refactor: continue improving MovableEntity shared implementation

This commit is contained in:
2025-07-23 15:06:09 -05:00
parent 1fa7a0807f
commit df8f858651
6 changed files with 341 additions and 415 deletions

View File

@@ -1,5 +1,11 @@
//! This module defines the `Entity` trait, which is implemented by all game
//! objects that can be moved and rendered.
use crate::{
constants::{MapTile, BOARD_OFFSET, BOARD_WIDTH, CELL_SIZE},
direction::Direction,
map::Map,
modulation::SimpleTickModulator,
};
use std::cell::RefCell;
use std::rc::Rc;
/// A trait for game objects that can be moved and rendered.
pub trait Entity {
@@ -7,7 +13,11 @@ pub trait Entity {
fn base(&self) -> &MovableEntity;
/// Returns true if the entity is colliding with the other entity.
fn is_colliding(&self, other: &dyn Entity) -> bool;
fn is_colliding(&self, other: &dyn Entity) -> bool {
let (x, y) = self.base().pixel_position;
let (other_x, other_y) = other.base().pixel_position;
x == other_x && y == other_y
}
/// Ticks the entity, which updates its state and position.
fn tick(&mut self);
@@ -20,13 +30,15 @@ pub struct MovableEntity {
/// The position of the entity on the board, in grid coordinates.
pub cell_position: (u32, u32),
/// The current direction of the entity.
pub direction: crate::direction::Direction,
pub direction: Direction,
/// Movement speed (pixels per tick).
pub speed: u32,
/// Movement modulator for controlling speed.
pub modulation: crate::modulation::SimpleTickModulator,
pub modulation: SimpleTickModulator,
/// Whether the entity is currently in a tunnel.
pub in_tunnel: bool,
/// Reference to the game map.
pub map: Rc<RefCell<Map>>,
}
impl MovableEntity {
@@ -34,9 +46,10 @@ impl MovableEntity {
pub fn new(
pixel_position: (i32, i32),
cell_position: (u32, u32),
direction: crate::direction::Direction,
direction: Direction,
speed: u32,
modulation: crate::modulation::SimpleTickModulator,
modulation: SimpleTickModulator,
map: Rc<RefCell<Map>>,
) -> Self {
Self {
pixel_position,
@@ -45,21 +58,21 @@ impl MovableEntity {
speed,
modulation,
in_tunnel: false,
map,
}
}
/// Returns the position within the current cell, in pixels.
pub fn internal_position(&self) -> (u32, u32) {
(
self.pixel_position.0 as u32 % crate::constants::CELL_SIZE,
self.pixel_position.1 as u32 % crate::constants::CELL_SIZE,
self.pixel_position.0 as u32 % CELL_SIZE,
self.pixel_position.1 as u32 % CELL_SIZE,
)
}
/// Move the entity in its current direction by its speed.
pub fn move_forward(&mut self) {
let speed = self.speed as i32;
use crate::direction::Direction;
match self.direction {
Direction::Right => self.pixel_position.0 += speed,
Direction::Left => self.pixel_position.0 -= speed,
@@ -67,4 +80,87 @@ impl MovableEntity {
Direction::Down => self.pixel_position.1 += speed,
}
}
/// Updates the cell position based on the current pixel position.
pub fn update_cell_position(&mut self) {
self.cell_position = (
(self.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
);
}
/// Calculates the next cell in the given direction.
pub fn next_cell(&self, direction: Option<Direction>) -> (i32, i32) {
let (x, y) = direction.unwrap_or(self.direction).offset();
(
self.cell_position.0 as i32 + x,
self.cell_position.1 as i32 + y,
)
}
/// Returns true if the next cell in the given direction is a wall.
pub fn is_wall_ahead(&self, direction: Option<Direction>) -> bool {
let next_cell = self.next_cell(direction);
matches!(self.map.borrow().get_tile(next_cell), Some(MapTile::Wall))
}
/// Handles tunnel movement and wrapping.
/// Returns true if the entity is in a tunnel and was handled.
pub fn handle_tunnel(&mut self) -> bool {
if !self.in_tunnel {
let current_tile = self
.map
.borrow()
.get_tile((self.cell_position.0 as i32, self.cell_position.1 as i32));
if matches!(current_tile, Some(MapTile::Tunnel)) {
self.in_tunnel = true;
}
}
if self.in_tunnel {
// If out of bounds, teleport to the opposite side and exit tunnel
if self.cell_position.0 == 0 {
self.cell_position.0 = BOARD_WIDTH - 2;
self.pixel_position =
Map::cell_to_pixel((self.cell_position.0, self.cell_position.1));
self.in_tunnel = false;
true
} else if self.cell_position.0 == BOARD_WIDTH - 1 {
self.cell_position.0 = 1;
self.pixel_position =
Map::cell_to_pixel((self.cell_position.0, self.cell_position.1));
self.in_tunnel = false;
true
} else {
// Still in tunnel, keep moving
true
}
} else {
false
}
}
/// Returns true if the entity is aligned with the grid.
pub fn is_grid_aligned(&self) -> bool {
self.internal_position() == (0, 0)
}
/// Attempts to set the direction if the next cell is not a wall.
/// Returns true if the direction was changed.
pub fn set_direction_if_valid(&mut self, new_direction: Direction) -> bool {
if new_direction == self.direction {
return false;
}
if self.is_wall_ahead(Some(new_direction)) {
return false;
}
self.direction = new_direction;
true
}
}
/// A trait for entities that can be rendered to the screen.
pub trait Renderable {
/// Renders the entity to the canvas.
fn render(&mut self, canvas: &mut sdl2::render::Canvas<sdl2::video::Window>);
}

View File

@@ -13,12 +13,14 @@ use sdl2::{pixels::Color, render::Canvas, video::Window};
use tracing::event;
use crate::audio::Audio;
use crate::constants::{MapTile, BOARD_HEIGHT, BOARD_WIDTH, RAW_BOARD};
use crate::direction::Direction;
use crate::entity::Entity;
use crate::ghosts::Blinky;
use crate::map::Map;
use crate::pacman::Pacman;
use crate::{
constants::{MapTile, BOARD_HEIGHT, BOARD_WIDTH, RAW_BOARD},
direction::Direction,
entity::{Entity, Renderable},
ghosts::blinky::Blinky,
map::Map,
pacman::Pacman,
};
// Embed texture data directly into the executable
static PACMAN_TEXTURE_DATA: &[u8] = include_bytes!("../assets/32/pacman.png");
@@ -40,6 +42,7 @@ pub enum DebugMode {
None,
Grid,
Pathfinding,
ValidPositions,
}
pub struct Game<'a> {
@@ -52,7 +55,7 @@ pub struct Game<'a> {
map: Rc<std::cell::RefCell<Map>>,
debug_mode: DebugMode,
score: u32,
audio: Audio,
audio: crate::audio::Audio,
// Add ghost
blinky: Blinky<'a>,
}
@@ -155,7 +158,8 @@ impl Game<'_> {
self.debug_mode = match self.debug_mode {
DebugMode::None => DebugMode::Grid,
DebugMode::Grid => DebugMode::Pathfinding,
DebugMode::Pathfinding => DebugMode::None,
DebugMode::Pathfinding => DebugMode::ValidPositions,
DebugMode::ValidPositions => DebugMode::None,
};
}
@@ -185,36 +189,26 @@ impl Game<'_> {
// Reset the score
self.score = 0;
// Reset Pacman position
// Get valid positions from the cached flood fill
let mut map = self.map.borrow_mut();
let valid_positions = map.get_valid_playable_positions();
let mut rng = rand::rng();
// Randomize Pac-Man position
if let Some(pos) = valid_positions.iter().choose(&mut rng) {
let mut pacman = self.pacman.borrow_mut();
pacman.base.pixel_position = Map::cell_to_pixel((1, 1));
pacman.base.cell_position = (1, 1);
pacman.base.pixel_position = Map::cell_to_pixel((pos.x, pos.y));
pacman.base.cell_position = (pos.x, pos.y);
pacman.base.in_tunnel = false;
pacman.base.direction = Direction::Right;
pacman.next_direction = None;
pacman.stopped = false;
}
// Reset ghost positions and mode
let mut rng = rand::rng();
let map = self.map.borrow();
let mut valid_positions = vec![];
for x in 1..(crate::constants::BOARD_WIDTH - 1) {
for y in 1..(crate::constants::BOARD_HEIGHT - 1) {
let tile_option = map.get_tile((x as i32, y as i32));
if let Some(tile) = tile_option {
match tile {
MapTile::Empty | MapTile::Pellet | MapTile::PowerPellet => {
valid_positions.push((x, y));
}
_ => {}
}
}
}
}
if let Some(&(gx, gy)) = valid_positions.iter().choose(&mut rng) {
self.blinky.base.pixel_position = Map::cell_to_pixel((gx, gy));
self.blinky.base.cell_position = (gx, gy);
// Randomize ghost position
if let Some(pos) = valid_positions.iter().choose(&mut rng) {
self.blinky.base.pixel_position = Map::cell_to_pixel((pos.x, pos.y));
self.blinky.base.cell_position = (pos.x, pos.y);
self.blinky.base.in_tunnel = false;
self.blinky.base.direction = Direction::Left;
self.blinky.mode = crate::ghost::GhostMode::Chase;
@@ -339,10 +333,21 @@ impl Game<'_> {
}
// Draw the next cell
let next_cell = self.pacman.borrow().next_cell(None);
let next_cell = self.pacman.borrow().base.next_cell(None);
self.draw_cell((next_cell.0 as u32, next_cell.1 as u32), Color::YELLOW);
}
// Show valid playable positions
if self.debug_mode == DebugMode::ValidPositions {
let valid_positions_vec = {
let mut map = self.map.borrow_mut();
map.get_valid_playable_positions().clone()
};
for &pos in &valid_positions_vec {
self.draw_cell((pos.x, pos.y), Color::RGB(255, 140, 0)); // ORANGE
}
}
// Pathfinding debug mode
if self.debug_mode == DebugMode::Pathfinding {
// Show the current path for Blinky

View File

@@ -1,19 +1,11 @@
use pathfinding::prelude::dijkstra;
use sdl2::{
pixels::Color,
render::{Canvas, Texture},
video::Window,
};
use std::cell::RefCell;
use std::rc::Rc;
use rand::Rng;
use crate::{
animation::AnimatedTexture,
constants::{MapTile, BOARD_OFFSET, BOARD_WIDTH, CELL_SIZE},
constants::{MapTile, BOARD_WIDTH},
direction::Direction,
entity::{Entity, MovableEntity},
entity::{Entity, MovableEntity, Renderable},
map::Map,
modulation::{SimpleTickModulator, TickModulator},
pacman::Pacman,
@@ -45,12 +37,12 @@ pub enum GhostType {
impl GhostType {
/// Returns the color of the ghost.
pub fn color(&self) -> Color {
pub fn color(&self) -> sdl2::pixels::Color {
match self {
GhostType::Blinky => Color::RGB(255, 0, 0),
GhostType::Pinky => Color::RGB(255, 184, 255),
GhostType::Inky => Color::RGB(0, 255, 255),
GhostType::Clyde => Color::RGB(255, 184, 82),
GhostType::Blinky => sdl2::pixels::Color::RGB(255, 0, 0),
GhostType::Pinky => sdl2::pixels::Color::RGB(255, 184, 255),
GhostType::Inky => sdl2::pixels::Color::RGB(0, 255, 255),
GhostType::Clyde => sdl2::pixels::Color::RGB(255, 184, 82),
}
}
}
@@ -63,10 +55,8 @@ pub struct Ghost<'a> {
pub mode: GhostMode,
/// The type/personality of this ghost
pub ghost_type: GhostType,
/// Reference to the game map
pub map: Rc<RefCell<Map>>,
/// Reference to Pac-Man for targeting
pub pacman: Rc<RefCell<Pacman<'a>>>,
pub pacman: std::rc::Rc<std::cell::RefCell<Pacman<'a>>>,
/// Ghost body sprite
body_sprite: AnimatedTexture<'a>,
/// Ghost eyes sprite
@@ -78,10 +68,10 @@ impl Ghost<'_> {
pub fn new<'a>(
ghost_type: GhostType,
starting_position: (u32, u32),
body_texture: Texture<'a>,
eyes_texture: Texture<'a>,
map: Rc<RefCell<Map>>,
pacman: Rc<RefCell<Pacman<'a>>>,
body_texture: sdl2::render::Texture<'a>,
eyes_texture: sdl2::render::Texture<'a>,
map: std::rc::Rc<std::cell::RefCell<Map>>,
pacman: std::rc::Rc<std::cell::RefCell<Pacman<'a>>>,
) -> Ghost<'a> {
let color = ghost_type.color();
let mut body_sprite = AnimatedTexture::new(body_texture, 8, 2, 32, 32, Some((-4, -4)));
@@ -94,56 +84,94 @@ impl Ghost<'_> {
Direction::Left,
3,
SimpleTickModulator::new(1.0),
map,
),
mode: GhostMode::Chase,
ghost_type,
map,
pacman,
body_sprite,
eyes_sprite: AnimatedTexture::new(eyes_texture, 1, 4, 32, 32, Some((-4, -4))),
}
}
/// Renders the ghost to the canvas
pub fn render(&mut self, canvas: &mut Canvas<Window>) {
// Render body
if self.mode != GhostMode::Eyes {
let color = if self.mode == GhostMode::Frightened {
Color::RGB(0, 0, 255)
} else {
self.ghost_type.color()
};
self.body_sprite
.set_color_modulation(color.r, color.g, color.b);
self.body_sprite
.render(canvas, self.base.pixel_position, Direction::Right);
/// Gets the target tile for this ghost based on its current mode
pub fn get_target_tile(&self) -> (i32, i32) {
match self.mode {
GhostMode::Scatter => self.get_scatter_target(),
GhostMode::Chase => self.get_chase_target(),
GhostMode::Frightened => self.get_random_target(),
GhostMode::Eyes => self.get_house_target(),
GhostMode::House => self.get_house_exit_target(),
}
}
// Always render eyes on top
let eye_frame = if self.mode == GhostMode::Frightened {
4 // Frightened frame
} else {
match self.base.direction {
Direction::Right => 0,
Direction::Up => 1,
Direction::Left => 2,
Direction::Down => 3,
/// Gets this ghost's home corner target for scatter mode
fn get_scatter_target(&self) -> (i32, i32) {
match self.ghost_type {
GhostType::Blinky => (25, 0), // Top right
GhostType::Pinky => (2, 0), // Top left
GhostType::Inky => (27, 35), // Bottom right
GhostType::Clyde => (0, 35), // Bottom left
}
}
};
self.eyes_sprite.render_static(
canvas,
self.base.pixel_position,
/// Gets a random adjacent tile for frightened mode
fn get_random_target(&self) -> (i32, i32) {
let mut rng = rand::rng();
let mut possible_moves = Vec::new();
// Check all four directions
for dir in &[
Direction::Up,
Direction::Down,
Direction::Left,
Direction::Right,
Some(eye_frame),
);
] {
// Don't allow reversing direction
if *dir == self.base.direction.opposite() {
continue;
}
let next_cell = self.base.next_cell(Some(*dir));
if !matches!(
self.base.map.borrow().get_tile(next_cell),
Some(MapTile::Wall)
) {
possible_moves.push(next_cell);
}
}
if possible_moves.is_empty() {
// No valid moves, must reverse
self.base.next_cell(Some(self.base.direction.opposite()))
} else {
// Choose a random valid move
possible_moves[rng.random_range(0..possible_moves.len())]
}
}
/// Gets the ghost house target for returning eyes
fn get_house_target(&self) -> (i32, i32) {
(13, 14) // Center of ghost house
}
/// Gets the exit point target when leaving house
fn get_house_exit_target(&self) -> (i32, i32) {
(13, 11) // Just above ghost house
}
/// Gets this ghost's chase mode target (to be implemented by each ghost type)
fn get_chase_target(&self) -> (i32, i32) {
// Default implementation just targets Pac-Man directly
let pacman = self.pacman.borrow();
let cell = pacman.base().cell_position;
(cell.0 as i32, cell.1 as i32)
}
/// Calculates the path to the target tile using the A* algorithm.
pub fn get_path_to_target(&self, target: (u32, u32)) -> Option<(Vec<(u32, u32)>, u32)> {
let start = self.base.cell_position;
let map = self.map.borrow();
let map = self.base.map.borrow();
dijkstra(
&start,
@@ -179,83 +207,6 @@ impl Ghost<'_> {
)
}
/// Gets the target tile for this ghost based on its current mode
pub fn get_target_tile(&self) -> (i32, i32) {
match self.mode {
GhostMode::Scatter => self.get_scatter_target(),
GhostMode::Chase => self.get_chase_target(),
GhostMode::Frightened => self.get_random_target(),
GhostMode::Eyes => self.get_house_target(),
GhostMode::House => self.get_house_exit_target(),
}
}
/// Gets this ghost's home corner target for scatter mode
fn get_scatter_target(&self) -> (i32, i32) {
match self.ghost_type {
GhostType::Blinky => (25, 0), // Top right
GhostType::Pinky => (2, 0), // Top left
GhostType::Inky => (27, 35), // Bottom right
GhostType::Clyde => (0, 35), // Bottom left
}
}
/// Gets a random adjacent tile for frightened mode
fn get_random_target(&self) -> (i32, i32) {
let mut rng = rand::rng();
let (x, y) = self.base.cell_position;
let mut possible_moves = Vec::new();
// Check all four directions
for dir in &[
Direction::Up,
Direction::Down,
Direction::Left,
Direction::Right,
] {
// Don't allow reversing direction
if *dir == self.base.direction.opposite() {
continue;
}
let (dx, dy) = dir.offset();
let next_cell = (x as i32 + dx, y as i32 + dy);
let tile = self.map.borrow().get_tile(next_cell);
if let Some(MapTile::Wall) = tile {
// It's a wall, not a valid move
} else {
possible_moves.push(next_cell);
}
}
if possible_moves.is_empty() {
// No valid moves, must reverse
let (dx, dy) = self.base.direction.opposite().offset();
return (x as i32 + dx, y as i32 + dy);
}
// Choose a random valid move
possible_moves[rng.gen_range(0..possible_moves.len())]
}
/// Gets the ghost house target for returning eyes
fn get_house_target(&self) -> (i32, i32) {
(13, 14) // Center of ghost house
}
/// Gets the exit point target when leaving house
fn get_house_exit_target(&self) -> (i32, i32) {
(13, 11) // Just above ghost house
}
/// Gets this ghost's chase mode target (to be implemented by each ghost type)
fn get_chase_target(&self) -> (i32, i32) {
// Default implementation just targets Pac-Man directly
let pacman = self.pacman.borrow();
let cell = pacman.base.cell_position;
(cell.0 as i32, cell.1 as i32)
}
/// Changes the ghost's mode and handles direction reversal
pub fn set_mode(&mut self, new_mode: GhostMode) {
// Don't reverse if going to/from frightened or if in house
@@ -274,7 +225,8 @@ impl Ghost<'_> {
};
if should_reverse {
self.base.direction = self.base.direction.opposite();
self.base
.set_direction_if_valid(self.base.direction.opposite());
}
}
}
@@ -284,56 +236,16 @@ impl Entity for Ghost<'_> {
&self.base
}
/// Returns true if the ghost entity is colliding with the other entity.
fn is_colliding(&self, other: &dyn Entity) -> bool {
let (x, y) = self.base.pixel_position;
let (other_x, other_y) = other.base().pixel_position;
x == other_x && y == other_y
}
/// Ticks the ghost entity.
fn tick(&mut self) {
if self.mode == GhostMode::House {
// For now, do nothing in the house
return;
}
if self.base.internal_position() == (0, 0) {
self.base.cell_position = (
(self.base.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.base.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
);
if self.base.is_grid_aligned() {
self.base.update_cell_position();
let current_tile = self
.map
.borrow()
.get_tile((
self.base.cell_position.0 as i32,
self.base.cell_position.1 as i32,
))
.unwrap_or(MapTile::Empty);
if current_tile == MapTile::Tunnel {
self.base.in_tunnel = true;
}
// Tunnel logic: if in tunnel, force movement and prevent direction change
if self.base.in_tunnel {
// If out of bounds, teleport to the opposite side and exit tunnel
if self.base.cell_position.0 == 0 {
self.base.cell_position.0 = BOARD_WIDTH - 2;
self.base.pixel_position =
Map::cell_to_pixel((self.base.cell_position.0, self.base.cell_position.1));
self.base.in_tunnel = false;
} else if self.base.cell_position.0 == BOARD_WIDTH - 1 {
self.base.cell_position.0 = 1;
self.base.pixel_position =
Map::cell_to_pixel((self.base.cell_position.0, self.base.cell_position.1));
self.base.in_tunnel = false;
} else {
// While in tunnel, do not allow direction change
// and always move in the current direction
}
} else {
if !self.base.handle_tunnel() {
// Pathfinding logic (only if not in tunnel)
let target_tile = self.get_target_tile();
if let Some((path, _)) =
@@ -344,7 +256,7 @@ impl Entity for Ghost<'_> {
let (x, y) = self.base.cell_position;
let dx = next_move.0 as i32 - x as i32;
let dy = next_move.1 as i32 - y as i32;
self.base.direction = if dx > 0 {
let new_direction = if dx > 0 {
Direction::Right
} else if dx < 0 {
Direction::Left
@@ -353,40 +265,60 @@ impl Entity for Ghost<'_> {
} else {
Direction::Up
};
self.base.set_direction_if_valid(new_direction);
}
}
}
// Check if the next tile in the current direction is a wall
let (dx, dy) = self.base.direction.offset();
let next_cell = (
self.base.cell_position.0 as i32 + dx,
self.base.cell_position.1 as i32 + dy,
);
let next_tile = self
.map
.borrow()
.get_tile(next_cell)
.unwrap_or(MapTile::Empty);
if next_tile == MapTile::Wall {
// Don't move if the next tile is a wall
if self.base.is_wall_ahead(None) {
return;
}
}
if !self.base.modulation.next() {
return;
}
// Update position based on current direction and speed
if self.base.modulation.next() {
self.base.move_forward();
// Update cell position when aligned with grid
if self.base.internal_position() == (0, 0) {
self.base.cell_position = (
(self.base.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.base.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
if self.base.is_grid_aligned() {
self.base.update_cell_position();
}
}
}
}
impl Renderable for Ghost<'_> {
fn render(&mut self, canvas: &mut sdl2::render::Canvas<sdl2::video::Window>) {
// Render body
if self.mode != GhostMode::Eyes {
let color = if self.mode == GhostMode::Frightened {
sdl2::pixels::Color::RGB(0, 0, 255)
} else {
self.ghost_type.color()
};
self.body_sprite
.set_color_modulation(color.r, color.g, color.b);
self.body_sprite
.render(canvas, self.base.pixel_position, Direction::Right);
}
// Always render eyes on top
let eye_frame = if self.mode == GhostMode::Frightened {
4 // Frightened frame
} else {
match self.base.direction {
Direction::Right => 0,
Direction::Up => 1,
Direction::Left => 2,
Direction::Down => 3,
}
};
self.eyes_sprite.render_static(
canvas,
self.base.pixel_position,
Direction::Right,
Some(eye_frame),
);
}
}
}

View File

@@ -4,9 +4,8 @@ use std::rc::Rc;
use sdl2::render::{Canvas, Texture};
use sdl2::video::Window;
use crate::entity::MovableEntity;
use crate::{
entity::Entity,
entity::{Entity, MovableEntity, Renderable},
ghost::{Ghost, GhostMode, GhostType},
map::Map,
pacman::Pacman,
@@ -39,7 +38,7 @@ impl<'a> Blinky<'a> {
/// Gets Blinky's chase target - directly targets Pac-Man's current position
fn get_chase_target(&self) -> (i32, i32) {
let pacman = self.ghost.pacman.borrow();
let cell = pacman.base.cell_position;
let cell = pacman.base().cell_position;
(cell.0 as i32, cell.1 as i32)
}
@@ -48,7 +47,7 @@ impl<'a> Blinky<'a> {
}
pub fn render(&mut self, canvas: &mut Canvas<Window>) {
self.ghost.render(canvas);
Renderable::render(&mut self.ghost, canvas);
}
}

View File

@@ -1,3 +1 @@
mod blinky;
pub use blinky::Blinky;
pub mod blinky;

View File

@@ -10,10 +10,8 @@ use tracing::event;
use crate::{
animation::AnimatedTexture,
constants::MapTile,
constants::{BOARD_OFFSET, BOARD_WIDTH, CELL_SIZE},
direction::Direction,
entity::{Entity, MovableEntity},
entity::{Entity, MovableEntity, Renderable},
map::Map,
modulation::{SimpleTickModulator, TickModulator},
};
@@ -26,7 +24,6 @@ pub struct Pacman<'a> {
pub next_direction: Option<Direction>,
/// Whether Pac-Man is currently stopped.
pub stopped: bool,
map: Rc<RefCell<Map>>,
sprite: AnimatedTexture<'a>,
}
@@ -45,16 +42,70 @@ impl Pacman<'_> {
Direction::Right,
3,
SimpleTickModulator::new(1.0),
map,
),
next_direction: None,
stopped: false,
map,
sprite: AnimatedTexture::new(atlas, 2, 3, 32, 32, Some((-4, -4))),
}
}
/// Renders Pac-Man to the canvas.
pub fn render(&mut self, canvas: &mut Canvas<Window>) {
/// Handles a requested direction change.
fn handle_direction_change(&mut self) -> bool {
match self.next_direction {
None => return false,
Some(next_direction) => {
if self.base.set_direction_if_valid(next_direction) {
self.next_direction = None;
return true;
}
}
}
false
}
/// Returns the internal position of Pac-Man, rounded down to the nearest even number.
fn internal_position_even(&self) -> (u32, u32) {
let (x, y) = self.base.internal_position();
((x / 2u32) * 2u32, (y / 2u32) * 2u32)
}
}
impl Entity for Pacman<'_> {
fn base(&self) -> &MovableEntity {
&self.base
}
fn tick(&mut self) {
let can_change = self.internal_position_even() == (0, 0);
if can_change {
self.base.update_cell_position();
if !self.base.handle_tunnel() {
// Handle direction change as normal if not in tunnel
self.handle_direction_change();
// Check if the next tile in the current direction is a wall
if !self.stopped && self.base.is_wall_ahead(None) {
self.stopped = true;
} else if self.stopped && !self.base.is_wall_ahead(None) {
self.stopped = false;
}
}
}
if !self.stopped && self.base.modulation.next() {
self.base.move_forward();
if self.internal_position_even() == (0, 0) {
self.base.update_cell_position();
}
}
}
}
impl Renderable for Pacman<'_> {
fn render(&mut self, canvas: &mut Canvas<Window>) {
if self.stopped {
self.sprite.render_static(
canvas,
@@ -67,159 +118,4 @@ impl Pacman<'_> {
.render(canvas, self.base.pixel_position, self.base.direction);
}
}
/// Calculates the next cell in the given direction.
pub fn next_cell(&self, direction: Option<Direction>) -> (i32, i32) {
let (x, y) = direction.unwrap_or(self.base.direction).offset();
let cell = self.base.cell_position;
(cell.0 as i32 + x, cell.1 as i32 + y)
}
/// Handles a requested direction change.
///
/// The direction change is only applied if the next tile in the requested
/// direction is not a wall.
fn handle_direction_change(&mut self) -> bool {
match self.next_direction {
// If there is no next direction, do nothing.
None => return false,
// If the next direction is the same as the current direction, do nothing.
Some(next_direction) => {
if next_direction == self.base.direction {
self.next_direction = None;
return false;
}
}
}
// Get the next cell in the proposed direction.
let proposed_next_cell = self.next_cell(self.next_direction);
let proposed_next_tile = self
.map
.borrow()
.get_tile(proposed_next_cell)
.unwrap_or(MapTile::Empty);
// If the next tile is a wall, do nothing.
if proposed_next_tile == MapTile::Wall {
return false;
}
// If the next tile is not a wall, change direction.
event!(
tracing::Level::DEBUG,
"Direction change: {:?} -> {:?} at position ({}, {}) internal ({}, {})",
self.base.direction,
self.next_direction.unwrap(),
self.base.pixel_position.0,
self.base.pixel_position.1,
self.base.internal_position().0,
self.base.internal_position().1
);
self.base.direction = self.next_direction.unwrap();
self.next_direction = None;
true
}
/// Returns the internal position of Pac-Man, rounded down to the nearest
/// even number.
///
/// This is used to ensure that Pac-Man is aligned with the grid before
/// changing direction.
fn internal_position_even(&self) -> (u32, u32) {
let (x, y) = self.base.internal_position();
((x / 2u32) * 2u32, (y / 2u32) * 2u32)
}
}
impl Entity for Pacman<'_> {
fn base(&self) -> &MovableEntity {
&self.base
}
/// Returns true if the Pac-Man entity is colliding with the other entity.
fn is_colliding(&self, other: &dyn Entity) -> bool {
let (x, y) = self.base.pixel_position;
let (other_x, other_y) = other.base().pixel_position;
x == other_x && y == other_y
}
/// Ticks the Pac-Man entity.
fn tick(&mut self) {
// Pac-Man can only change direction when he is perfectly aligned with the grid.
let can_change = self.internal_position_even() == (0, 0);
if can_change {
self.base.cell_position = (
(self.base.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.base.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
);
let current_tile = self
.map
.borrow()
.get_tile((
self.base.cell_position.0 as i32,
self.base.cell_position.1 as i32,
))
.unwrap_or(MapTile::Empty);
if current_tile == MapTile::Tunnel {
self.base.in_tunnel = true;
}
// Tunnel logic: if in tunnel, force movement and prevent direction change
if self.base.in_tunnel {
// If out of bounds, teleport to the opposite side and exit tunnel
if self.base.cell_position.0 == 0 {
self.base.cell_position.0 = BOARD_WIDTH - 2;
self.base.pixel_position = Map::cell_to_pixel((
self.base.cell_position.0 + 1,
self.base.cell_position.1,
));
self.base.in_tunnel = false;
} else if self.base.cell_position.0 == BOARD_WIDTH - 1 {
self.base.cell_position.0 = 1;
self.base.pixel_position = Map::cell_to_pixel((
self.base.cell_position.0 - 1,
self.base.cell_position.1,
));
self.base.in_tunnel = false;
} else {
// While in tunnel, do not allow direction change
// and always move in the current direction
}
} else {
// Handle direction change as normal
self.handle_direction_change();
// Check if the next tile in the current direction is a wall.
let next_tile_position = self.next_cell(None);
let next_tile = self
.map
.borrow()
.get_tile(next_tile_position)
.unwrap_or(MapTile::Empty);
if !self.stopped && next_tile == MapTile::Wall {
self.stopped = true;
} else if self.stopped && next_tile != MapTile::Wall {
self.stopped = false;
}
}
}
if !self.stopped {
if self.base.modulation.next() {
self.base.move_forward();
// Update the cell position if Pac-Man is aligned with the grid.
if self.internal_position_even() == (0, 0) {
self.base.cell_position = (
(self.base.pixel_position.0 as u32 / CELL_SIZE) - BOARD_OFFSET.0,
(self.base.pixel_position.1 as u32 / CELL_SIZE) - BOARD_OFFSET.1,
);
}
}
}
}
}