 2, 32, 32, Some((-4, -4)));
body_sprite.set_color_modulation(color.r, color.g, color.b);
Ghost {
pixel_position: Map::cell_to_pixel(starting_position),
cell_position: starting_position,
direction: Direction::Left,
mode: GhostMode::Chase,
ghost_type,
map,
pacman,
speed: 3,
modulation: SimpleTickModulator::new(1.0),
body_sprite,
eyes_sprite: AnimatedTexture::new(eyes_texture, 1, 4, 32, 32, Some((-4, -4))),
in_tunnel: false,
}
}
/// Renders the ghost to the canvas
pub fn render(&mut self, canvas: &mut Canvas<Window>) {
// Render body
if self.mode != GhostMode::Eyes {
let color = if self.mode == GhostMode::Frightened {
Color::RGB(0, 0, 255)
} else {
self.ghost_type.color()
};
self.body_sprite
.set_color_modulation(color.r, color.g, color.b);
self.body_sprite
.render(canvas, self.pixel_position, Direction::Right);
}
// Always render eyes on top
let eye_frame = if self.mode == GhostMode::Frightened {
4 // Frightened frame
} else {
match self.direction {
Direction::Right => 0,
Direction::Up => 1,
Direction::Left => 2,
Direction::Down => 3,
}
};
self.eyes_sprite.render_static(
canvas,
self.pixel_position,
Direction::Right,
Some(eye_frame),
);
}
/// Calculates the path to the target tile using the A* algorithm.
pub fn get_path_to_target(&self, target: (u32, u32)) -> Option<(Vec<(u32, u32)>, u32)> {
let start = self.cell_position;
let map = self.map.borrow();
dijkstra(
&start,
|&p| {
let mut successors = vec![];
let tile = map.get_tile((p.0 as i32, p.1 as i32));
// Tunnel wrap: if currently in a tunnel, add the opposite exit as a neighbor
if let Some(MapTile::Tunnel) = tile {
if p.0 == 0 {
successors.push(((BOARD_WIDTH - 2, p.1), 1));
} else if p.0 == BOARD_WIDTH - 1 {
successors.push(((1, p.1), 1));
}
}
for dir in &[
Direction::Up,
Direction::Down,
Direction::Left,
Direction::Right,
] {
let (dx, dy) = dir.offset();
let next_p = (p.0 as i32 + dx, p.1 as i32 + dy);
if let Some(tile) = map.get_tile(next_p) {
if tile == MapTile::Wall {
continue;
}
successors.push(((next_p.0 as u32, next_p.1 as u32), 1));
}
}
successors
},
|&p| p == target,
)
}
/// Gets the target tile for this ghost based on its current mode
pub fn get_target_tile(&self) -> (i32, i32) {
match self.mode {
GhostMode::Scatter => self.get_scatter_target(),
GhostMode::Chase => self.get_chase_target(),
GhostMode::Frightened => self.get_random_target(),
GhostMode::Eyes => self.get_house_target(),
GhostMode::House => self.get_house_exit_target(),
}
}
/// Gets this ghost's home corner target for scatter mode
fn get_scatter_target(&self) -> (i32, i32) {
match self.ghost_type {
GhostType::Blinky => (25, 0), // Top right
GhostType::Pinky => (2, 0), // Top left
GhostType::Inky => (27, 35), // Bottom right
GhostType::Clyde => (0, 35), // Bottom left
}
}
/// Gets a random adjacent tile for frightened mode
fn get_random_target(&self) -> (i32, i32) {
let mut rng = rand::thread_rng();
let (x, y) = self.cell_position;
let mut possible_moves = Vec::new();
// Check all four directions
for dir in &[
Direction::Up,
Direction::Down,
Direction::Left,
Direction::Right,
] {
// Don't allow reversing direction
if *dir == self.direction.opposite() {
continue;
}
let (dx, dy) = dir.offset();
let next_cell = (x as i32 + dx, y as i32 + dy);
let tile = self.map.borrow().get_tile(next_cell);
if let Some(MapTile::Wall) = tile {
// It's a wall, not a valid move
} else {
possible_moves.push(next_cell);
}
}
if possible_moves.is_empty() {
// No valid moves, must reverse
let (dx, dy) = self.direction.opposite().offset();
return (x as i32 + dx, y as i32 + dy);
}
// Choose a random valid move
possible_moves[rng.gen_range(0..possible_moves.len())]
}
/// Gets the ghost house target for returning eyes
fn get_house_target(&self) -> (i32, i32) {
(13, 14) // Center of ghost house
}
/// Gets the exit point target when leaving house
fn get_house_exit_target(&self) -> (i32, i32) {
(13, 11) // Just above ghost house
}
/// Gets this ghost's chase mode target (to be implemented by each ghost type)
fn get_chase_target(&self) -> (i32, i32) {
// Default implementation just targets Pac-Man directly
let pacman = self.pacman.borrow();
(pacman.cell_position.0 as i32, pacman.cell_position.1 as i32)
}
/// Changes the ghost's mode and handles direction reversal
pub fn set_mode(&mut self, new_mode: GhostMode) {
// Don't reverse if going to/from frightened or if in house
let should_reverse = self.mode != GhostMode::House
&& new_mode != GhostMode::Frightened
&& self.mode != GhostMode::Frightened;
self.mode = new_mode;
if should_reverse {
self.direction = self.direction.opposite();
}
}
}
impl Entity for Ghost<'_> {
fn position(&self) -> (i32, i32) {
self.pixel_position
}
fn cell_position(&self) -> (u32, u32) {
self.cell_position
}
fn internal_position(&self) -> (u32, u32) {
let (x, y) = self.position();
(x as u32 % CELL_SIZE, y as u32 % CELL_SIZE)
}
fn is_colliding(&self, other: &dyn Entity) -> bool {
let (x, y) = self.position();
let (other_x, other_y) = other.position();
x == other_x && y == other_y
}
fn tick(&mut self) {
if self.mode == GhostMode::House {
// For now, do nothing in the house
return;
}
if self.internal_position() == (0, 0) {
self.cell_position = (
(self.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
);
let current_tile = self
.map
.borrow()
.get_tile((self.cell_position.0 as i32, self.cell_position.1 as i32))
.unwrap_or(MapTile::Empty);
if current_tile == MapTile::Tunnel {
self.in_tunnel = true;
}
// Tunnel logic: if in tunnel, force movement and prevent direction change
if self.in_tunnel {
// If out of bounds, teleport to the opposite side and exit tunnel
if self.cell_position.0 == 0 {
self.cell_position.0 = BOARD_WIDTH - 2;
self.pixel_position =
Map::cell_to_pixel((self.cell_position.0, self.cell_position.1));
self.in_tunnel = false;
} else if self.cell_position.0 == BOARD_WIDTH - 1 {
self.cell_position.0 = 1;
self.pixel_position =
Map::cell_to_pixel((self.cell_position.0, self.cell_position.1));
self.in_tunnel = false;
} else {
// While in tunnel, do not allow direction change
// and always move in the current direction
}
} else {
// Pathfinding logic (only if not in tunnel)
let target_tile = self.get_target_tile();
if let Some((path, _)) =
self.get_path_to_target((target_tile.0 as u32, target_tile.1 as u32))
{
if path.len() > 1 {
let next_move = path[1];
let (x, y) = self.cell_position;
let dx = next_move.0 as i32 - x as i32;
let dy = next_move.1 as i32 - y as i32;
self.direction = if dx > 0 {
Direction::Right
} else if dx < 0 {
Direction::Left
} else if dy > 0 {
Direction::Down
} else {
Direction::Up
};
}
}
}
// Check if the next tile in the current direction is a wall
let (dx, dy) = self.direction.offset();
let next_cell = (
self.cell_position.0 as i32 + dx,
self.cell_position.1 as i32 + dy,
);
let next_tile = self
.map
.borrow()
.get_tile(next_cell)
.unwrap_or(MapTile::Empty);
if next_tile == MapTile::Wall {
// Don't move if the next tile is a wall
return;
}
}
if !self.modulation.next() {
return;
}
// Update position based on current direction and speed
let speed = self.speed as i32;
match self.direction {
Direction::Right => self.pixel_position.0 += speed,
Direction::Left => self.pixel_position.0 -= speed,
Direction::Up => self.pixel_position.1 -= speed,
Direction::Down => self.pixel_position.1 += speed,
}
// Update cell position when aligned with grid
if self.internal_position() == (0, 0) {
self.cell_position = (
(self.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
);
}
}
}