Files
Pac-Man/src/game/mod.rs

389 lines
15 KiB
Rust

//! This module contains the main game logic and state.
use rand::{rngs::SmallRng, Rng, SeedableRng};
use sdl2::pixels::Color;
use sdl2::render::{Canvas, Texture, TextureCreator};
use sdl2::video::WindowContext;
use crate::entity::r#trait::Entity;
use crate::error::GameResult;
use crate::entity::{
collision::{Collidable, CollisionSystem, EntityId},
ghost::{Ghost, GhostType},
pacman::Pacman,
};
use crate::map::render::MapRenderer;
use crate::{constants, texture::sprite::SpriteAtlas};
use self::events::GameEvent;
use self::state::GameState;
pub mod events;
pub mod state;
/// The `Game` struct is the main entry point for the game.
///
/// It contains the game's state and logic, and is responsible for
/// handling user input, updating the game state, and rendering the game.
pub struct Game {
state: state::GameState,
}
impl Game {
pub fn new(texture_creator: &'static TextureCreator<WindowContext>) -> GameResult<Game> {
let state = GameState::new(texture_creator)?;
Ok(Game { state })
}
pub fn post_event(&mut self, event: GameEvent) {
self.state.event_queue.push_back(event);
}
fn handle_command(&mut self, command: crate::input::commands::GameCommand) {
use crate::input::commands::GameCommand;
match command {
GameCommand::MovePlayer(direction) => {
self.state.pacman.set_next_direction(direction);
}
GameCommand::ToggleDebug => {
self.toggle_debug_mode();
}
GameCommand::MuteAudio => {
let is_muted = self.state.audio.is_muted();
self.state.audio.set_mute(!is_muted);
}
GameCommand::ResetLevel => {
if let Err(e) = self.reset_game_state() {
tracing::error!("Failed to reset game state: {}", e);
}
}
GameCommand::TogglePause => {
self.state.paused = !self.state.paused;
}
GameCommand::Exit => {}
}
}
fn process_events(&mut self) {
while let Some(event) = self.state.event_queue.pop_front() {
match event {
GameEvent::Command(command) => self.handle_command(command),
}
}
}
/// Resets the game state, randomizing ghost positions and resetting Pac-Man
fn reset_game_state(&mut self) -> GameResult<()> {
let pacman_start_node = self.state.map.start_positions.pacman;
self.state.pacman = Pacman::new(&self.state.map.graph, pacman_start_node, &self.state.atlas)?;
// Reset items
self.state.items = self.state.map.generate_items(&self.state.atlas)?;
// Randomize ghost positions
let ghost_types = [GhostType::Blinky, GhostType::Pinky, GhostType::Inky, GhostType::Clyde];
let mut rng = SmallRng::from_os_rng();
for (i, ghost) in self.state.ghosts.iter_mut().enumerate() {
let random_node = rng.random_range(0..self.state.map.graph.node_count());
*ghost = Ghost::new(&self.state.map.graph, random_node, ghost_types[i], &self.state.atlas)?;
}
// Reset collision system
self.state.collision_system = CollisionSystem::default();
// Re-register Pac-Man
self.state.pacman_id = self.state.collision_system.register_entity(self.state.pacman.position());
// Re-register items
self.state.item_ids.clear();
for item in &self.state.items {
let item_id = self.state.collision_system.register_entity(item.position());
self.state.item_ids.push(item_id);
}
// Re-register ghosts
self.state.ghost_ids.clear();
for ghost in &self.state.ghosts {
let ghost_id = self.state.collision_system.register_entity(ghost.position());
self.state.ghost_ids.push(ghost_id);
}
Ok(())
}
/// Ticks the game state.
///
/// Returns true if the game should exit.
pub fn tick(&mut self, dt: f32) -> bool {
// Process any events that have been posted (such as unpausing)
self.process_events();
// If the game is paused, we don't need to do anything beyond returning
if self.state.paused {
return false;
}
self.state.pacman.tick(dt, &self.state.map.graph);
// Update all ghosts
for ghost in &mut self.state.ghosts {
ghost.tick(dt, &self.state.map.graph);
}
// Update collision system positions
self.update_collision_positions();
// Check for collisions
self.check_collisions();
false
}
/// Toggles the debug mode on and off.
///
/// When debug mode is enabled, the game will render additional information
/// that is useful for debugging, such as the collision grid and entity paths.
pub fn toggle_debug_mode(&mut self) {
self.state.debug_mode = !self.state.debug_mode;
}
fn update_collision_positions(&mut self) {
// Update Pac-Man's position
self.state
.collision_system
.update_position(self.state.pacman_id, self.state.pacman.position());
// Update ghost positions
for (ghost, &ghost_id) in self.state.ghosts.iter().zip(&self.state.ghost_ids) {
self.state.collision_system.update_position(ghost_id, ghost.position());
}
}
fn check_collisions(&mut self) {
// Check Pac-Man vs Items
let potential_collisions = self
.state
.collision_system
.potential_collisions(&self.state.pacman.position());
for entity_id in potential_collisions {
if entity_id != self.state.pacman_id {
// Check if this is an item collision
if let Some(item_index) = self.find_item_by_id(entity_id) {
let item = &mut self.state.items[item_index];
if !item.is_collected() {
item.collect();
self.state.score += item.get_score();
self.state.audio.eat();
// Handle energizer effects
if matches!(item.item_type, crate::entity::item::ItemType::Energizer) {
// TODO: Make ghosts frightened
tracing::info!("Energizer collected! Ghosts should become frightened.");
}
}
}
// Check if this is a ghost collision
if let Some(_ghost_index) = self.find_ghost_by_id(entity_id) {
// TODO: Handle Pac-Man being eaten by ghost
tracing::info!("Pac-Man collided with ghost!");
}
}
}
}
fn find_item_by_id(&self, entity_id: EntityId) -> Option<usize> {
self.state.item_ids.iter().position(|&id| id == entity_id)
}
fn find_ghost_by_id(&self, entity_id: EntityId) -> Option<usize> {
self.state.ghost_ids.iter().position(|&id| id == entity_id)
}
pub fn draw<T: sdl2::render::RenderTarget>(&mut self, canvas: &mut Canvas<T>, backbuffer: &mut Texture) -> GameResult<()> {
// Only render the map texture once and cache it
if !self.state.map_rendered {
let mut map_texture = self
.state
.texture_creator
.create_texture_target(None, constants::CANVAS_SIZE.x, constants::CANVAS_SIZE.y)
.map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
canvas
.with_texture_canvas(&mut map_texture, |map_canvas| {
let mut map_tiles = Vec::with_capacity(35);
for i in 0..35 {
let tile_name = format!("maze/tiles/{}.png", i);
let tile = SpriteAtlas::get_tile(&self.state.atlas, &tile_name).unwrap();
map_tiles.push(tile);
}
MapRenderer::render_map(map_canvas, &mut self.state.atlas, &mut map_tiles);
})
.map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
self.state.map_texture = Some(map_texture);
self.state.map_rendered = true;
}
canvas
.with_texture_canvas(backbuffer, |canvas| {
canvas.set_draw_color(Color::BLACK);
canvas.clear();
if let Some(ref map_texture) = self.state.map_texture {
canvas.copy(map_texture, None, None).unwrap();
}
// Render all items
for item in &self.state.items {
if let Err(e) = item.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
tracing::error!("Failed to render item: {}", e);
}
}
// Render all ghosts
for ghost in &self.state.ghosts {
if let Err(e) = ghost.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
tracing::error!("Failed to render ghost: {}", e);
}
}
if let Err(e) = self.state.pacman.render(canvas, &mut self.state.atlas, &self.state.map.graph) {
tracing::error!("Failed to render pacman: {}", e);
}
})
.map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
Ok(())
}
pub fn present_backbuffer<T: sdl2::render::RenderTarget>(
&mut self,
canvas: &mut Canvas<T>,
backbuffer: &Texture,
cursor_pos: glam::Vec2,
) -> GameResult<()> {
canvas
.copy(backbuffer, None, None)
.map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
if self.state.debug_mode {
if let Err(e) =
self.state
.map
.debug_render_with_cursor(canvas, &mut self.state.text_texture, &mut self.state.atlas, cursor_pos)
{
tracing::error!("Failed to render debug cursor: {}", e);
}
self.render_pathfinding_debug(canvas)?;
}
self.draw_hud(canvas)?;
canvas.present();
Ok(())
}
/// Renders pathfinding debug lines from each ghost to Pac-Man.
///
/// Each ghost's path is drawn in its respective color with a small offset
/// to prevent overlapping lines.
fn render_pathfinding_debug<T: sdl2::render::RenderTarget>(&self, canvas: &mut Canvas<T>) -> GameResult<()> {
let pacman_node = self.state.pacman.current_node_id();
for ghost in self.state.ghosts.iter() {
if let Ok(path) = ghost.calculate_path_to_target(&self.state.map.graph, pacman_node) {
if path.len() < 2 {
continue; // Skip if path is too short
}
// Set the ghost's color
canvas.set_draw_color(ghost.debug_color());
// Calculate offset based on ghost index to prevent overlapping lines
// let offset = (i as f32) * 2.0 - 3.0; // Offset range: -3.0 to 3.0
// Calculate a consistent offset direction for the entire path
// let first_node = self.map.graph.get_node(path[0]).unwrap();
// let last_node = self.map.graph.get_node(path[path.len() - 1]).unwrap();
// Use the overall direction from start to end to determine the perpendicular offset
let offset = match ghost.ghost_type {
GhostType::Blinky => glam::Vec2::new(0.25, 0.5),
GhostType::Pinky => glam::Vec2::new(-0.25, -0.25),
GhostType::Inky => glam::Vec2::new(0.5, -0.5),
GhostType::Clyde => glam::Vec2::new(-0.5, 0.25),
} * 5.0;
// Calculate offset positions for all nodes using the same perpendicular direction
let mut offset_positions = Vec::new();
for &node_id in &path {
let node = self
.state
.map
.graph
.get_node(node_id)
.ok_or(crate::error::EntityError::NodeNotFound(node_id))?;
let pos = node.position + crate::constants::BOARD_PIXEL_OFFSET.as_vec2();
offset_positions.push(pos + offset);
}
// Draw lines between the offset positions
for window in offset_positions.windows(2) {
if let (Some(from), Some(to)) = (window.first(), window.get(1)) {
// Skip if the distance is too far (used for preventing lines between tunnel portals)
if from.distance_squared(*to) > (crate::constants::CELL_SIZE * 16).pow(2) as f32 {
continue;
}
// Draw the line
canvas
.draw_line((from.x as i32, from.y as i32), (to.x as i32, to.y as i32))
.map_err(|e| crate::error::GameError::Sdl(e.to_string()))?;
}
}
}
}
Ok(())
}
fn draw_hud<T: sdl2::render::RenderTarget>(&mut self, canvas: &mut Canvas<T>) -> GameResult<()> {
let lives = 3;
let score_text = format!("{:02}", self.state.score);
let x_offset = 4;
let y_offset = 2;
let lives_offset = 3;
let score_offset = 7 - (score_text.len() as i32);
self.state.text_texture.set_scale(1.0);
if let Err(e) = self.state.text_texture.render(
canvas,
&mut self.state.atlas,
&format!("{lives}UP HIGH SCORE "),
glam::UVec2::new(8 * lives_offset as u32 + x_offset, y_offset),
) {
tracing::error!("Failed to render HUD text: {}", e);
}
if let Err(e) = self.state.text_texture.render(
canvas,
&mut self.state.atlas,
&score_text,
glam::UVec2::new(8 * score_offset as u32 + x_offset, 8 + y_offset),
) {
tracing::error!("Failed to render score text: {}", e);
}
// Display FPS information in top-left corner
// let fps_text = format!("FPS: {:.1} (1s) / {:.1} (10s)", self.fps_1s, self.fps_10s);
// self.render_text_on(
// canvas,
// &*texture_creator,
// &fps_text,
// IVec2::new(10, 10),
// Color::RGB(255, 255, 0), // Yellow color for FPS display
// );
Ok(())
}
}