Compare commits

..

10 Commits

11 changed files with 879 additions and 250 deletions

View File

@@ -41,4 +41,4 @@ samply:
# Build the project for Emscripten # Build the project for Emscripten
web: web:
bun run web.build.ts bun run web.build.ts; caddy file-server --root dist

View File

@@ -89,7 +89,7 @@ impl App {
let start = Instant::now(); let start = Instant::now();
let dt = self.last_tick.elapsed().as_secs_f32(); let dt = self.last_tick.elapsed().as_secs_f32();
self.last_tick = Instant::now(); self.last_tick = start;
let exit = self.game.tick(dt); let exit = self.game.tick(dt);

130
src/bin/aspect_demo.rs Normal file
View File

@@ -0,0 +1,130 @@
use std::time::{Duration, Instant};
use sdl2::event::Event;
use sdl2::keyboard::Keycode;
use sdl2::pixels::Color;
use sdl2::rect::Rect;
// A self-contained SDL2 demo showing how to keep a consistent aspect ratio
// with letterboxing/pillarboxing in a resizable window.
//
// This uses SDL2's logical size feature, which automatically sets a viewport
// to preserve the target aspect ratio and adds black bars as needed.
// We also clear the full window to black and then clear the logical viewport
// to a content color, so bars remain visibly black.
const LOGICAL_WIDTH: u32 = 320; // target content width
const LOGICAL_HEIGHT: u32 = 180; // target content height (16:9)
fn main() -> Result<(), String> {
// Initialize SDL2
let sdl = sdl2::init()?;
let video = sdl.video()?;
// Create a resizable window
let window = video
.window("SDL2 Aspect Ratio Demo", 960, 540)
.resizable()
.position_centered()
.build()
.map_err(|e| e.to_string())?;
let mut canvas = window.into_canvas().build().map_err(|e| e.to_string())?;
// Set the desired logical (virtual) resolution. SDL will letterbox/pillarbox
// as needed to preserve this aspect ratio when the window is resized.
canvas
.set_logical_size(LOGICAL_WIDTH, LOGICAL_HEIGHT)
.map_err(|e| e.to_string())?;
// Optional: uncomment to enforce integer scaling only (more retro look)
// canvas.set_integer_scale(true)?;
let mut events = sdl.event_pump()?;
let mut running = true;
let start = Instant::now();
let mut last_log = Instant::now();
while running {
for event in events.poll_iter() {
match event {
Event::Quit { .. }
| Event::KeyDown {
keycode: Some(Keycode::Escape),
..
} => {
running = false;
}
Event::Window { win_event, .. } => {
// Periodically log window size and the computed viewport
// to demonstrate how letterboxing/pillarboxing behaves.
use sdl2::event::WindowEvent;
match win_event {
WindowEvent::Resized(_, _)
| WindowEvent::SizeChanged(_, _)
| WindowEvent::Maximized
| WindowEvent::Restored => {
if last_log.elapsed() > Duration::from_millis(250) {
let out_size = canvas.output_size()?;
let viewport = canvas.viewport();
println!(
"window={}x{}, viewport x={}, y={}, w={}, h={}",
out_size.0,
out_size.1,
viewport.x(),
viewport.y(),
viewport.width(),
viewport.height()
);
last_log = Instant::now();
}
}
_ => {}
}
}
_ => {}
}
}
// 1) Clear the entire window to black (no viewport) so the bars are black
canvas.set_viewport(None);
canvas.set_draw_color(Color::RGB(0, 0, 0));
canvas.clear();
// 2) Re-apply logical size so SDL sets a viewport that preserves aspect
// ratio. Clearing now only affects the letterboxed content area.
canvas
.set_logical_size(LOGICAL_WIDTH, LOGICAL_HEIGHT)
.map_err(|e| e.to_string())?;
// Fill the content area with a background color to differentiate from bars
canvas.set_draw_color(Color::RGB(30, 30, 40));
canvas.clear();
// Draw a simple grid to visualize scaling clearly
canvas.set_draw_color(Color::RGB(60, 60, 90));
let step = 20i32;
for x in (0..=LOGICAL_WIDTH as i32).step_by(step as usize) {
let _ = canvas.draw_line(sdl2::rect::Point::new(x, 0), sdl2::rect::Point::new(x, LOGICAL_HEIGHT as i32));
}
for y in (0..=LOGICAL_HEIGHT as i32).step_by(step as usize) {
let _ = canvas.draw_line(sdl2::rect::Point::new(0, y), sdl2::rect::Point::new(LOGICAL_WIDTH as i32, y));
}
// Draw a border around the logical content area
canvas.set_draw_color(Color::RGB(200, 200, 220));
let border = Rect::new(0, 0, LOGICAL_WIDTH, LOGICAL_HEIGHT);
canvas.draw_rect(border)?;
// Draw a moving box to demonstrate dynamic content staying within aspect
let elapsed_ms = start.elapsed().as_millis() as i32;
let t = (elapsed_ms / 8) % LOGICAL_WIDTH as i32;
let box_rect = Rect::new(t - 10, (LOGICAL_HEIGHT as i32 / 2) - 10, 20, 20);
canvas.set_draw_color(Color::RGB(255, 140, 0));
canvas.fill_rect(box_rect).ok();
canvas.present();
}
Ok(())
}

View File

@@ -8,8 +8,8 @@ use glam::UVec2;
/// ///
/// Calculated as 1/60th of a second (≈16.67ms). /// Calculated as 1/60th of a second (≈16.67ms).
/// ///
/// Written out explicitly to satisfy const-eval constraints. /// Uses integer arithmetic to avoid floating-point precision loss.
pub const LOOP_TIME: Duration = Duration::from_nanos((1_000_000_000.0 / 60.0) as u64); pub const LOOP_TIME: Duration = Duration::from_nanos(1_000_000_000 / 60);
/// The size of each cell, in pixels. /// The size of each cell, in pixels.
pub const CELL_SIZE: u32 = 8; pub const CELL_SIZE: u32 = 8;

View File

@@ -13,15 +13,18 @@ use crate::systems::blinking::Blinking;
use crate::systems::components::{GhostAnimation, GhostState, LastAnimationState}; use crate::systems::components::{GhostAnimation, GhostState, LastAnimationState};
use crate::systems::movement::{BufferedDirection, Position, Velocity}; use crate::systems::movement::{BufferedDirection, Position, Velocity};
use crate::systems::profiling::SystemId; use crate::systems::profiling::SystemId;
use crate::systems::render::touch_ui_render_system;
use crate::systems::render::RenderDirty; use crate::systems::render::RenderDirty;
use crate::systems::{self, ghost_collision_system, present_system, Hidden, LinearAnimation, MovementModifiers, NodeId};
use crate::systems::{ use crate::systems::{
audio_system, blinking_system, collision_system, debug_render_system, directional_render_system, dirty_render_system, self, combined_render_system, ghost_collision_system, present_system, Hidden, LinearAnimation, MovementModifiers, NodeId,
eaten_ghost_system, ghost_movement_system, ghost_state_system, hud_render_system, item_system, linear_render_system, profile, };
render_system, AudioEvent, AudioResource, AudioState, BackbufferResource, Collider, DebugState, DebugTextureResource, use crate::systems::{
DeltaTime, DirectionalAnimation, EntityType, Frozen, Ghost, GhostAnimations, GhostBundle, GhostCollider, GlobalState, audio_system, blinking_system, collision_system, directional_render_system, dirty_render_system, eaten_ghost_system,
ItemBundle, ItemCollider, MapTextureResource, PacmanCollider, PlayerBundle, PlayerControlled, Renderable, ScoreResource, ghost_movement_system, ghost_state_system, hud_render_system, item_system, linear_render_system, profile, AudioEvent,
StartupSequence, SystemTimings, AudioResource, AudioState, BackbufferResource, Collider, DebugState, DebugTextureResource, DeltaTime, DirectionalAnimation,
EntityType, Frozen, Ghost, GhostAnimations, GhostBundle, GhostCollider, GlobalState, ItemBundle, ItemCollider,
MapTextureResource, PacmanCollider, PlayerBundle, PlayerControlled, Renderable, ScoreResource, StartupSequence,
SystemTimings,
}; };
use crate::texture::animated::{DirectionalTiles, TileSequence}; use crate::texture::animated::{DirectionalTiles, TileSequence};
use crate::texture::sprite::AtlasTile; use crate::texture::sprite::AtlasTile;
@@ -29,8 +32,9 @@ use bevy_ecs::event::EventRegistry;
use bevy_ecs::observer::Trigger; use bevy_ecs::observer::Trigger;
use bevy_ecs::schedule::common_conditions::resource_changed; use bevy_ecs::schedule::common_conditions::resource_changed;
use bevy_ecs::schedule::{Condition, IntoScheduleConfigs, Schedule, SystemSet}; use bevy_ecs::schedule::{Condition, IntoScheduleConfigs, Schedule, SystemSet};
use bevy_ecs::system::ResMut; use bevy_ecs::system::{Local, ResMut};
use bevy_ecs::world::World; use bevy_ecs::world::World;
use glam::UVec2;
use sdl2::event::EventType; use sdl2::event::EventType;
use sdl2::image::LoadTexture; use sdl2::image::LoadTexture;
use sdl2::render::{BlendMode, Canvas, ScaleMode, TextureCreator}; use sdl2::render::{BlendMode, Canvas, ScaleMode, TextureCreator};
@@ -42,7 +46,7 @@ use crate::{
asset::{get_asset_bytes, Asset}, asset::{get_asset_bytes, Asset},
events::GameCommand, events::GameCommand,
map::render::MapRenderer, map::render::MapRenderer,
systems::debug::TtfAtlasResource, systems::debug::{BatchedLinesResource, TtfAtlasResource},
systems::input::{Bindings, CursorPosition}, systems::input::{Bindings, CursorPosition},
texture::sprite::{AtlasMapper, SpriteAtlas}, texture::sprite::{AtlasMapper, SpriteAtlas},
}; };
@@ -105,9 +109,9 @@ impl Game {
EventType::ControllerTouchpadDown, EventType::ControllerTouchpadDown,
EventType::ControllerTouchpadMotion, EventType::ControllerTouchpadMotion,
EventType::ControllerTouchpadUp, EventType::ControllerTouchpadUp,
EventType::FingerDown, // EventType::FingerDown, // Enable for touch controls
EventType::FingerUp, // EventType::FingerUp, // Enable for touch controls
EventType::FingerMotion, // EventType::FingerMotion, // Enable for touch controls
EventType::DollarGesture, EventType::DollarGesture,
EventType::DollarRecord, EventType::DollarRecord,
EventType::MultiGesture, EventType::MultiGesture,
@@ -126,10 +130,9 @@ impl Game {
EventType::Display, EventType::Display,
EventType::Window, EventType::Window,
EventType::MouseWheel, EventType::MouseWheel,
EventType::MouseMotion, // EventType::MouseMotion,
EventType::MouseButtonDown, // EventType::MouseButtonDown, // Enable for desktop touch testing
EventType::MouseButtonUp, // EventType::MouseButtonUp, // Enable for desktop touch testing
EventType::MouseButtonDown,
EventType::AppDidEnterBackground, EventType::AppDidEnterBackground,
EventType::AppWillEnterForeground, EventType::AppWillEnterForeground,
EventType::AppWillEnterBackground, EventType::AppWillEnterBackground,
@@ -156,7 +159,7 @@ impl Game {
// Create debug texture at output resolution for crisp debug rendering // Create debug texture at output resolution for crisp debug rendering
let output_size = canvas.output_size().unwrap(); let output_size = canvas.output_size().unwrap();
let mut debug_texture = texture_creator let mut debug_texture = texture_creator
.create_texture_target(None, output_size.0, output_size.1) .create_texture_target(Some(sdl2::pixels::PixelFormatEnum::ARGB8888), output_size.0, output_size.1)
.map_err(|e| GameError::Sdl(e.to_string()))?; .map_err(|e| GameError::Sdl(e.to_string()))?;
// Debug texture is copied over the backbuffer, it requires transparency abilities // Debug texture is copied over the backbuffer, it requires transparency abilities
@@ -299,6 +302,10 @@ impl Game {
EventRegistry::register_event::<GameEvent>(&mut world); EventRegistry::register_event::<GameEvent>(&mut world);
EventRegistry::register_event::<AudioEvent>(&mut world); EventRegistry::register_event::<AudioEvent>(&mut world);
let scale =
(UVec2::from(canvas.output_size().unwrap()).as_vec2() / UVec2::from(canvas.logical_size()).as_vec2()).min_element();
world.insert_resource(BatchedLinesResource::new(&map, scale));
world.insert_resource(Self::create_ghost_animations(&atlas)?); world.insert_resource(Self::create_ghost_animations(&atlas)?);
world.insert_resource(map); world.insert_resource(map);
world.insert_resource(GlobalState { exit: false }); world.insert_resource(GlobalState { exit: false });
@@ -310,6 +317,7 @@ impl Game {
world.insert_resource(DebugState::default()); world.insert_resource(DebugState::default());
world.insert_resource(AudioState::default()); world.insert_resource(AudioState::default());
world.insert_resource(CursorPosition::default()); world.insert_resource(CursorPosition::default());
world.insert_resource(systems::input::TouchState::default());
world.insert_resource(StartupSequence::new( world.insert_resource(StartupSequence::new(
constants::startup::STARTUP_FRAMES, constants::startup::STARTUP_FRAMES,
constants::startup::STARTUP_TICKS_PER_FRAME, constants::startup::STARTUP_TICKS_PER_FRAME,
@@ -347,9 +355,7 @@ impl Game {
let directional_render_system = profile(SystemId::DirectionalRender, directional_render_system); let directional_render_system = profile(SystemId::DirectionalRender, directional_render_system);
let linear_render_system = profile(SystemId::LinearRender, linear_render_system); let linear_render_system = profile(SystemId::LinearRender, linear_render_system);
let dirty_render_system = profile(SystemId::DirtyRender, dirty_render_system); let dirty_render_system = profile(SystemId::DirtyRender, dirty_render_system);
let render_system = profile(SystemId::Render, render_system);
let hud_render_system = profile(SystemId::HudRender, hud_render_system); let hud_render_system = profile(SystemId::HudRender, hud_render_system);
let debug_render_system = profile(SystemId::DebugRender, debug_render_system);
let present_system = profile(SystemId::Present, present_system); let present_system = profile(SystemId::Present, present_system);
let unified_ghost_state_system = profile(SystemId::GhostStateAnimation, ghost_state_system); let unified_ghost_state_system = profile(SystemId::GhostStateAnimation, ghost_state_system);
@@ -360,7 +366,11 @@ impl Game {
schedule.add_systems(( schedule.add_systems((
forced_dirty_system.run_if(resource_changed::<ScoreResource>.or(resource_changed::<StartupSequence>)), forced_dirty_system.run_if(resource_changed::<ScoreResource>.or(resource_changed::<StartupSequence>)),
( (
input_system, input_system.run_if(|mut local: Local<u8>| {
*local = local.wrapping_add(1u8);
// run every nth frame
*local % 2 == 0
}),
player_control_system, player_control_system,
player_movement_system, player_movement_system,
startup_stage_system, startup_stage_system,
@@ -377,9 +387,9 @@ impl Game {
directional_render_system, directional_render_system,
linear_render_system, linear_render_system,
dirty_render_system, dirty_render_system,
render_system, combined_render_system,
hud_render_system, hud_render_system,
debug_render_system, touch_ui_render_system,
present_system, present_system,
) )
.chain(), .chain(),

View File

@@ -29,6 +29,7 @@ pub fn requires_console() -> bool {
false false
} }
#[allow(dead_code)]
pub fn get_canvas_size() -> Option<(u32, u32)> { pub fn get_canvas_size() -> Option<(u32, u32)> {
let mut width = 0.0; let mut width = 0.0;
let mut height = 0.0; let mut height = 0.0;

View File

@@ -1,17 +1,20 @@
//! Debug rendering system //! Debug rendering system
use std::cmp::Ordering; use std::cmp::Ordering;
use crate::constants::BOARD_PIXEL_OFFSET; use crate::constants::{BOARD_PIXEL_OFFSET, CANVAS_SIZE};
use crate::map::builder::Map; use crate::map::builder::Map;
use crate::systems::{Collider, CursorPosition, NodeId, Position, SystemTimings}; use crate::systems::{Collider, CursorPosition, NodeId, Position, SystemTimings};
use crate::texture::ttf::{TtfAtlas, TtfRenderer}; use crate::texture::ttf::{TtfAtlas, TtfRenderer};
use bevy_ecs::resource::Resource; use bevy_ecs::resource::Resource;
use bevy_ecs::system::{NonSendMut, Query, Res}; use bevy_ecs::system::{Query, Res};
use glam::{IVec2, UVec2, Vec2}; use glam::{IVec2, UVec2, Vec2};
use sdl2::pixels::Color; use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect}; use sdl2::rect::{Point, Rect};
use sdl2::render::{Canvas, Texture}; use sdl2::render::{Canvas, Texture};
use sdl2::video::Window; use sdl2::video::Window;
use smallvec::SmallVec;
use std::collections::{HashMap, HashSet};
use tracing::warn;
#[derive(Resource, Default, Debug, Copy, Clone)] #[derive(Resource, Default, Debug, Copy, Clone)]
pub struct DebugState { pub struct DebugState {
@@ -28,6 +31,118 @@ pub struct DebugTextureResource(pub Texture);
/// Resource to hold the TTF text atlas /// Resource to hold the TTF text atlas
pub struct TtfAtlasResource(pub TtfAtlas); pub struct TtfAtlasResource(pub TtfAtlas);
/// Resource to hold pre-computed batched line segments
#[derive(Resource, Default, Debug, Clone)]
pub struct BatchedLinesResource {
horizontal_lines: Vec<(i32, i32, i32)>, // (y, x_start, x_end)
vertical_lines: Vec<(i32, i32, i32)>, // (x, y_start, y_end)
}
impl BatchedLinesResource {
/// Computes and caches batched line segments for the map graph
pub fn new(map: &Map, scale: f32) -> Self {
let mut horizontal_segments: HashMap<i32, Vec<(i32, i32)>> = HashMap::new();
let mut vertical_segments: HashMap<i32, Vec<(i32, i32)>> = HashMap::new();
let mut processed_edges: HashSet<(u16, u16)> = HashSet::new();
// Process all edges and group them by axis
for (start_node_id, edge) in map.graph.edges() {
// Acquire a stable key for the edge (from < to)
let edge_key = (start_node_id.min(edge.target), start_node_id.max(edge.target));
// Skip if we've already processed this edge in the reverse direction
if processed_edges.contains(&edge_key) {
continue;
}
processed_edges.insert(edge_key);
let start_pos = map.graph.get_node(start_node_id).unwrap().position;
let end_pos = map.graph.get_node(edge.target).unwrap().position;
let start = transform_position_with_offset(start_pos, scale);
let end = transform_position_with_offset(end_pos, scale);
// Determine if this is a horizontal or vertical line
if (start.y - end.y).abs() < 2 {
// Horizontal line (allowing for slight vertical variance)
let y = start.y;
let x_min = start.x.min(end.x);
let x_max = start.x.max(end.x);
horizontal_segments.entry(y).or_default().push((x_min, x_max));
} else if (start.x - end.x).abs() < 2 {
// Vertical line (allowing for slight horizontal variance)
let x = start.x;
let y_min = start.y.min(end.y);
let y_max = start.y.max(end.y);
vertical_segments.entry(x).or_default().push((y_min, y_max));
}
}
/// Merges overlapping or adjacent segments into continuous lines
fn merge_segments(segments: Vec<(i32, i32)>) -> Vec<(i32, i32)> {
if segments.is_empty() {
return Vec::new();
}
let mut merged = Vec::new();
let mut current_start = segments[0].0;
let mut current_end = segments[0].1;
for &(start, end) in segments.iter().skip(1) {
if start <= current_end + 1 {
// Adjacent or overlapping
current_end = current_end.max(end);
} else {
merged.push((current_start, current_end));
current_start = start;
current_end = end;
}
}
merged.push((current_start, current_end));
merged
}
// Convert to flat vectors for fast iteration during rendering
let horizontal_lines = horizontal_segments
.into_iter()
.flat_map(|(y, mut segments)| {
segments.sort_unstable_by_key(|(start, _)| *start);
let merged = merge_segments(segments);
merged.into_iter().map(move |(x_start, x_end)| (y, x_start, x_end))
})
.collect::<Vec<_>>();
let vertical_lines = vertical_segments
.into_iter()
.flat_map(|(x, mut segments)| {
segments.sort_unstable_by_key(|(start, _)| *start);
let merged = merge_segments(segments);
merged.into_iter().map(move |(y_start, y_end)| (x, y_start, y_end))
})
.collect::<Vec<_>>();
Self {
horizontal_lines,
vertical_lines,
}
}
pub fn render(&self, canvas: &mut Canvas<Window>) {
// Render horizontal lines
for &(y, x_start, x_end) in &self.horizontal_lines {
let points = [Point::new(x_start, y), Point::new(x_end, y)];
let _ = canvas.draw_lines(&points[..]);
}
// Render vertical lines
for &(x, y_start, y_end) in &self.vertical_lines {
let points = [Point::new(x, y_start), Point::new(x, y_end)];
let _ = canvas.draw_lines(&points[..]);
}
}
}
/// Transforms a position from logical canvas coordinates to output canvas coordinates (with board offset) /// Transforms a position from logical canvas coordinates to output canvas coordinates (with board offset)
fn transform_position_with_offset(pos: Vec2, scale: f32) -> IVec2 { fn transform_position_with_offset(pos: Vec2, scale: f32) -> IVec2 {
((pos + BOARD_PIXEL_OFFSET.as_vec2()) * scale).as_ivec2() ((pos + BOARD_PIXEL_OFFSET.as_vec2()) * scale).as_ivec2()
@@ -88,124 +203,135 @@ fn render_timing_display(
#[allow(clippy::too_many_arguments)] #[allow(clippy::too_many_arguments)]
pub fn debug_render_system( pub fn debug_render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>, canvas: &mut Canvas<Window>,
mut debug_texture: NonSendMut<DebugTextureResource>, ttf_atlas: &mut TtfAtlasResource,
mut ttf_atlas: NonSendMut<TtfAtlasResource>, batched_lines: &Res<BatchedLinesResource>,
debug_state: Res<DebugState>, debug_state: &Res<DebugState>,
timings: Res<SystemTimings>, timings: &Res<SystemTimings>,
map: Res<Map>, map: &Res<Map>,
colliders: Query<(&Collider, &Position)>, colliders: &Query<(&Collider, &Position)>,
cursor: Res<CursorPosition>, cursor: &Res<CursorPosition>,
) { ) {
if !debug_state.enabled { if !debug_state.enabled {
return; return;
} }
let scale = let output = UVec2::from(canvas.output_size().unwrap()).as_vec2();
(UVec2::from(canvas.output_size().unwrap()).as_vec2() / UVec2::from(canvas.logical_size()).as_vec2()).min_element(); let logical = CANVAS_SIZE.as_vec2();
let scale = (output / logical).min_element();
// Create debug text renderer // Create debug text renderer
let text_renderer = TtfRenderer::new(1.0); let text_renderer = TtfRenderer::new(1.0);
let cursor_world_pos = match *cursor { let cursor_world_pos = match &**cursor {
CursorPosition::None => None, CursorPosition::None => None,
CursorPosition::Some { position, .. } => Some(position - BOARD_PIXEL_OFFSET.as_vec2()), CursorPosition::Some { position, .. } => Some(position - BOARD_PIXEL_OFFSET.as_vec2()),
}; };
// Draw debug info on the high-resolution debug texture // Clear the debug canvas
canvas canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
.with_texture_canvas(&mut debug_texture.0, |debug_canvas| { canvas.clear();
// Clear the debug canvas
debug_canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
debug_canvas.clear();
// Find the closest node to the cursor // Find the closest node to the cursor
let closest_node = if let Some(cursor_world_pos) = cursor_world_pos { let closest_node = if let Some(cursor_world_pos) = cursor_world_pos {
map.graph map.graph
.nodes() .nodes()
.map(|node| node.position.distance(cursor_world_pos)) .map(|node| node.position.distance(cursor_world_pos))
.enumerate() .enumerate()
.min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Less)) .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Less))
.map(|(id, _)| id) .map(|(id, _)| id)
} else { } else {
None None
}; };
debug_canvas.set_draw_color(Color::GREEN); canvas.set_draw_color(Color::GREEN);
for (collider, position) in colliders.iter() { {
let rects = colliders
.iter()
.map(|(collider, position)| {
let pos = position.get_pixel_position(&map.graph).unwrap(); let pos = position.get_pixel_position(&map.graph).unwrap();
// Transform position and size using common methods // Transform position and size using common methods
let pos = (pos * scale).as_ivec2(); let pos = (pos * scale).as_ivec2();
let size = (collider.size * scale) as u32; let size = (collider.size * scale) as u32;
let rect = Rect::from_center(Point::from((pos.x, pos.y)), size, size); Rect::from_center(Point::from((pos.x, pos.y)), size, size)
debug_canvas.draw_rect(rect).unwrap(); })
} .collect::<SmallVec<[Rect; 100]>>();
if rects.len() > rects.capacity() {
warn!(
capacity = rects.capacity(),
count = rects.len(),
"Collider rects capacity exceeded"
);
}
canvas.draw_rects(&rects).unwrap();
}
debug_canvas.set_draw_color(Color { canvas.set_draw_color(Color {
a: f32_to_u8(0.4), a: f32_to_u8(0.6),
..Color::RED ..Color::RED
}); });
debug_canvas.set_blend_mode(sdl2::render::BlendMode::Blend); canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
for (start_node, end_node) in map.graph.edges() {
let start_node_model = map.graph.get_node(start_node).unwrap();
let end_node = map.graph.get_node(end_node.target).unwrap().position;
// Transform positions using common method // Use cached batched line segments
let start = transform_position_with_offset(start_node_model.position, scale); batched_lines.render(canvas);
let end = transform_position_with_offset(end_node, scale);
debug_canvas {
.draw_line(Point::from((start.x, start.y)), Point::from((end.x, end.y))) let rects: Vec<_> = map
.unwrap(); .graph
} .nodes()
.enumerate()
for (id, node) in map.graph.nodes().enumerate() { .filter_map(|(id, node)| {
let pos = node.position;
// Set color based on whether the node is the closest to the cursor
debug_canvas.set_draw_color(Color {
a: f32_to_u8(if Some(id) == closest_node { 0.75 } else { 0.6 }),
..(if Some(id) == closest_node {
Color::YELLOW
} else {
Color::BLUE
})
});
// Transform position using common method
let pos = transform_position_with_offset(pos, scale);
let size = (2.0 * scale) as u32;
debug_canvas
.fill_rect(Rect::new(pos.x - (size as i32 / 2), pos.y - (size as i32 / 2), size, size))
.unwrap();
}
// Render node ID if a node is highlighted
if let Some(closest_node_id) = closest_node {
let node = map.graph.get_node(closest_node_id as NodeId).unwrap();
let pos = transform_position_with_offset(node.position, scale); let pos = transform_position_with_offset(node.position, scale);
let size = (2.0 * scale) as u32;
let rect = Rect::new(pos.x - (size as i32 / 2), pos.y - (size as i32 / 2), size, size);
let node_id_text = closest_node_id.to_string(); // If the node is the one closest to the cursor, draw it immediately
let text_pos = Vec2::new((pos.x + 10) as f32, (pos.y - 5) as f32); if closest_node == Some(id) {
canvas.set_draw_color(Color::YELLOW);
canvas.fill_rect(rect).unwrap();
return None;
}
text_renderer Some(rect)
.render_text( })
debug_canvas, .collect();
&mut ttf_atlas.0,
&node_id_text,
text_pos,
Color {
a: f32_to_u8(0.4),
..Color::WHITE
},
)
.unwrap();
}
// Render timing information in the top-left corner if rects.len() > rects.capacity() {
render_timing_display(debug_canvas, &timings, &text_renderer, &mut ttf_atlas.0); warn!(
}) capacity = rects.capacity(),
.unwrap(); count = rects.len(),
"Node rects capacity exceeded"
);
}
// Draw the non-closest nodes all at once in blue
canvas.set_draw_color(Color::BLUE);
canvas.fill_rects(&rects).unwrap();
}
// Render node ID if a node is highlighted
if let Some(closest_node_id) = closest_node {
let node = map.graph.get_node(closest_node_id as NodeId).unwrap();
let pos = transform_position_with_offset(node.position, scale);
let node_id_text = closest_node_id.to_string();
let text_pos = Vec2::new((pos.x + 10) as f32, (pos.y - 5) as f32);
text_renderer
.render_text(
canvas,
&mut ttf_atlas.0,
&node_id_text,
text_pos,
Color {
a: f32_to_u8(0.4),
..Color::WHITE
},
)
.unwrap();
}
// Render timing information in the top-left corner
render_timing_display(canvas, timings, &text_renderer, &mut ttf_atlas.0);
} }

View File

@@ -15,6 +15,12 @@ use crate::{
map::direction::Direction, map::direction::Direction,
}; };
// Touch input constants
const TOUCH_DIRECTION_THRESHOLD: f32 = 10.0;
const TOUCH_EASING_DISTANCE_THRESHOLD: f32 = 1.0;
const MAX_TOUCH_MOVEMENT_SPEED: f32 = 100.0;
const TOUCH_EASING_FACTOR: f32 = 1.5;
#[derive(Resource, Default, Debug, Copy, Clone)] #[derive(Resource, Default, Debug, Copy, Clone)]
pub enum CursorPosition { pub enum CursorPosition {
#[default] #[default]
@@ -25,6 +31,30 @@ pub enum CursorPosition {
}, },
} }
#[derive(Resource, Default, Debug)]
pub struct TouchState {
pub active_touch: Option<TouchData>,
}
#[derive(Debug, Clone)]
pub struct TouchData {
pub finger_id: i64,
pub start_pos: Vec2,
pub current_pos: Vec2,
pub current_direction: Option<Direction>,
}
impl TouchData {
pub fn new(finger_id: i64, start_pos: Vec2) -> Self {
Self {
finger_id,
start_pos,
current_pos: start_pos,
current_direction: None,
}
}
}
#[derive(Resource, Debug, Clone)] #[derive(Resource, Debug, Clone)]
pub struct Bindings { pub struct Bindings {
key_bindings: HashMap<Keycode, GameCommand>, key_bindings: HashMap<Keycode, GameCommand>,
@@ -125,12 +155,62 @@ pub fn process_simple_key_events(bindings: &mut Bindings, frame_events: &[Simple
emitted_events emitted_events
} }
/// Calculates the primary direction from a 2D vector delta
fn calculate_direction_from_delta(delta: Vec2) -> Direction {
if delta.x.abs() > delta.y.abs() {
if delta.x > 0.0 {
Direction::Right
} else {
Direction::Left
}
} else if delta.y > 0.0 {
Direction::Down
} else {
Direction::Up
}
}
/// Updates the touch reference position with easing
///
/// This slowly moves the start_pos towards the current_pos, with the speed
/// decreasing as the distance gets smaller. The maximum movement speed is capped.
/// Returns the delta vector and its length for reuse by the caller.
fn update_touch_reference_position(touch_data: &mut TouchData, delta_time: f32) -> (Vec2, f32) {
// Calculate the vector from start to current position
let delta = touch_data.current_pos - touch_data.start_pos;
let distance = delta.length();
// If there's no significant distance, nothing to do
if distance < TOUCH_EASING_DISTANCE_THRESHOLD {
return (delta, distance);
}
// Calculate speed based on distance (slower as it gets closer)
// The easing function creates a curve where movement slows down as it approaches the target
let speed = (distance / TOUCH_EASING_FACTOR).min(MAX_TOUCH_MOVEMENT_SPEED);
// Calculate movement distance for this frame
let movement_amount = speed * delta_time;
// If the movement would overshoot, just set to target
if movement_amount >= distance {
touch_data.start_pos = touch_data.current_pos;
} else {
// Use direct vector scaling instead of normalization
let scale_factor = movement_amount / distance;
touch_data.start_pos += delta * scale_factor;
}
(delta, distance)
}
pub fn input_system( pub fn input_system(
delta_time: Res<DeltaTime>, delta_time: Res<DeltaTime>,
mut bindings: ResMut<Bindings>, mut bindings: ResMut<Bindings>,
mut writer: EventWriter<GameEvent>, mut writer: EventWriter<GameEvent>,
mut pump: NonSendMut<EventPump>, mut pump: NonSendMut<EventPump>,
mut cursor: ResMut<CursorPosition>, mut cursor: ResMut<CursorPosition>,
mut touch_state: ResMut<TouchState>,
) { ) {
let mut cursor_seen = false; let mut cursor_seen = false;
// Collect all events for this frame. // Collect all events for this frame.
@@ -138,14 +218,12 @@ pub fn input_system(
// Warn if the smallvec was heap allocated due to exceeding stack capacity // Warn if the smallvec was heap allocated due to exceeding stack capacity
#[cfg(debug_assertions)] #[cfg(debug_assertions)]
{ if frame_events.len() > frame_events.capacity() {
if frame_events.len() > frame_events.capacity() { tracing::warn!(
tracing::warn!( "More than {} events in a frame, consider adjusting stack capacity: {:?}",
"More than {} events in a frame, consider adjusting stack capacity: {:?}", frame_events.capacity(),
frame_events.capacity(), frame_events
frame_events );
);
}
} }
// Handle non-keyboard events inline and build a simplified keyboard event stream. // Handle non-keyboard events inline and build a simplified keyboard event stream.
@@ -161,6 +239,43 @@ pub fn input_system(
remaining_time: 0.20, remaining_time: 0.20,
}; };
cursor_seen = true; cursor_seen = true;
// Handle mouse motion as touch motion for desktop testing
if let Some(ref mut touch_data) = touch_state.active_touch {
touch_data.current_pos = Vec2::new(x as f32, y as f32);
}
}
// Handle mouse events as touch for desktop testing
Event::MouseButtonDown { x, y, .. } => {
let pos = Vec2::new(x as f32, y as f32);
touch_state.active_touch = Some(TouchData::new(0, pos)); // Use ID 0 for mouse
}
Event::MouseButtonUp { .. } => {
touch_state.active_touch = None;
}
// Handle actual touch events for mobile
Event::FingerDown { finger_id, x, y, .. } => {
// Convert normalized coordinates (0.0-1.0) to screen coordinates
let screen_x = x * crate::constants::CANVAS_SIZE.x as f32;
let screen_y = y * crate::constants::CANVAS_SIZE.y as f32;
let pos = Vec2::new(screen_x, screen_y);
touch_state.active_touch = Some(TouchData::new(finger_id, pos));
}
Event::FingerMotion { finger_id, x, y, .. } => {
if let Some(ref mut touch_data) = touch_state.active_touch {
if touch_data.finger_id == finger_id {
let screen_x = x * crate::constants::CANVAS_SIZE.x as f32;
let screen_y = y * crate::constants::CANVAS_SIZE.y as f32;
touch_data.current_pos = Vec2::new(screen_x, screen_y);
}
}
}
Event::FingerUp { finger_id, .. } => {
if let Some(ref touch_data) = touch_state.active_touch {
if touch_data.finger_id == finger_id {
touch_state.active_touch = None;
}
}
} }
Event::KeyDown { keycode, repeat, .. } => { Event::KeyDown { keycode, repeat, .. } => {
if let Some(key) = keycode { if let Some(key) = keycode {
@@ -190,6 +305,25 @@ pub fn input_system(
writer.write(event); writer.write(event);
} }
// Update touch reference position with easing
if let Some(ref mut touch_data) = touch_state.active_touch {
// Apply easing to the reference position and get the delta for direction calculation
let (delta, distance) = update_touch_reference_position(touch_data, delta_time.0);
// Check for direction based on updated reference position
if distance >= TOUCH_DIRECTION_THRESHOLD {
let direction = calculate_direction_from_delta(delta);
// Only send command if direction has changed
if touch_data.current_direction != Some(direction) {
touch_data.current_direction = Some(direction);
writer.write(GameEvent::Command(GameCommand::MovePlayer(direction)));
}
} else if touch_data.current_direction.is_some() {
touch_data.current_direction = None;
}
}
if let (false, CursorPosition::Some { remaining_time, .. }) = (cursor_seen, &mut *cursor) { if let (false, CursorPosition::Some { remaining_time, .. }) = (cursor_seen, &mut *cursor) {
*remaining_time -= delta_time.0; *remaining_time -= delta_time.0;
if *remaining_time <= 0.0 { if *remaining_time <= 0.0 {

View File

@@ -3,12 +3,12 @@ use bevy_ecs::{resource::Resource, system::System};
use circular_buffer::CircularBuffer; use circular_buffer::CircularBuffer;
use micromap::Map; use micromap::Map;
use num_width::NumberWidth; use num_width::NumberWidth;
use parking_lot::{Mutex, RwLock}; use parking_lot::Mutex;
use smallvec::SmallVec; use smallvec::SmallVec;
use std::fmt::Display; use std::fmt::Display;
use std::time::Duration; use std::time::Duration;
use strum::EnumCount; use strum::{EnumCount, IntoEnumIterator};
use strum_macros::{EnumCount, IntoStaticStr}; use strum_macros::{EnumCount, EnumIter, IntoStaticStr};
use thousands::Separable; use thousands::Separable;
/// The maximum number of systems that can be profiled. Must not be exceeded, or it will panic. /// The maximum number of systems that can be profiled. Must not be exceeded, or it will panic.
@@ -16,7 +16,7 @@ const MAX_SYSTEMS: usize = SystemId::COUNT;
/// The number of durations to keep in the circular buffer. /// The number of durations to keep in the circular buffer.
const TIMING_WINDOW_SIZE: usize = 30; const TIMING_WINDOW_SIZE: usize = 30;
#[derive(EnumCount, IntoStaticStr, Debug, PartialEq, Eq, Hash, Copy, Clone)] #[derive(EnumCount, EnumIter, IntoStaticStr, Debug, PartialEq, Eq, Hash, Copy, Clone)]
pub enum SystemId { pub enum SystemId {
Input, Input,
PlayerControls, PlayerControls,
@@ -46,7 +46,7 @@ impl Display for SystemId {
} }
} }
#[derive(Resource, Default, Debug)] #[derive(Resource, Debug)]
pub struct SystemTimings { pub struct SystemTimings {
/// Map of system names to a queue of durations, using a circular buffer. /// Map of system names to a queue of durations, using a circular buffer.
/// ///
@@ -55,52 +55,64 @@ pub struct SystemTimings {
/// ///
/// Also, we use a micromap::Map as the number of systems is generally quite small. /// Also, we use a micromap::Map as the number of systems is generally quite small.
/// Just make sure to set the capacity appropriately, or it will panic. /// Just make sure to set the capacity appropriately, or it will panic.
pub timings: RwLock<Map<SystemId, Mutex<CircularBuffer<TIMING_WINDOW_SIZE, Duration>>, MAX_SYSTEMS>>, ///
/// Pre-populated with all SystemId variants during initialization to avoid runtime allocations
/// and allow systems to have default zero timings when they don't submit data.
pub timings: Map<SystemId, Mutex<CircularBuffer<TIMING_WINDOW_SIZE, Duration>>, MAX_SYSTEMS>,
}
impl Default for SystemTimings {
fn default() -> Self {
let mut timings = Map::new();
// Pre-populate with all SystemId variants to avoid runtime allocations
// and provide default zero timings for systems that don't submit data
for id in SystemId::iter() {
timings.insert(id, Mutex::new(CircularBuffer::new()));
}
Self { timings }
}
} }
impl SystemTimings { impl SystemTimings {
pub fn add_timing(&self, id: SystemId, duration: Duration) { pub fn add_timing(&self, id: SystemId, duration: Duration) {
// acquire a upgradable read lock // Since all SystemId variants are pre-populated, we can use a simple read lock
let mut timings = self.timings.upgradable_read(); let queue = self
.timings
// happy path, the name is already in the map (no need to mutate the hashmap) .get(&id)
if timings.contains_key(&id) { .expect("SystemId not found in pre-populated map - this is a bug");
let queue = timings queue.lock().push_back(duration);
.get(&id)
.expect("System name not found in map after contains_key check");
let mut queue = queue.lock();
queue.push_back(duration);
return;
}
// otherwise, acquire a write lock and insert a new queue
timings.with_upgraded(|timings| {
let queue = timings.entry(id).or_insert_with(|| Mutex::new(CircularBuffer::new()));
queue.lock().push_back(duration);
});
} }
pub fn get_stats(&self) -> Map<SystemId, (Duration, Duration), MAX_SYSTEMS> { pub fn get_stats(&self) -> Map<SystemId, (Duration, Duration), MAX_SYSTEMS> {
let timings = self.timings.read();
let mut stats = Map::new(); let mut stats = Map::new();
for (id, queue) in timings.iter() { // Iterate over all SystemId variants to ensure every system has an entry
if queue.lock().is_empty() { for id in SystemId::iter() {
let queue = self
.timings
.get(&id)
.expect("SystemId not found in pre-populated map - this is a bug");
let queue_guard = queue.lock();
if queue_guard.is_empty() {
// Return zero timing for systems that haven't submitted any data
stats.insert(id, (Duration::ZERO, Duration::ZERO));
continue; continue;
} }
let durations: Vec<f64> = queue.lock().iter().map(|d| d.as_secs_f64() * 1000.0).collect(); let durations: Vec<f64> = queue_guard.iter().map(|d| d.as_secs_f64() * 1000.0).collect();
let count = durations.len() as f64; let count = durations.len() as f64;
let sum: f64 = durations.iter().sum(); let sum: f64 = durations.iter().sum();
let mean = sum / count; let mean = sum / count;
let variance = durations.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / count; let variance = durations.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / (count - 1.0).max(1.0);
let std_dev = variance.sqrt(); let std_dev = variance.sqrt();
stats.insert( stats.insert(
*id, id,
( (
Duration::from_secs_f64(mean / 1000.0), Duration::from_secs_f64(mean / 1000.0),
Duration::from_secs_f64(std_dev / 1000.0), Duration::from_secs_f64(std_dev / 1000.0),
@@ -113,8 +125,7 @@ impl SystemTimings {
pub fn get_total_stats(&self) -> (Duration, Duration) { pub fn get_total_stats(&self) -> (Duration, Duration) {
let duration_sums = { let duration_sums = {
let timings = self.timings.read(); self.timings
timings
.iter() .iter()
.map(|(_, queue)| queue.lock().iter().sum::<Duration>()) .map(|(_, queue)| queue.lock().iter().sum::<Duration>())
.collect::<Vec<_>>() .collect::<Vec<_>>()
@@ -128,7 +139,7 @@ impl SystemTimings {
diff_secs * diff_secs diff_secs * diff_secs
}) })
.sum::<f64>() .sum::<f64>()
/ duration_sums.len() as f64; / (duration_sums.len() - 1).max(1) as f64;
let std_dev_secs = variance.sqrt(); let std_dev_secs = variance.sqrt();
(mean, Duration::from_secs_f64(std_dev_secs)) (mean, Duration::from_secs_f64(std_dev_secs))
@@ -250,17 +261,22 @@ pub fn format_timing_display(
}) })
.collect::<SmallVec<[Entry; 12]>>(); .collect::<SmallVec<[Entry; 12]>>();
let (max_name_width, max_avg_int_width, max_avg_decimal_width, max_std_int_width, max_std_decimal_width) = entries let (max_avg_int_width, max_avg_decimal_width, max_std_int_width, max_std_decimal_width) =
.iter() entries
.fold((0, 0, 3, 0, 3), |(name_w, avg_int_w, avg_dec_w, std_int_w, std_dec_w), e| { .iter()
( .fold((0, 3, 0, 3), |(avg_int_w, avg_dec_w, std_int_w, std_dec_w), e| {
name_w.max(e.name.len()), (
avg_int_w.max(e.avg_int.width() as usize), avg_int_w.max(e.avg_int.width() as usize),
avg_dec_w.max(e.avg_decimal.width() as usize), avg_dec_w.max(e.avg_decimal.width() as usize),
std_int_w.max(e.std_int.width() as usize), std_int_w.max(e.std_int.width() as usize),
std_dec_w.max(e.std_decimal.width() as usize), std_dec_w.max(e.std_decimal.width() as usize),
) )
}); });
let max_name_width = SystemId::iter()
.map(|id| id.to_string().len())
.max()
.expect("SystemId::iter() returned an empty iterator");
entries.iter().map(|e| { entries.iter().map(|e| {
format!( format!(

View File

@@ -1,9 +1,11 @@
use crate::constants::CANVAS_SIZE; use crate::constants::CANVAS_SIZE;
use crate::error::{GameError, TextureError}; use crate::error::{GameError, TextureError};
use crate::map::builder::Map; use crate::map::builder::Map;
use crate::systems::input::TouchState;
use crate::systems::{ use crate::systems::{
DebugState, DebugTextureResource, DeltaTime, DirectionalAnimation, LinearAnimation, Position, Renderable, ScoreResource, debug_render_system, BatchedLinesResource, Collider, CursorPosition, DebugState, DebugTextureResource, DeltaTime,
StartupSequence, Velocity, DirectionalAnimation, LinearAnimation, Position, Renderable, ScoreResource, StartupSequence, SystemId, SystemTimings,
TtfAtlasResource, Velocity,
}; };
use crate::texture::sprite::SpriteAtlas; use crate::texture::sprite::SpriteAtlas;
use crate::texture::text::TextTexture; use crate::texture::text::TextTexture;
@@ -18,6 +20,7 @@ use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect}; use sdl2::rect::{Point, Rect};
use sdl2::render::{BlendMode, Canvas, Texture}; use sdl2::render::{BlendMode, Canvas, Texture};
use sdl2::video::Window; use sdl2::video::Window;
use std::time::Instant;
#[derive(Resource, Default)] #[derive(Resource, Default)]
pub struct RenderDirty(pub bool); pub struct RenderDirty(pub bool);
@@ -25,6 +28,13 @@ pub struct RenderDirty(pub bool);
#[derive(Component)] #[derive(Component)]
pub struct Hidden; pub struct Hidden;
/// Enum to identify which texture is being rendered to in the combined render system
#[derive(Debug, Clone, Copy)]
enum RenderTarget {
Backbuffer,
Debug,
}
#[allow(clippy::type_complexity)] #[allow(clippy::type_complexity)]
pub fn dirty_render_system( pub fn dirty_render_system(
mut dirty: ResMut<RenderDirty>, mut dirty: ResMut<RenderDirty>,
@@ -105,6 +115,79 @@ pub struct MapTextureResource(pub Texture);
/// A non-send resource for the backbuffer texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource. /// A non-send resource for the backbuffer texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource.
pub struct BackbufferResource(pub Texture); pub struct BackbufferResource(pub Texture);
/// Renders touch UI overlay for mobile/testing.
pub fn touch_ui_render_system(
mut backbuffer: NonSendMut<BackbufferResource>,
mut canvas: NonSendMut<&mut Canvas<Window>>,
touch_state: Res<TouchState>,
mut errors: EventWriter<GameError>,
) {
if let Some(ref touch_data) = touch_state.active_touch {
let _ = canvas.with_texture_canvas(&mut backbuffer.0, |canvas| {
// Set blend mode for transparency
canvas.set_blend_mode(BlendMode::Blend);
// Draw semi-transparent circle at touch start position
canvas.set_draw_color(Color::RGBA(255, 255, 255, 100));
let center = Point::new(touch_data.start_pos.x as i32, touch_data.start_pos.y as i32);
// Draw a simple circle by drawing filled rectangles (basic approach)
let radius = 30;
for dy in -radius..=radius {
for dx in -radius..=radius {
if dx * dx + dy * dy <= radius * radius {
let point = Point::new(center.x + dx, center.y + dy);
if let Err(e) = canvas.draw_point(point) {
errors.write(TextureError::RenderFailed(format!("Touch UI render error: {}", e)).into());
return;
}
}
}
}
// Draw direction indicator if we have a direction
if let Some(direction) = touch_data.current_direction {
canvas.set_draw_color(Color::RGBA(0, 255, 0, 150));
// Draw arrow indicating direction
let arrow_length = 40;
let (dx, dy) = match direction {
crate::map::direction::Direction::Up => (0, -arrow_length),
crate::map::direction::Direction::Down => (0, arrow_length),
crate::map::direction::Direction::Left => (-arrow_length, 0),
crate::map::direction::Direction::Right => (arrow_length, 0),
};
let end_point = Point::new(center.x + dx, center.y + dy);
if let Err(e) = canvas.draw_line(center, end_point) {
errors.write(TextureError::RenderFailed(format!("Touch arrow render error: {}", e)).into());
}
// Draw arrowhead (simple approach)
let arrow_size = 8;
match direction {
crate::map::direction::Direction::Up => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y + arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y + arrow_size));
}
crate::map::direction::Direction::Down => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y - arrow_size));
}
crate::map::direction::Direction::Left => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y + arrow_size));
}
crate::map::direction::Direction::Right => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y + arrow_size));
}
}
}
});
}
}
/// Renders the HUD (score, lives, etc.) on top of the game. /// Renders the HUD (score, lives, etc.) on top of the game.
pub fn hud_render_system( pub fn hud_render_system(
mut backbuffer: NonSendMut<BackbufferResource>, mut backbuffer: NonSendMut<BackbufferResource>,
@@ -172,59 +255,138 @@ pub fn hud_render_system(
#[allow(clippy::too_many_arguments)] #[allow(clippy::too_many_arguments)]
pub fn render_system( pub fn render_system(
canvas: &mut Canvas<Window>,
map_texture: &NonSendMut<MapTextureResource>,
atlas: &mut SpriteAtlas,
map: &Res<Map>,
dirty: &Res<RenderDirty>,
renderables: &Query<(Entity, &Renderable, &Position), Without<Hidden>>,
errors: &mut EventWriter<GameError>,
) {
if !dirty.0 {
return;
}
// Clear the backbuffer
canvas.set_draw_color(sdl2::pixels::Color::BLACK);
canvas.clear();
// Copy the pre-rendered map texture to the backbuffer
if let Err(e) = canvas.copy(&map_texture.0, None, None) {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Render all entities to the backbuffer
for (_, renderable, position) in renderables
.iter()
.sort_by_key::<(Entity, &Renderable, &Position), _>(|(_, renderable, _)| renderable.layer)
.rev()
{
let pos = position.get_pixel_position(&map.graph);
match pos {
Ok(pos) => {
let dest = Rect::from_center(
Point::from((pos.x as i32, pos.y as i32)),
renderable.sprite.size.x as u32,
renderable.sprite.size.y as u32,
);
renderable
.sprite
.render(canvas, atlas, dest)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
}
Err(e) => {
errors.write(e);
}
}
}
}
/// Combined render system that renders to both backbuffer and debug textures in a single
/// with_multiple_texture_canvas call for reduced overhead
#[allow(clippy::too_many_arguments)]
pub fn combined_render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>, mut canvas: NonSendMut<&mut Canvas<Window>>,
map_texture: NonSendMut<MapTextureResource>, map_texture: NonSendMut<MapTextureResource>,
mut backbuffer: NonSendMut<BackbufferResource>, mut backbuffer: NonSendMut<BackbufferResource>,
mut debug_texture: NonSendMut<DebugTextureResource>,
mut atlas: NonSendMut<SpriteAtlas>, mut atlas: NonSendMut<SpriteAtlas>,
mut ttf_atlas: NonSendMut<TtfAtlasResource>,
batched_lines: Res<BatchedLinesResource>,
debug_state: Res<DebugState>,
timings: Res<SystemTimings>,
map: Res<Map>, map: Res<Map>,
dirty: Res<RenderDirty>, dirty: Res<RenderDirty>,
renderables: Query<(Entity, &Renderable, &Position), Without<Hidden>>, renderables: Query<(Entity, &Renderable, &Position), Without<Hidden>>,
colliders: Query<(&Collider, &Position)>,
cursor: Res<CursorPosition>,
mut errors: EventWriter<GameError>, mut errors: EventWriter<GameError>,
) { ) {
if !dirty.0 { if !dirty.0 {
return; return;
} }
// Render to backbuffer
canvas
.with_texture_canvas(&mut backbuffer.0, |backbuffer_canvas| {
// Clear the backbuffer
backbuffer_canvas.set_draw_color(sdl2::pixels::Color::BLACK);
backbuffer_canvas.clear();
// Copy the pre-rendered map texture to the backbuffer // Prepare textures and render targets
if let Err(e) = backbuffer_canvas.copy(&map_texture.0, None, None) { let textures = [
errors.write(TextureError::RenderFailed(e.to_string()).into()); (&mut backbuffer.0, RenderTarget::Backbuffer),
(&mut debug_texture.0, RenderTarget::Debug),
];
// Record timing for each system independently
let mut render_duration = None;
let mut debug_render_duration = None;
let result = canvas.with_multiple_texture_canvas(textures.iter(), |texture_canvas, render_target| match render_target {
RenderTarget::Backbuffer => {
let start_time = Instant::now();
render_system(
texture_canvas,
&map_texture,
&mut atlas,
&map,
&dirty,
&renderables,
&mut errors,
);
render_duration = Some(start_time.elapsed());
}
RenderTarget::Debug => {
if !debug_state.enabled {
return;
} }
// Render all entities to the backbuffer let start_time = Instant::now();
for (_, renderable, position) in renderables
.iter()
.sort_by_key::<(Entity, &Renderable, &Position), _>(|(_, renderable, _)| renderable.layer)
.rev()
{
let pos = position.get_pixel_position(&map.graph);
match pos {
Ok(pos) => {
let dest = Rect::from_center(
Point::from((pos.x as i32, pos.y as i32)),
renderable.sprite.size.x as u32,
renderable.sprite.size.y as u32,
);
renderable debug_render_system(
.sprite texture_canvas,
.render(backbuffer_canvas, &mut atlas, dest) &mut ttf_atlas,
.err() &batched_lines,
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into())); &debug_state,
} &timings,
Err(e) => { &map,
errors.write(e); &colliders,
} &cursor,
} );
}
}) debug_render_duration = Some(start_time.elapsed());
.err() }
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into())); });
if let Err(e) = result {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Record timings for each system independently
if let Some(duration) = render_duration {
timings.add_timing(SystemId::Render, duration);
}
if let Some(duration) = debug_render_duration {
timings.add_timing(SystemId::DebugRender, duration);
}
} }
pub fn present_system( pub fn present_system(

View File

@@ -1,5 +1,22 @@
use pacman::systems::profiling::{SystemId, SystemTimings}; use pacman::systems::profiling::{SystemId, SystemTimings};
use std::time::Duration; use std::time::Duration;
use strum::IntoEnumIterator;
macro_rules! assert_close {
($actual:expr, $expected:expr, $concern:expr) => {
let tolerance = Duration::from_micros(500);
let diff = $actual.abs_diff($expected);
assert!(
diff < tolerance,
"Expected {expected:?} ± {tolerance:.0?}, got {actual:?}, off by {diff:?} ({concern})",
concern = $concern,
expected = $expected,
actual = $actual,
tolerance = tolerance,
diff = diff
);
};
}
#[test] #[test]
fn test_timing_statistics() { fn test_timing_statistics() {
@@ -14,47 +31,80 @@ fn test_timing_statistics() {
timings.add_timing(SystemId::Blinking, Duration::from_millis(3)); timings.add_timing(SystemId::Blinking, Duration::from_millis(3));
timings.add_timing(SystemId::Blinking, Duration::from_millis(2)); timings.add_timing(SystemId::Blinking, Duration::from_millis(2));
timings.add_timing(SystemId::Blinking, Duration::from_millis(1)); timings.add_timing(SystemId::Blinking, Duration::from_millis(1));
fn close_enough(a: Duration, b: Duration) -> bool {
if a > b { {
a - b < Duration::from_micros(500) // 0.1ms let stats = timings.get_stats();
} else { let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap();
b - a < Duration::from_micros(500)
} assert_close!(*avg, Duration::from_millis(10), "PlayerControls average timing");
assert_close!(*std_dev, Duration::from_millis(2), "PlayerControls standard deviation timing");
} }
let stats = timings.get_stats(); {
let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap(); let (total_avg, total_std) = timings.get_total_stats();
assert_close!(total_avg, Duration::from_millis(2), "Total average timing across all systems");
// Average should be 10ms, standard deviation should be small assert_close!(
assert!(close_enough(*avg, Duration::from_millis(10)), "avg: {:?}", avg); total_std,
assert!(close_enough(*std_dev, Duration::from_millis(2)), "std_dev: {:?}", std_dev); Duration::from_millis(7),
"Total standard deviation timing across all systems"
let (total_avg, total_std) = timings.get_total_stats(); );
assert!( }
close_enough(total_avg, Duration::from_millis(18)),
"total_avg: {:?}",
total_avg
);
assert!(
close_enough(total_std, Duration::from_millis(12)),
"total_std: {:?}",
total_std
);
} }
// #[test] #[test]
// fn test_window_size_limit() { fn test_default_zero_timing_for_unused_systems() {
// let timings = SystemTimings::default(); let timings = SystemTimings::default();
// // Add more than 90 timings to test window size limit // Add timing data for only one system
// for i in 0..100 { timings.add_timing(SystemId::PlayerControls, Duration::from_millis(5));
// timings.add_timing("test_system", Duration::from_millis(i));
// }
// let stats = timings.get_stats(); let stats = timings.get_stats();
// let (avg, _) = stats.get("test_system").unwrap();
// // Should only keep the last 90 values, so average should be around 55ms // Verify all SystemId variants are present in the stats
// // (average of 10-99) let expected_count = SystemId::iter().count();
// assert!((avg.as_millis() as f64 - 55.0).abs() < 5.0); assert_eq!(stats.len(), expected_count, "All SystemId variants should be in stats");
// }
// Verify that the system with data has non-zero timing
let (avg, std_dev) = stats.get(&SystemId::PlayerControls).unwrap();
assert_close!(*avg, Duration::from_millis(5), "System with data should have correct timing");
assert_close!(*std_dev, Duration::ZERO, "Single measurement should have zero std dev");
// Verify that all other systems have zero timing
for id in SystemId::iter() {
if id != SystemId::PlayerControls {
let (avg, std_dev) = stats.get(&id).unwrap();
assert_close!(
*avg,
Duration::ZERO,
format!("Unused system {:?} should have zero avg timing", id)
);
assert_close!(
*std_dev,
Duration::ZERO,
format!("Unused system {:?} should have zero std dev", id)
);
}
}
}
#[test]
fn test_pre_populated_timing_entries() {
let timings = SystemTimings::default();
// Verify that we can add timing to any SystemId without panicking
// (this would fail with the old implementation if the entry didn't exist)
for id in SystemId::iter() {
timings.add_timing(id, Duration::from_nanos(1));
}
// Verify all systems now have non-zero timing
let stats = timings.get_stats();
for id in SystemId::iter() {
let (avg, _) = stats.get(&id).unwrap();
assert!(
*avg > Duration::ZERO,
"System {:?} should have non-zero timing after add_timing",
id
);
}
}