refactor: create workspace, move 'pacman' into pacman/ subfolder as workspace member

This commit is contained in:
Ryan Walters
2025-09-16 00:31:06 -05:00
parent 841cf5b83e
commit a3c4c94d42
288 changed files with 2098 additions and 273 deletions

163
pacman/src/app.rs Normal file
View File

@@ -0,0 +1,163 @@
use std::collections::HashMap;
use std::time::{Duration, Instant};
use crate::error::{GameError, GameResult};
use crate::constants::{CANVAS_SIZE, LOOP_TIME, SCALE};
use crate::formatter;
use crate::game::Game;
use crate::platform;
use sdl2::pixels::PixelFormatEnum;
use sdl2::render::RendererInfo;
use sdl2::{AudioSubsystem, Sdl};
use tracing::{debug, info, trace};
/// Main application wrapper that manages SDL initialization, window lifecycle, and the game loop.
pub struct App {
pub game: Game,
last_tick: Instant,
focused: bool,
// Keep SDL alive for the app lifetime so subsystems (audio) are not shut down
_sdl_context: Sdl,
_audio_subsystem: AudioSubsystem,
}
impl App {
/// Initializes SDL subsystems, creates the game window, and sets up the game state.
///
/// # Errors
///
/// Returns `GameError::Sdl` if any SDL initialization step fails, or propagates
/// errors from `Game::new()` during game state setup.
pub fn new() -> GameResult<Self> {
info!("Initializing SDL2 application");
let sdl_context = sdl2::init().map_err(|e| GameError::Sdl(e.to_string()))?;
debug!("Initializing SDL2 subsystems");
let ttf_context = sdl2::ttf::init().map_err(|e| GameError::Sdl(e.to_string()))?;
let video_subsystem = sdl_context.video().map_err(|e| GameError::Sdl(e.to_string()))?;
let audio_subsystem = sdl_context.audio().map_err(|e| GameError::Sdl(e.to_string()))?;
let event_pump = sdl_context.event_pump().map_err(|e| GameError::Sdl(e.to_string()))?;
trace!(
width = (CANVAS_SIZE.x as f32 * SCALE).round() as u32,
height = (CANVAS_SIZE.y as f32 * SCALE).round() as u32,
scale = SCALE,
"Creating game window"
);
let window = video_subsystem
.window(
"Pac-Man",
(CANVAS_SIZE.x as f32 * SCALE).round() as u32,
(CANVAS_SIZE.y as f32 * SCALE).round() as u32,
)
.resizable()
.position_centered()
.build()
.map_err(|e| GameError::Sdl(e.to_string()))?;
#[derive(Debug)]
struct DriverDetail {
info: RendererInfo,
index: usize,
}
let drivers: HashMap<&'static str, DriverDetail> = sdl2::render::drivers()
.enumerate()
.map(|(index, d)| (d.name, DriverDetail { info: d, index }))
.collect::<HashMap<_, _>>();
let get_driver =
|name: &'static str| -> Option<u32> { drivers.get(name.to_lowercase().as_str()).map(|d| d.index as u32) };
{
let mut names = drivers.keys().collect::<Vec<_>>();
names.sort_by_key(|k| get_driver(k));
trace!("Drivers: {names:?}")
}
// Count the number of times each pixel format is supported by each driver
let pixel_format_counts: HashMap<PixelFormatEnum, usize> = drivers
.values()
.flat_map(|d| d.info.texture_formats.iter())
.fold(HashMap::new(), |mut counts, format| {
*counts.entry(*format).or_insert(0) += 1;
counts
});
trace!(pixel_format_counts = ?pixel_format_counts, "Available pixel formats per driver");
let index = get_driver("direct3d");
trace!(driver_index = ?index, "Selected graphics driver");
trace!("Creating hardware-accelerated canvas");
let mut canvas = window
.into_canvas()
.accelerated()
// .index(index)
.build()
.map_err(|e| GameError::Sdl(e.to_string()))?;
trace!(
logical_width = CANVAS_SIZE.x,
logical_height = CANVAS_SIZE.y,
"Setting canvas logical size"
);
canvas
.set_logical_size(CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
debug!(renderer_info = ?canvas.info(), "Canvas renderer initialized");
trace!("Creating texture factory");
let texture_creator = canvas.texture_creator();
info!("Starting game initialization");
let game = Game::new(canvas, ttf_context, texture_creator, event_pump)?;
info!("Application initialization completed successfully");
Ok(App {
game,
focused: true,
last_tick: Instant::now(),
_sdl_context: sdl_context,
_audio_subsystem: audio_subsystem,
})
}
/// Executes a single frame of the game loop with consistent timing and optional sleep.
///
/// Calculates delta time since the last frame, runs game logic via `game.tick()`,
/// and implements frame rate limiting by sleeping for remaining time if the frame
/// completed faster than the target `LOOP_TIME`. Sleep behavior varies based on
/// window focus to conserve CPU when the game is not active.
///
/// # Returns
///
/// `true` if the game should continue running, `false` if the game requested exit.
pub fn run(&mut self) -> bool {
{
let start = Instant::now();
let dt = self.last_tick.elapsed().as_secs_f32();
self.last_tick = start;
// Increment the global tick counter for tracing
formatter::increment_tick();
let exit = self.game.tick(dt);
if exit {
return false;
}
// Sleep if we still have time left
if start.elapsed() < LOOP_TIME {
let time = LOOP_TIME.saturating_sub(start.elapsed());
if time != Duration::ZERO {
platform::sleep(time, self.focused);
}
}
true
}
}
}

137
pacman/src/asset.rs Normal file
View File

@@ -0,0 +1,137 @@
//! Cross-platform asset loading abstraction.
//! On desktop, assets are embedded using include_bytes!; on Emscripten, assets are loaded from the filesystem.
use std::borrow::Cow;
use std::iter;
use crate::audio::Sound;
use crate::error::AssetError;
/// Enumeration of all game assets with cross-platform loading support.
///
/// Each variant corresponds to a specific file that can be loaded either from
/// binary-embedded data or embedded filesystem (Emscripten).
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Asset {
/// Main sprite atlas containing all game graphics (atlas.png)
AtlasImage,
/// Terminal Vector font for text rendering (TerminalVector.ttf)
Font,
/// Sound file assets
SoundFile(Sound),
}
use strum::IntoEnumIterator;
impl Asset {
#[allow(dead_code)]
pub fn into_iter() -> AssetIter {
AssetIter {
sound_iter: None,
state: 0,
}
}
}
#[allow(clippy::type_complexity)]
pub struct AssetIter {
sound_iter: Option<iter::Map<<Sound as IntoEnumIterator>::Iterator, fn(Sound) -> Asset>>,
state: u8,
}
impl Iterator for AssetIter {
type Item = Asset;
fn next(&mut self) -> Option<Self::Item> {
match self.state {
0 => {
self.state = 1;
Some(Asset::AtlasImage)
}
1 => {
self.state = 2;
Some(Asset::Font)
}
2 => self
.sound_iter
.get_or_insert_with(|| Sound::iter().map(Asset::SoundFile))
.next(),
_ => None,
}
}
}
impl Asset {
/// Returns the relative file path for this asset within the game's asset directory.
///
/// Paths are consistent across platforms and used by the Emscripten backend
/// for filesystem loading. Desktop builds embed assets directly and don't
/// use these paths at runtime.
pub fn path(&self) -> &str {
use Asset::*;
match self {
SoundFile(Sound::Waka(0)) => "sound/pacman/waka/1.ogg",
SoundFile(Sound::Waka(1)) => "sound/pacman/waka/2.ogg",
SoundFile(Sound::Waka(2)) => "sound/pacman/waka/3.ogg",
SoundFile(Sound::Waka(3..=u8::MAX)) => "sound/pacman/waka/4.ogg",
SoundFile(Sound::PacmanDeath) => "sound/pacman/death.ogg",
SoundFile(Sound::ExtraLife) => "sound/pacman/extra_life.ogg",
SoundFile(Sound::Fruit) => "sound/pacman/fruit.ogg",
SoundFile(Sound::Ghost) => "sound/pacman/ghost.ogg",
SoundFile(Sound::Beginning) => "sound/begin.ogg",
SoundFile(Sound::Intermission) => "sound/intermission.ogg",
AtlasImage => "atlas.png",
Font => "TerminalVector.ttf",
}
}
/// Loads asset bytes using the appropriate platform-specific method.
///
/// On desktop platforms, returns embedded compile-time data via `rust-embed`.
/// On Emscripten, loads from the filesystem using the asset's path. The returned
/// `Cow` allows zero-copy access to embedded data while supporting owned data
/// when loaded from disk.
///
/// # Errors
///
/// Returns `AssetError::NotFound` if the asset file cannot be located,
/// or `AssetError::Io` for filesystem I/O failures.
pub fn get_bytes(&self) -> Result<Cow<'static, [u8]>, AssetError> {
use tracing::trace;
trace!(asset = ?self, "Loading game asset");
let result = self.get_bytes_platform();
match &result {
Ok(bytes) => trace!(asset = ?self, size_bytes = bytes.len(), "Asset loaded successfully"),
Err(e) => trace!(asset = ?self, error = ?e, "Asset loading failed"),
}
result
}
#[cfg(not(target_os = "emscripten"))]
fn get_bytes_platform(&self) -> Result<Cow<'static, [u8]>, AssetError> {
#[derive(rust_embed::Embed)]
#[folder = "assets/game/"]
struct EmbeddedAssets;
let path = self.path();
EmbeddedAssets::get(path)
.map(|file| file.data)
.ok_or_else(|| AssetError::NotFound(path.to_string()))
}
#[cfg(target_os = "emscripten")]
fn get_bytes_platform(&self) -> Result<Cow<'static, [u8]>, AssetError> {
use sdl2::rwops::RWops;
use std::io::{self, Read};
let path = format!("assets/game/{}", self.path());
let mut rwops = RWops::from_file(&path, "rb").map_err(|_| AssetError::NotFound(self.path().to_string()))?;
let len = rwops.len().ok_or_else(|| AssetError::NotFound(self.path().to_string()))?;
let mut buf = vec![0u8; len];
rwops.read_exact(&mut buf).map_err(|e| AssetError::Io(io::Error::other(e)))?;
Ok(Cow::Owned(buf))
}
}

251
pacman/src/audio.rs Normal file
View File

@@ -0,0 +1,251 @@
//! This module handles the audio playback for the game.
use std::collections::HashMap;
use crate::asset::Asset;
use anyhow::{anyhow, Result};
use sdl2::{
mixer::{self, Chunk, InitFlag, LoaderRWops, AUDIO_S16LSB},
rwops::RWops,
};
use strum::IntoEnumIterator;
const AUDIO_FREQUENCY: i32 = 16_000;
const AUDIO_CHANNELS: i32 = 4;
const DEFAULT_VOLUME: u8 = 32;
const WAKA_SOUND_COUNT: u8 = 4;
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Sound {
Waka(u8),
PacmanDeath,
ExtraLife,
Fruit,
Ghost,
Beginning,
Intermission,
}
impl IntoEnumIterator for Sound {
type Iterator = std::vec::IntoIter<Sound>;
fn iter() -> Self::Iterator {
let mut sounds = vec![
Sound::PacmanDeath,
Sound::ExtraLife,
Sound::Fruit,
Sound::Ghost,
Sound::Beginning,
Sound::Intermission,
];
sounds.extend((0..WAKA_SOUND_COUNT).map(Sound::Waka));
sounds.into_iter()
}
}
/// The audio system for the game.
///
/// This struct is responsible for initializing the audio device, loading sounds,
/// and playing them. If audio fails to initialize, it will be disabled and all
/// functions will silently do nothing.
pub struct Audio {
_mixer_context: Option<mixer::Sdl2MixerContext>,
sounds: HashMap<Sound, Chunk>,
next_waka_index: u8,
state: AudioState,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum AudioState {
Enabled { volume: u8 },
Muted { previous_volume: u8 },
Disabled,
}
impl Default for Audio {
fn default() -> Self {
Self::new()
}
}
impl Audio {
/// Creates a new `Audio` instance.
///
/// If audio fails to initialize, the audio system will be disabled and
/// all functions will silently do nothing.
pub fn new() -> Self {
match Self::try_new() {
Ok(audio) => audio,
Err(e) => {
tracing::warn!("Failed to initialize audio: {}. Audio will be disabled.", e);
Self {
_mixer_context: None,
sounds: HashMap::new(),
next_waka_index: 0,
state: AudioState::Disabled,
}
}
}
}
fn try_new() -> Result<Self> {
let format = AUDIO_S16LSB;
let chunk_size = {
// 256 is the minimum for Emscripten, but in practice 1024 is much more reliable
#[cfg(target_os = "emscripten")]
{
1024
}
// Otherwise, 256 is plenty safe.
#[cfg(not(target_os = "emscripten"))]
{
256
}
};
// Try to open audio, but don't panic if it fails
mixer::open_audio(AUDIO_FREQUENCY, format, AUDIO_CHANNELS, chunk_size)
.map_err(|e| anyhow!("Failed to open audio: {}", e))?;
mixer::allocate_channels(AUDIO_CHANNELS);
// set channel volume
for i in 0..AUDIO_CHANNELS {
mixer::Channel(i).set_volume(DEFAULT_VOLUME as i32);
}
// Try to initialize mixer, but don't panic if it fails
let mixer_context = mixer::init(InitFlag::OGG).map_err(|e| anyhow!("Failed to initialize SDL2_mixer: {}", e))?;
// Try to load sounds, but don't panic if any fail
let sounds: HashMap<Sound, Chunk> = Sound::iter()
.filter_map(|sound_type| match Self::load_sound(sound_type) {
Ok(chunk) => Some((sound_type, chunk)),
Err(e) => {
tracing::warn!("Failed to load sound {:?}: {}", sound_type, e);
None
}
})
.collect();
// If no sounds loaded successfully, disable audio
if sounds.is_empty() {
return Err(anyhow!("No sounds loaded successfully"));
}
Ok(Audio {
_mixer_context: Some(mixer_context),
sounds,
next_waka_index: 0u8,
state: AudioState::Enabled { volume: DEFAULT_VOLUME },
})
}
fn load_sound(sound_type: Sound) -> Result<Chunk> {
let asset = Asset::SoundFile(sound_type);
let data = asset
.get_bytes()
.map_err(|e| anyhow!("Failed to get bytes for {:?}: {}", sound_type, e))?;
let rwops = RWops::from_bytes(&data).map_err(|e| anyhow!("Failed to create RWops for {:?}: {}", sound_type, e))?;
rwops
.load_wav()
.map_err(|e| anyhow!("Failed to load wav for {:?}: {}", sound_type, e))
}
/// Plays the next waka eating sound in the cycle of four variants.
///
/// Automatically rotates through the four eating sound assets. The sound plays on channel 0 and the internal sound index
/// advances to the next variant. Silently returns if audio is disabled, muted,
/// or no sounds were loaded successfully.
pub fn waka(&mut self) {
if !matches!(self.state, AudioState::Enabled { .. }) {
return;
}
if let Some(chunk) = self.sounds.get(&Sound::Waka(self.next_waka_index)) {
match mixer::Channel::all().play(chunk, 0) {
Ok(channel) => {
tracing::trace!("Playing sound #{} on channel {:?}", self.next_waka_index + 1, channel);
}
Err(e) => {
tracing::warn!("Could not play sound #{}: {}", self.next_waka_index + 1, e);
}
}
}
self.next_waka_index = (self.next_waka_index + 1) % WAKA_SOUND_COUNT;
}
/// Plays the provided sound effect once.
pub fn play(&mut self, sound: Sound) {
if !matches!(self.state, AudioState::Enabled { .. }) {
return;
}
if let Some(chunk) = self.sounds.get(&sound) {
let _ = mixer::Channel::all().play(chunk, 0);
}
}
/// Halts all currently playing audio channels.
pub fn stop_all(&mut self) {
if self.state != AudioState::Disabled {
mixer::Channel::all().halt();
}
}
/// Pauses all currently playing audio channels.
pub fn pause_all(&mut self) {
if self.state != AudioState::Disabled {
mixer::Channel::all().pause();
}
}
/// Resumes all currently playing audio channels.
pub fn resume_all(&mut self) {
if self.state != AudioState::Disabled {
mixer::Channel::all().resume();
}
}
/// Instantly mutes or unmutes all audio channels by adjusting their volume.
///
/// Sets all 4 mixer channels to zero volume when muting, or restores them to
/// their default volume (32) when unmuting. The mute state is tracked internally
/// regardless of whether audio is disabled, allowing the state to be preserved.
pub fn set_mute(&mut self, mute: bool) {
match (mute, self.state) {
// Mute
(true, AudioState::Enabled { volume }) => {
self.state = AudioState::Muted { previous_volume: volume };
for i in 0..AUDIO_CHANNELS {
mixer::Channel(i).set_volume(0);
}
}
// Unmute
(false, AudioState::Muted { previous_volume }) => {
self.state = AudioState::Enabled { volume: previous_volume };
for i in 0..AUDIO_CHANNELS {
mixer::Channel(i).set_volume(previous_volume as i32);
}
}
_ => {}
}
}
/// Returns the current mute state regardless of whether audio is functional.
///
/// This tracks the user's mute preference and will return `true` if muted
/// even when the audio system is disabled due to initialization failures.
pub fn is_muted(&self) -> bool {
matches!(self.state, AudioState::Muted { .. })
}
/// Returns whether the audio system failed to initialize and is non-functional.
///
/// Audio can be disabled due to SDL2_mixer initialization failures, missing
/// audio device, or failure to load any sound assets. When disabled, all
/// audio operations become no-ops.
pub fn is_disabled(&self) -> bool {
matches!(self.state, AudioState::Disabled)
}
}

View File

@@ -0,0 +1,133 @@
#![cfg_attr(coverage_nightly, feature(coverage_attribute))]
#![cfg_attr(coverage_nightly, coverage(off))]
use std::time::{Duration, Instant};
use sdl2::event::Event;
use sdl2::keyboard::Keycode;
use sdl2::pixels::Color;
use sdl2::rect::Rect;
// A self-contained SDL2 demo showing how to keep a consistent aspect ratio
// with letterboxing/pillarboxing in a resizable window.
//
// This uses SDL2's logical size feature, which automatically sets a viewport
// to preserve the target aspect ratio and adds black bars as needed.
// We also clear the full window to black and then clear the logical viewport
// to a content color, so bars remain visibly black.
const LOGICAL_WIDTH: u32 = 320; // target content width
const LOGICAL_HEIGHT: u32 = 180; // target content height (16:9)
fn main() -> Result<(), String> {
// Initialize SDL2
let sdl = sdl2::init()?;
let video = sdl.video()?;
// Create a resizable window
let window = video
.window("SDL2 Aspect Ratio Demo", 960, 540)
.resizable()
.position_centered()
.build()
.map_err(|e| e.to_string())?;
let mut canvas = window.into_canvas().build().map_err(|e| e.to_string())?;
// Set the desired logical (virtual) resolution. SDL will letterbox/pillarbox
// as needed to preserve this aspect ratio when the window is resized.
canvas
.set_logical_size(LOGICAL_WIDTH, LOGICAL_HEIGHT)
.map_err(|e| e.to_string())?;
// Optional: uncomment to enforce integer scaling only (more retro look)
// canvas.set_integer_scale(true)?;
let mut events = sdl.event_pump()?;
let mut running = true;
let start = Instant::now();
let mut last_log = Instant::now();
while running {
for event in events.poll_iter() {
match event {
Event::Quit { .. }
| Event::KeyDown {
keycode: Some(Keycode::Escape),
..
} => {
running = false;
}
Event::Window { win_event, .. } => {
// Periodically log window size and the computed viewport
// to demonstrate how letterboxing/pillarboxing behaves.
use sdl2::event::WindowEvent;
match win_event {
WindowEvent::Resized(_, _)
| WindowEvent::SizeChanged(_, _)
| WindowEvent::Maximized
| WindowEvent::Restored => {
if last_log.elapsed() > Duration::from_millis(250) {
let out_size = canvas.output_size()?;
let viewport = canvas.viewport();
println!(
"window={}x{}, viewport x={}, y={}, w={}, h={}",
out_size.0,
out_size.1,
viewport.x(),
viewport.y(),
viewport.width(),
viewport.height()
);
last_log = Instant::now();
}
}
_ => {}
}
}
_ => {}
}
}
// 1) Clear the entire window to black (no viewport) so the bars are black
canvas.set_viewport(None);
canvas.set_draw_color(Color::RGB(0, 0, 0));
canvas.clear();
// 2) Re-apply logical size so SDL sets a viewport that preserves aspect
// ratio. Clearing now only affects the letterboxed content area.
canvas
.set_logical_size(LOGICAL_WIDTH, LOGICAL_HEIGHT)
.map_err(|e| e.to_string())?;
// Fill the content area with a background color to differentiate from bars
canvas.set_draw_color(Color::RGB(30, 30, 40));
canvas.clear();
// Draw a simple grid to visualize scaling clearly
canvas.set_draw_color(Color::RGB(60, 60, 90));
let step = 20i32;
for x in (0..=LOGICAL_WIDTH as i32).step_by(step as usize) {
let _ = canvas.draw_line(sdl2::rect::Point::new(x, 0), sdl2::rect::Point::new(x, LOGICAL_HEIGHT as i32));
}
for y in (0..=LOGICAL_HEIGHT as i32).step_by(step as usize) {
let _ = canvas.draw_line(sdl2::rect::Point::new(0, y), sdl2::rect::Point::new(LOGICAL_WIDTH as i32, y));
}
// Draw a border around the logical content area
canvas.set_draw_color(Color::RGB(200, 200, 220));
let border = Rect::new(0, 0, LOGICAL_WIDTH, LOGICAL_HEIGHT);
canvas.draw_rect(border)?;
// Draw a moving box to demonstrate dynamic content staying within aspect
let elapsed_ms = start.elapsed().as_millis() as i32;
let t = (elapsed_ms / 8) % LOGICAL_WIDTH as i32;
let box_rect = Rect::new(t - 10, (LOGICAL_HEIGHT as i32 / 2) - 10, 20, 20);
canvas.set_draw_color(Color::RGB(255, 140, 0));
canvas.fill_rect(box_rect).ok();
canvas.present();
}
Ok(())
}

View File

@@ -0,0 +1,94 @@
#![cfg_attr(coverage_nightly, feature(coverage_attribute))]
#![cfg_attr(coverage_nightly, coverage(off))]
use circular_buffer::CircularBuffer;
use pacman::constants::CANVAS_SIZE;
use sdl2::event::Event;
use sdl2::keyboard::Keycode;
use sdl2::pixels::Color;
use std::time::{Duration, Instant};
fn main() -> Result<(), String> {
let sdl_context = sdl2::init()?;
let video_subsystem = sdl_context.video()?;
let window = video_subsystem
.window("SDL2 Timing Demo", CANVAS_SIZE.x, CANVAS_SIZE.y)
.opengl()
.position_centered()
.build()
.map_err(|e| e.to_string())?;
let mut canvas = window.into_canvas().accelerated().build().map_err(|e| e.to_string())?;
canvas
.set_logical_size(CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| e.to_string())?;
let mut event_pump = sdl_context.event_pump()?;
// Store frame timings in milliseconds
let mut frame_timings = CircularBuffer::<20_000, f64>::new();
let mut last_report_time = Instant::now();
let report_interval = Duration::from_millis(500);
'running: loop {
let frame_start_time = Instant::now();
for event in event_pump.poll_iter() {
match event {
Event::Quit { .. }
| Event::KeyDown {
keycode: Some(Keycode::Escape),
..
} => {
break 'running;
}
_ => {}
}
}
// Clear the screen
canvas.set_draw_color(Color::RGB(0, 0, 0));
canvas.clear();
canvas.present();
// Record timing
let frame_duration = frame_start_time.elapsed();
frame_timings.push_back(frame_duration.as_secs_f64());
// Report stats every `report_interval`
let elapsed = last_report_time.elapsed();
if elapsed >= report_interval {
if !frame_timings.is_empty() {
let count = frame_timings.len() as f64;
let sum: f64 = frame_timings.iter().sum();
let mean = sum / count;
let variance = frame_timings
.iter()
.map(|value| {
let diff = mean - value;
diff * diff
})
.sum::<f64>()
/ count;
let std_dev = variance.sqrt();
println!(
"Rendered {count} frames at {fps:.1} fps (last {elapsed:.2?}): mean={mean:.3?}, std_dev={std_dev:.3?}",
count = frame_timings.len(),
fps = count / elapsed.as_secs_f64(),
elapsed = elapsed,
mean = Duration::from_secs_f64(mean),
std_dev = Duration::from_secs_f64(std_dev),
);
}
// Reset for next interval
frame_timings.clear();
last_report_time = Instant::now();
}
}
Ok(())
}

160
pacman/src/constants.rs Normal file
View File

@@ -0,0 +1,160 @@
//! This module contains all the constants used in the game.
use std::time::Duration;
use glam::UVec2;
/// Target frame duration for 60 FPS game loop timing.
///
/// Calculated as 1/60th of a second (≈16.67ms).
///
/// Uses integer arithmetic to avoid floating-point precision loss.
pub const LOOP_TIME: Duration = Duration::from_nanos(1_000_000_000 / 60);
/// The size of each cell, in pixels.
pub const CELL_SIZE: u32 = 8;
/// The size of the game board, in cells.
pub const BOARD_CELL_SIZE: UVec2 = UVec2::new(28, 31);
/// The scale factor for the window (integer zoom)
pub const SCALE: f32 = 2.6;
/// Game board offset from window origin to reserve space for HUD elements.
///
/// The 3-cell vertical offset (24 pixels) provides space at the top of the
/// screen for score display, player lives, and other UI elements.
pub const BOARD_CELL_OFFSET: UVec2 = UVec2::new(0, 3);
/// Bottom HUD row offset to reserve space below the game board.
///
/// The 2-cell vertical offset (16 pixels) provides space at the bottom of the
/// screen for displaying Pac-Man's lives (left) and fruit symbols (right).
pub const BOARD_BOTTOM_CELL_OFFSET: UVec2 = UVec2::new(0, 2);
/// Pixel-space equivalent of `BOARD_CELL_OFFSET` for rendering calculations.
///
/// Automatically calculated from the cell offset to maintain consistency
/// when the cell size changes. Used for positioning sprites and debug overlays.
pub const BOARD_PIXEL_OFFSET: UVec2 = UVec2::new(BOARD_CELL_OFFSET.x * CELL_SIZE, BOARD_CELL_OFFSET.y * CELL_SIZE);
/// Pixel-space equivalent of `BOARD_BOTTOM_CELL_OFFSET` for rendering calculations.
///
/// Automatically calculated from the cell offset to maintain consistency
/// when the cell size changes. Used for positioning bottom HUD elements.
pub const BOARD_BOTTOM_PIXEL_OFFSET: UVec2 =
UVec2::new(BOARD_BOTTOM_CELL_OFFSET.x * CELL_SIZE, BOARD_BOTTOM_CELL_OFFSET.y * CELL_SIZE);
/// Animation timing constants for ghost state management
pub mod animation {
/// Normal ghost movement animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_NORMAL_SPEED: u16 = 12;
/// Eaten ghost (eyes) animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_EATEN_SPEED: u16 = 6;
/// Frightened ghost animation speed (ticks per frame at 60 ticks/sec)
pub const GHOST_FRIGHTENED_SPEED: u16 = 12;
/// Time in ticks for frightened ghosts to return to normal
pub const GHOST_FRIGHTENED_TICKS: u32 = 5 * 60;
/// Time in ticks when frightened ghosts start flashing
pub const GHOST_FRIGHTENED_FLASH_START_TICKS: u32 = GHOST_FRIGHTENED_TICKS - 2 * 60;
}
/// The size of the canvas, in pixels.
pub const CANVAS_SIZE: UVec2 = UVec2::new(
(BOARD_CELL_SIZE.x + BOARD_CELL_OFFSET.x + BOARD_BOTTOM_CELL_OFFSET.x) * CELL_SIZE,
(BOARD_CELL_SIZE.y + BOARD_CELL_OFFSET.y + BOARD_BOTTOM_CELL_OFFSET.y) * CELL_SIZE,
);
pub const LARGE_SCALE: f32 = 2.6;
pub const LARGE_CANVAS_SIZE: UVec2 = UVec2::new(
(((BOARD_CELL_SIZE.x + BOARD_CELL_OFFSET.x + BOARD_BOTTOM_CELL_OFFSET.x) * CELL_SIZE) as f32 * LARGE_SCALE) as u32,
(((BOARD_CELL_SIZE.y + BOARD_CELL_OFFSET.y + BOARD_BOTTOM_CELL_OFFSET.y) * CELL_SIZE) as f32 * LARGE_SCALE) as u32,
);
/// Collider size constants for different entity types
pub mod collider {
use super::CELL_SIZE;
/// Collider size for player and ghosts
pub const PLAYER_SIZE: f32 = CELL_SIZE as f32 * 1.385;
/// Collider size for ghosts
pub const GHOST_SIZE: f32 = CELL_SIZE as f32 * 1.55;
/// Collider size for pellets
pub const PELLET_SIZE: f32 = CELL_SIZE as f32 * 0.4;
/// Collider size for power pellets/energizers
pub const POWER_PELLET_SIZE: f32 = CELL_SIZE as f32 * 0.95;
/// Collider size for fruits
pub const FRUIT_SIZE: f32 = CELL_SIZE as f32 * 1.375;
}
/// UI and rendering constants
pub mod ui {
/// Debug font size in points
pub const DEBUG_FONT_SIZE: u16 = 12;
/// Power pellet blink rate in ticks (at 60 FPS, 12 ticks = 0.2 seconds)
pub const POWER_PELLET_BLINK_RATE: u32 = 12;
}
/// Map tile types that define gameplay behavior and collision properties.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum MapTile {
/// Traversable space with no collectible items
Empty,
Wall,
/// Small collectible. Implicitly a traversable tile.
Pellet,
/// Large collectible. Implicitly a traversable tile.
PowerPellet,
/// Special traversable tile that connects to tunnel portals.
Tunnel,
}
/// ASCII art representation of the classic Pac-Man maze layout.
///
/// Uses character symbols to define the game world. This layout is parsed by `MapTileParser`
/// to generate the navigable graph and collision geometry.
pub const RAW_BOARD: [&str; BOARD_CELL_SIZE.y as usize] = [
"############################",
"#............##............#",
"#.####.#####.##.#####.####.#",
"#o####.#####.##.#####.####o#",
"#.####.#####.##.#####.####.#",
"#..........................#",
"#.####.##.########.##.####.#",
"#.####.##.########.##.####.#",
"#......##....##....##......#",
"######.##### ## #####.######",
" #.##### ## #####.# ",
" #.## == ##.# ",
" #.## ######## ##.# ",
"######.## ######## ##.######",
"T . ######## . T",
"######.## ######## ##.######",
" #.## ######## ##.# ",
" #.## ##.# ",
" #.## ######## ##.# ",
"######.## ######## ##.######",
"#............##............#",
"#.####.#####.##.#####.####.#",
"#.####.#####.##.#####.####.#",
"#o..##.......X .......##..o#",
"###.##.##.########.##.##.###",
"###.##.##.########.##.##.###",
"#......##....##....##......#",
"#.##########.##.##########.#",
"#.##########.##.##########.#",
"#..........................#",
"############################",
];
/// Game initialization constants
pub mod startup {
/// Number of frames for the startup sequence (3 seconds at 60 FPS)
pub const STARTUP_FRAMES: u32 = 60 * 4;
}
/// Game mechanics constants
pub mod mechanics {
/// Player movement speed multiplier
pub const PLAYER_SPEED: f32 = 1.15;
}

108
pacman/src/error.rs Normal file
View File

@@ -0,0 +1,108 @@
//! Centralized error types for the Pac-Man game.
//!
//! This module defines all error types used throughout the application,
//! providing a consistent error handling approach.
use std::io;
use bevy_ecs::event::Event;
/// Main error type for the Pac-Man game.
///
/// This is the primary error type that should be used in public APIs.
/// It can represent any error that can occur during game operation.
#[derive(thiserror::Error, Debug, Event)]
pub enum GameError {
#[error("Asset error: {0}")]
Asset(#[from] AssetError),
#[error("Platform error: {0}")]
Platform(#[from] PlatformError),
#[error("Map parsing error: {0}")]
MapParse(#[from] ParseError),
#[error("Map error: {0}")]
Map(#[from] MapError),
#[error("Texture error: {0}")]
Texture(#[from] TextureError),
#[error("Entity error: {0}")]
Entity(#[from] EntityError),
#[error("SDL error: {0}")]
Sdl(String),
#[error("IO error: {0}")]
Io(#[from] io::Error),
#[error("Invalid state: {0}")]
InvalidState(String),
}
#[derive(thiserror::Error, Debug)]
pub enum AssetError {
#[error("IO error: {0}")]
Io(#[from] io::Error),
#[error("Asset not found: {0}")]
NotFound(String),
}
/// Platform-specific errors.
#[derive(thiserror::Error, Debug)]
pub enum PlatformError {
#[error("Console initialization failed: {0}")]
ConsoleInit(String),
}
/// Error type for map parsing operations.
#[derive(thiserror::Error, Debug)]
pub enum ParseError {
#[error("Unknown character in board: {0}")]
UnknownCharacter(char),
#[error("House door must have exactly 2 positions, found {0}")]
InvalidHouseDoorCount(usize),
#[error("Map parsing failed: {0}")]
ParseFailed(String),
}
/// Errors related to texture operations.
#[derive(thiserror::Error, Debug)]
pub enum TextureError {
#[error("Failed to load texture: {0}")]
LoadFailed(String),
#[error("Texture not found in atlas: {0}")]
AtlasTileNotFound(String),
#[error("Invalid texture format: {0}")]
InvalidFormat(String),
#[error("Rendering failed: {0}")]
RenderFailed(String),
}
/// Errors related to entity operations.
#[derive(thiserror::Error, Debug)]
pub enum EntityError {
#[error("Node not found in graph: {0}")]
NodeNotFound(usize),
#[error("Edge not found: from {from} to {to}")]
EdgeNotFound { from: usize, to: usize },
}
/// Errors related to map operations.
#[derive(thiserror::Error, Debug)]
pub enum MapError {
#[error("Node not found: {0}")]
NodeNotFound(usize),
#[error("Invalid map configuration: {0}")]
InvalidConfig(String),
}
/// Result type for game operations.
pub type GameResult<T> = Result<T, GameError>;

63
pacman/src/events.rs Normal file
View File

@@ -0,0 +1,63 @@
use bevy_ecs::{entity::Entity, event::Event};
use crate::{map::direction::Direction, systems::Ghost};
/// Player input commands that trigger specific game actions.
///
/// Commands are generated by the input system in response to keyboard events
/// and processed by appropriate game systems to modify state or behavior.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum GameCommand {
/// Request immediate game shutdown
Exit,
/// Set Pac-Man's movement direction
MovePlayer(Direction),
/// Cycle through debug visualization modes
ToggleDebug,
/// Toggle audio mute state
MuteAudio,
/// Restart the current level with fresh entity positions and items
ResetLevel,
/// Pause or resume game ticking logic
/// TODO: Display pause state, fix debug rendering pause distress
TogglePause,
/// Toggle fullscreen mode (desktop only)
#[cfg(not(target_os = "emscripten"))]
ToggleFullscreen,
SingleTick,
}
/// Global events that flow through the ECS event system to coordinate game behavior.
///
/// Events enable loose coupling between systems - input generates commands and
/// various systems respond appropriately without direct dependencies.
#[derive(Event, Clone, Copy, Debug, PartialEq, Eq)]
pub enum GameEvent {
/// Player input command to be processed by relevant game systems
Command(GameCommand),
}
impl From<GameCommand> for GameEvent {
fn from(command: GameCommand) -> Self {
GameEvent::Command(command)
}
}
/// Data for requesting stage transitions; processed centrally in stage_system
#[derive(Event, Clone, Copy, Debug, PartialEq, Eq)]
pub enum StageTransition {
GhostEatenPause { ghost_entity: Entity, ghost_type: Ghost },
}
/// Collision triggers for immediate collision handling via observers
#[derive(Event, Clone, Copy, Debug, PartialEq, Eq)]
pub enum CollisionTrigger {
/// Pac-Man collided with a ghost
GhostCollision {
pacman: Entity,
ghost: Entity,
ghost_type: Ghost,
},
/// Pac-Man collided with an item
ItemCollision { item: Entity },
}

152
pacman/src/formatter.rs Normal file
View File

@@ -0,0 +1,152 @@
//! Custom tracing formatter with tick counter integration
use std::fmt;
use std::sync::atomic::{AtomicU64, Ordering};
use time::macros::format_description;
use time::{format_description::FormatItem, OffsetDateTime};
use tracing::{Event, Level, Subscriber};
use tracing_subscriber::fmt::format::Writer;
use tracing_subscriber::fmt::{FmtContext, FormatEvent, FormatFields, FormattedFields};
use tracing_subscriber::registry::LookupSpan;
/// Global atomic counter for tracking game ticks
static TICK_COUNTER: AtomicU64 = AtomicU64::new(0);
/// Maximum value for tick counter display (16-bit hex)
const TICK_DISPLAY_MASK: u64 = 0xFFFF;
/// Cached format description for timestamps
/// Uses 3 subsecond digits on Emscripten, 5 otherwise for better performance
#[cfg(target_os = "emscripten")]
const TIMESTAMP_FORMAT: &[FormatItem<'static>] = format_description!("[hour]:[minute]:[second].[subsecond digits:3]");
#[cfg(not(target_os = "emscripten"))]
const TIMESTAMP_FORMAT: &[FormatItem<'static>] = format_description!("[hour]:[minute]:[second].[subsecond digits:5]");
/// A custom formatter that includes both timestamp and tick counter in hexadecimal
///
/// Re-implementation of the Full formatter to add a tick counter and timestamp.
pub struct CustomFormatter;
impl<S, N> FormatEvent<S, N> for CustomFormatter
where
S: Subscriber + for<'a> LookupSpan<'a>,
N: for<'a> FormatFields<'a> + 'static,
{
fn format_event(&self, ctx: &FmtContext<'_, S, N>, mut writer: Writer<'_>, event: &Event<'_>) -> fmt::Result {
let meta = event.metadata();
// 1) Timestamp (dimmed when ANSI)
let now = OffsetDateTime::now_utc();
let formatted_time = now.format(&TIMESTAMP_FORMAT).map_err(|e| {
eprintln!("Failed to format timestamp: {}", e);
fmt::Error
})?;
write_dimmed(&mut writer, formatted_time)?;
writer.write_char(' ')?;
// 2) Tick counter, dim when ANSI
let tick_count = get_tick_count() & TICK_DISPLAY_MASK;
if writer.has_ansi_escapes() {
write!(writer, "\x1b[2m0x{:04X}\x1b[0m ", tick_count)?;
} else {
write!(writer, "0x{:04X} ", tick_count)?;
}
// 3) Colored 5-char level like Full
write_colored_level(&mut writer, meta.level())?;
writer.write_char(' ')?;
// 4) Span scope chain (bold names, fields in braces, dimmed ':')
if let Some(scope) = ctx.event_scope() {
let mut saw_any = false;
for span in scope.from_root() {
write_bold(&mut writer, span.metadata().name())?;
saw_any = true;
let ext = span.extensions();
if let Some(fields) = &ext.get::<FormattedFields<N>>() {
if !fields.is_empty() {
write_bold(&mut writer, "{")?;
write!(writer, "{}", fields)?;
write_bold(&mut writer, "}")?;
}
}
if writer.has_ansi_escapes() {
write!(writer, "\x1b[2m:\x1b[0m")?;
} else {
writer.write_char(':')?;
}
}
if saw_any {
writer.write_char(' ')?;
}
}
// 5) Target (dimmed), then a space
if writer.has_ansi_escapes() {
write!(writer, "\x1b[2m{}\x1b[0m\x1b[2m:\x1b[0m ", meta.target())?;
} else {
write!(writer, "{}: ", meta.target())?;
}
// 6) Event fields
ctx.format_fields(writer.by_ref(), event)?;
// 7) Newline
writeln!(writer)
}
}
/// Write the verbosity level with the same coloring/alignment as the Full formatter.
fn write_colored_level(writer: &mut Writer<'_>, level: &Level) -> fmt::Result {
if writer.has_ansi_escapes() {
// Basic ANSI color sequences; reset with \x1b[0m
let (color, text) = match *level {
Level::TRACE => ("\x1b[35m", "TRACE"), // purple
Level::DEBUG => ("\x1b[34m", "DEBUG"), // blue
Level::INFO => ("\x1b[32m", " INFO"), // green, note leading space
Level::WARN => ("\x1b[33m", " WARN"), // yellow, note leading space
Level::ERROR => ("\x1b[31m", "ERROR"), // red
};
write!(writer, "{}{}\x1b[0m", color, text)
} else {
// Right-pad to width 5 like Full's non-ANSI mode
match *level {
Level::TRACE => write!(writer, "{:>5}", "TRACE"),
Level::DEBUG => write!(writer, "{:>5}", "DEBUG"),
Level::INFO => write!(writer, "{:>5}", " INFO"),
Level::WARN => write!(writer, "{:>5}", " WARN"),
Level::ERROR => write!(writer, "{:>5}", "ERROR"),
}
}
}
fn write_dimmed(writer: &mut Writer<'_>, s: impl fmt::Display) -> fmt::Result {
if writer.has_ansi_escapes() {
write!(writer, "\x1b[2m{}\x1b[0m", s)
} else {
write!(writer, "{}", s)
}
}
fn write_bold(writer: &mut Writer<'_>, s: impl fmt::Display) -> fmt::Result {
if writer.has_ansi_escapes() {
write!(writer, "\x1b[1m{}\x1b[0m", s)
} else {
write!(writer, "{}", s)
}
}
/// Increment the global tick counter by 1
///
/// This should be called once per game tick/frame from the main game loop
pub fn increment_tick() {
TICK_COUNTER.fetch_add(1, Ordering::Relaxed);
}
/// Get the current tick count
///
/// Returns the current value of the global tick counter
pub fn get_tick_count() -> u64 {
TICK_COUNTER.load(Ordering::Relaxed)
}

786
pacman/src/game.rs Normal file
View File

@@ -0,0 +1,786 @@
//! This module contains the main game logic and state.
include!(concat!(env!("OUT_DIR"), "/atlas_data.rs"));
use std::collections::HashMap;
use std::ops::Not;
use tracing::{debug, info, trace, warn};
use crate::constants::{self, animation, MapTile, CANVAS_SIZE};
use crate::error::{GameError, GameResult};
use crate::events::{CollisionTrigger, GameEvent, StageTransition};
use crate::map::builder::Map;
use crate::map::direction::Direction;
use crate::systems::item::PelletCount;
use crate::systems::state::{IntroPlayed, PauseState};
use crate::systems::{
self, audio_system, blinking_system, collision_system, combined_render_system, directional_render_system,
dirty_render_system, eaten_ghost_system, fruit_sprite_system, ghost_collision_observer, ghost_movement_system,
ghost_state_system, hud_render_system, item_collision_observer, linear_render_system, player_life_sprite_system,
present_system, profile, time_to_live_system, touch_ui_render_system, AudioEvent, AudioResource, AudioState,
BackbufferResource, Blinking, BufferedDirection, Collider, DebugState, DebugTextureResource, DeltaTime, DirectionalAnimation,
EntityType, Frozen, FruitSprites, GameStage, Ghost, GhostAnimation, GhostAnimations, GhostBundle, GhostCollider, GhostState,
GlobalState, ItemBundle, ItemCollider, LastAnimationState, LinearAnimation, MapTextureResource, MovementModifiers, NodeId,
PacmanCollider, PlayerAnimation, PlayerBundle, PlayerControlled, PlayerDeathAnimation, PlayerLives, Position, RenderDirty,
Renderable, ScoreResource, StartupSequence, SystemId, SystemTimings, Timing, TouchState, Velocity, Visibility,
};
use crate::texture::animated::{DirectionalTiles, TileSequence};
use crate::texture::sprite::AtlasTile;
use crate::texture::sprites::{FrightenedColor, GameSprite, GhostSprite, MazeSprite, PacmanSprite};
use bevy_ecs::change_detection::DetectChanges;
use bevy_ecs::event::EventRegistry;
use bevy_ecs::observer::Trigger;
use bevy_ecs::schedule::{IntoScheduleConfigs, Schedule, SystemSet};
use bevy_ecs::system::{Local, Res, ResMut};
use bevy_ecs::world::World;
use sdl2::event::EventType;
use sdl2::image::LoadTexture;
use sdl2::render::{BlendMode, Canvas, ScaleMode, TextureCreator};
use sdl2::rwops::RWops;
use sdl2::video::{Window, WindowContext};
use sdl2::EventPump;
use crate::{
asset::Asset,
events::GameCommand,
map::render::MapRenderer,
systems::{BatchedLinesResource, Bindings, CursorPosition, TtfAtlasResource},
texture::sprite::{AtlasMapper, SpriteAtlas},
};
/// System set for all gameplay systems to ensure they run after input processing
#[derive(SystemSet, Debug, Hash, PartialEq, Eq, Clone)]
enum GameplaySet {
/// Gameplay systems that process inputs
Input,
/// Gameplay systems that update the game state
Update,
/// Gameplay systems that respond to events
Respond,
}
/// System set for all rendering systems to ensure they run after gameplay logic
#[derive(SystemSet, Debug, Hash, PartialEq, Eq, Clone)]
enum RenderSet {
Animation,
Draw,
Present,
}
/// Core game state manager built on the Bevy ECS architecture.
///
/// Orchestrates all game systems through a centralized `World` containing entities,
/// components, and resources, while a `Schedule` defines system execution order.
/// Handles initialization of graphics resources, entity spawning, and per-frame
/// game logic coordination. SDL2 resources are stored as `NonSend` to respect
/// thread safety requirements while integrating with the ECS.
pub struct Game {
pub world: World,
pub schedule: Schedule,
}
impl Game {
/// Initializes the complete game state including ECS world, graphics, and entity spawning.
///
/// Performs extensive setup: creates render targets and debug textures, loads and parses
/// the sprite atlas, renders the static map to a cached texture, builds the navigation
/// graph from the board layout, spawns Pac-Man with directional animations, creates
/// all four ghosts with their AI behavior, and places collectible items throughout
/// the maze. Registers event types and configures the system execution schedule.
///
/// # Arguments
///
/// * `canvas` - SDL2 rendering context with static lifetime for ECS storage
/// * `texture_creator` - SDL2 texture factory for creating render targets
/// * `event_pump` - SDL2 event polling interface for input handling
///
/// # Errors
///
/// Returns `GameError` for SDL2 failures, asset loading problems, atlas parsing
/// errors, or entity initialization issues.
pub fn new(
mut canvas: Canvas<Window>,
ttf_context: sdl2::ttf::Sdl2TtfContext,
texture_creator: TextureCreator<WindowContext>,
mut event_pump: EventPump,
) -> GameResult<Game> {
info!("Starting game initialization");
debug!("Disabling unnecessary SDL events");
Self::disable_sdl_events(&mut event_pump);
debug!("Setting up textures and fonts");
let (backbuffer, mut map_texture, debug_texture, ttf_atlas) =
Self::setup_textures_and_fonts(&mut canvas, &texture_creator, ttf_context)?;
debug!("Initializing audio subsystem");
let audio = crate::audio::Audio::new();
debug!("Loading sprite atlas and map tiles");
let (mut atlas, map_tiles) = Self::load_atlas_and_map_tiles(&texture_creator)?;
debug!("Rendering static map to texture cache");
canvas
.with_texture_canvas(&mut map_texture, |map_canvas| {
MapRenderer::render_map(map_canvas, &mut atlas, &map_tiles);
})
.map_err(|e| GameError::Sdl(e.to_string()))?;
debug!("Building navigation graph from map layout");
let map = Map::new(constants::RAW_BOARD)?;
debug!("Creating player animations and bundle");
let (player_animation, player_start_sprite) = Self::create_player_animations(&atlas)?;
let player_bundle = Self::create_player_bundle(&map, player_animation, player_start_sprite);
debug!("Creating death animation sequence");
let death_animation = Self::create_death_animation(&atlas)?;
debug!("Initializing ECS world and system schedule");
let mut world = World::default();
let mut schedule = Schedule::default();
debug!("Setting up ECS event registry and observers");
Self::setup_ecs(&mut world);
world.add_observer(systems::spawn_fruit_observer);
debug!("Inserting resources into ECS world");
Self::insert_resources(
&mut world,
map,
audio,
atlas,
event_pump,
canvas,
backbuffer,
map_texture,
debug_texture,
ttf_atlas,
death_animation,
)?;
debug!("Configuring system execution schedule");
Self::configure_schedule(&mut schedule);
debug!("Spawning player entity");
world.spawn(player_bundle).insert((Frozen, Visibility::hidden()));
info!("Spawning game entities");
Self::spawn_ghosts(&mut world)?;
Self::spawn_items(&mut world)?;
info!("Game initialization completed successfully");
Ok(Game { world, schedule })
}
fn disable_sdl_events(event_pump: &mut EventPump) {
for event_type in [
EventType::JoyAxisMotion,
EventType::JoyBallMotion,
EventType::JoyHatMotion,
EventType::JoyButtonDown,
EventType::JoyButtonUp,
EventType::JoyDeviceAdded,
EventType::JoyDeviceRemoved,
EventType::ControllerAxisMotion,
EventType::ControllerButtonDown,
EventType::ControllerButtonUp,
EventType::ControllerDeviceAdded,
EventType::ControllerDeviceRemoved,
EventType::ControllerDeviceRemapped,
EventType::ControllerTouchpadDown,
EventType::ControllerTouchpadMotion,
EventType::ControllerTouchpadUp,
EventType::DollarGesture,
EventType::DollarRecord,
EventType::MultiGesture,
EventType::ClipboardUpdate,
EventType::DropFile,
EventType::DropText,
EventType::DropBegin,
EventType::DropComplete,
EventType::AudioDeviceAdded,
EventType::AudioDeviceRemoved,
EventType::RenderTargetsReset,
EventType::RenderDeviceReset,
EventType::LocaleChanged,
EventType::TextInput,
EventType::TextEditing,
EventType::Display,
EventType::MouseWheel,
EventType::AppDidEnterBackground,
EventType::AppWillEnterForeground,
EventType::AppWillEnterBackground,
EventType::AppDidEnterForeground,
EventType::AppLowMemory,
EventType::AppTerminating,
EventType::User,
EventType::Last,
] {
event_pump.disable_event(event_type);
}
}
fn setup_textures_and_fonts(
canvas: &mut Canvas<Window>,
texture_creator: &TextureCreator<WindowContext>,
ttf_context: sdl2::ttf::Sdl2TtfContext,
) -> GameResult<(
sdl2::render::Texture,
sdl2::render::Texture,
sdl2::render::Texture,
crate::texture::ttf::TtfAtlas,
)> {
let mut backbuffer = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
backbuffer.set_scale_mode(ScaleMode::Nearest);
let mut map_texture = texture_creator
.create_texture_target(None, CANVAS_SIZE.x, CANVAS_SIZE.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
map_texture.set_scale_mode(ScaleMode::Nearest);
let output_size = constants::LARGE_CANVAS_SIZE;
let mut debug_texture = texture_creator
.create_texture_target(Some(sdl2::pixels::PixelFormatEnum::ARGB8888), output_size.x, output_size.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
debug_texture.set_blend_mode(BlendMode::Blend);
debug_texture.set_scale_mode(ScaleMode::Nearest);
let font_data: &'static [u8] = Asset::Font.get_bytes()?.to_vec().leak();
let font_asset = RWops::from_bytes(font_data).map_err(|_| GameError::Sdl("Failed to load font".to_string()))?;
let debug_font = ttf_context
.load_font_from_rwops(font_asset, constants::ui::DEBUG_FONT_SIZE)
.map_err(|e| GameError::Sdl(e.to_string()))?;
let mut ttf_atlas = crate::texture::ttf::TtfAtlas::new(texture_creator, &debug_font)?;
ttf_atlas.populate_atlas(canvas, texture_creator, &debug_font)?;
Ok((backbuffer, map_texture, debug_texture, ttf_atlas))
}
fn load_atlas_and_map_tiles(texture_creator: &TextureCreator<WindowContext>) -> GameResult<(SpriteAtlas, Vec<AtlasTile>)> {
trace!("Loading atlas image from embedded assets");
let atlas_bytes = Asset::AtlasImage.get_bytes()?;
let atlas_texture = texture_creator.load_texture_bytes(&atlas_bytes).map_err(|e| {
if e.to_string().contains("format") || e.to_string().contains("unsupported") {
GameError::Texture(crate::error::TextureError::InvalidFormat(format!(
"Unsupported texture format: {e}"
)))
} else {
GameError::Texture(crate::error::TextureError::LoadFailed(e.to_string()))
}
})?;
debug!(frame_count = ATLAS_FRAMES.len(), "Creating sprite atlas from texture");
let atlas_mapper = AtlasMapper {
frames: ATLAS_FRAMES.into_iter().map(|(k, v)| (k.to_string(), *v)).collect(),
};
let atlas = SpriteAtlas::new(atlas_texture, atlas_mapper);
trace!("Extracting map tile sprites from atlas");
let mut map_tiles = Vec::with_capacity(35);
for i in 0..35 {
let tile_name = GameSprite::Maze(MazeSprite::Tile(i)).to_path();
let tile = atlas.get_tile(&tile_name)?;
map_tiles.push(tile);
}
Ok((atlas, map_tiles))
}
fn create_player_animations(atlas: &SpriteAtlas) -> GameResult<(DirectionalAnimation, AtlasTile)> {
let up_moving_tiles = [
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Up, 0)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Up, 1)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?,
];
let down_moving_tiles = [
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Down, 0)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Down, 1)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?,
];
let left_moving_tiles = [
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Left, 0)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Left, 1)).to_path())?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?,
];
let right_moving_tiles = [
SpriteAtlas::get_tile(
atlas,
&GameSprite::Pacman(PacmanSprite::Moving(Direction::Right, 0)).to_path(),
)?,
SpriteAtlas::get_tile(
atlas,
&GameSprite::Pacman(PacmanSprite::Moving(Direction::Right, 1)).to_path(),
)?,
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?,
];
let moving_tiles = DirectionalTiles::new(
TileSequence::new(&up_moving_tiles),
TileSequence::new(&down_moving_tiles),
TileSequence::new(&left_moving_tiles),
TileSequence::new(&right_moving_tiles),
);
let up_stopped_tile =
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Up, 1)).to_path())?;
let down_stopped_tile =
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Down, 1)).to_path())?;
let left_stopped_tile =
SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Moving(Direction::Left, 1)).to_path())?;
let right_stopped_tile = SpriteAtlas::get_tile(
atlas,
&GameSprite::Pacman(PacmanSprite::Moving(Direction::Right, 1)).to_path(),
)?;
let stopped_tiles = DirectionalTiles::new(
TileSequence::new(&[up_stopped_tile]),
TileSequence::new(&[down_stopped_tile]),
TileSequence::new(&[left_stopped_tile]),
TileSequence::new(&[right_stopped_tile]),
);
let player_animation = DirectionalAnimation::new(moving_tiles, stopped_tiles, 5);
let player_start_sprite = SpriteAtlas::get_tile(atlas, &GameSprite::Pacman(PacmanSprite::Full).to_path())?;
Ok((player_animation, player_start_sprite))
}
fn create_death_animation(atlas: &SpriteAtlas) -> GameResult<LinearAnimation> {
let mut death_tiles = Vec::new();
for i in 0..=10 {
// Assuming death animation has 11 frames named pacman/die_0, pacman/die_1, etc.
let tile = atlas.get_tile(&GameSprite::Pacman(PacmanSprite::Dying(i)).to_path())?;
death_tiles.push(tile);
}
let tile_sequence = TileSequence::new(&death_tiles);
Ok(LinearAnimation::new(tile_sequence, 8)) // 8 ticks per frame, non-looping
}
fn create_player_bundle(map: &Map, player_animation: DirectionalAnimation, player_start_sprite: AtlasTile) -> PlayerBundle {
PlayerBundle {
player: PlayerControlled,
position: Position::Stopped {
node: map.start_positions.pacman,
},
velocity: Velocity {
speed: constants::mechanics::PLAYER_SPEED,
direction: Direction::Left,
},
movement_modifiers: MovementModifiers::default(),
buffered_direction: BufferedDirection::None,
sprite: Renderable {
sprite: player_start_sprite,
layer: 0,
},
directional_animation: player_animation,
entity_type: EntityType::Player,
collider: Collider {
size: constants::collider::PLAYER_SIZE,
},
pacman_collider: PacmanCollider,
}
}
fn setup_ecs(world: &mut World) {
EventRegistry::register_event::<GameError>(world);
EventRegistry::register_event::<GameEvent>(world);
EventRegistry::register_event::<AudioEvent>(world);
EventRegistry::register_event::<StageTransition>(world);
EventRegistry::register_event::<CollisionTrigger>(world);
world.add_observer(
|event: Trigger<GameEvent>, mut state: ResMut<GlobalState>, _score: ResMut<ScoreResource>| {
if matches!(*event, GameEvent::Command(GameCommand::Exit)) {
state.exit = true;
}
},
);
world.add_observer(ghost_collision_observer);
world.add_observer(item_collision_observer);
}
#[allow(clippy::too_many_arguments)]
fn insert_resources(
world: &mut World,
map: Map,
audio: crate::audio::Audio,
atlas: SpriteAtlas,
event_pump: EventPump,
canvas: Canvas<Window>,
backbuffer: sdl2::render::Texture,
map_texture: sdl2::render::Texture,
debug_texture: sdl2::render::Texture,
ttf_atlas: crate::texture::ttf::TtfAtlas,
death_animation: LinearAnimation,
) -> GameResult<()> {
world.insert_non_send_resource(atlas);
world.insert_resource(Self::create_ghost_animations(world.non_send_resource::<SpriteAtlas>())?);
let player_animation = Self::create_player_animations(world.non_send_resource::<SpriteAtlas>())?.0;
world.insert_resource(PlayerAnimation(player_animation));
world.insert_resource(PlayerDeathAnimation(death_animation));
world.insert_resource(FruitSprites::default());
world.insert_resource(BatchedLinesResource::new(&map, constants::LARGE_SCALE));
world.insert_resource(map);
world.insert_resource(GlobalState { exit: false });
world.insert_resource(PlayerLives::default());
world.insert_resource(ScoreResource(0));
world.insert_resource(PelletCount(0));
world.insert_resource(SystemTimings::default());
world.insert_resource(Timing::default());
world.insert_resource(Bindings::default());
world.insert_resource(DeltaTime { seconds: 0.0, ticks: 0 });
world.insert_resource(RenderDirty::default());
world.insert_resource(DebugState::default());
world.insert_resource(AudioState::default());
world.insert_resource(IntroPlayed::default());
world.insert_resource(CursorPosition::default());
world.insert_resource(TouchState::default());
world.insert_resource(GameStage::Starting(StartupSequence::TextOnly {
remaining_ticks: constants::startup::STARTUP_FRAMES,
}));
world.insert_resource(PauseState::default());
world.insert_non_send_resource(event_pump);
world.insert_non_send_resource::<&mut Canvas<Window>>(Box::leak(Box::new(canvas)));
world.insert_non_send_resource(BackbufferResource(backbuffer));
world.insert_non_send_resource(MapTextureResource(map_texture));
world.insert_non_send_resource(DebugTextureResource(debug_texture));
world.insert_non_send_resource(TtfAtlasResource(ttf_atlas));
world.insert_non_send_resource(AudioResource(audio));
Ok(())
}
fn configure_schedule(schedule: &mut Schedule) {
let stage_system = profile(SystemId::Stage, systems::stage_system);
let input_system = profile(SystemId::Input, systems::input::input_system);
let pause_system = profile(SystemId::Input, systems::handle_pause_command);
let player_control_system = profile(SystemId::PlayerControls, systems::player_control_system);
let player_movement_system = profile(SystemId::PlayerMovement, systems::player_movement_system);
let player_tunnel_slowdown_system = profile(SystemId::PlayerMovement, systems::player::player_tunnel_slowdown_system);
let ghost_movement_system = profile(SystemId::Ghost, ghost_movement_system);
let collision_system = profile(SystemId::Collision, collision_system);
let audio_system = profile(SystemId::Audio, audio_system);
let blinking_system = profile(SystemId::Blinking, blinking_system);
let directional_render_system = profile(SystemId::DirectionalRender, directional_render_system);
let linear_render_system = profile(SystemId::LinearRender, linear_render_system);
let dirty_render_system = profile(SystemId::DirtyRender, dirty_render_system);
let hud_render_system = profile(SystemId::HudRender, hud_render_system);
let player_life_sprite_system = profile(SystemId::HudRender, player_life_sprite_system);
let fruit_sprite_system = profile(SystemId::HudRender, fruit_sprite_system);
let present_system = profile(SystemId::Present, present_system);
let unified_ghost_state_system = profile(SystemId::GhostStateAnimation, ghost_state_system);
let eaten_ghost_system = profile(SystemId::EatenGhost, eaten_ghost_system);
let time_to_live_system = profile(SystemId::TimeToLive, time_to_live_system);
let manage_pause_state_system = profile(SystemId::PauseManager, systems::state::manage_pause_state_system);
// Input system should always run to prevent SDL event pump from blocking
let input_systems = (
input_system.run_if(|mut local: Local<u8>| {
*local = local.wrapping_add(1u8);
// run every nth frame
*local % 2 == 0
}),
player_control_system,
pause_system,
#[cfg(not(target_os = "emscripten"))]
profile(SystemId::Input, systems::handle_fullscreen_command),
)
.chain();
// .run_if(|game_state: Res<GameStage>| matches!(*game_state, GameStage::Playing));
schedule
.add_systems((
input_systems.in_set(GameplaySet::Input),
time_to_live_system.before(GameplaySet::Update),
(
player_movement_system,
player_tunnel_slowdown_system,
ghost_movement_system,
eaten_ghost_system,
collision_system,
unified_ghost_state_system,
)
.in_set(GameplaySet::Update),
(
blinking_system,
directional_render_system,
linear_render_system,
player_life_sprite_system,
fruit_sprite_system,
)
.in_set(RenderSet::Animation),
stage_system.in_set(GameplaySet::Respond),
(
(|mut dirty: ResMut<RenderDirty>, score: Res<ScoreResource>, stage: Res<GameStage>| {
dirty.0 = score.is_changed() || stage.is_changed();
}),
dirty_render_system.run_if(|dirty: Res<RenderDirty>| dirty.0.not()),
combined_render_system,
hud_render_system,
touch_ui_render_system,
)
.chain()
.in_set(RenderSet::Draw),
(present_system, audio_system).chain().in_set(RenderSet::Present),
manage_pause_state_system.after(GameplaySet::Update),
))
.configure_sets((
GameplaySet::Input,
GameplaySet::Update.run_if(|paused: Res<PauseState>| paused.active()),
GameplaySet::Respond.run_if(|paused: Res<PauseState>| paused.active()),
RenderSet::Animation.run_if(|paused: Res<PauseState>| paused.active()),
RenderSet::Draw,
RenderSet::Present,
));
}
fn spawn_items(world: &mut World) -> GameResult<()> {
trace!("Loading item sprites from atlas");
let pellet_sprite = SpriteAtlas::get_tile(
world.non_send_resource::<SpriteAtlas>(),
&GameSprite::Maze(MazeSprite::Pellet).to_path(),
)?;
let energizer_sprite = SpriteAtlas::get_tile(
world.non_send_resource::<SpriteAtlas>(),
&GameSprite::Maze(MazeSprite::Energizer).to_path(),
)?;
let nodes: Vec<(NodeId, EntityType, AtlasTile, f32)> = world
.resource::<Map>()
.iter_nodes()
.filter_map(|(id, tile)| match tile {
MapTile::Pellet => Some((*id, EntityType::Pellet, pellet_sprite, constants::collider::PELLET_SIZE)),
MapTile::PowerPellet => Some((
*id,
EntityType::PowerPellet,
energizer_sprite,
constants::collider::POWER_PELLET_SIZE,
)),
_ => None,
})
.collect();
info!(
pellet_count = nodes.iter().filter(|(_, t, _, _)| *t == EntityType::Pellet).count(),
power_pellet_count = nodes.iter().filter(|(_, t, _, _)| *t == EntityType::PowerPellet).count(),
"Spawning collectible items"
);
for (id, item_type, sprite, size) in nodes {
let mut item = world.spawn(ItemBundle {
position: Position::Stopped { node: id },
sprite: Renderable { sprite, layer: 1 },
entity_type: item_type,
collider: Collider { size },
item_collider: ItemCollider,
});
if item_type == EntityType::PowerPellet {
item.insert((Frozen, Blinking::new(constants::ui::POWER_PELLET_BLINK_RATE)));
}
}
Ok(())
}
/// Creates and spawns all four ghosts with unique AI personalities and directional animations.
///
/// # Errors
///
/// Returns `GameError::Texture` if any ghost sprite cannot be found in the atlas,
/// typically indicating missing or misnamed sprite files.
fn spawn_ghosts(world: &mut World) -> GameResult<()> {
trace!("Spawning ghost entities with AI personalities");
// Extract the data we need first to avoid borrow conflicts
let ghost_start_positions = {
let map = world.resource::<Map>();
[
(Ghost::Blinky, map.start_positions.blinky),
(Ghost::Pinky, map.start_positions.pinky),
(Ghost::Inky, map.start_positions.inky),
(Ghost::Clyde, map.start_positions.clyde),
]
};
for (ghost_type, start_node) in ghost_start_positions {
// Create the ghost bundle in a separate scope to manage borrows
let ghost = {
let animations = world.resource::<GhostAnimations>().get_normal(&ghost_type).unwrap().clone();
let atlas = world.non_send_resource::<SpriteAtlas>();
let sprite_path = GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Left, 0)).to_path();
GhostBundle {
ghost: ghost_type,
position: Position::Stopped { node: start_node },
velocity: Velocity {
speed: ghost_type.base_speed(),
direction: Direction::Left,
},
sprite: Renderable {
sprite: SpriteAtlas::get_tile(atlas, &sprite_path)?,
layer: 0,
},
directional_animation: animations,
entity_type: EntityType::Ghost,
collider: Collider {
size: constants::collider::GHOST_SIZE,
},
ghost_collider: GhostCollider,
ghost_state: GhostState::Normal,
last_animation_state: LastAnimationState(GhostAnimation::Normal),
}
};
let entity = world.spawn(ghost).insert((Frozen, Visibility::hidden())).id();
trace!(ghost = ?ghost_type, entity = ?entity, start_node, "Spawned ghost entity");
}
info!("All ghost entities spawned successfully");
Ok(())
}
fn create_ghost_animations(atlas: &SpriteAtlas) -> GameResult<GhostAnimations> {
// Eaten (eyes) animations - single tile per direction
let up_eye = atlas.get_tile(&GameSprite::Ghost(GhostSprite::Eyes(Direction::Up)).to_path())?;
let down_eye = atlas.get_tile(&GameSprite::Ghost(GhostSprite::Eyes(Direction::Down)).to_path())?;
let left_eye = atlas.get_tile(&GameSprite::Ghost(GhostSprite::Eyes(Direction::Left)).to_path())?;
let right_eye = atlas.get_tile(&GameSprite::Ghost(GhostSprite::Eyes(Direction::Right)).to_path())?;
let eyes_tiles = DirectionalTiles::new(
TileSequence::new(&[up_eye]),
TileSequence::new(&[down_eye]),
TileSequence::new(&[left_eye]),
TileSequence::new(&[right_eye]),
);
let eyes = DirectionalAnimation::new(eyes_tiles.clone(), eyes_tiles, animation::GHOST_EATEN_SPEED);
let mut animations = HashMap::new();
for ghost_type in [Ghost::Blinky, Ghost::Pinky, Ghost::Inky, Ghost::Clyde] {
// Normal animations - create directional tiles for each direction
let up_tiles = [
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Up, 0)).to_path())?,
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Up, 1)).to_path())?,
];
let down_tiles = [
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Down, 0)).to_path())?,
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Down, 1)).to_path())?,
];
let left_tiles = [
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Left, 0)).to_path())?,
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Left, 1)).to_path())?,
];
let right_tiles = [
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Right, 0)).to_path())?,
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Normal(ghost_type, Direction::Right, 1)).to_path())?,
];
let normal_moving = DirectionalTiles::new(
TileSequence::new(&up_tiles),
TileSequence::new(&down_tiles),
TileSequence::new(&left_tiles),
TileSequence::new(&right_tiles),
);
let normal = DirectionalAnimation::new(normal_moving.clone(), normal_moving, animation::GHOST_NORMAL_SPEED);
animations.insert(ghost_type, normal);
}
let (frightened, frightened_flashing) = {
// Load frightened animation tiles (same for all ghosts)
let frightened_blue_a =
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Frightened(FrightenedColor::Blue, 0)).to_path())?;
let frightened_blue_b =
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Frightened(FrightenedColor::Blue, 1)).to_path())?;
let frightened_white_a =
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Frightened(FrightenedColor::White, 0)).to_path())?;
let frightened_white_b =
atlas.get_tile(&GameSprite::Ghost(GhostSprite::Frightened(FrightenedColor::White, 1)).to_path())?;
(
LinearAnimation::new(
TileSequence::new(&[frightened_blue_a, frightened_blue_b]),
animation::GHOST_NORMAL_SPEED,
),
LinearAnimation::new(
TileSequence::new(&[frightened_blue_a, frightened_white_a, frightened_blue_b, frightened_white_b]),
animation::GHOST_FRIGHTENED_SPEED,
),
)
};
Ok(GhostAnimations::new(animations, eyes, frightened, frightened_flashing))
}
/// Executes one frame of game logic by running all scheduled ECS systems.
///
/// Updates the world's delta time resource and runs the complete system pipeline:
/// input processing, entity movement, collision detection, item collection,
/// audio playback, animation updates, and rendering. Each system operates on
/// relevant entities and modifies world state, with the schedule ensuring
/// proper execution order and data dependencies.
///
/// # Arguments
///
/// * `dt` - Frame delta time in seconds for time-based animations and movement
///
/// # Returns
///
/// `true` if the game should terminate (exit command received), `false` to continue
pub fn tick(&mut self, dt: f32) -> bool {
self.world.insert_resource(DeltaTime { seconds: dt, ticks: 1 });
// Note: We don't need to read the current tick here since we increment it after running systems
// Measure total frame time including all systems
let start = std::time::Instant::now();
self.schedule.run(&mut self.world);
let total_duration = start.elapsed();
// Increment tick counter and record the total timing
if let (Some(timings), Some(timing)) = (
self.world.get_resource::<systems::profiling::SystemTimings>(),
self.world.get_resource::<Timing>(),
) {
let new_tick = timing.increment_tick();
timings.add_total_timing(total_duration, new_tick);
// Log performance warnings for slow frames
if total_duration.as_millis() > 17 {
// Warn if frame takes too long
let slowest_systems = timings.get_slowest_systems();
let systems_context = if slowest_systems.is_empty() {
"No specific systems identified".to_string()
} else {
slowest_systems
.iter()
.map(|(id, duration)| format!("{} ({:.2?})", id, duration))
.collect::<Vec<String>>()
.join(", ")
};
warn!(
total = format!("{:.3?}", total_duration),
tick = new_tick,
systems = systems_context,
"Frame took longer than expected"
);
}
}
let state = self
.world
.get_resource::<GlobalState>()
.expect("GlobalState could not be acquired");
state.exit
}
}

22
pacman/src/lib.rs Normal file
View File

@@ -0,0 +1,22 @@
//! Pac-Man game library crate.
#![cfg_attr(coverage_nightly, feature(coverage_attribute))]
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod app;
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod audio;
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod error;
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod events;
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod formatter;
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod platform;
pub mod asset;
pub mod constants;
pub mod game;
pub mod map;
pub mod systems;
pub mod texture;

53
pacman/src/main.rs Normal file
View File

@@ -0,0 +1,53 @@
#![cfg_attr(all(not(use_console), target_os = "windows"), windows_subsystem = "windows")]
#![cfg_attr(all(use_console, target_os = "windows"), windows_subsystem = "console")]
#![cfg_attr(coverage_nightly, feature(coverage_attribute))]
#![cfg_attr(coverage_nightly, coverage(off))]
use std::env;
use crate::{app::App, constants::LOOP_TIME};
use tracing::info;
// These modules are excluded from coverage.
#[cfg_attr(coverage_nightly, coverage(off))]
mod app;
#[cfg_attr(coverage_nightly, coverage(off))]
mod audio;
#[cfg_attr(coverage_nightly, coverage(off))]
mod error;
#[cfg_attr(coverage_nightly, coverage(off))]
mod events;
#[cfg_attr(coverage_nightly, coverage(off))]
mod formatter;
#[cfg_attr(coverage_nightly, coverage(off))]
mod platform;
mod asset;
mod constants;
mod game;
mod map;
mod systems;
mod texture;
/// The main entry point of the application.
///
/// This function initializes SDL, the window, the game state, and then enters
/// the main game loop.
pub fn main() {
// Parse command line arguments
let args: Vec<String> = env::args().collect();
let force_console = args.iter().any(|arg| arg == "--console" || arg == "-c");
// On Emscripten, this connects the subscriber to the browser console
platform::init_console(force_console).expect("Could not initialize console");
let mut app = App::new().expect("Could not create app");
info!(loop_time = ?LOOP_TIME, "Starting game loop");
loop {
if !app.run() {
break;
}
}
}

428
pacman/src/map/builder.rs Normal file
View File

@@ -0,0 +1,428 @@
//! Map construction and building functionality.
use crate::constants::{MapTile, BOARD_CELL_SIZE, CELL_SIZE};
use crate::map::direction::Direction;
use crate::map::graph::{Graph, Node, TraversalFlags};
use crate::map::parser::MapTileParser;
use crate::systems::{NodeId, Position};
use bevy_ecs::resource::Resource;
use glam::{I8Vec2, IVec2, Vec2};
use std::collections::{HashMap, VecDeque};
use tracing::debug;
use crate::error::{GameResult, MapError};
/// Predefined spawn locations for all game entities within the navigation graph.
///
/// These positions are determined during map parsing and graph construction.
pub struct NodePositions {
/// Pac-Man's starting position in the lower section of the maze
pub pacman: NodeId,
/// Blinky starts at the ghost house entrance
pub blinky: NodeId,
/// Pinky starts in the left area of the ghost house
pub pinky: NodeId,
/// Inky starts in the right area of the ghost house
pub inky: NodeId,
/// Clyde starts in the center of the ghost house
pub clyde: NodeId,
/// Fruit spawn location directly below the ghost house
pub fruit_spawn: Position,
}
/// Complete maze representation combining visual layout with navigation pathfinding.
///
/// Transforms the ASCII board layout into a fully connected navigation graph
/// while preserving tile-based collision and rendering data. The graph enables
/// smooth entity movement with proper pathfinding, while the grid mapping allows
/// efficient spatial queries and debug visualization.
#[derive(Resource)]
pub struct Map {
/// Connected graph of navigable positions.
pub graph: Graph,
/// Bidirectional mapping between 2D grid coordinates and graph node indices.
pub grid_to_node: HashMap<I8Vec2, NodeId>,
/// Predetermined spawn locations for all game entities
pub start_positions: NodePositions,
/// 2D array of tile types for collision detection and rendering
tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
}
impl Map {
/// Creates a new `Map` instance from a raw board layout.
///
/// This constructor initializes the map tiles based on the provided character layout
/// and then generates a navigation graph from the walkable areas.
///
/// # Panics
///
/// This function will panic if the board layout contains unknown characters or if
/// the house door is not defined by exactly two '=' characters.
pub fn new(raw_board: [&str; BOARD_CELL_SIZE.y as usize]) -> GameResult<Map> {
debug!("Starting map construction from character layout");
let parsed_map = MapTileParser::parse_board(raw_board)?;
let map = parsed_map.tiles;
let house_door = parsed_map.house_door;
let tunnel_ends = parsed_map.tunnel_ends;
debug!(
house_door_count = house_door.len(),
tunnel_ends_count = tunnel_ends.len(),
"Parsed map special locations"
);
let mut graph = Graph::new();
let mut grid_to_node = HashMap::new();
let cell_offset = Vec2::splat(CELL_SIZE as f32 / 2.0);
// Find a starting point for the graph generation, preferably Pac-Man's position.
let start_pos = parsed_map
.pacman_start
.ok_or_else(|| MapError::InvalidConfig("Pac-Man's starting position not found".to_string()))?;
// Add the starting position to the graph/queue
let mut queue = VecDeque::new();
queue.push_back(start_pos);
let pos = Vec2::new(
(start_pos.x as i32 * CELL_SIZE as i32) as f32,
(start_pos.y as i32 * CELL_SIZE as i32) as f32,
) + cell_offset;
let node_id = graph.add_node(Node { position: pos });
grid_to_node.insert(start_pos, node_id);
// Iterate over the queue, adding nodes to the graph and connecting them to their neighbors
while let Some(source_position) = queue.pop_front() {
for dir in Direction::DIRECTIONS {
let new_position = source_position + dir.as_ivec2();
// Skip if the new position is out of bounds
if new_position.x < 0
|| new_position.x as i32 >= BOARD_CELL_SIZE.x as i32
|| new_position.y < 0
|| new_position.y as i32 >= BOARD_CELL_SIZE.y as i32
{
continue;
}
// Skip if the new position is already in the graph
if grid_to_node.contains_key(&new_position) {
continue;
}
// Skip if the new position is not a walkable tile
if matches!(
map[new_position.x as usize][new_position.y as usize],
MapTile::Pellet | MapTile::PowerPellet | MapTile::Empty | MapTile::Tunnel
) {
// Add the new position to the graph/queue
let pos = Vec2::new(
(new_position.x as i32 * CELL_SIZE as i32) as f32,
(new_position.y as i32 * CELL_SIZE as i32) as f32,
) + cell_offset;
let new_node_id = graph.add_node(Node { position: pos });
grid_to_node.insert(new_position, new_node_id);
queue.push_back(new_position);
// Connect the new node to the source node
let source_node_id = grid_to_node
.get(&source_position)
.unwrap_or_else(|| panic!("Source node not found for {source_position}"));
// Connect the new node to the source node
graph
.connect(*source_node_id, new_node_id, false, None, dir)
.map_err(|e| MapError::InvalidConfig(format!("Failed to add edge: {e}")))?;
}
}
}
// While most nodes are already connected to their neighbors, some may not be, so we need to connect them
for (grid_pos, &node_id) in &grid_to_node {
for dir in Direction::DIRECTIONS {
// If the node doesn't have an edge in this direction, look for a neighbor in that direction
if graph.adjacency_list[node_id as usize].get(dir).is_none() {
let neighbor = grid_pos + dir.as_ivec2();
// If the neighbor exists, connect the node to it
if let Some(&neighbor_id) = grid_to_node.get(&neighbor) {
graph
.connect(node_id, neighbor_id, false, None, dir)
.map_err(|e| MapError::InvalidConfig(format!("Failed to add edge: {e}")))?;
}
}
}
}
// Build house structure
let (house_entrance_node_id, left_center_node_id, center_center_node_id, right_center_node_id) =
Self::build_house(&mut graph, &grid_to_node, &house_door)?;
// Find fruit spawn location (directly below ghost house)
let left_node_position = I8Vec2::new(13, 17);
let left_node_id = grid_to_node.get(&left_node_position).unwrap();
let right_node_position = I8Vec2::new(14, 17);
let right_node_id = grid_to_node.get(&right_node_position).unwrap();
let distance = graph
.get_node(*right_node_id)
.unwrap()
.position
.distance(graph.get_node(*left_node_id).unwrap().position);
// interpolate between the two nodes
let fruit_spawn_position: Position = Position::Moving {
from: *left_node_id,
to: *right_node_id,
remaining_distance: distance / 2.0,
};
let start_positions = NodePositions {
pacman: grid_to_node[&start_pos],
blinky: house_entrance_node_id,
pinky: left_center_node_id,
inky: right_center_node_id,
clyde: center_center_node_id,
fruit_spawn: fruit_spawn_position,
};
// Build tunnel connections
debug!("Building tunnel connections");
Self::build_tunnels(&mut graph, &grid_to_node, &tunnel_ends)?;
debug!(node_count = graph.nodes().count(), "Map construction completed successfully");
Ok(Map {
graph,
grid_to_node,
start_positions,
tiles: map,
})
}
pub fn iter_nodes(&self) -> impl Iterator<Item = (&NodeId, &MapTile)> {
self.grid_to_node.iter().map(move |(pos, node_id)| {
let tile = &self.tiles[pos.x as usize][pos.y as usize];
(node_id, tile)
})
}
/// Returns the `MapTile` at a given node id.
pub fn tile_at_node(&self, node_id: NodeId) -> Option<MapTile> {
// reverse lookup: node -> grid
for (grid_pos, id) in &self.grid_to_node {
if *id == node_id {
return Some(self.tiles[grid_pos.x as usize][grid_pos.y as usize]);
}
}
None
}
/// Constructs the ghost house area with restricted access and internal navigation.
///
/// Creates a multi-level ghost house with entrance control, internal movement
/// areas, and starting positions for each ghost. The house entrance uses
/// ghost-only traversal flags to prevent Pac-Man from entering while allowing
/// ghosts to exit. Internal nodes are arranged in vertical lines to provide
/// distinct starting areas for each ghost character.
///
/// # Returns
///
/// Tuple of node IDs: (house_entrance, left_center, center_center, right_center)
/// representing the four key positions within the ghost house structure.
fn build_house(
graph: &mut Graph,
grid_to_node: &HashMap<I8Vec2, NodeId>,
house_door: &[Option<I8Vec2>; 2],
) -> GameResult<(NodeId, NodeId, NodeId, NodeId)> {
// Calculate the position of the house entrance node
let (house_entrance_node_id, house_entrance_node_position) = {
// Translate the grid positions to the actual node ids
let left_node = grid_to_node
.get(
&(house_door[0]
.ok_or_else(|| MapError::InvalidConfig("First house door position not acquired".to_string()))?
+ Direction::Left.as_ivec2()),
)
.ok_or_else(|| MapError::InvalidConfig("Left house door node not found".to_string()))?;
let right_node = grid_to_node
.get(
&(house_door[1]
.ok_or_else(|| MapError::InvalidConfig("Second house door position not acquired".to_string()))?
+ Direction::Right.as_ivec2()),
)
.ok_or_else(|| MapError::InvalidConfig("Right house door node not found".to_string()))?;
// Calculate the position of the house node
let (node_id, node_position) = {
let left_pos = graph
.get_node(*left_node)
.ok_or(MapError::NodeNotFound(*left_node as usize))?
.position;
let right_pos = graph
.get_node(*right_node)
.ok_or(MapError::NodeNotFound(*right_node as usize))?
.position;
let house_node = graph.add_node(Node {
position: left_pos.lerp(right_pos, 0.5),
});
(house_node, left_pos.lerp(right_pos, 0.5))
};
// Connect the house door to the left and right nodes
graph
.connect(node_id, *left_node, true, None, Direction::Left)
.map_err(|e| MapError::InvalidConfig(format!("Failed to connect house door to left node: {e}")))?;
graph
.connect(node_id, *right_node, true, None, Direction::Right)
.map_err(|e| MapError::InvalidConfig(format!("Failed to connect house door to right node: {e}")))?;
(node_id, node_position)
};
// A helper function to help create the various 'lines' of nodes within the house
let create_house_line = |graph: &mut Graph, center_pos: Vec2| -> GameResult<(NodeId, NodeId)> {
// Place the nodes at, above, and below the center position
let center_node_id = graph.add_node(Node { position: center_pos });
let top_node_id = graph.add_node(Node {
position: center_pos + IVec2::from(Direction::Up.as_ivec2()).as_vec2() * (CELL_SIZE as f32 / 2.0),
});
let bottom_node_id = graph.add_node(Node {
position: center_pos + IVec2::from(Direction::Down.as_ivec2()).as_vec2() * (CELL_SIZE as f32 / 2.0),
});
// Connect the center node to the top and bottom nodes
graph
.connect(center_node_id, top_node_id, false, None, Direction::Up)
.map_err(|e| MapError::InvalidConfig(format!("Failed to connect house line to top node: {e}")))?;
graph
.connect(center_node_id, bottom_node_id, false, None, Direction::Down)
.map_err(|e| MapError::InvalidConfig(format!("Failed to connect house line to bottom node: {e}")))?;
Ok((center_node_id, top_node_id))
};
// Calculate the position of the center line's center node
let center_line_center_position =
house_entrance_node_position + IVec2::from(Direction::Down.as_ivec2()).as_vec2() * (3.0 * CELL_SIZE as f32);
// Create the center line
let (center_center_node_id, center_top_node_id) = create_house_line(graph, center_line_center_position)?;
// Create a ghost-only, two-way connection for the house door.
// This prevents Pac-Man from entering or exiting through the door.
graph
.add_edge(
house_entrance_node_id,
center_top_node_id,
false,
None,
Direction::Down,
TraversalFlags::GHOST,
)
.map_err(|e| MapError::InvalidConfig(format!("Failed to create ghost-only entrance to house: {e}")))?;
graph
.add_edge(
center_top_node_id,
house_entrance_node_id,
false,
None,
Direction::Up,
TraversalFlags::GHOST,
)
.map_err(|e| MapError::InvalidConfig(format!("Failed to create ghost-only exit from house: {e}")))?;
// Create the left line
let (left_center_node_id, _) = create_house_line(
graph,
center_line_center_position + IVec2::from(Direction::Left.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
)?;
// Create the right line
let (right_center_node_id, _) = create_house_line(
graph,
center_line_center_position + IVec2::from(Direction::Right.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
)?;
debug!("Left center node id: {left_center_node_id}");
// Connect the center line to the left and right lines
graph
.connect(center_center_node_id, left_center_node_id, false, None, Direction::Left)
.map_err(|e| MapError::InvalidConfig(format!("Failed to connect house entrance to left top line: {e}")))?;
graph
.connect(center_center_node_id, right_center_node_id, false, None, Direction::Right)
.map_err(|e| MapError::InvalidConfig(format!("Failed to connect house entrance to right top line: {e}")))?;
debug!("House entrance node id: {house_entrance_node_id}");
Ok((
house_entrance_node_id,
left_center_node_id,
center_center_node_id,
right_center_node_id,
))
}
/// Creates horizontal tunnel portals for instant teleportation across the maze.
///
/// Establishes the tunnel system that allows entities to instantly travel from the left edge of the maze to the right edge.
/// Creates hidden intermediate nodes beyond the visible tunnel entrances and connects them with zero-distance edges for instantaneous traversal.
fn build_tunnels(
graph: &mut Graph,
grid_to_node: &HashMap<I8Vec2, NodeId>,
tunnel_ends: &[Option<I8Vec2>; 2],
) -> GameResult<()> {
// Create the hidden tunnel nodes
let left_tunnel_hidden_node_id = {
let left_tunnel_entrance_node_id =
grid_to_node[&tunnel_ends[0].ok_or_else(|| MapError::InvalidConfig("Left tunnel end not found".to_string()))?];
let left_tunnel_entrance_node = graph
.get_node(left_tunnel_entrance_node_id)
.ok_or_else(|| MapError::InvalidConfig("Left tunnel entrance node not found".to_string()))?;
graph
.add_connected(
left_tunnel_entrance_node_id,
Direction::Left,
Node {
position: left_tunnel_entrance_node.position
+ IVec2::from(Direction::Left.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
},
)
.expect("Failed to connect left tunnel entrance to left tunnel hidden node")
};
// Create the right tunnel nodes
let right_tunnel_hidden_node_id = {
let right_tunnel_entrance_node_id =
grid_to_node[&tunnel_ends[1].ok_or_else(|| MapError::InvalidConfig("Right tunnel end not found".to_string()))?];
let right_tunnel_entrance_node = graph
.get_node(right_tunnel_entrance_node_id)
.ok_or_else(|| MapError::InvalidConfig("Right tunnel entrance node not found".to_string()))?;
graph
.add_connected(
right_tunnel_entrance_node_id,
Direction::Right,
Node {
position: right_tunnel_entrance_node.position
+ IVec2::from(Direction::Right.as_ivec2()).as_vec2() * (CELL_SIZE as f32 * 2.0),
},
)
.expect("Failed to connect right tunnel entrance to right tunnel hidden node")
};
// Connect the left tunnel hidden node to the right tunnel hidden node
graph
.connect(
left_tunnel_hidden_node_id,
right_tunnel_hidden_node_id,
false,
Some(0.0),
Direction::Left,
)
.expect("Failed to connect left tunnel hidden node to right tunnel hidden node");
Ok(())
}
}

View File

@@ -0,0 +1,57 @@
use glam::I8Vec2;
use strum_macros::AsRefStr;
/// The four cardinal directions.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default, AsRefStr)]
#[repr(usize)]
#[strum(serialize_all = "lowercase")]
pub enum Direction {
Up,
Down,
Left,
#[default]
Right,
}
impl Direction {
/// The four cardinal directions.
/// This is just a convenience constant for iterating over the directions.
pub const DIRECTIONS: [Direction; 4] = [Direction::Up, Direction::Down, Direction::Left, Direction::Right];
/// Returns the opposite direction. Constant time.
pub const fn opposite(self) -> Direction {
match self {
Direction::Up => Direction::Down,
Direction::Down => Direction::Up,
Direction::Left => Direction::Right,
Direction::Right => Direction::Left,
}
}
/// Returns the direction as an I8Vec2.
pub fn as_ivec2(self) -> I8Vec2 {
self.into()
}
/// Returns the direction as a usize (0-3). Constant time.
/// This is useful for indexing into arrays.
pub const fn as_usize(self) -> usize {
match self {
Direction::Up => 0,
Direction::Down => 1,
Direction::Left => 2,
Direction::Right => 3,
}
}
}
impl From<Direction> for I8Vec2 {
fn from(dir: Direction) -> Self {
match dir {
Direction::Up => -I8Vec2::Y,
Direction::Down => I8Vec2::Y,
Direction::Left => -I8Vec2::X,
Direction::Right => I8Vec2::X,
}
}
}

250
pacman/src/map/graph.rs Normal file
View File

@@ -0,0 +1,250 @@
use glam::Vec2;
use crate::systems::NodeId;
use super::direction::Direction;
use bitflags::bitflags;
bitflags! {
/// Defines who can traverse a given edge using flags for fast checking.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub struct TraversalFlags: u8 {
const PACMAN = 1 << 0;
const GHOST = 1 << 1;
/// Convenience flag for edges that all entities can use
const ALL = Self::PACMAN.bits() | Self::GHOST.bits();
}
}
/// Represents a directed edge from one node to another with a given weight (e.g., distance).
#[derive(Debug, Clone, Copy)]
pub struct Edge {
/// The destination node of this edge.
pub target: NodeId,
/// The length of the edge.
pub distance: f32,
/// The cardinal direction of this edge.
pub direction: Direction,
/// Defines who is allowed to traverse this edge.
pub traversal_flags: TraversalFlags,
}
/// Represents a node in the graph, defined by its position.
#[derive(Debug)]
pub struct Node {
/// The 2D coordinates of the node.
pub position: Vec2,
}
/// Represents the four possible directions from a node in the graph.
///
/// Each field contains an optional edge leading in that direction.
/// This structure is used to represent the adjacency list for each node,
/// providing O(1) access to edges in any cardinal direction.
#[derive(Debug, Default)]
pub struct Intersection {
/// Edge leading upward from this node, if it exists.
pub up: Option<Edge>,
/// Edge leading downward from this node, if it exists.
pub down: Option<Edge>,
/// Edge leading leftward from this node, if it exists.
pub left: Option<Edge>,
/// Edge leading rightward from this node, if it exists.
pub right: Option<Edge>,
}
impl Intersection {
/// Returns an iterator over all edges from this intersection.
///
/// This iterator yields only the edges that exist (non-None values).
pub fn edges(&self) -> impl Iterator<Item = Edge> {
[self.up, self.down, self.left, self.right].into_iter().flatten()
}
/// Retrieves the edge in the specified direction, if it exists.
pub fn get(&self, direction: Direction) -> Option<Edge> {
match direction {
Direction::Up => self.up,
Direction::Down => self.down,
Direction::Left => self.left,
Direction::Right => self.right,
}
}
/// Sets the edge in the specified direction.
///
/// This will overwrite any existing edge in that direction.
pub fn set(&mut self, direction: Direction, edge: Edge) {
match direction {
Direction::Up => self.up = Some(edge),
Direction::Down => self.down = Some(edge),
Direction::Left => self.left = Some(edge),
Direction::Right => self.right = Some(edge),
}
}
}
/// A directed graph structure using an adjacency list representation.
///
/// Nodes are stored in a vector, and their indices serve as their `NodeId`.
/// This design provides fast, O(1) lookups for node data. Edges are stored
/// in an adjacency list, where each node has a list of outgoing edges.
pub struct Graph {
nodes: Vec<Node>,
pub adjacency_list: Vec<Intersection>,
}
impl Graph {
/// Creates a new, empty graph.
pub fn new() -> Self {
Graph {
nodes: Vec::new(),
adjacency_list: Vec::new(),
}
}
/// Adds a new node with the given data to the graph and returns its ID.
pub fn add_node(&mut self, data: Node) -> NodeId {
let id = self.nodes.len() as NodeId;
self.nodes.push(data);
self.adjacency_list.push(Intersection::default());
id
}
/// Connects a new node to the graph and adds an edge between the existing node and the new node.
pub fn add_connected(&mut self, from: NodeId, direction: Direction, new_node: Node) -> Result<NodeId, &'static str> {
let to = self.add_node(new_node);
self.connect(from, to, false, None, direction)?;
Ok(to)
}
/// Connects two existing nodes with an edge.
pub fn connect(
&mut self,
from: NodeId,
to: NodeId,
replace: bool,
distance: Option<f32>,
direction: Direction,
) -> Result<(), &'static str> {
if from as usize >= self.adjacency_list.len() {
return Err("From node does not exist.");
}
if to as usize >= self.adjacency_list.len() {
return Err("To node does not exist.");
}
let edge_a = self.add_edge(from, to, replace, distance, direction, TraversalFlags::ALL);
let edge_b = self.add_edge(to, from, replace, distance, direction.opposite(), TraversalFlags::ALL);
if edge_a.is_err() && edge_b.is_err() {
return Err("Failed to connect nodes in both directions.");
}
Ok(())
}
/// Adds a directed edge between two nodes.
///
/// If `distance` is `None`, it will be calculated automatically based on the
/// Euclidean distance between the two nodes.
///
/// # Errors
///
/// Returns an error if:
/// - The `from` node does not exist
/// - An edge already exists in the specified direction
/// - An edge already exists to the target node
/// - The provided distance is not positive
pub fn add_edge(
&mut self,
from: NodeId,
to: NodeId,
replace: bool,
distance: Option<f32>,
direction: Direction,
traversal_flags: TraversalFlags,
) -> Result<(), &'static str> {
let edge = Edge {
target: to,
distance: match distance {
Some(distance) => {
if distance < 0.0 {
return Err("Edge distance must be on-negative.");
}
distance
}
None => {
// If no distance is provided, calculate it based on the positions of the nodes
let from_pos = self.nodes[from as usize].position;
let to_pos = self.nodes[to as usize].position;
from_pos.distance(to_pos)
}
},
direction,
traversal_flags,
};
if from as usize >= self.adjacency_list.len() {
return Err("From node does not exist.");
}
let adjacency_list = &mut self.adjacency_list[from as usize];
// Check if the edge already exists in this direction or to the same target
if let Some(err) = adjacency_list.edges().find_map(|e| {
if !replace {
// If we're not replacing the edge, we don't want to replace an edge that already exists in this direction
if e.direction == direction {
return Some(Err("Edge already exists in this direction."));
} else if e.target == to {
return Some(Err("Edge already exists."));
}
}
None
}) {
return err;
}
adjacency_list.set(direction, edge);
Ok(())
}
/// Retrieves an immutable reference to a node's data.
pub fn get_node(&self, id: NodeId) -> Option<&Node> {
self.nodes.get(id as usize)
}
/// Returns an iterator over all nodes in the graph.
pub fn nodes(&self) -> impl Iterator<Item = &Node> {
self.nodes.iter()
}
/// Returns an iterator over all edges in the graph.
pub fn edges(&self) -> impl Iterator<Item = (NodeId, Edge)> + '_ {
self.adjacency_list
.iter()
.enumerate()
.flat_map(|(node_id, intersection)| intersection.edges().map(move |edge| (node_id as NodeId, edge)))
}
/// Finds a specific edge from a source node to a target node.
pub fn find_edge(&self, from: NodeId, to: NodeId) -> Option<Edge> {
self.adjacency_list.get(from as usize)?.edges().find(|edge| edge.target == to)
}
/// Finds an edge originating from a given node that follows a specific direction.
pub fn find_edge_in_direction(&self, from: NodeId, direction: Direction) -> Option<Edge> {
self.adjacency_list.get(from as usize)?.get(direction)
}
}
// Default implementation for creating an empty graph.
impl Default for Graph {
fn default() -> Self {
Self::new()
}
}

95
pacman/src/map/layout.rs Normal file
View File

@@ -0,0 +1,95 @@
pub const TILE_MAP: [[usize; 28]; 31] = [
[
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4,
],
[
5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 9,
],
[
5, 6, 10, 11, 11, 12, 6, 10, 11, 11, 11, 12, 6, 7, 8, 6, 10, 11, 11, 11, 12, 6, 10, 11, 11, 12, 6, 9,
],
[
5, 6, 7, 6, 6, 8, 6, 7, 6, 6, 6, 8, 6, 7, 8, 6, 7, 6, 6, 6, 8, 6, 7, 6, 6, 8, 6, 9,
],
[
5, 6, 13, 14, 14, 15, 6, 13, 14, 14, 14, 15, 6, 13, 15, 6, 13, 14, 14, 14, 15, 6, 13, 14, 14, 15, 6, 9,
],
[
5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 9,
],
[
5, 6, 10, 11, 11, 12, 6, 10, 12, 6, 10, 11, 11, 11, 11, 11, 11, 12, 6, 10, 12, 6, 10, 11, 11, 12, 6, 9,
],
[
5, 6, 13, 14, 14, 15, 6, 7, 8, 6, 13, 14, 14, 16, 17, 14, 14, 15, 6, 7, 8, 6, 13, 14, 14, 15, 6, 9,
],
[
5, 6, 6, 6, 6, 6, 6, 7, 8, 6, 6, 6, 6, 7, 8, 6, 6, 6, 6, 7, 8, 6, 6, 6, 6, 6, 6, 9,
],
[
18, 19, 19, 19, 19, 12, 6, 7, 20, 11, 11, 12, 6, 7, 8, 6, 10, 11, 11, 21, 8, 6, 10, 19, 19, 19, 19, 22,
],
[
6, 6, 6, 6, 6, 5, 6, 7, 17, 14, 14, 15, 6, 13, 15, 6, 13, 14, 14, 16, 8, 6, 9, 6, 6, 6, 6, 6,
],
[
6, 6, 6, 6, 6, 5, 6, 7, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 6, 9, 6, 6, 6, 6, 6,
],
[
6, 6, 6, 6, 6, 5, 6, 7, 8, 6, 23, 19, 24, 25, 25, 26, 19, 27, 6, 7, 8, 6, 9, 6, 6, 6, 6, 6,
],
[
1, 1, 1, 1, 1, 15, 6, 13, 15, 6, 9, 6, 6, 6, 6, 6, 6, 5, 6, 13, 15, 6, 13, 1, 1, 1, 1, 1,
],
[
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 9, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
],
[
19, 19, 19, 19, 19, 12, 6, 10, 12, 6, 9, 6, 6, 6, 6, 6, 6, 5, 6, 10, 12, 6, 10, 19, 19, 19, 19, 19,
],
[
6, 6, 6, 6, 6, 5, 6, 7, 8, 6, 28, 1, 1, 1, 1, 1, 1, 29, 6, 7, 8, 6, 9, 6, 6, 6, 6, 6,
],
[
6, 6, 6, 6, 6, 5, 6, 7, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 6, 9, 6, 6, 6, 6, 6,
],
[
6, 6, 6, 6, 6, 5, 6, 7, 8, 6, 10, 11, 11, 11, 11, 11, 11, 12, 6, 7, 8, 6, 9, 6, 6, 6, 6, 6,
],
[
0, 1, 1, 1, 1, 15, 6, 13, 15, 6, 13, 14, 14, 16, 17, 14, 14, 15, 6, 13, 15, 6, 13, 1, 1, 1, 1, 4,
],
[
5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 9,
],
[
5, 6, 10, 11, 11, 12, 6, 10, 11, 11, 11, 12, 6, 7, 8, 6, 10, 11, 11, 11, 12, 6, 30, 11, 11, 12, 6, 9,
],
[
5, 6, 13, 14, 16, 8, 6, 13, 14, 14, 14, 15, 6, 13, 15, 6, 13, 14, 14, 14, 15, 6, 7, 17, 14, 15, 6, 9,
],
[
5, 6, 6, 6, 7, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 6, 6, 6, 9,
],
[
31, 11, 12, 6, 7, 8, 6, 10, 12, 6, 10, 11, 11, 11, 11, 11, 11, 12, 6, 10, 12, 6, 7, 8, 6, 10, 11, 32,
],
[
33, 14, 15, 6, 13, 15, 6, 7, 8, 6, 13, 14, 14, 16, 17, 14, 14, 15, 6, 7, 8, 6, 13, 15, 6, 13, 14, 34,
],
[
5, 6, 6, 6, 6, 6, 6, 7, 8, 6, 6, 6, 6, 7, 8, 6, 6, 6, 6, 7, 8, 6, 6, 6, 6, 6, 6, 9,
],
[
5, 6, 10, 11, 11, 11, 11, 21, 20, 11, 11, 12, 6, 7, 8, 6, 10, 11, 11, 21, 20, 11, 11, 11, 11, 12, 6, 9,
],
[
5, 6, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 6, 13, 15, 6, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 6, 9,
],
[
5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 9,
],
[
18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 22,
],
];

8
pacman/src/map/mod.rs Normal file
View File

@@ -0,0 +1,8 @@
//! This module defines the game map and provides functions for interacting with it.
pub mod builder;
pub mod direction;
pub mod graph;
pub mod layout;
pub mod parser;
pub mod render;

138
pacman/src/map/parser.rs Normal file
View File

@@ -0,0 +1,138 @@
//! Map parsing functionality for converting raw board layouts into structured data.
use crate::constants::{MapTile, BOARD_CELL_SIZE};
use crate::error::ParseError;
use glam::I8Vec2;
/// Structured representation of parsed ASCII board layout with extracted special positions.
///
/// Contains the complete board state after character-to-tile conversion, along with
/// the locations of special gameplay elements that require additional processing
/// during graph construction. Special positions are extracted during parsing to
/// enable proper map builder initialization.
#[derive(Debug)]
pub struct ParsedMap {
/// 2D array of tiles converted from ASCII characters
pub tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
/// Two positions marking the ghost house entrance (represented by '=' characters)
pub house_door: [Option<I8Vec2>; 2],
/// Two positions marking tunnel portals for wraparound teleportation ('T' characters)
pub tunnel_ends: [Option<I8Vec2>; 2],
/// Starting position for Pac-Man (marked by 'X' character in the layout)
pub pacman_start: Option<I8Vec2>,
}
/// Parser for converting raw board layouts into structured map data.
pub struct MapTileParser;
impl MapTileParser {
/// Converts ASCII characters from the board layout into corresponding tile types.
///
/// Interprets the character-based maze representation: walls (`#`), collectible
/// pellets (`.` and `o`), traversable spaces (` `), tunnel entrances (`T`),
/// ghost house doors (`=`), and entity spawn markers (`X`). Special characters
/// that don't represent tiles in the final map (like spawn markers) are
/// converted to `Empty` tiles while their positions are tracked separately.
///
/// # Errors
///
/// Returns `ParseError::UnknownCharacter` for any character not defined
/// in the game's ASCII art vocabulary.
pub fn parse_character(c: char) -> Result<MapTile, ParseError> {
match c {
'#' => Ok(MapTile::Wall),
'.' => Ok(MapTile::Pellet),
'o' => Ok(MapTile::PowerPellet),
' ' => Ok(MapTile::Empty),
'T' => Ok(MapTile::Tunnel),
'X' => Ok(MapTile::Empty), // Pac-Man's starting position, treated as empty
'=' => Ok(MapTile::Wall), // House door is represented as a wall tile
_ => Err(ParseError::UnknownCharacter(c)),
}
}
/// Parses a raw board layout into structured map data.
///
/// # Arguments
///
/// * `raw_board` - The raw board layout as an array of strings
///
/// # Returns
///
/// The parsed map data, or an error if parsing fails.
///
/// # Errors
///
/// Returns an error if the board contains unknown characters or if the house door
/// is not properly defined by exactly two '=' characters.
pub fn parse_board(raw_board: [&str; BOARD_CELL_SIZE.y as usize]) -> Result<ParsedMap, ParseError> {
// Validate board dimensions
if raw_board.len() != BOARD_CELL_SIZE.y as usize {
return Err(ParseError::ParseFailed(format!(
"Invalid board height: expected {}, got {}",
BOARD_CELL_SIZE.y,
raw_board.len()
)));
}
for (i, line) in raw_board.iter().enumerate() {
if line.len() != BOARD_CELL_SIZE.x as usize {
return Err(ParseError::ParseFailed(format!(
"Invalid board width at line {}: expected {}, got {}",
i,
BOARD_CELL_SIZE.x,
line.len()
)));
}
}
let mut tiles = [[MapTile::Empty; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize];
let mut house_door = [None; 2];
let mut tunnel_ends = [None; 2];
let mut pacman_start: Option<I8Vec2> = None;
for (y, line) in raw_board.iter().enumerate().take(BOARD_CELL_SIZE.y as usize) {
for (x, character) in line.chars().enumerate().take(BOARD_CELL_SIZE.x as usize) {
let tile = Self::parse_character(character)?;
// Track special positions
match tile {
MapTile::Tunnel => {
if tunnel_ends[0].is_none() {
tunnel_ends[0] = Some(I8Vec2::new(x as i8, y as i8));
} else {
tunnel_ends[1] = Some(I8Vec2::new(x as i8, y as i8));
}
}
MapTile::Wall if character == '=' => {
if house_door[0].is_none() {
house_door[0] = Some(I8Vec2::new(x as i8, y as i8));
} else {
house_door[1] = Some(I8Vec2::new(x as i8, y as i8));
}
}
_ => {}
}
// Track Pac-Man's starting position
if character == 'X' {
pacman_start = Some(I8Vec2::new(x as i8, y as i8));
}
tiles[x][y] = tile;
}
}
// Validate house door configuration
let house_door_count = house_door.iter().filter(|x| x.is_some()).count();
if house_door_count != 2 {
return Err(ParseError::InvalidHouseDoorCount(house_door_count));
}
Ok(ParsedMap {
tiles,
house_door,
tunnel_ends,
pacman_start,
})
}
}

36
pacman/src/map/render.rs Normal file
View File

@@ -0,0 +1,36 @@
//! Map rendering functionality.
use crate::constants::{BOARD_CELL_OFFSET, CELL_SIZE};
use crate::map::layout::TILE_MAP;
use crate::texture::sprite::{AtlasTile, SpriteAtlas};
use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget};
/// Handles rendering operations for the map.
pub struct MapRenderer;
impl MapRenderer {
/// Renders the map to the given canvas.
///
/// This function draws the static map texture to the screen at the correct
/// position and scale.
pub fn render_map<T: RenderTarget>(canvas: &mut Canvas<T>, atlas: &mut SpriteAtlas, map_tiles: &[AtlasTile]) {
for (y, row) in TILE_MAP.iter().enumerate() {
for (x, &tile_index) in row.iter().enumerate() {
let mut tile = map_tiles[tile_index];
tile.color = Some(Color::RGB(0x20, 0x20, 0xf9));
let dest = Rect::new(
(BOARD_CELL_OFFSET.x as usize * CELL_SIZE as usize + x * CELL_SIZE as usize) as i32,
(BOARD_CELL_OFFSET.y as usize * CELL_SIZE as usize + y * CELL_SIZE as usize) as i32,
CELL_SIZE,
CELL_SIZE,
);
if let Err(e) = tile.render(canvas, atlas, dest) {
tracing::error!("Failed to render map tile: {}", e);
}
}
}
}
}

View File

@@ -0,0 +1,209 @@
//! Desktop platform implementation.
use std::time::Duration;
use rand::rngs::ThreadRng;
use rust_embed::Embed;
use crate::error::PlatformError;
#[derive(Embed)]
#[folder = "assets/game/"]
struct EmbeddedAssets;
/// Desktop platform implementation.
pub fn sleep(duration: Duration, focused: bool) {
if focused {
spin_sleep::sleep(duration);
} else {
std::thread::sleep(duration);
}
}
#[allow(unused_variables)]
pub fn init_console(force_console: bool) -> Result<(), PlatformError> {
use crate::formatter::CustomFormatter;
use tracing::Level;
use tracing_error::ErrorLayer;
use tracing_subscriber::{fmt, layer::SubscriberExt, util::SubscriberInitExt, Layer};
// Create a file layer
let log_file = std::fs::File::create("pacman.log")
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to create log file: {}", e)))?;
let file_layer = fmt::layer()
.with_ansi(false)
.with_writer(log_file)
.event_format(CustomFormatter)
.with_filter(tracing_subscriber::filter::LevelFilter::from_level(Level::DEBUG))
.boxed();
#[cfg(windows)]
{
// If using windows subsystem, and force_console is true, allocate a new console window
if force_console && cfg!(not(use_console)) {
use crate::platform::tracing_buffer::{SwitchableMakeWriter, SwitchableWriter};
// Setup deferred tracing subscriber that will buffer logs until console is ready
let switchable_writer = SwitchableWriter::default();
let make_writer = SwitchableMakeWriter::new(switchable_writer.clone());
let console_layer = fmt::layer()
.with_ansi(true)
.with_writer(make_writer)
.event_format(CustomFormatter)
.with_filter(tracing_subscriber::filter::LevelFilter::from_level(Level::DEBUG))
.boxed();
tracing_subscriber::registry()
.with(console_layer)
.with(file_layer)
.with(ErrorLayer::default())
.init();
// Enable virtual terminal processing for ANSI colors
allocate_console()?;
enable_ansi_support()?;
switchable_writer
.switch_to_direct_mode()
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to switch to direct mode: {}", e)))?;
} else {
// Set up tracing subscriber with ANSI colors enabled
let console_layer = fmt::layer()
.with_ansi(true)
.with_writer(std::io::stdout)
.event_format(CustomFormatter)
.with_filter(tracing_subscriber::filter::LevelFilter::from_level(Level::DEBUG))
.boxed();
tracing_subscriber::registry()
.with(console_layer)
.with(file_layer)
.with(ErrorLayer::default())
.init();
}
}
#[cfg(not(windows))]
{
// Set up tracing subscriber with ANSI colors enabled
let console_layer = fmt::layer()
.with_ansi(true)
.with_writer(std::io::stdout)
.event_format(CustomFormatter)
.with_filter(tracing_subscriber::filter::LevelFilter::from_level(Level::DEBUG))
.boxed();
tracing_subscriber::registry()
.with(console_layer)
.with(file_layer)
.with(ErrorLayer::default())
.init();
}
Ok(())
}
pub fn rng() -> ThreadRng {
rand::rng()
}
/// Enable ANSI escape sequence support in the Windows console
/// Windows-only
#[cfg(windows)]
fn enable_ansi_support() -> Result<(), PlatformError> {
use windows::Win32::System::Console::{
GetConsoleMode, GetStdHandle, SetConsoleMode, CONSOLE_MODE, ENABLE_VIRTUAL_TERMINAL_PROCESSING, STD_ERROR_HANDLE,
STD_OUTPUT_HANDLE,
};
// Enable ANSI processing for stdout
unsafe {
let stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE)
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to get stdout handle: {:?}", e)))?;
let mut console_mode = CONSOLE_MODE(0);
GetConsoleMode(stdout_handle, &mut console_mode)
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to get console mode: {:?}", e)))?;
console_mode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;
SetConsoleMode(stdout_handle, console_mode)
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to enable ANSI for stdout: {:?}", e)))?;
}
// Enable ANSI processing for stderr
unsafe {
let stderr_handle = GetStdHandle(STD_ERROR_HANDLE)
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to get stderr handle: {:?}", e)))?;
let mut console_mode = CONSOLE_MODE(0);
GetConsoleMode(stderr_handle, &mut console_mode)
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to get console mode: {:?}", e)))?;
console_mode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;
SetConsoleMode(stderr_handle, console_mode)
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to enable ANSI for stderr: {:?}", e)))?;
}
Ok(())
}
/// Allocate a new console window for the process
/// Windows-only
#[cfg(windows)]
fn allocate_console() -> Result<(), PlatformError> {
use windows::{
core::PCSTR,
Win32::{
Foundation::{GENERIC_READ, GENERIC_WRITE},
Storage::FileSystem::{CreateFileA, FILE_FLAGS_AND_ATTRIBUTES, FILE_SHARE_READ, FILE_SHARE_WRITE, OPEN_EXISTING},
System::Console::{AllocConsole, SetStdHandle, STD_ERROR_HANDLE, STD_INPUT_HANDLE, STD_OUTPUT_HANDLE},
},
};
// Allocate a new console for this process
unsafe { AllocConsole() }.map_err(|e| PlatformError::ConsoleInit(format!("Failed to allocate console: {:?}", e)))?;
// Note: SetConsoleTitle is not available in the imported modules, skipping title setting
// Redirect stdout
let stdout_handle = unsafe {
let pcstr = PCSTR::from_raw(c"CONOUT$".as_ptr() as *const u8);
CreateFileA::<PCSTR>(
pcstr,
(GENERIC_READ | GENERIC_WRITE).0,
FILE_SHARE_READ | FILE_SHARE_WRITE,
None,
OPEN_EXISTING,
FILE_FLAGS_AND_ATTRIBUTES(0),
None,
)
}
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to create stdout handle: {:?}", e)))?;
// Redirect stdin
let stdin_handle = unsafe {
let pcstr = PCSTR::from_raw(c"CONIN$".as_ptr() as *const u8);
CreateFileA::<PCSTR>(
pcstr,
(GENERIC_READ | GENERIC_WRITE).0,
FILE_SHARE_READ | FILE_SHARE_WRITE,
None,
OPEN_EXISTING,
FILE_FLAGS_AND_ATTRIBUTES(0),
None,
)
}
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to create stdin handle: {:?}", e)))?;
// Set the standard handles
unsafe { SetStdHandle(STD_OUTPUT_HANDLE, stdout_handle) }
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to set stdout handle: {:?}", e)))?;
unsafe { SetStdHandle(STD_ERROR_HANDLE, stdout_handle) }
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to set stderr handle: {:?}", e)))?;
unsafe { SetStdHandle(STD_INPUT_HANDLE, stdin_handle) }
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to set stdin handle: {:?}", e)))?;
Ok(())
}

View File

@@ -0,0 +1,64 @@
//! Emscripten platform implementation.
use crate::error::PlatformError;
use crate::formatter::CustomFormatter;
use rand::{rngs::SmallRng, SeedableRng};
use std::ffi::CString;
use std::io::{self, Write};
use std::time::Duration;
// Emscripten FFI functions
extern "C" {
fn emscripten_sleep(ms: u32);
fn printf(format: *const u8, ...) -> i32;
}
pub fn sleep(duration: Duration, _focused: bool) {
unsafe {
emscripten_sleep(duration.as_millis() as u32);
}
}
pub fn init_console(_force_console: bool) -> Result<(), PlatformError> {
use tracing_subscriber::{fmt, layer::SubscriberExt, EnvFilter};
// Set up a custom tracing subscriber that writes directly to emscripten console
let subscriber = tracing_subscriber::registry()
.with(
fmt::layer()
.with_writer(|| EmscriptenConsoleWriter)
.with_ansi(false)
.event_format(CustomFormatter),
)
.with(EnvFilter::try_from_default_env().unwrap_or_else(|_| EnvFilter::new("debug")));
tracing::subscriber::set_global_default(subscriber)
.map_err(|e| PlatformError::ConsoleInit(format!("Failed to set tracing subscriber: {}", e)))?;
Ok(())
}
/// A writer that outputs to the browser console via printf (redirected by emscripten)
struct EmscriptenConsoleWriter;
impl Write for EmscriptenConsoleWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
if let Ok(s) = std::str::from_utf8(buf) {
if let Ok(cstr) = CString::new(s.trim_end_matches('\n')) {
let format_str = CString::new("%s\n").unwrap();
unsafe {
printf(format_str.as_ptr().cast(), cstr.as_ptr());
}
}
}
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
pub fn rng() -> SmallRng {
SmallRng::from_os_rng()
}

View File

@@ -0,0 +1,15 @@
//! Platform abstraction layer for cross-platform functionality.
#[cfg(not(target_os = "emscripten"))]
mod desktop;
#[cfg(not(target_os = "emscripten"))]
pub use desktop::*;
/// Tracing buffer is only used on Windows.
#[cfg(windows)]
pub mod tracing_buffer;
#[cfg(target_os = "emscripten")]
pub use emscripten::*;
#[cfg(target_os = "emscripten")]
mod emscripten;

View File

@@ -0,0 +1,129 @@
//! Buffered tracing setup for handling logs before console attachment.
use parking_lot::Mutex;
use std::io;
use std::io::Write;
use std::sync::Arc;
use tracing::debug;
use tracing_subscriber::fmt::MakeWriter;
/// A thread-safe buffered writer that stores logs in memory until flushed.
#[derive(Clone)]
pub struct BufferedWriter {
buffer: Arc<Mutex<Vec<u8>>>,
}
impl BufferedWriter {
/// Creates a new buffered writer.
pub fn new() -> Self {
Self {
buffer: Arc::new(Mutex::new(Vec::new())),
}
}
/// Flushes all buffered content to the provided writer and clears the buffer.
pub fn flush_to<W: Write>(&self, mut writer: W) -> io::Result<()> {
let mut buffer = self.buffer.lock();
if !buffer.is_empty() {
writer.write_all(&buffer)?;
writer.flush()?;
buffer.clear();
}
Ok(())
}
/// Returns the current buffer size in bytes.
pub fn buffer_size(&self) -> usize {
self.buffer.lock().len()
}
}
impl Write for BufferedWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let mut buffer = self.buffer.lock();
buffer.extend_from_slice(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
// For buffered writer, flush is a no-op since we're storing in memory
Ok(())
}
}
impl Default for BufferedWriter {
fn default() -> Self {
Self::new()
}
}
/// A writer that can switch between buffering and direct output.
#[derive(Clone, Default)]
pub struct SwitchableWriter {
buffered_writer: BufferedWriter,
direct_mode: std::sync::Arc<parking_lot::Mutex<bool>>,
}
impl SwitchableWriter {
pub fn switch_to_direct_mode(&self) -> io::Result<()> {
let buffer_size = {
// Acquire the lock
let mut mode = self.direct_mode.lock();
// Get buffer size before flushing for debug logging
let buffer_size = self.buffered_writer.buffer_size();
// Flush any buffered content to stdout only
self.buffered_writer.flush_to(io::stdout())?;
// Switch to direct mode (and drop the lock)
*mode = true;
buffer_size
};
// Log how much was buffered (this will now go directly to stdout)
debug!("Flushed {buffer_size:?} bytes of buffered logs to console");
Ok(())
}
}
impl io::Write for SwitchableWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
if *self.direct_mode.lock() {
io::stdout().write(buf)
} else {
self.buffered_writer.clone().write(buf)
}
}
fn flush(&mut self) -> io::Result<()> {
if *self.direct_mode.lock() {
io::stdout().flush()
} else {
// For buffered mode, flush is a no-op
Ok(())
}
}
}
/// A make writer that uses the switchable writer.
#[derive(Clone)]
pub struct SwitchableMakeWriter {
writer: SwitchableWriter,
}
impl SwitchableMakeWriter {
pub fn new(writer: SwitchableWriter) -> Self {
Self { writer }
}
}
impl<'a> MakeWriter<'a> for SwitchableMakeWriter {
type Writer = SwitchableWriter;
fn make_writer(&'a self) -> Self::Writer {
self.writer.clone()
}
}

View File

@@ -0,0 +1,66 @@
use bevy_ecs::{
component::Component,
query::{Has, With},
system::{Query, Res},
};
use crate::systems::{DeltaTime, Frozen, Renderable, Visibility};
#[derive(Component, Debug)]
pub struct Blinking {
pub tick_timer: u32,
pub interval_ticks: u32,
}
impl Blinking {
pub fn new(interval_ticks: u32) -> Self {
Self {
tick_timer: 0,
interval_ticks,
}
}
}
/// Updates blinking entities by toggling their visibility at regular intervals.
///
/// This system manages entities that have both `Blinking` and `Renderable` components,
/// accumulating ticks and toggling visibility when the specified interval is reached.
/// Uses integer arithmetic for deterministic behavior.
#[allow(clippy::type_complexity)]
pub fn blinking_system(time: Res<DeltaTime>, mut query: Query<(&mut Blinking, &mut Visibility, Has<Frozen>), With<Renderable>>) {
for (mut blinking, mut visibility, frozen) in query.iter_mut() {
// If the entity is frozen, blinking is disabled and the entity is made visible
if frozen {
visibility.show();
continue;
}
// Increase the timer by the delta ticks
blinking.tick_timer += time.ticks;
// Handle zero interval case (immediate toggling)
if blinking.interval_ticks == 0 {
if time.ticks > 0 {
visibility.toggle();
}
continue;
}
// Calculate how many complete intervals have passed
let complete_intervals = blinking.tick_timer / blinking.interval_ticks;
// If no complete intervals have passed, there's nothing to do yet
if complete_intervals == 0 {
continue;
}
// Update the timer to the remainder after complete intervals
blinking.tick_timer %= blinking.interval_ticks;
// Toggle the visibility for each complete interval
// Since toggling twice is a no-op, we only need to toggle if the count is odd
if complete_intervals % 2 == 1 {
visibility.toggle();
}
}
}

View File

@@ -0,0 +1,104 @@
use bevy_ecs::{
component::Component,
query::{Has, Or, With, Without},
system::{Query, Res},
};
use crate::{
systems::{DeltaTime, Dying, Frozen, LinearAnimation, Looping, Position, Renderable, Velocity},
texture::animated::DirectionalTiles,
};
/// Directional animation component with shared timing across all directions
#[derive(Component, Clone)]
pub struct DirectionalAnimation {
pub moving_tiles: DirectionalTiles,
pub stopped_tiles: DirectionalTiles,
pub current_frame: usize,
pub time_bank: u16,
pub frame_duration: u16,
}
impl DirectionalAnimation {
/// Creates a new directional animation with the given tiles and frame duration
pub fn new(moving_tiles: DirectionalTiles, stopped_tiles: DirectionalTiles, frame_duration: u16) -> Self {
Self {
moving_tiles,
stopped_tiles,
current_frame: 0,
time_bank: 0,
frame_duration,
}
}
}
/// Updates directional animated entities with synchronized timing across directions.
///
/// This runs before the render system to update sprites based on current direction and movement state.
/// All directions share the same frame timing to ensure perfect synchronization.
pub fn directional_render_system(
dt: Res<DeltaTime>,
mut query: Query<(&Position, &Velocity, &mut DirectionalAnimation, &mut Renderable, Has<Frozen>)>,
) {
let ticks = (dt.seconds * 60.0).round() as u16; // Convert from seconds to ticks at 60 ticks/sec
for (position, velocity, mut anim, mut renderable, frozen) in query.iter_mut() {
let stopped = matches!(position, Position::Stopped { .. });
// Only tick animation when moving to preserve stopped frame
if !stopped && !frozen {
// Tick shared animation state
anim.time_bank += ticks;
while anim.time_bank >= anim.frame_duration {
anim.time_bank -= anim.frame_duration;
anim.current_frame += 1;
}
}
// Get tiles for current direction and movement state
let tiles = if stopped {
anim.stopped_tiles.get(velocity.direction)
} else {
anim.moving_tiles.get(velocity.direction)
};
if !tiles.is_empty() {
let new_tile = tiles.get_tile(anim.current_frame);
if renderable.sprite != new_tile {
renderable.sprite = new_tile;
}
}
}
}
/// System that updates `Renderable` sprites for entities with `LinearAnimation`.
#[allow(clippy::type_complexity)]
pub fn linear_render_system(
dt: Res<DeltaTime>,
mut query: Query<(&mut LinearAnimation, &mut Renderable, Has<Looping>), Or<(Without<Frozen>, With<Dying>)>>,
) {
for (mut anim, mut renderable, looping) in query.iter_mut() {
if anim.finished {
continue;
}
anim.time_bank += dt.ticks as u16;
let frames_to_advance = (anim.time_bank / anim.frame_duration) as usize;
if frames_to_advance == 0 {
continue;
}
let total_frames = anim.tiles.len();
if !looping && anim.current_frame + frames_to_advance >= total_frames {
anim.finished = true;
anim.current_frame = total_frames - 1;
} else {
anim.current_frame += frames_to_advance;
}
anim.time_bank %= anim.frame_duration;
renderable.sprite = anim.tiles.get_tile(anim.current_frame);
}
}

View File

@@ -0,0 +1,30 @@
use crate::texture::animated::TileSequence;
use bevy_ecs::component::Component;
use bevy_ecs::resource::Resource;
/// Tag component to mark animations that should loop when they reach the end
#[derive(Component, Clone, Copy, Debug, PartialEq, Eq)]
pub struct Looping;
/// Linear animation component for non-directional animations (frightened ghosts)
#[derive(Component, Resource, Clone)]
pub struct LinearAnimation {
pub tiles: TileSequence,
pub current_frame: usize,
pub time_bank: u16,
pub frame_duration: u16,
pub finished: bool,
}
impl LinearAnimation {
/// Creates a new linear animation with the given tiles and frame duration
pub fn new(tiles: TileSequence, frame_duration: u16) -> Self {
Self {
tiles,
current_frame: 0,
time_bank: 0,
frame_duration,
finished: false,
}
}
}

View File

@@ -0,0 +1,7 @@
mod blinking;
mod directional;
mod linear;
pub use self::blinking::*;
pub use self::directional::*;
pub use self::linear::*;

112
pacman/src/systems/audio.rs Normal file
View File

@@ -0,0 +1,112 @@
//! Audio system for handling sound playback in the Pac-Man game.
//!
//! This module provides an ECS-based audio system that integrates with SDL2_mixer
//! for playing sound effects. The system uses NonSendMut resources to handle SDL2's
//! main-thread requirements while maintaining Bevy ECS compatibility.
use bevy_ecs::{
event::{Event, EventReader},
resource::Resource,
system::{NonSendMut, ResMut},
};
use tracing::{debug, trace};
use crate::{audio::Audio, audio::Sound};
/// Resource for tracking audio state
#[derive(Resource, Debug, Clone, Default)]
pub struct AudioState {
/// Whether audio is currently muted
pub muted: bool,
/// Current sound index for cycling through eat sounds
pub sound_index: usize,
}
/// Events for triggering audio playback
#[derive(Event, Debug, Clone, Copy, PartialEq, Eq)]
pub enum AudioEvent {
/// Play a specific sound effect
PlaySound(Sound),
/// Play the cycling waka sound variant
Waka,
/// Stop all currently playing sounds
StopAll,
/// Pause all sounds
Pause,
/// Resume all sounds
Resume,
}
/// Non-send resource wrapper for SDL2 audio system
///
/// This wrapper is needed because SDL2 audio components are not Send,
/// but Bevy ECS requires Send for regular resources. Using NonSendMut
/// allows us to use SDL2 audio on the main thread while integrating
/// with the ECS system.
pub struct AudioResource(pub Audio);
/// System that processes audio events and plays sounds
pub fn audio_system(mut audio: NonSendMut<AudioResource>, mut state: ResMut<AudioState>, mut events: EventReader<AudioEvent>) {
// Set mute state if it has changed
if audio.0.is_muted() != state.muted {
debug!(muted = state.muted, "Audio mute state changed");
audio.0.set_mute(state.muted);
}
// Process audio events
for event in events.read() {
match event {
AudioEvent::Waka => {
if !audio.0.is_disabled() && !state.muted {
trace!(sound_index = state.sound_index, "Playing eat sound");
audio.0.waka();
// Update the sound index for cycling through sounds
state.sound_index = (state.sound_index + 1) % 4;
// 4 eat sounds available
} else {
debug!(
disabled = audio.0.is_disabled(),
muted = state.muted,
"Skipping eat sound due to audio state"
);
}
}
AudioEvent::PlaySound(sound) => {
if !audio.0.is_disabled() && !state.muted {
trace!(?sound, "Playing sound");
audio.0.play(*sound);
} else {
debug!(
disabled = audio.0.is_disabled(),
muted = state.muted,
"Skipping sound due to audio state"
);
}
}
AudioEvent::StopAll => {
if !audio.0.is_disabled() {
debug!("Stopping all audio");
audio.0.stop_all();
} else {
debug!("Audio disabled, ignoring stop all request");
}
}
AudioEvent::Pause => {
if !audio.0.is_disabled() {
debug!("Pausing all audio");
audio.0.pause_all();
} else {
debug!("Audio disabled, ignoring pause all request");
}
}
AudioEvent::Resume => {
if !audio.0.is_disabled() {
debug!("Resuming all audio");
audio.0.resume_all();
} else {
debug!("Audio disabled, ignoring resume all request");
}
}
}
}
}

View File

@@ -0,0 +1,263 @@
use bevy_ecs::{
component::Component,
entity::Entity,
event::EventWriter,
observer::Trigger,
query::With,
system::{Commands, Query, Res, ResMut},
};
use tracing::{debug, trace, warn};
use crate::audio::Sound;
use crate::{
constants,
systems::{movement::Position, AudioEvent, DyingSequence, FruitSprites, GameStage, Ghost, ScoreResource, SpawnTrigger},
};
use crate::{error::GameError, systems::GhostState};
use crate::{
events::{CollisionTrigger, StageTransition},
systems::PelletCount,
};
use crate::{map::builder::Map, systems::EntityType};
/// A component for defining the collision area of an entity.
#[derive(Component)]
pub struct Collider {
pub size: f32,
}
impl Collider {
/// Checks if this collider collides with another collider at the given distance.
pub fn collides_with(&self, other_size: f32, distance: f32) -> bool {
let collision_distance = (self.size + other_size) / 2.0;
distance < collision_distance
}
}
/// Marker components for collision filtering optimization
#[derive(Component)]
pub struct PacmanCollider;
#[derive(Component)]
pub struct GhostCollider;
#[derive(Component)]
pub struct ItemCollider;
/// Helper function to check collision between two entities with colliders.
pub fn check_collision(
pos1: &Position,
collider1: &Collider,
pos2: &Position,
collider2: &Collider,
map: &Map,
) -> Result<bool, GameError> {
let pixel1 = pos1
.get_pixel_position(&map.graph)
.map_err(|e| GameError::InvalidState(format!("Failed to get pixel position for entity 1: {}", e)))?;
let pixel2 = pos2
.get_pixel_position(&map.graph)
.map_err(|e| GameError::InvalidState(format!("Failed to get pixel position for entity 2: {}", e)))?;
let distance = pixel1.distance(pixel2);
Ok(collider1.collides_with(collider2.size, distance))
}
/// Detects overlapping entities and triggers collision observers immediately.
///
/// Performs distance-based collision detection between Pac-Man and collectible items
/// using each entity's position and collision radius. When entities overlap, triggers
/// collision observers for immediate handling without race conditions.
/// Collision detection accounts for both entities being in motion and supports
/// circular collision boundaries for accurate gameplay feel.
///
/// Also detects collisions between Pac-Man and ghosts for gameplay mechanics like
/// power pellet effects, ghost eating, and player death.
#[allow(clippy::too_many_arguments)]
pub fn collision_system(
map: Res<Map>,
pacman_query: Query<(Entity, &Position, &Collider), With<PacmanCollider>>,
item_query: Query<(Entity, &Position, &Collider), With<ItemCollider>>,
ghost_query: Query<(Entity, &Position, &Collider, &Ghost, &GhostState), With<GhostCollider>>,
mut commands: Commands,
mut errors: EventWriter<GameError>,
) {
// Check PACMAN × ITEM collisions
for (pacman_entity, pacman_pos, pacman_collider) in pacman_query.iter() {
for (item_entity, item_pos, item_collider) in item_query.iter() {
match check_collision(pacman_pos, pacman_collider, item_pos, item_collider, &map) {
Ok(colliding) => {
if colliding {
trace!("Item collision detected");
commands.trigger(CollisionTrigger::ItemCollision { item: item_entity });
}
}
Err(e) => {
errors.write(GameError::InvalidState(format!(
"Collision system failed to check collision between entities {:?} and {:?}: {}",
pacman_entity, item_entity, e
)));
}
}
}
// Check PACMAN × GHOST collisions
for (ghost_entity, ghost_pos, ghost_collider, ghost, ghost_state) in ghost_query.iter() {
match check_collision(pacman_pos, pacman_collider, ghost_pos, ghost_collider, &map) {
Ok(colliding) => {
if !colliding || matches!(*ghost_state, GhostState::Eyes) {
continue;
}
trace!(ghost = ?ghost, "Ghost collision detected");
commands.trigger(CollisionTrigger::GhostCollision {
pacman: pacman_entity,
ghost: ghost_entity,
ghost_type: *ghost,
});
}
Err(e) => {
errors.write(GameError::InvalidState(format!(
"Collision system failed to check collision between entities {:?} and {:?}: {}",
pacman_entity, ghost_entity, e
)));
}
}
}
}
}
/// Observer for handling ghost collisions immediately when they occur
#[allow(clippy::too_many_arguments)]
pub fn ghost_collision_observer(
trigger: Trigger<CollisionTrigger>,
mut stage_events: EventWriter<StageTransition>,
mut score: ResMut<ScoreResource>,
mut game_state: ResMut<GameStage>,
mut ghost_state_query: Query<&mut GhostState>,
mut events: EventWriter<AudioEvent>,
) {
if let CollisionTrigger::GhostCollision {
pacman: _pacman,
ghost,
ghost_type,
} = *trigger
{
// Check if Pac-Man is already dying
if matches!(*game_state, GameStage::PlayerDying(_)) {
return;
}
// Check if the ghost is frightened
if let Ok(mut ghost_state) = ghost_state_query.get_mut(ghost) {
// Check if ghost is in frightened state
if matches!(*ghost_state, GhostState::Frightened { .. }) {
// Pac-Man eats the ghost
// Add score (200 points per ghost eaten)
debug!(ghost = ?ghost_type, score_added = 200, new_score = score.0 + 200, "Pacman ate frightened ghost");
score.0 += 200;
*ghost_state = GhostState::Eyes;
// Enter short pause to show bonus points, hide ghost, then set Eyes after pause
// Request transition via event so stage_system can process it
stage_events.write(StageTransition::GhostEatenPause {
ghost_entity: ghost,
ghost_type,
});
// Play ghost eaten sound
events.write(AudioEvent::PlaySound(Sound::Ghost));
} else if matches!(*ghost_state, GhostState::Normal) {
// Pac-Man dies
warn!(ghost = ?ghost_type, "Pacman hit by normal ghost, player dies");
*game_state = GameStage::PlayerDying(DyingSequence::Frozen { remaining_ticks: 60 });
events.write(AudioEvent::StopAll);
} else {
trace!(ghost_state = ?*ghost_state, "Ghost collision ignored due to state");
}
}
}
}
/// Observer for handling item collisions immediately when they occur
#[allow(clippy::too_many_arguments)]
pub fn item_collision_observer(
trigger: Trigger<CollisionTrigger>,
mut commands: Commands,
mut score: ResMut<ScoreResource>,
mut pellet_count: ResMut<PelletCount>,
item_query: Query<(Entity, &EntityType, &Position), With<ItemCollider>>,
mut ghost_query: Query<&mut GhostState, With<GhostCollider>>,
mut fruit_sprites: ResMut<FruitSprites>,
mut events: EventWriter<AudioEvent>,
) {
if let CollisionTrigger::ItemCollision { item } = *trigger {
// Get the item type and update score
if let Ok((item_ent, entity_type, position)) = item_query.get(item) {
if let Some(score_value) = entity_type.score_value() {
trace!(item_entity = ?item_ent, item_type = ?entity_type, score_value, new_score = score.0 + score_value, "Item collected by player");
score.0 += score_value;
// Remove the collected item
commands.entity(item_ent).despawn();
// Track pellet consumption for fruit spawning
if *entity_type == EntityType::Pellet {
pellet_count.0 += 1;
trace!(pellet_count = pellet_count.0, "Pellet consumed");
// Check if we should spawn a fruit
if pellet_count.0 == 5 || pellet_count.0 == 170 {
debug!(pellet_count = pellet_count.0, "Fruit spawn milestone reached");
commands.trigger(SpawnTrigger::Fruit);
}
}
// Trigger bonus points effect if a fruit is collected
if let EntityType::Fruit(fruit) = *entity_type {
fruit_sprites.0.push(fruit);
commands.trigger(SpawnTrigger::Bonus {
position: *position,
value: entity_type.score_value().unwrap(),
ttl: 60 * 2,
});
}
// Trigger audio if appropriate
if entity_type.is_collectible() {
match *entity_type {
EntityType::Fruit(_) => {
events.write(AudioEvent::PlaySound(Sound::Fruit));
}
EntityType::Pellet | EntityType::PowerPellet => {
events.write(AudioEvent::Waka);
}
_ => {}
}
}
// Make non-eaten ghosts frightened when power pellet is collected
if matches!(*entity_type, EntityType::PowerPellet) {
debug!(
duration_ticks = constants::animation::GHOST_FRIGHTENED_TICKS,
"Power pellet collected, frightening ghosts"
);
for mut ghost_state in ghost_query.iter_mut() {
if matches!(*ghost_state, GhostState::Normal) {
*ghost_state = GhostState::new_frightened(
constants::animation::GHOST_FRIGHTENED_TICKS,
constants::animation::GHOST_FRIGHTENED_FLASH_START_TICKS,
);
}
}
debug!(
frightened_count = ghost_query.iter().count(),
"Ghosts set to frightened state"
);
}
}
}
}
}

View File

@@ -0,0 +1,43 @@
use bevy_ecs::bundle::Bundle;
use crate::systems::{
BufferedDirection, Collider, DirectionalAnimation, EntityType, Ghost, GhostCollider, GhostState, ItemCollider,
LastAnimationState, MovementModifiers, PacmanCollider, PlayerControlled, Position, Renderable, Velocity,
};
#[derive(Bundle)]
pub struct PlayerBundle {
pub player: PlayerControlled,
pub position: Position,
pub velocity: Velocity,
pub buffered_direction: BufferedDirection,
pub sprite: Renderable,
pub directional_animation: DirectionalAnimation,
pub entity_type: EntityType,
pub collider: Collider,
pub movement_modifiers: MovementModifiers,
pub pacman_collider: PacmanCollider,
}
#[derive(Bundle)]
pub struct ItemBundle {
pub position: Position,
pub sprite: Renderable,
pub entity_type: EntityType,
pub collider: Collider,
pub item_collider: ItemCollider,
}
#[derive(Bundle)]
pub struct GhostBundle {
pub ghost: Ghost,
pub position: Position,
pub velocity: Velocity,
pub sprite: Renderable,
pub directional_animation: DirectionalAnimation,
pub entity_type: EntityType,
pub collider: Collider,
pub ghost_collider: GhostCollider,
pub ghost_state: GhostState,
pub last_animation_state: LastAnimationState,
}

View File

@@ -0,0 +1,106 @@
use bevy_ecs::{component::Component, resource::Resource};
use crate::{map::graph::TraversalFlags, systems::FruitType};
/// A tag component denoting the type of entity.
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum EntityType {
Player,
Ghost,
Pellet,
PowerPellet,
Fruit(FruitType),
Effect,
}
impl EntityType {
/// Returns the traversal flags for this entity type.
pub fn traversal_flags(&self) -> TraversalFlags {
match self {
EntityType::Player => TraversalFlags::PACMAN,
EntityType::Ghost => TraversalFlags::GHOST,
_ => TraversalFlags::empty(), // Static entities don't traverse
}
}
pub fn score_value(&self) -> Option<u32> {
match self {
EntityType::Pellet => Some(10),
EntityType::PowerPellet => Some(50),
EntityType::Fruit(fruit_type) => Some(fruit_type.score_value()),
_ => None,
}
}
pub fn is_collectible(&self) -> bool {
matches!(self, EntityType::Pellet | EntityType::PowerPellet | EntityType::Fruit(_))
}
}
#[derive(Resource)]
pub struct GlobalState {
pub exit: bool,
}
#[derive(Resource)]
pub struct ScoreResource(pub u32);
#[derive(Resource)]
pub struct DeltaTime {
/// Floating-point delta time in seconds
pub seconds: f32,
/// Integer tick delta (usually 1, but can be different for testing)
pub ticks: u32,
}
#[allow(dead_code)]
impl DeltaTime {
/// Creates a new DeltaTime from a floating-point delta time in seconds
///
/// While this method exists as a helper, it does not mean that seconds and ticks are interchangeable.
pub fn from_seconds(seconds: f32) -> Self {
Self {
seconds,
ticks: (seconds * 60.0).round() as u32,
}
}
/// Creates a new DeltaTime from an integer tick delta
///
/// While this method exists as a helper, it does not mean that seconds and ticks are interchangeable.
pub fn from_ticks(ticks: u32) -> Self {
Self {
seconds: ticks as f32 / 60.0,
ticks,
}
}
}
/// Movement modifiers that can affect Pac-Man's speed or handling.
#[derive(Component, Debug, Clone, Copy)]
pub struct MovementModifiers {
/// Multiplier applied to base speed (e.g., tunnels)
pub speed_multiplier: f32,
/// True when currently in a tunnel slowdown region
pub tunnel_slowdown_active: bool,
}
impl Default for MovementModifiers {
fn default() -> Self {
Self {
speed_multiplier: 1.0,
tunnel_slowdown_active: false,
}
}
}
/// Tag component for entities that should be frozen during startup
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq)]
pub struct Frozen;
/// Component for HUD life sprite entities.
/// Each life sprite entity has an index indicating its position from left to right (0, 1, 2, etc.).
/// This mostly functions as a tag component for sprites.
#[derive(Component, Debug, Clone, Copy)]
pub struct PlayerLife {
pub index: u32,
}

View File

@@ -0,0 +1,5 @@
pub mod bundles;
pub mod components;
pub use self::bundles::*;
pub use self::components::*;

339
pacman/src/systems/debug.rs Normal file
View File

@@ -0,0 +1,339 @@
//! Debug rendering system
use crate::constants::{self, BOARD_PIXEL_OFFSET};
use crate::map::builder::Map;
use crate::systems::{Collider, CursorPosition, NodeId, Position, SystemTimings};
use crate::texture::ttf::{TtfAtlas, TtfRenderer};
use bevy_ecs::resource::Resource;
use bevy_ecs::system::{Query, Res};
use glam::{IVec2, Vec2};
use sdl2::pixels::Color;
use sdl2::rect::{Point, Rect};
use sdl2::render::{Canvas, Texture};
use sdl2::video::Window;
use smallvec::SmallVec;
use std::cmp::Ordering;
use std::collections::{HashMap, HashSet};
use tracing::warn;
#[derive(Resource, Default, Debug, Copy, Clone)]
pub struct DebugState {
pub enabled: bool,
}
fn f32_to_u8(value: f32) -> u8 {
(value * 255.0) as u8
}
/// Resource to hold the debug texture for persistent rendering
pub struct DebugTextureResource(pub Texture);
/// Resource to hold the TTF text atlas
pub struct TtfAtlasResource(pub TtfAtlas);
/// Resource to hold pre-computed batched line segments
#[derive(Resource, Default, Debug, Clone)]
pub struct BatchedLinesResource {
horizontal_lines: Vec<(i32, i32, i32)>, // (y, x_start, x_end)
vertical_lines: Vec<(i32, i32, i32)>, // (x, y_start, y_end)
}
impl BatchedLinesResource {
/// Computes and caches batched line segments for the map graph
pub fn new(map: &Map, scale: f32) -> Self {
let mut horizontal_segments: HashMap<i32, Vec<(i32, i32)>> = HashMap::new();
let mut vertical_segments: HashMap<i32, Vec<(i32, i32)>> = HashMap::new();
let mut processed_edges: HashSet<(u16, u16)> = HashSet::new();
// Process all edges and group them by axis
for (start_node_id, edge) in map.graph.edges() {
// Acquire a stable key for the edge (from < to)
let edge_key = (start_node_id.min(edge.target), start_node_id.max(edge.target));
// Skip if we've already processed this edge in the reverse direction
if processed_edges.contains(&edge_key) {
continue;
}
processed_edges.insert(edge_key);
let start_pos = map.graph.get_node(start_node_id).unwrap().position;
let end_pos = map.graph.get_node(edge.target).unwrap().position;
let start = transform_position_with_offset(start_pos, scale);
let end = transform_position_with_offset(end_pos, scale);
// Determine if this is a horizontal or vertical line
if (start.y - end.y).abs() < 2 {
// Horizontal line (allowing for slight vertical variance)
let y = start.y;
let x_min = start.x.min(end.x);
let x_max = start.x.max(end.x);
horizontal_segments.entry(y).or_default().push((x_min, x_max));
} else if (start.x - end.x).abs() < 2 {
// Vertical line (allowing for slight horizontal variance)
let x = start.x;
let y_min = start.y.min(end.y);
let y_max = start.y.max(end.y);
vertical_segments.entry(x).or_default().push((y_min, y_max));
}
}
/// Merges overlapping or adjacent segments into continuous lines
fn merge_segments(segments: Vec<(i32, i32)>) -> Vec<(i32, i32)> {
if segments.is_empty() {
return Vec::new();
}
let mut merged = Vec::new();
let mut current_start = segments[0].0;
let mut current_end = segments[0].1;
for &(start, end) in segments.iter().skip(1) {
if start <= current_end + 1 {
// Adjacent or overlapping
current_end = current_end.max(end);
} else {
merged.push((current_start, current_end));
current_start = start;
current_end = end;
}
}
merged.push((current_start, current_end));
merged
}
// Convert to flat vectors for fast iteration during rendering
let horizontal_lines = horizontal_segments
.into_iter()
.flat_map(|(y, mut segments)| {
segments.sort_unstable_by_key(|(start, _)| *start);
let merged = merge_segments(segments);
merged.into_iter().map(move |(x_start, x_end)| (y, x_start, x_end))
})
.collect::<Vec<_>>();
let vertical_lines = vertical_segments
.into_iter()
.flat_map(|(x, mut segments)| {
segments.sort_unstable_by_key(|(start, _)| *start);
let merged = merge_segments(segments);
merged.into_iter().map(move |(y_start, y_end)| (x, y_start, y_end))
})
.collect::<Vec<_>>();
Self {
horizontal_lines,
vertical_lines,
}
}
pub fn render(&self, canvas: &mut Canvas<Window>) {
// Render horizontal lines
for &(y, x_start, x_end) in &self.horizontal_lines {
let points = [Point::new(x_start, y), Point::new(x_end, y)];
let _ = canvas.draw_lines(&points[..]);
}
// Render vertical lines
for &(x, y_start, y_end) in &self.vertical_lines {
let points = [Point::new(x, y_start), Point::new(x, y_end)];
let _ = canvas.draw_lines(&points[..]);
}
}
}
/// Transforms a position from logical canvas coordinates to output canvas coordinates (with board offset)
fn transform_position_with_offset(pos: Vec2, scale: f32) -> IVec2 {
((pos + BOARD_PIXEL_OFFSET.as_vec2()) * scale).as_ivec2()
}
/// Renders timing information in the top-left corner of the screen using the debug text atlas
#[cfg_attr(coverage_nightly, coverage(off))]
fn render_timing_display(
canvas: &mut Canvas<Window>,
timings: &SystemTimings,
current_tick: u64,
text_renderer: &TtfRenderer,
atlas: &mut TtfAtlas,
) {
// Format timing information using the formatting module
let lines = timings.format_timing_display(current_tick);
let line_height = text_renderer.text_height(atlas) as i32 + 2; // Add 2px line spacing
let padding = 10;
// Calculate background dimensions
let max_width = lines
.iter()
.filter(|l| !l.is_empty()) // Don't consider empty lines for width
.map(|line| text_renderer.text_width(atlas, line))
.max()
.unwrap_or(0);
// Only draw background if there is text to display
let total_height = (lines.len() as u32) * line_height as u32;
if max_width > 0 && total_height > 0 {
let bg_padding = 5;
// Draw background
let bg_rect = Rect::new(
padding - bg_padding,
padding - bg_padding,
max_width + (bg_padding * 2) as u32,
total_height + bg_padding as u32,
);
canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
canvas.set_draw_color(Color::RGBA(40, 40, 40, 180));
canvas.fill_rect(bg_rect).unwrap();
}
for (i, line) in lines.iter().enumerate() {
if line.is_empty() {
continue;
}
// Position each line below the previous one
let y_pos = padding + (i as i32 * line_height);
let position = Vec2::new(padding as f32, y_pos as f32);
// Render the line using the debug text renderer
text_renderer
.render_text(canvas, atlas, line, position, Color::RGBA(255, 255, 255, 200))
.unwrap();
}
}
#[allow(clippy::too_many_arguments)]
#[cfg_attr(coverage_nightly, coverage(off))]
pub fn debug_render_system(
canvas: &mut Canvas<Window>,
ttf_atlas: &mut TtfAtlasResource,
batched_lines: &Res<BatchedLinesResource>,
debug_state: &Res<DebugState>,
timings: &Res<SystemTimings>,
timing: &Res<crate::systems::profiling::Timing>,
map: &Res<Map>,
colliders: &Query<(&Collider, &Position)>,
cursor: &Res<CursorPosition>,
) {
if !debug_state.enabled {
return;
}
// Create debug text renderer
let text_renderer = TtfRenderer::new(1.0);
let cursor_world_pos = match &**cursor {
CursorPosition::None => None,
CursorPosition::Some { position, .. } => Some(position - BOARD_PIXEL_OFFSET.as_vec2()),
};
// Clear the debug canvas
canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
canvas.clear();
// Find the closest node to the cursor
let closest_node = if let Some(cursor_world_pos) = cursor_world_pos {
map.graph
.nodes()
.map(|node| node.position.distance(cursor_world_pos))
.enumerate()
.min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Less))
.map(|(id, _)| id)
} else {
None
};
canvas.set_draw_color(Color::GREEN);
{
let rects = colliders
.iter()
.map(|(collider, position)| {
let pos = position.get_pixel_position(&map.graph).unwrap();
// Transform position and size using common methods
let pos = (pos * constants::LARGE_SCALE).as_ivec2();
let size = (collider.size * constants::LARGE_SCALE) as u32;
Rect::from_center(Point::from((pos.x, pos.y)), size, size)
})
.collect::<SmallVec<[Rect; 100]>>();
if rects.len() > rects.capacity() {
warn!(
capacity = rects.capacity(),
count = rects.len(),
"Collider rects capacity exceeded"
);
}
canvas.draw_rects(&rects).unwrap();
}
canvas.set_draw_color(Color {
a: f32_to_u8(0.65),
..Color::RED
});
canvas.set_blend_mode(sdl2::render::BlendMode::Blend);
// Use cached batched line segments
batched_lines.render(canvas);
{
let rects: Vec<_> = map
.graph
.nodes()
.enumerate()
.filter_map(|(id, node)| {
let pos = transform_position_with_offset(node.position, constants::LARGE_SCALE);
let size = (2.0 * constants::LARGE_SCALE) as u32;
let rect = Rect::new(pos.x - (size as i32 / 2), pos.y - (size as i32 / 2), size, size);
// If the node is the one closest to the cursor, draw it immediately
if closest_node == Some(id) {
canvas.set_draw_color(Color::YELLOW);
canvas.fill_rect(rect).unwrap();
return None;
}
Some(rect)
})
.collect();
if rects.len() > rects.capacity() {
warn!(
capacity = rects.capacity(),
count = rects.len(),
"Node rects capacity exceeded"
);
}
// Draw the non-closest nodes all at once in blue
canvas.set_draw_color(Color::BLUE);
canvas.fill_rects(&rects).unwrap();
}
// Render node ID if a node is highlighted
if let Some(closest_node_id) = closest_node {
let node = map.graph.get_node(closest_node_id as NodeId).unwrap();
let pos = transform_position_with_offset(node.position, constants::LARGE_SCALE);
let node_id_text = closest_node_id.to_string();
let text_pos = Vec2::new((pos.x + 10) as f32, (pos.y - 5) as f32);
text_renderer
.render_text(
canvas,
&mut ttf_atlas.0,
&node_id_text,
text_pos,
Color {
a: f32_to_u8(0.9),
..Color::WHITE
},
)
.unwrap();
}
// Render timing information in the top-left corner
// Use previous tick since current tick is incomplete (frame is still running)
let current_tick = timing.get_current_tick();
let previous_tick = current_tick.saturating_sub(1);
render_timing_display(canvas, timings, previous_tick, &text_renderer, &mut ttf_atlas.0);
}

402
pacman/src/systems/ghost.rs Normal file
View File

@@ -0,0 +1,402 @@
use std::collections::HashMap;
use crate::platform;
use crate::systems::{DirectionalAnimation, Frozen, LinearAnimation, Looping};
use crate::{
map::{
builder::Map,
direction::Direction,
graph::{Edge, TraversalFlags},
},
systems::{
components::DeltaTime,
movement::{Position, Velocity},
},
};
use bevy_ecs::component::Component;
use bevy_ecs::resource::Resource;
use tracing::{debug, trace, warn};
use bevy_ecs::query::Without;
use bevy_ecs::system::{Commands, Query, Res};
use rand::seq::IndexedRandom;
use smallvec::SmallVec;
/// Tag component for Pac-Man during his death animation.
/// This is mainly because the Frozen tag would stop both movement and animation, while the Dying tag can signal that the animation should continue despite being frozen.
#[derive(Component, Debug, Clone, Copy)]
pub struct Dying;
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Ghost {
Blinky,
Pinky,
Inky,
Clyde,
}
impl Ghost {
/// Returns the ghost type name for atlas lookups.
pub fn as_str(self) -> &'static str {
match self {
Ghost::Blinky => "blinky",
Ghost::Pinky => "pinky",
Ghost::Inky => "inky",
Ghost::Clyde => "clyde",
}
}
/// Returns the base movement speed for this ghost type.
pub fn base_speed(self) -> f32 {
match self {
Ghost::Blinky => 1.0,
Ghost::Pinky => 0.95,
Ghost::Inky => 0.9,
Ghost::Clyde => 0.85,
}
}
}
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq)]
pub enum GhostState {
/// Normal ghost behavior - chasing Pac-Man
Normal,
/// Frightened state after power pellet - ghost can be eaten
Frightened {
remaining_ticks: u32,
flash: bool,
remaining_flash_ticks: u32,
},
/// Eyes state - ghost has been eaten and is returning to ghost house
Eyes,
}
impl GhostState {
/// Creates a new frightened state with the specified duration
pub fn new_frightened(total_ticks: u32, flash_start_ticks: u32) -> Self {
Self::Frightened {
remaining_ticks: total_ticks,
flash: false,
remaining_flash_ticks: flash_start_ticks, // Time until flashing starts
}
}
/// Ticks the ghost state, returning true if the state changed.
pub fn tick(&mut self) -> bool {
if let GhostState::Frightened {
remaining_ticks,
flash,
remaining_flash_ticks,
} = self
{
// Transition out of frightened state
if *remaining_ticks == 0 {
*self = GhostState::Normal;
return true;
}
*remaining_ticks -= 1;
if *remaining_flash_ticks > 0 {
*remaining_flash_ticks = remaining_flash_ticks.saturating_sub(1);
if *remaining_flash_ticks == 0 {
*flash = true;
true
} else {
false
}
} else {
false
}
} else {
false
}
}
/// Returns the appropriate animation state for this ghost state
pub fn animation_state(&self) -> GhostAnimation {
match self {
GhostState::Normal => GhostAnimation::Normal,
GhostState::Eyes => GhostAnimation::Eyes,
GhostState::Frightened { flash: false, .. } => GhostAnimation::Frightened { flash: false },
GhostState::Frightened { flash: true, .. } => GhostAnimation::Frightened { flash: true },
}
}
}
/// Enumeration of different ghost animation states.
/// Note that this is used in micromap which has a fixed size based on the number of variants,
/// so extending this should be done with caution, and will require updating the micromap's capacity.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GhostAnimation {
/// Normal ghost appearance with directional movement animations
Normal,
/// Blue ghost appearance when vulnerable (power pellet active)
Frightened { flash: bool },
/// Eyes-only animation when ghost has been consumed by Pac-Man (Eaten state)
Eyes,
}
/// Global resource containing pre-loaded animation sets for all ghost types.
///
/// This resource is initialized once during game startup and provides O(1) access
/// to animation sets for each ghost type. The animation system uses this resource
/// to efficiently switch between different ghost states without runtime asset loading.
///
/// The HashMap is keyed by `Ghost` enum variants (Blinky, Pinky, Inky, Clyde) and
/// contains the normal directional animation for each ghost type.
#[derive(Resource)]
pub struct GhostAnimations {
pub normal: HashMap<Ghost, DirectionalAnimation>,
pub eyes: DirectionalAnimation,
pub frightened: LinearAnimation,
pub frightened_flashing: LinearAnimation,
}
impl GhostAnimations {
/// Creates a new GhostAnimations resource with the provided data.
pub fn new(
normal: HashMap<Ghost, DirectionalAnimation>,
eyes: DirectionalAnimation,
frightened: LinearAnimation,
frightened_flashing: LinearAnimation,
) -> Self {
Self {
normal,
eyes,
frightened,
frightened_flashing,
}
}
/// Gets the normal directional animation for the specified ghost type.
pub fn get_normal(&self, ghost_type: &Ghost) -> Option<&DirectionalAnimation> {
self.normal.get(ghost_type)
}
/// Gets the eyes animation (shared across all ghosts).
pub fn eyes(&self) -> &DirectionalAnimation {
&self.eyes
}
/// Gets the frightened animations (shared across all ghosts).
pub fn frightened(&self, flash: bool) -> &LinearAnimation {
if flash {
&self.frightened_flashing
} else {
&self.frightened
}
}
}
/// Autonomous ghost AI system implementing randomized movement with backtracking avoidance.
pub fn ghost_movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut ghosts: Query<(&Ghost, &mut Velocity, &mut Position), Without<Frozen>>,
) {
for (_ghost, mut velocity, mut position) in ghosts.iter_mut() {
let mut distance = velocity.speed * 60.0 * delta_time.seconds;
loop {
match *position {
Position::Stopped { node: current_node } => {
let intersection = &map.graph.adjacency_list[current_node as usize];
let opposite = velocity.direction.opposite();
let mut non_opposite_options: SmallVec<[Edge; 3]> = SmallVec::new();
// Collect all available directions that ghosts can traverse
for edge in Direction::DIRECTIONS.iter().flat_map(|d| intersection.get(*d)) {
if edge.traversal_flags.contains(TraversalFlags::GHOST) && edge.direction != opposite {
non_opposite_options.push(edge);
}
}
let new_edge: Edge = if non_opposite_options.is_empty() {
if let Some(edge) = intersection.get(opposite) {
trace!(node = current_node, ghost = ?_ghost, direction = ?opposite, "Ghost forced to reverse direction");
edge
} else {
warn!(node = current_node, ghost = ?_ghost, "Ghost stuck with no available directions");
break;
}
} else {
*non_opposite_options.choose(&mut platform::rng()).unwrap()
};
velocity.direction = new_edge.direction;
*position = Position::Moving {
from: current_node,
to: new_edge.target,
remaining_distance: new_edge.distance,
};
}
Position::Moving { .. } => {
if let Some(overflow) = position.tick(distance) {
distance = overflow;
} else {
break;
}
}
}
}
}
}
/// System that handles eaten ghost behavior and respawn logic.
///
/// When a ghost is eaten by Pac-Man, it enters an "eaten" state where:
/// 1. It displays eyes-only animation
/// 2. It moves directly back to the ghost house at increased speed
/// 3. Once it reaches the ghost house center, it respawns as a normal ghost
///
/// This system runs after the main movement system to override eaten ghost movement.
pub fn eaten_ghost_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut eaten_ghosts: Query<(&Ghost, &mut Position, &mut Velocity, &mut GhostState), Without<Frozen>>,
) {
for (ghost_type, mut position, mut velocity, mut ghost_state) in eaten_ghosts.iter_mut() {
// Only process ghosts that are in Eyes state
if !matches!(*ghost_state, GhostState::Eyes) {
continue;
}
// Set higher speed for eaten ghosts returning to ghost house
let original_speed = velocity.speed;
velocity.speed = ghost_type.base_speed() * 2.0; // Move twice as fast when eaten
// Calculate direction towards ghost house center (using Clyde's start position)
let ghost_house_center = map.start_positions.clyde;
match *position {
Position::Stopped { node: current_node } => {
// Find path to ghost house center and start moving
if let Some(direction) = find_direction_to_target(&map, current_node, ghost_house_center) {
velocity.direction = direction;
*position = Position::Moving {
from: current_node,
to: map.graph.adjacency_list[current_node as usize].get(direction).unwrap().target,
remaining_distance: map.graph.adjacency_list[current_node as usize]
.get(direction)
.unwrap()
.distance,
};
}
}
Position::Moving { to, .. } => {
let distance = velocity.speed * 60.0 * delta_time.seconds;
if let Some(_overflow) = position.tick(distance) {
// Reached target node, check if we're at ghost house center
if to == ghost_house_center {
// Respawn the ghost - set state back to normal
debug!(ghost = ?ghost_type, "Eaten ghost reached ghost house, respawning as normal");
*ghost_state = GhostState::Normal;
// Reset to stopped at ghost house center
*position = Position::Stopped {
node: ghost_house_center,
};
} else {
// Continue pathfinding to ghost house
if let Some(next_direction) = find_direction_to_target(&map, to, ghost_house_center) {
velocity.direction = next_direction;
*position = Position::Moving {
from: to,
to: map.graph.adjacency_list[to as usize].get(next_direction).unwrap().target,
remaining_distance: map.graph.adjacency_list[to as usize].get(next_direction).unwrap().distance,
};
}
}
}
}
}
// Restore original speed
velocity.speed = original_speed;
}
}
/// Helper function to find the direction from a node towards a target node.
/// Uses simple greedy pathfinding - prefers straight lines when possible.
fn find_direction_to_target(
map: &Map,
from_node: crate::systems::movement::NodeId,
target_node: crate::systems::movement::NodeId,
) -> Option<Direction> {
let from_pos = map.graph.get_node(from_node).unwrap().position;
let target_pos = map.graph.get_node(target_node).unwrap().position;
let dx = target_pos.x as i32 - from_pos.x as i32;
let dy = target_pos.y as i32 - from_pos.y as i32;
// Prefer horizontal movement first, then vertical
let preferred_dirs = if dx.abs() > dy.abs() {
if dx > 0 {
[Direction::Right, Direction::Up, Direction::Down, Direction::Left]
} else {
[Direction::Left, Direction::Up, Direction::Down, Direction::Right]
}
} else if dy > 0 {
[Direction::Down, Direction::Left, Direction::Right, Direction::Up]
} else {
[Direction::Up, Direction::Left, Direction::Right, Direction::Down]
};
// Return first available direction towards target
for direction in preferred_dirs {
if let Some(edge) = map.graph.adjacency_list[from_node as usize].get(direction) {
if edge.traversal_flags.contains(TraversalFlags::GHOST) {
return Some(direction);
}
}
}
None
}
/// Component to track the last animation state for efficient change detection
#[derive(Component, Debug, Clone, Copy, PartialEq)]
pub struct LastAnimationState(pub GhostAnimation);
/// Unified system that manages ghost state transitions and animations with component swapping
pub fn ghost_state_system(
mut commands: Commands,
animations: Res<GhostAnimations>,
mut ghosts: Query<(bevy_ecs::entity::Entity, &Ghost, &mut GhostState, &mut LastAnimationState)>,
) {
for (entity, ghost_type, mut ghost_state, mut last_animation_state) in ghosts.iter_mut() {
// Tick the ghost state to handle internal transitions (like flashing)
let _ = ghost_state.tick();
// Only update animation if the animation state actually changed
let current_animation_state = ghost_state.animation_state();
if last_animation_state.0 != current_animation_state {
trace!(ghost = ?ghost_type, old_state = ?last_animation_state.0, new_state = ?current_animation_state, "Ghost animation state changed");
match current_animation_state {
GhostAnimation::Frightened { flash } => {
// Remove DirectionalAnimation, add LinearAnimation with Looping component
commands
.entity(entity)
.remove::<DirectionalAnimation>()
.insert(animations.frightened(flash).clone())
.insert(Looping);
}
GhostAnimation::Normal => {
// Remove LinearAnimation and Looping, add DirectionalAnimation
commands
.entity(entity)
.remove::<(LinearAnimation, Looping)>()
.insert(animations.get_normal(ghost_type).unwrap().clone());
}
GhostAnimation::Eyes => {
// Remove LinearAnimation and Looping, add DirectionalAnimation (eyes animation)
trace!(ghost = ?ghost_type, "Switching to eyes animation for eaten ghost");
commands
.entity(entity)
.remove::<(LinearAnimation, Looping)>()
.insert(animations.eyes().clone());
}
}
last_animation_state.0 = current_animation_state;
}
}
}

View File

@@ -0,0 +1,79 @@
use crate::systems::item::FruitType;
use crate::texture::sprites::GameSprite;
use bevy_ecs::component::Component;
use bevy_ecs::resource::Resource;
#[derive(Component)]
pub struct FruitInHud {
pub index: u32,
}
#[derive(Resource, Default)]
pub struct FruitSprites(pub Vec<FruitType>);
use crate::constants::{BOARD_BOTTOM_PIXEL_OFFSET, CANVAS_SIZE, CELL_SIZE};
use crate::error::GameError;
use crate::systems::{PixelPosition, Renderable};
use crate::texture::sprite::SpriteAtlas;
use bevy_ecs::entity::Entity;
use bevy_ecs::event::EventWriter;
use bevy_ecs::system::{Commands, NonSendMut, Query, Res};
use glam::Vec2;
/// Calculates the pixel position for a fruit sprite based on its index
fn calculate_fruit_sprite_position(index: u32) -> Vec2 {
let start_x = CANVAS_SIZE.x - CELL_SIZE * 2; // 2 cells from right
let start_y = CANVAS_SIZE.y - BOARD_BOTTOM_PIXEL_OFFSET.y + (CELL_SIZE / 2) + 1; // In bottom area
let sprite_spacing = CELL_SIZE + CELL_SIZE / 2; // 1.5 cells between sprites
let x = start_x - ((index as f32) * (sprite_spacing as f32 * 1.5)).round() as u32;
let y = start_y - (1 + CELL_SIZE / 2);
Vec2::new((x - CELL_SIZE) as f32, (y + CELL_SIZE) as f32)
}
/// System that manages fruit sprite entities in the HUD.
/// Spawns and despawns fruit sprite entities based on changes to FruitSprites resource.
/// Displays up to 6 fruits, sorted by value.
pub fn fruit_sprite_system(
mut commands: Commands,
atlas: NonSendMut<SpriteAtlas>,
current_fruit_sprites: Query<(Entity, &FruitInHud)>,
fruit_sprites: Res<FruitSprites>,
mut errors: EventWriter<GameError>,
) {
// We only want to display the greatest 6 fruits
let fruits_to_display: Vec<_> = fruit_sprites.0.iter().rev().take(6).collect();
let mut current_sprites: Vec<_> = current_fruit_sprites.iter().collect();
current_sprites.sort_by_key(|(_, fruit)| fruit.index);
// Despawn all current sprites. We will respawn them.
// This is simpler than trying to match them up.
for (entity, _) in &current_sprites {
commands.entity(*entity).despawn();
}
for (i, fruit_type) in fruits_to_display.iter().enumerate() {
let fruit_sprite = match atlas.get_tile(&GameSprite::Fruit(**fruit_type).to_path()) {
Ok(sprite) => sprite,
Err(e) => {
errors.write(e.into());
continue;
}
};
let position = calculate_fruit_sprite_position(i as u32);
commands.spawn((
FruitInHud { index: i as u32 },
Renderable {
sprite: fruit_sprite,
layer: 255, // High layer to render on top
},
PixelPosition {
pixel_position: position,
},
));
}
}

View File

@@ -0,0 +1,89 @@
use std::cmp::Ordering;
use crate::constants::{BOARD_BOTTOM_PIXEL_OFFSET, CANVAS_SIZE, CELL_SIZE};
use crate::error::GameError;
use crate::map::direction::Direction;
use crate::systems::{PixelPosition, PlayerLife, PlayerLives, Renderable};
use crate::texture::sprite::SpriteAtlas;
use crate::texture::sprites::{GameSprite, PacmanSprite};
use bevy_ecs::entity::Entity;
use bevy_ecs::event::EventWriter;
use bevy_ecs::system::{Commands, NonSendMut, Query, Res};
use glam::Vec2;
/// Calculates the pixel position for a life sprite based on its index
fn calculate_life_sprite_position(index: u32) -> Vec2 {
let start_x = CELL_SIZE * 2; // 2 cells from left
let start_y = CANVAS_SIZE.y - BOARD_BOTTOM_PIXEL_OFFSET.y + (CELL_SIZE / 2) + 1; // In bottom area
let sprite_spacing = CELL_SIZE + CELL_SIZE / 2; // 1.5 cells between sprites
let x = start_x + ((index as f32) * (sprite_spacing as f32 * 1.5)).round() as u32;
let y = start_y - CELL_SIZE / 2;
Vec2::new((x + CELL_SIZE) as f32, (y + CELL_SIZE) as f32)
}
/// System that manages player life sprite entities.
/// Spawns and despawns life sprite entities based on changes to PlayerLives resource.
/// Each life sprite is positioned based on its index (0, 1, 2, etc. from left to right).
pub fn player_life_sprite_system(
mut commands: Commands,
atlas: NonSendMut<SpriteAtlas>,
current_life_sprites: Query<(Entity, &PlayerLife)>,
player_lives: Res<PlayerLives>,
mut errors: EventWriter<GameError>,
) {
let displayed_lives = player_lives.0.saturating_sub(1);
// Get current life sprite entities, sorted by index
let mut current_sprites: Vec<_> = current_life_sprites.iter().collect();
current_sprites.sort_by_key(|(_, life)| life.index);
let current_count = current_sprites.len() as u8;
// Calculate the difference
let diff = (displayed_lives as i8) - (current_count as i8);
match diff.cmp(&0) {
// Ignore when the number of lives displayed is correct
Ordering::Equal => {}
// Spawn new life sprites
Ordering::Greater => {
let life_sprite = match atlas.get_tile(&GameSprite::Pacman(PacmanSprite::Moving(Direction::Left, 1)).to_path()) {
Ok(sprite) => sprite,
Err(e) => {
errors.write(e.into());
return;
}
};
for i in 0..diff {
let position = calculate_life_sprite_position(i as u32);
commands.spawn((
PlayerLife { index: i as u32 },
Renderable {
sprite: life_sprite,
layer: 255, // High layer to render on top
},
PixelPosition {
pixel_position: position,
},
));
}
}
// Remove excess life sprites (highest indices first)
Ordering::Less => {
let to_remove = diff.unsigned_abs();
let sprites_to_remove: Vec<_> = current_sprites
.iter()
.rev() // Start from highest index
.take(to_remove as usize)
.map(|(entity, _)| *entity)
.collect();
for entity in sprites_to_remove {
commands.entity(entity).despawn();
}
}
}
}

View File

@@ -0,0 +1,9 @@
pub mod fruits;
pub mod lives;
pub mod score;
pub mod touch;
pub use self::fruits::*;
pub use self::lives::*;
pub use self::score::*;
pub use self::touch::*;

View File

@@ -0,0 +1,86 @@
use crate::constants;
use crate::error::{GameError, TextureError};
use crate::systems::{BackbufferResource, GameStage, ScoreResource, StartupSequence};
use crate::texture::sprite::SpriteAtlas;
use crate::texture::text::TextTexture;
use bevy_ecs::event::EventWriter;
use bevy_ecs::system::{NonSendMut, Res};
use sdl2::pixels::Color;
use sdl2::render::Canvas;
use sdl2::video::Window;
/// Renders the HUD (score, lives, etc.) on top of the game.
#[allow(clippy::too_many_arguments)]
pub fn hud_render_system(
mut backbuffer: NonSendMut<BackbufferResource>,
mut canvas: NonSendMut<&mut Canvas<Window>>,
mut atlas: NonSendMut<SpriteAtlas>,
score: Res<ScoreResource>,
stage: Res<GameStage>,
mut errors: EventWriter<GameError>,
) {
let _ = canvas.with_texture_canvas(&mut backbuffer.0, |canvas| {
let mut text_renderer = TextTexture::new(1.0);
// Render lives and high score text in white
let lives_text = "1UP HIGH SCORE ";
let lives_position = glam::UVec2::new(4 + 8 * 3, 2); // x_offset + lives_offset * 8, y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, lives_text, lives_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render lives text: {}", e)).into());
}
// Render score text
let score_text = format!("{:02}", score.0);
let score_offset = 7 - (score_text.len() as i32);
let score_position = glam::UVec2::new(4 + 8 * score_offset as u32, 10); // x_offset + score_offset * 8, 8 + y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, &score_text, score_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render score text: {}", e)).into());
}
// Render high score text
let high_score_text = format!("{:02}", score.0);
let high_score_offset = 17 - (high_score_text.len() as i32);
let high_score_position = glam::UVec2::new(4 + 8 * high_score_offset as u32, 10); // x_offset + score_offset * 8, 8 + y_offset
if let Err(e) = text_renderer.render(canvas, &mut atlas, &high_score_text, high_score_position) {
errors.write(TextureError::RenderFailed(format!("Failed to render high score text: {}", e)).into());
}
// Render GAME OVER text
if matches!(*stage, GameStage::GameOver) {
let game_over_text = "GAME OVER";
let game_over_width = text_renderer.text_width(game_over_text);
let game_over_position = glam::UVec2::new((constants::CANVAS_SIZE.x - game_over_width) / 2, 160);
if let Err(e) = text_renderer.render_with_color(canvas, &mut atlas, game_over_text, game_over_position, Color::RED) {
errors.write(TextureError::RenderFailed(format!("Failed to render GAME OVER text: {}", e)).into());
}
}
// Render text based on StartupSequence stage
if matches!(
*stage,
GameStage::Starting(StartupSequence::TextOnly { .. })
| GameStage::Starting(StartupSequence::CharactersVisible { .. })
) {
let ready_text = "READY!";
let ready_width = text_renderer.text_width(ready_text);
let ready_position = glam::UVec2::new((constants::CANVAS_SIZE.x - ready_width) / 2, 160);
if let Err(e) = text_renderer.render_with_color(canvas, &mut atlas, ready_text, ready_position, Color::YELLOW) {
errors.write(TextureError::RenderFailed(format!("Failed to render READY text: {}", e)).into());
}
if matches!(*stage, GameStage::Starting(StartupSequence::TextOnly { .. })) {
let player_one_text = "PLAYER ONE";
let player_one_width = text_renderer.text_width(player_one_text);
let player_one_position = glam::UVec2::new((constants::CANVAS_SIZE.x - player_one_width) / 2, 113);
if let Err(e) =
text_renderer.render_with_color(canvas, &mut atlas, player_one_text, player_one_position, Color::CYAN)
{
errors.write(TextureError::RenderFailed(format!("Failed to render PLAYER ONE text: {}", e)).into());
}
}
}
});
}

View File

@@ -0,0 +1,81 @@
use crate::error::{GameError, TextureError};
use crate::systems::{BackbufferResource, TouchState};
use bevy_ecs::event::EventWriter;
use bevy_ecs::system::{NonSendMut, Res};
use sdl2::pixels::Color;
use sdl2::rect::Point;
use sdl2::render::{BlendMode, Canvas};
use sdl2::video::Window;
/// Renders touch UI overlay for mobile/testing.
pub fn touch_ui_render_system(
mut backbuffer: NonSendMut<BackbufferResource>,
mut canvas: NonSendMut<&mut Canvas<Window>>,
touch_state: Res<TouchState>,
mut errors: EventWriter<GameError>,
) {
if let Some(ref touch_data) = touch_state.active_touch {
let _ = canvas.with_texture_canvas(&mut backbuffer.0, |canvas| {
// Set blend mode for transparency
canvas.set_blend_mode(BlendMode::Blend);
// Draw semi-transparent circle at touch start position
canvas.set_draw_color(Color::RGBA(255, 255, 255, 100));
let center = Point::new(touch_data.start_pos.x as i32, touch_data.start_pos.y as i32);
// Draw a simple circle by drawing filled rectangles (basic approach)
let radius = 30;
for dy in -radius..=radius {
for dx in -radius..=radius {
if dx * dx + dy * dy <= radius * radius {
let point = Point::new(center.x + dx, center.y + dy);
if let Err(e) = canvas.draw_point(point) {
errors.write(TextureError::RenderFailed(format!("Touch UI render error: {}", e)).into());
return;
}
}
}
}
// Draw direction indicator if we have a direction
if let Some(direction) = touch_data.current_direction {
canvas.set_draw_color(Color::RGBA(0, 255, 0, 150));
// Draw arrow indicating direction
let arrow_length = 40;
let (dx, dy) = match direction {
crate::map::direction::Direction::Up => (0, -arrow_length),
crate::map::direction::Direction::Down => (0, arrow_length),
crate::map::direction::Direction::Left => (-arrow_length, 0),
crate::map::direction::Direction::Right => (arrow_length, 0),
};
let end_point = Point::new(center.x + dx, center.y + dy);
if let Err(e) = canvas.draw_line(center, end_point) {
errors.write(TextureError::RenderFailed(format!("Touch arrow render error: {}", e)).into());
}
// Draw arrowhead (simple approach)
let arrow_size = 8;
match direction {
crate::map::direction::Direction::Up => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y + arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y + arrow_size));
}
crate::map::direction::Direction::Down => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y - arrow_size));
}
crate::map::direction::Direction::Left => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x + arrow_size, end_point.y + arrow_size));
}
crate::map::direction::Direction::Right => {
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y - arrow_size));
let _ = canvas.draw_line(end_point, Point::new(end_point.x - arrow_size, end_point.y + arrow_size));
}
}
}
});
}
}

341
pacman/src/systems/input.rs Normal file
View File

@@ -0,0 +1,341 @@
use std::collections::{HashMap, HashSet};
use bevy_ecs::{
event::EventWriter,
resource::Resource,
system::{NonSendMut, Res, ResMut},
};
use glam::Vec2;
use sdl2::{
event::{Event, WindowEvent},
keyboard::Keycode,
EventPump,
};
use smallvec::{smallvec, SmallVec};
use crate::systems::DeltaTime;
use crate::{
events::{GameCommand, GameEvent},
map::direction::Direction,
};
// Touch input constants
pub const TOUCH_DIRECTION_THRESHOLD: f32 = 10.0;
pub const TOUCH_EASING_DISTANCE_THRESHOLD: f32 = 1.0;
pub const MAX_TOUCH_MOVEMENT_SPEED: f32 = 100.0;
pub const TOUCH_EASING_FACTOR: f32 = 1.5;
#[derive(Resource, Default, Debug, Copy, Clone)]
pub enum CursorPosition {
#[default]
None,
Some {
position: Vec2,
remaining_time: f32,
},
}
#[derive(Resource, Default, Debug, Clone)]
pub struct TouchState {
pub active_touch: Option<TouchData>,
}
#[derive(Debug, Clone)]
pub struct TouchData {
pub finger_id: i64,
pub start_pos: Vec2,
pub current_pos: Vec2,
pub current_direction: Option<Direction>,
}
impl TouchData {
pub fn new(finger_id: i64, start_pos: Vec2) -> Self {
Self {
finger_id,
start_pos,
current_pos: start_pos,
current_direction: None,
}
}
}
#[derive(Resource, Debug, Clone)]
pub struct Bindings {
key_bindings: HashMap<Keycode, GameCommand>,
movement_keys: HashSet<Keycode>,
pressed_movement_keys: Vec<Keycode>,
}
impl Default for Bindings {
fn default() -> Self {
let mut key_bindings = HashMap::new();
// Player movement
key_bindings.insert(Keycode::Up, GameCommand::MovePlayer(Direction::Up));
key_bindings.insert(Keycode::W, GameCommand::MovePlayer(Direction::Up));
key_bindings.insert(Keycode::Down, GameCommand::MovePlayer(Direction::Down));
key_bindings.insert(Keycode::S, GameCommand::MovePlayer(Direction::Down));
key_bindings.insert(Keycode::Left, GameCommand::MovePlayer(Direction::Left));
key_bindings.insert(Keycode::A, GameCommand::MovePlayer(Direction::Left));
key_bindings.insert(Keycode::Right, GameCommand::MovePlayer(Direction::Right));
key_bindings.insert(Keycode::D, GameCommand::MovePlayer(Direction::Right));
// Game actions
key_bindings.insert(Keycode::P, GameCommand::TogglePause);
key_bindings.insert(Keycode::Space, GameCommand::ToggleDebug);
key_bindings.insert(Keycode::M, GameCommand::MuteAudio);
key_bindings.insert(Keycode::R, GameCommand::ResetLevel);
key_bindings.insert(Keycode::T, GameCommand::SingleTick);
#[cfg(not(target_os = "emscripten"))]
{
key_bindings.insert(Keycode::Escape, GameCommand::Exit);
key_bindings.insert(Keycode::Q, GameCommand::Exit);
// Desktop-only fullscreen toggle
key_bindings.insert(Keycode::F, GameCommand::ToggleFullscreen);
}
let movement_keys = HashSet::from([
Keycode::W,
Keycode::A,
Keycode::S,
Keycode::D,
Keycode::Up,
Keycode::Down,
Keycode::Left,
Keycode::Right,
]);
Self {
key_bindings,
movement_keys,
pressed_movement_keys: Vec::new(),
}
}
}
/// A simplified input event used for deterministic testing and logic reuse
/// without depending on SDL's event pump.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum SimpleKeyEvent {
KeyDown(Keycode),
KeyUp(Keycode),
}
/// Processes a frame's worth of simplified key events and returns the resulting
/// `GameEvent`s that would be emitted by the input system for that frame.
///
/// This mirrors the behavior of `input_system` for keyboard-related logic:
/// - KeyDown emits the bound command immediately (movement or otherwise)
/// - Tracks pressed movement keys in order to continue movement on subsequent frames
/// - KeyUp removes movement keys; if another movement key remains, it resumes
pub fn process_simple_key_events(bindings: &mut Bindings, frame_events: &[SimpleKeyEvent]) -> Vec<GameEvent> {
let mut emitted_events = Vec::new();
let mut movement_key_pressed = false;
for event in frame_events {
match *event {
SimpleKeyEvent::KeyDown(key) => {
if let Some(command) = bindings.key_bindings.get(&key).copied() {
emitted_events.push(GameEvent::Command(command));
}
if bindings.movement_keys.contains(&key) {
movement_key_pressed = true;
if !bindings.pressed_movement_keys.contains(&key) {
bindings.pressed_movement_keys.push(key);
}
}
}
SimpleKeyEvent::KeyUp(key) => {
if bindings.movement_keys.contains(&key) {
bindings.pressed_movement_keys.retain(|&k| k != key);
}
}
}
}
if !movement_key_pressed {
if let Some(&last_movement_key) = bindings.pressed_movement_keys.last() {
if let Some(command) = bindings.key_bindings.get(&last_movement_key).copied() {
emitted_events.push(GameEvent::Command(command));
}
}
}
emitted_events
}
/// Calculates the primary direction from a 2D vector delta
pub fn calculate_direction_from_delta(delta: Vec2) -> Direction {
if delta.x.abs() > delta.y.abs() {
if delta.x > 0.0 {
Direction::Right
} else {
Direction::Left
}
} else if delta.y > 0.0 {
Direction::Down
} else {
Direction::Up
}
}
/// Updates the touch reference position with easing
///
/// This slowly moves the start_pos towards the current_pos, with the speed
/// decreasing as the distance gets smaller. The maximum movement speed is capped.
/// Returns the delta vector and its length for reuse by the caller.
pub fn update_touch_reference_position(touch_data: &mut TouchData, delta_time: f32) -> (Vec2, f32) {
// Calculate the vector from start to current position
let delta = touch_data.current_pos - touch_data.start_pos;
let distance = delta.length();
// If there's no significant distance, nothing to do
if distance < TOUCH_EASING_DISTANCE_THRESHOLD {
return (delta, distance);
}
// Calculate speed based on distance (slower as it gets closer)
// The easing function creates a curve where movement slows down as it approaches the target
let speed = (distance / TOUCH_EASING_FACTOR).min(MAX_TOUCH_MOVEMENT_SPEED);
// Calculate movement distance for this frame
let movement_amount = speed * delta_time;
// If the movement would overshoot, just set to target
if movement_amount >= distance {
touch_data.start_pos = touch_data.current_pos;
} else {
// Use direct vector scaling instead of normalization
let scale_factor = movement_amount / distance;
touch_data.start_pos += delta * scale_factor;
}
(delta, distance)
}
pub fn input_system(
delta_time: Res<DeltaTime>,
mut bindings: ResMut<Bindings>,
mut writer: EventWriter<GameEvent>,
mut pump: NonSendMut<EventPump>,
mut cursor: ResMut<CursorPosition>,
mut touch_state: ResMut<TouchState>,
) {
let mut cursor_seen = false;
// Collect all events for this frame.
let frame_events: SmallVec<[Event; 3]> = pump.poll_iter().collect();
// Handle non-keyboard events inline and build a simplified keyboard event stream.
let mut simple_key_events: SmallVec<[SimpleKeyEvent; 3]> = smallvec![];
for event in &frame_events {
match *event {
Event::Quit { .. } => {
writer.write(GameEvent::Command(GameCommand::Exit));
}
Event::MouseMotion { x, y, .. } => {
*cursor = CursorPosition::Some {
position: Vec2::new(x as f32, y as f32),
remaining_time: 0.20,
};
cursor_seen = true;
// Handle mouse motion as touch motion for desktop testing
if let Some(ref mut touch_data) = touch_state.active_touch {
touch_data.current_pos = Vec2::new(x as f32, y as f32);
}
}
// Handle mouse events as touch for desktop testing
Event::MouseButtonDown { x, y, .. } => {
let pos = Vec2::new(x as f32, y as f32);
touch_state.active_touch = Some(TouchData::new(0, pos)); // Use ID 0 for mouse
}
Event::MouseButtonUp { .. } => {
touch_state.active_touch = None;
}
// Handle actual touch events for mobile
Event::FingerDown { finger_id, x, y, .. } => {
// Convert normalized coordinates (0.0-1.0) to screen coordinates
let screen_x = x * crate::constants::CANVAS_SIZE.x as f32;
let screen_y = y * crate::constants::CANVAS_SIZE.y as f32;
let pos = Vec2::new(screen_x, screen_y);
touch_state.active_touch = Some(TouchData::new(finger_id, pos));
}
Event::FingerMotion { finger_id, x, y, .. } => {
if let Some(ref mut touch_data) = touch_state.active_touch {
if touch_data.finger_id == finger_id {
let screen_x = x * crate::constants::CANVAS_SIZE.x as f32;
let screen_y = y * crate::constants::CANVAS_SIZE.y as f32;
touch_data.current_pos = Vec2::new(screen_x, screen_y);
}
}
}
Event::FingerUp { finger_id, .. } => {
if let Some(ref touch_data) = touch_state.active_touch {
if touch_data.finger_id == finger_id {
touch_state.active_touch = None;
}
}
}
Event::KeyDown { keycode, repeat, .. } => {
if let Some(key) = keycode {
if repeat {
continue;
}
simple_key_events.push(SimpleKeyEvent::KeyDown(key));
}
}
Event::KeyUp { keycode, repeat, .. } => {
if let Some(key) = keycode {
if repeat {
continue;
}
simple_key_events.push(SimpleKeyEvent::KeyUp(key));
}
}
Event::Window { win_event, .. } => {
if let WindowEvent::Resized(w, h) = win_event {
tracing::info!(width = w, height = h, event = ?win_event, "Window Resized");
}
}
// Despite disabling this event, it's still received, so we ignore it explicitly.
Event::RenderTargetsReset { .. } => {}
_ => {
tracing::warn!(event = ?event, "Unhandled Event");
}
}
}
// Delegate keyboard handling to shared logic used by tests and production.
let emitted = process_simple_key_events(&mut bindings, &simple_key_events);
for event in emitted {
writer.write(event);
}
// Update touch reference position with easing
if let Some(ref mut touch_data) = touch_state.active_touch {
// Apply easing to the reference position and get the delta for direction calculation
let (delta, distance) = update_touch_reference_position(touch_data, delta_time.seconds);
// Check for direction based on updated reference position
if distance >= TOUCH_DIRECTION_THRESHOLD {
let direction = calculate_direction_from_delta(delta);
// Only send command if direction has changed
if touch_data.current_direction != Some(direction) {
touch_data.current_direction = Some(direction);
writer.write(GameEvent::Command(GameCommand::MovePlayer(direction)));
}
} else if touch_data.current_direction.is_some() {
touch_data.current_direction = None;
}
}
if let (false, CursorPosition::Some { remaining_time, .. }) = (cursor_seen, &mut *cursor) {
*remaining_time -= delta_time.seconds;
if *remaining_time <= 0.0 {
*cursor = CursorPosition::None;
}
}
}

141
pacman/src/systems/item.rs Normal file
View File

@@ -0,0 +1,141 @@
use bevy_ecs::{
event::Event,
observer::Trigger,
system::{Commands, NonSendMut, Res},
};
use rand::Rng;
use strum_macros::IntoStaticStr;
use tracing::debug;
use crate::{
constants,
map::builder::Map,
platform::rng,
systems::{common::bundles::ItemBundle, Collider, Position, Renderable, TimeToLive},
texture::{
sprite::SpriteAtlas,
sprites::{EffectSprite, GameSprite},
},
};
use crate::{systems::common::components::EntityType, systems::ItemCollider};
use std::cmp::Ordering;
/// Tracks the number of pellets consumed by the player for fruit spawning mechanics.
#[derive(bevy_ecs::resource::Resource, Debug, Default)]
pub struct PelletCount(pub u32);
/// Represents the different fruit sprites that can appear as bonus items.
#[derive(IntoStaticStr, Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[strum(serialize_all = "snake_case")]
pub enum FruitType {
Cherry,
Strawberry,
Orange,
Apple,
Melon,
Galaxian,
Bell,
Key,
}
impl PartialOrd for FruitType {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for FruitType {
fn cmp(&self, other: &Self) -> Ordering {
(self.score_value()).cmp(&other.score_value())
}
}
impl FruitType {
/// Returns the score value for this fruit type.
pub fn score_value(self) -> u32 {
match self {
FruitType::Cherry => 100,
FruitType::Strawberry => 300,
FruitType::Orange => 500,
FruitType::Apple => 700,
FruitType::Melon => 1000,
FruitType::Galaxian => 2000,
FruitType::Bell => 3000,
FruitType::Key => 5000,
}
}
pub fn from_index(index: u8) -> Self {
match index {
0 => FruitType::Cherry,
1 => FruitType::Strawberry,
2 => FruitType::Orange,
3 => FruitType::Apple,
4 => FruitType::Melon,
5 => FruitType::Galaxian,
6 => FruitType::Bell,
7 => FruitType::Key,
_ => panic!("Invalid fruit index: {}", index),
}
}
}
/// Trigger to spawn a fruit
#[derive(Event, Clone, Copy, Debug)]
pub enum SpawnTrigger {
Fruit,
Bonus { position: Position, value: u32, ttl: u32 },
}
pub fn spawn_fruit_observer(
trigger: Trigger<SpawnTrigger>,
mut commands: Commands,
atlas: NonSendMut<SpriteAtlas>,
map: Res<Map>,
) {
let entity = match *trigger {
SpawnTrigger::Fruit => {
// Use cherry sprite as the default fruit (first fruit in original Pac-Man)
let sprite = &atlas
.get_tile(&GameSprite::Fruit(FruitType::from_index(0)).to_path())
.unwrap();
let bundle = ItemBundle {
position: map.start_positions.fruit_spawn,
sprite: Renderable {
sprite: *sprite,
layer: 1,
},
entity_type: EntityType::Fruit(FruitType::Cherry),
collider: Collider {
size: constants::collider::FRUIT_SIZE,
},
item_collider: ItemCollider,
};
let lifetime_ticks = (rng().random_range(9f32..10f32) * 60f32).round() as u32;
commands.spawn((bundle, TimeToLive::new(lifetime_ticks)))
}
SpawnTrigger::Bonus { position, value, ttl } => {
let sprite = &atlas
.get_tile(&GameSprite::Effect(EffectSprite::Bonus(value)).to_path())
.unwrap();
let bundle = (
position,
TimeToLive::new(ttl),
Renderable {
sprite: *sprite,
layer: 1,
},
EntityType::Effect,
);
commands.spawn(bundle)
}
};
debug!(entity = ?entity.id(), "Entity spawned via trigger");
}

View File

@@ -0,0 +1,33 @@
use bevy_ecs::{
component::Component,
entity::Entity,
system::{Commands, Query, Res},
};
use crate::systems::DeltaTime;
/// Component for entities that should be automatically deleted after a certain number of ticks
#[derive(Component, Debug, Clone, Copy)]
pub struct TimeToLive {
pub remaining_ticks: u32,
}
impl TimeToLive {
pub fn new(ticks: u32) -> Self {
Self { remaining_ticks: ticks }
}
}
/// System that manages entities with TimeToLive components, decrementing their remaining ticks
/// and despawning them when they expire
pub fn time_to_live_system(mut commands: Commands, dt: Res<DeltaTime>, mut query: Query<(Entity, &mut TimeToLive)>) {
for (entity, mut ttl) in query.iter_mut() {
if ttl.remaining_ticks <= dt.ticks {
// Entity has expired, despawn it
commands.entity(entity).despawn();
} else {
// Decrement remaining time
ttl.remaining_ticks = ttl.remaining_ticks.saturating_sub(dt.ticks);
}
}
}

41
pacman/src/systems/mod.rs Normal file
View File

@@ -0,0 +1,41 @@
//! This module contains all the systems in the game.
// These modules are excluded from coverage.
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod audio;
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod debug;
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod profiling;
#[cfg_attr(coverage_nightly, coverage(off))]
pub mod render;
mod animation;
mod collision;
pub mod common;
mod ghost;
mod hud;
pub mod input;
pub mod item;
pub mod lifetime;
pub mod movement;
pub mod player;
pub mod state;
// Re-export all the modules. Do not fine-tune the exports.
pub use self::animation::*;
pub use self::audio::*;
pub use self::collision::*;
pub use self::common::*;
pub use self::debug::*;
pub use self::ghost::*;
pub use self::hud::*;
pub use self::input::*;
pub use self::item::*;
pub use self::lifetime::*;
pub use self::movement::*;
pub use self::player::*;
pub use self::profiling::*;
pub use self::render::*;
pub use self::state::*;

View File

@@ -0,0 +1,149 @@
use crate::error::{EntityError, GameResult};
use crate::map::direction::Direction;
use crate::map::graph::Graph;
use bevy_ecs::component::Component;
use glam::Vec2;
/// Zero-based index identifying a specific node in the navigation graph.
///
/// Nodes represent discrete movement targets in the maze. The index directly corresponds to the node's position in the
/// graph's internal storage arrays.
pub type NodeId = u16;
/// A component that represents the speed and cardinal direction of an entity.
/// Speed is static, only applied when the entity has an edge to traverse.
/// Direction is dynamic, but is controlled externally.
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub struct Velocity {
pub speed: f32,
pub direction: Direction,
}
/// A component that represents a direction change that is only remembered for a period of time.
/// This is used to allow entities to change direction before they reach their current target node (which consumes their buffered direction).
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub enum BufferedDirection {
None,
Some { direction: Direction, remaining_time: f32 },
}
/// Entity position state that handles both stationary entities and moving entities.
///
/// Supports precise positioning during movement between discrete navigation nodes.
/// When moving, entities smoothly interpolate along edges while tracking exact distance remaining to the target node.
#[derive(Component, Debug, Copy, Clone, PartialEq)]
pub enum Position {
/// Entity is stationary at a specific graph node.
Stopped { node: NodeId },
/// Entity is traveling between two nodes.
Moving {
from: NodeId,
to: NodeId,
/// Distance remaining to reach the target node.
remaining_distance: f32,
},
}
impl Position {
/// Calculates the current pixel position in the game world.
///
/// Converts the graph position to screen coordinates, accounting for
/// the board offset and centering the sprite.
///
/// # Errors
///
/// Returns an `EntityError` if the node or edge is not found.
pub fn get_pixel_position(&self, graph: &Graph) -> GameResult<Vec2> {
let pos = match &self {
Position::Stopped { node } => {
// Entity is stationary at a node
let node = graph.get_node(*node).ok_or(EntityError::NodeNotFound(*node as usize))?;
node.position
}
Position::Moving {
from,
to,
remaining_distance,
} => {
// Entity is traveling between nodes
let from_node = graph.get_node(*from).ok_or(EntityError::NodeNotFound(*from as usize))?;
let to_node = graph.get_node(*to).ok_or(EntityError::NodeNotFound(*to as usize))?;
let edge = graph.find_edge(*from, *to).ok_or(EntityError::EdgeNotFound {
from: *from as usize,
to: *to as usize,
})?;
// For zero-distance edges (tunnels), progress >= 1.0 means we're at the target
if edge.distance == 0.0 {
to_node.position
} else {
// Interpolate position based on progress
let progress = 1.0 - (*remaining_distance / edge.distance);
from_node.position.lerp(to_node.position, progress)
}
}
};
Ok(Vec2::new(
pos.x + crate::constants::BOARD_PIXEL_OFFSET.x as f32,
pos.y + crate::constants::BOARD_PIXEL_OFFSET.y as f32,
))
}
/// Advances movement progress by the specified distance with overflow handling.
///
/// For moving entities, decreases the remaining distance to the target node.
/// If the distance would overshoot the target, the entity transitions to
/// `Stopped` state and returns the excess distance for chaining movement
/// to the next edge in the same frame.
///
/// # Arguments
///
/// * `distance` - Distance to travel this frame (typically speed × delta_time)
///
/// # Returns
///
/// `Some(overflow)` if the target was reached with distance remaining,
/// `None` if still moving or already stopped.
pub fn tick(&mut self, distance: f32) -> Option<f32> {
if distance <= 0.0 || self.is_at_node() {
return None;
}
match self {
Position::Moving {
to, remaining_distance, ..
} => {
// If the remaining distance is less than or equal the distance, we'll reach the target
if *remaining_distance <= distance {
let overflow: Option<f32> = if *remaining_distance != distance {
Some(distance - *remaining_distance)
} else {
None
};
*self = Position::Stopped { node: *to };
return overflow;
}
*remaining_distance -= distance;
None
}
_ => unreachable!(),
}
}
/// Returns `true` if the position is exactly at a node (not traveling).
pub fn is_at_node(&self) -> bool {
matches!(self, Position::Stopped { .. })
}
/// Returns the `NodeId` of the current node (source of travel if moving).
pub fn current_node(&self) -> NodeId {
match self {
Position::Stopped { node } => *node,
Position::Moving { from, .. } => *from,
}
}
}

View File

@@ -0,0 +1,185 @@
use bevy_ecs::{
component::Component,
event::EventReader,
query::{With, Without},
system::{Query, Res, ResMut, Single},
};
use tracing::trace;
use crate::{
events::{GameCommand, GameEvent},
map::{builder::Map, graph::Edge},
systems::{
components::{DeltaTime, EntityType, Frozen, GlobalState, MovementModifiers},
debug::DebugState,
movement::{BufferedDirection, Position, Velocity},
AudioState,
},
};
/// A tag component for entities that are controlled by the player.
#[derive(Default, Component)]
pub struct PlayerControlled;
pub fn can_traverse(entity_type: EntityType, edge: Edge) -> bool {
let entity_flags = entity_type.traversal_flags();
edge.traversal_flags.contains(entity_flags)
}
/// Processes player input commands and updates game state accordingly.
///
/// Handles keyboard-driven commands like movement direction changes, debug mode
/// toggling, audio muting, and game exit requests. Movement commands are buffered
/// to allow direction changes before reaching intersections, improving gameplay
/// responsiveness. Non-movement commands immediately modify global game state.
#[allow(clippy::type_complexity)]
pub fn player_control_system(
mut events: EventReader<GameEvent>,
mut state: ResMut<GlobalState>,
mut debug_state: ResMut<DebugState>,
mut audio_state: ResMut<AudioState>,
mut player: Option<Single<&mut BufferedDirection, (With<PlayerControlled>, Without<Frozen>)>>,
) {
// Handle events
for event in events.read() {
let GameEvent::Command(command) = event;
match command {
GameCommand::MovePlayer(direction) => {
// Only handle movement if there's an unfrozen player
if let Some(player_single) = player.as_mut() {
trace!(direction = ?*direction, "Player direction buffered for movement");
***player_single = BufferedDirection::Some {
direction: *direction,
remaining_time: 0.25,
};
}
}
GameCommand::Exit => {
state.exit = true;
}
GameCommand::ToggleDebug => {
debug_state.enabled = !debug_state.enabled;
}
GameCommand::MuteAudio => {
audio_state.muted = !audio_state.muted;
tracing::info!("Audio {}", if audio_state.muted { "muted" } else { "unmuted" });
}
_ => {}
}
}
}
/// Executes frame-by-frame movement for Pac-Man.
///
/// Handles movement logic including buffered direction changes, edge traversal validation, and continuous movement between nodes.
/// When stopped, prioritizes buffered directions for responsive controls, falling back to current direction.
/// Supports movement chaining within a single frame when traveling at high speeds.
#[allow(clippy::type_complexity)]
pub fn player_movement_system(
map: Res<Map>,
delta_time: Res<DeltaTime>,
mut entities: Query<
(&MovementModifiers, &mut Position, &mut Velocity, &mut BufferedDirection),
(With<PlayerControlled>, Without<Frozen>),
>,
mut last_stopped_node: bevy_ecs::system::Local<Option<crate::systems::movement::NodeId>>,
) {
for (modifiers, mut position, mut velocity, mut buffered_direction) in entities.iter_mut() {
// Decrement the buffered direction remaining time
if let BufferedDirection::Some {
direction,
remaining_time,
} = *buffered_direction
{
if remaining_time <= 0.0 {
trace!("Buffered direction expired");
*buffered_direction = BufferedDirection::None;
} else {
*buffered_direction = BufferedDirection::Some {
direction,
remaining_time: remaining_time - delta_time.seconds,
};
}
}
let mut distance = velocity.speed * modifiers.speed_multiplier * 60.0 * delta_time.seconds;
loop {
match *position {
Position::Stopped { .. } => {
// If there is a buffered direction, travel it's edge first if available.
if let BufferedDirection::Some { direction, .. } = *buffered_direction {
// If there's no edge in that direction, ignore the buffered direction.
if let Some(edge) = map.graph.find_edge_in_direction(position.current_node(), direction) {
// If there is an edge in that direction (and it's traversable), start moving towards it and consume the buffered direction.
if can_traverse(EntityType::Player, edge) {
trace!(from = position.current_node(), to = edge.target, direction = ?direction, "Player started moving using buffered direction");
*last_stopped_node = None; // Reset stopped state when starting to move
velocity.direction = edge.direction;
*position = Position::Moving {
from: position.current_node(),
to: edge.target,
remaining_distance: edge.distance,
};
*buffered_direction = BufferedDirection::None;
}
}
}
// If there is no buffered direction (or it's not yet valid), continue in the current direction.
if let Some(edge) = map.graph.find_edge_in_direction(position.current_node(), velocity.direction) {
if can_traverse(EntityType::Player, edge) {
trace!(from = position.current_node(), to = edge.target, direction = ?velocity.direction, "Player continued in current direction");
*last_stopped_node = None; // Reset stopped state when starting to move
velocity.direction = edge.direction;
*position = Position::Moving {
from: position.current_node(),
to: edge.target,
remaining_distance: edge.distance,
};
}
} else {
// No edge in our current direction either, erase the buffered direction and stop.
let current_node = position.current_node();
if *last_stopped_node != Some(current_node) {
trace!(node = current_node, direction = ?velocity.direction, "Player stopped - no valid edge in current direction");
*last_stopped_node = Some(current_node);
}
*buffered_direction = BufferedDirection::None;
break;
}
}
Position::Moving { .. } => {
if let Some(overflow) = position.tick(distance) {
distance = overflow;
} else {
break;
}
}
}
}
}
}
/// Applies tunnel slowdown based on the current node tile
pub fn player_tunnel_slowdown_system(map: Res<Map>, player: Single<(&Position, &mut MovementModifiers), With<PlayerControlled>>) {
let (position, mut modifiers) = player.into_inner();
let node = position.current_node();
let in_tunnel = map
.tile_at_node(node)
.map(|t| t == crate::constants::MapTile::Tunnel)
.unwrap_or(false);
if modifiers.tunnel_slowdown_active != in_tunnel {
trace!(
node,
in_tunnel,
speed_multiplier = if in_tunnel { 0.6 } else { 1.0 },
"Player tunnel slowdown state changed"
);
}
modifiers.tunnel_slowdown_active = in_tunnel;
modifiers.speed_multiplier = if in_tunnel { 0.6 } else { 1.0 };
}

View File

@@ -0,0 +1,441 @@
use bevy_ecs::system::IntoSystem;
use bevy_ecs::{resource::Resource, system::System};
use circular_buffer::CircularBuffer;
use num_width::NumberWidth;
use parking_lot::Mutex;
use smallvec::SmallVec;
use std::fmt::Display;
use std::sync::atomic::{AtomicU64, Ordering};
use std::time::Duration;
use strum::{EnumCount, IntoEnumIterator};
use strum_macros::{EnumCount, EnumIter, IntoStaticStr};
use thousands::Separable;
/// The maximum number of systems that can be profiled. Must not be exceeded, or it will panic.
const MAX_SYSTEMS: usize = SystemId::COUNT;
/// The number of durations to keep in the circular buffer.
const TIMING_WINDOW_SIZE: usize = 30;
/// A timing buffer that tracks durations and automatically inserts zero durations for skipped ticks.
#[derive(Debug, Default)]
pub struct TimingBuffer {
/// Circular buffer storing timing durations
buffer: CircularBuffer<TIMING_WINDOW_SIZE, Duration>,
/// The last tick when this buffer was updated
last_tick: u64,
}
impl TimingBuffer {
/// Adds a timing duration for the current tick.
///
/// # Panics
///
/// Panics if `current_tick` is less than `last_tick`, indicating time went backwards.
pub fn add_timing(&mut self, duration: Duration, current_tick: u64) {
if current_tick < self.last_tick {
panic!(
"Time went backwards: current_tick ({}) < last_tick ({})",
current_tick, self.last_tick
);
}
// Insert zero durations for any skipped ticks (but not the current tick)
if current_tick > self.last_tick {
let skipped_ticks = current_tick - self.last_tick - 1;
for _ in 0..skipped_ticks {
self.buffer.push_back(Duration::ZERO);
}
}
// Add the actual timing
self.buffer.push_back(duration);
self.last_tick = current_tick;
}
/// Gets the most recent timing from the buffer.
pub fn get_most_recent_timing(&self) -> Duration {
self.buffer.back().copied().unwrap_or(Duration::ZERO)
}
/// Gets statistics for this timing buffer.
///
/// # Panics
///
/// Panics if `current_tick` is less than `last_tick`, indicating time went backwards.
pub fn get_stats(&mut self, current_tick: u64) -> (Duration, Duration) {
// Insert zero durations for any skipped ticks since last update (but not the current tick)
if current_tick > self.last_tick {
let skipped_ticks = current_tick - self.last_tick - 1;
for _ in 0..skipped_ticks {
self.buffer.push_back(Duration::ZERO);
}
self.last_tick = current_tick;
}
// Calculate statistics using Welford's algorithm
let mut sample_count = 0u16;
let mut running_mean = 0.0;
let mut sum_squared_diff = 0.0;
let skip = self.last_tick.saturating_sub(current_tick);
for duration in self.buffer.iter().skip(skip as usize) {
let duration_secs = duration.as_secs_f32();
sample_count += 1;
let diff_from_mean = duration_secs - running_mean;
running_mean += diff_from_mean / sample_count as f32;
let diff_from_new_mean = duration_secs - running_mean;
sum_squared_diff += diff_from_mean * diff_from_new_mean;
}
if sample_count > 0 {
let variance = if sample_count > 1 {
sum_squared_diff / (sample_count - 1) as f32
} else {
0.0
};
(
Duration::from_secs_f32(running_mean),
Duration::from_secs_f32(variance.sqrt()),
)
} else {
(Duration::ZERO, Duration::ZERO)
}
}
}
/// A resource that tracks the current game tick using an atomic counter.
/// This ensures thread-safe access to the tick counter across systems.
#[derive(Resource, Debug)]
pub struct Timing {
/// Atomic counter for the current game tick
current_tick: AtomicU64,
}
impl Timing {
/// Creates a new Timing resource starting at tick 0
pub fn new() -> Self {
Self {
current_tick: AtomicU64::new(0),
}
}
/// Gets the current tick value
pub fn get_current_tick(&self) -> u64 {
self.current_tick.load(Ordering::Relaxed)
}
/// Increments the tick counter and returns the new value
pub fn increment_tick(&self) -> u64 {
self.current_tick.fetch_add(1, Ordering::Relaxed) + 1
}
}
impl Default for Timing {
fn default() -> Self {
Self::new()
}
}
#[derive(EnumCount, EnumIter, IntoStaticStr, Debug, PartialEq, Eq, Hash, Copy, Clone)]
pub enum SystemId {
Total,
Input,
PlayerControls,
Ghost,
Movement,
Audio,
Blinking,
DirectionalRender,
LinearRender,
DirtyRender,
HudRender,
Render,
DebugRender,
Present,
Collision,
Item,
PlayerMovement,
GhostCollision,
Stage,
GhostStateAnimation,
EatenGhost,
TimeToLive,
PauseManager,
}
impl Display for SystemId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Use strum_macros::IntoStaticStr to get the static string
write!(f, "{}", Into::<&'static str>::into(self).to_ascii_lowercase())
}
}
#[derive(Resource, Debug)]
pub struct SystemTimings {
/// Statically sized map of system names to timing buffers.
pub timings: micromap::Map<SystemId, Mutex<TimingBuffer>, MAX_SYSTEMS>,
}
impl Default for SystemTimings {
fn default() -> Self {
let mut timings = micromap::Map::new();
// Pre-populate with all SystemId variants to avoid runtime allocations
for id in SystemId::iter() {
timings.insert(id, Mutex::new(TimingBuffer::default()));
}
Self { timings }
}
}
impl SystemTimings {
pub fn add_timing(&self, id: SystemId, duration: Duration, current_tick: u64) {
// Since all SystemId variants are pre-populated, we can use a simple read lock
let buffer = self
.timings
.get(&id)
.expect("SystemId not found in pre-populated map - this is a bug");
buffer.lock().add_timing(duration, current_tick);
}
/// Add timing for the Total system (total frame time including scheduler.run)
pub fn add_total_timing(&self, duration: Duration, current_tick: u64) {
self.add_timing(SystemId::Total, duration, current_tick);
}
pub fn get_stats(&self, current_tick: u64) -> micromap::Map<SystemId, (Duration, Duration), MAX_SYSTEMS> {
let mut stats = micromap::Map::new();
// Iterate over all SystemId variants to ensure every system has an entry
for id in SystemId::iter() {
let buffer = self
.timings
.get(&id)
.expect("SystemId not found in pre-populated map - this is a bug");
let (average, standard_deviation) = buffer.lock().get_stats(current_tick);
stats.insert(id, (average, standard_deviation));
}
stats
}
pub fn format_timing_display(&self, current_tick: u64) -> SmallVec<[String; SystemId::COUNT]> {
let stats = self.get_stats(current_tick);
// Get the Total system metrics instead of averaging all systems
let (total_avg, total_std) = stats
.get(&SystemId::Total)
.copied()
.unwrap_or((Duration::ZERO, Duration::ZERO));
let effective_fps = match 1.0 / total_avg.as_secs_f64() {
f if f > 100.0 => format!("{:>5} FPS", (f as u32).separate_with_commas()),
f if f < 10.0 => format!("{:.1} FPS", f),
f => format!("{:5.0} FPS", f),
};
// Collect timing data for formatting
let mut timing_data = vec![(effective_fps, total_avg, total_std)];
// Sort the stats by average duration, excluding the Total system
let mut sorted_stats: Vec<_> = stats.iter().filter(|(id, _)| **id != SystemId::Total).collect();
sorted_stats.sort_by(|a, b| b.1 .0.cmp(&a.1 .0));
// Add the top 7 most expensive systems (excluding Total)
for (name, (avg, std_dev)) in sorted_stats.iter().take(9) {
timing_data.push((name.to_string(), *avg, *std_dev));
}
// Use the formatting module to format the data
format_timing_display(timing_data)
}
/// Returns a list of systems with their timings, likely responsible for slow frame timings.
///
/// First, checks if any systems took longer than 2ms on the most recent tick.
/// If none exceed 2ms, accumulates systems until the top 30% of total timing
/// is reached, stopping at 5 systems maximum.
///
/// Returns tuples of (SystemId, Duration) in a SmallVec capped at 5 items.
pub fn get_slowest_systems(&self) -> SmallVec<[(SystemId, Duration); 5]> {
let mut system_timings: Vec<(SystemId, Duration)> = Vec::new();
let mut total_duration = Duration::ZERO;
// Collect most recent timing for each system (excluding Total)
for id in SystemId::iter() {
if id == SystemId::Total {
continue;
}
if let Some(buffer) = self.timings.get(&id) {
let recent_timing = buffer.lock().get_most_recent_timing();
system_timings.push((id, recent_timing));
total_duration += recent_timing;
}
}
// Sort by duration (highest first)
system_timings.sort_by(|a, b| b.1.cmp(&a.1));
// Check for systems over 2ms threshold
let over_threshold: SmallVec<[(SystemId, Duration); 5]> = system_timings
.iter()
.filter(|(_, duration)| duration.as_millis() >= 2)
.copied()
.collect();
if !over_threshold.is_empty() {
return over_threshold;
}
// Accumulate top systems until 30% of total is reached (max 5 systems)
let threshold = total_duration.as_nanos() as f64 * 0.3;
let mut accumulated = 0u128;
let mut result = SmallVec::new();
for (id, duration) in system_timings.iter().take(5) {
result.push((*id, *duration));
accumulated += duration.as_nanos();
if accumulated as f64 >= threshold {
break;
}
}
result
}
}
pub fn profile<S, M>(id: SystemId, system: S) -> impl FnMut(&mut bevy_ecs::world::World)
where
S: IntoSystem<(), (), M> + 'static,
{
let mut system: S::System = IntoSystem::into_system(system);
let mut is_initialized = false;
move |world: &mut bevy_ecs::world::World| {
if !is_initialized {
system.initialize(world);
is_initialized = true;
}
let start = std::time::Instant::now();
system.run((), world);
let duration = start.elapsed();
if let (Some(timings), Some(timing)) = (world.get_resource::<SystemTimings>(), world.get_resource::<Timing>()) {
let current_tick = timing.get_current_tick();
timings.add_timing(id, duration, current_tick);
}
}
}
// Helper to split a duration into a integer, decimal, and unit
fn get_value(duration: &Duration) -> (u64, u32, &'static str) {
let (int, decimal, unit) = match duration {
// if greater than 1 second, return as seconds
n if n >= &Duration::from_secs(1) => {
let secs = n.as_secs();
let decimal = n.as_millis() as u64 % 1000;
(secs, decimal as u32, "s")
}
// if greater than 1 millisecond, return as milliseconds
n if n >= &Duration::from_millis(1) => {
let ms = n.as_millis() as u64;
let decimal = n.as_micros() as u64 % 1000;
(ms, decimal as u32, "ms")
}
// if greater than 1 microsecond, return as microseconds
n if n >= &Duration::from_micros(1) => {
let us = n.as_micros() as u64;
let decimal = n.as_nanos() as u64 % 1000;
(us, decimal as u32, "µs")
}
// otherwise, return as nanoseconds
n => {
let ns = n.as_nanos() as u64;
(ns, 0, "ns")
}
};
(int, decimal, unit)
}
/// Formats timing data into a vector of strings with proper alignment
pub fn format_timing_display(
timing_data: impl IntoIterator<Item = (String, Duration, Duration)>,
) -> SmallVec<[String; SystemId::COUNT]> {
let mut iter = timing_data.into_iter().peekable();
if iter.peek().is_none() {
return SmallVec::new();
}
struct Entry {
name: String,
avg_int: u64,
avg_decimal: u32,
avg_unit: &'static str,
std_int: u64,
std_decimal: u32,
std_unit: &'static str,
}
let entries = iter
.map(|(name, avg, std_dev)| {
let (avg_int, avg_decimal, avg_unit) = get_value(&avg);
let (std_int, std_decimal, std_unit) = get_value(&std_dev);
Entry {
name: name.clone(),
avg_int,
avg_decimal,
avg_unit,
std_int,
std_decimal,
std_unit,
}
})
.collect::<SmallVec<[Entry; 12]>>();
let (max_avg_int_width, max_avg_decimal_width, max_std_int_width, max_std_decimal_width) =
entries
.iter()
.fold((0, 3, 0, 3), |(avg_int_w, avg_dec_w, std_int_w, std_dec_w), e| {
(
avg_int_w.max(e.avg_int.width() as usize),
avg_dec_w.max(e.avg_decimal.width() as usize),
std_int_w.max(e.std_int.width() as usize),
std_dec_w.max(e.std_decimal.width() as usize),
)
});
let max_name_width = SystemId::iter()
.map(|id| id.to_string().len())
.max()
.expect("SystemId::iter() returned an empty iterator");
entries.iter().map(|e| {
format!(
"{name:max_name_width$} : {avg_int:max_avg_int_width$}.{avg_decimal:<max_avg_decimal_width$}{avg_unit} ± {std_int:max_std_int_width$}.{std_decimal:<max_std_decimal_width$}{std_unit}",
// Content
name = e.name,
avg_int = e.avg_int,
avg_decimal = e.avg_decimal,
std_int = e.std_int,
std_decimal = e.std_decimal,
// Units
avg_unit = e.avg_unit,
std_unit = e.std_unit,
// Padding
max_name_width = max_name_width,
max_avg_int_width = max_avg_int_width,
max_avg_decimal_width = max_avg_decimal_width,
max_std_int_width = max_std_int_width,
max_std_decimal_width = max_std_decimal_width
)
}).collect::<SmallVec<[String; SystemId::COUNT]>>()
}

View File

@@ -0,0 +1,305 @@
use crate::error::{GameError, TextureError};
use crate::map::builder::Map;
use crate::systems::{
debug_render_system, BatchedLinesResource, Collider, CursorPosition, DebugState, DebugTextureResource, Position, SystemId,
SystemTimings, TtfAtlasResource,
};
use crate::texture::sprite::{AtlasTile, SpriteAtlas};
use bevy_ecs::component::Component;
use bevy_ecs::entity::Entity;
use bevy_ecs::event::EventWriter;
use bevy_ecs::query::{Changed, Or, With};
use bevy_ecs::removal_detection::RemovedComponents;
use bevy_ecs::resource::Resource;
use bevy_ecs::system::{NonSendMut, Query, Res, ResMut};
use glam::Vec2;
use sdl2::rect::{Point, Rect};
use sdl2::render::{BlendMode, Canvas, Texture};
use sdl2::video::Window;
use std::time::Instant;
/// A component for entities that have a sprite, with a layer for ordering.
///
/// This is intended to be modified by other entities allowing animation.
#[derive(Component)]
pub struct Renderable {
pub sprite: AtlasTile,
pub layer: u8,
}
#[derive(Resource, Default)]
pub struct RenderDirty(pub bool);
#[derive(Component)]
pub struct Hidden;
/// A component that controls entity visibility in the render system.
///
/// Entities without this component are considered visible by default.
/// This allows for efficient rendering where only entities that need
/// visibility control have this component.
#[derive(Component, Debug, Clone, Copy, PartialEq, Eq)]
pub struct Visibility(pub bool);
impl Default for Visibility {
fn default() -> Self {
Self(true) // Default to visible
}
}
impl Visibility {
/// Creates a visible Visibility component
pub fn visible() -> Self {
Self(true)
}
/// Creates a hidden Visibility component
pub fn hidden() -> Self {
Self(false)
}
/// Returns true if the entity is visible
pub fn is_visible(&self) -> bool {
self.0
}
/// Returns true if the entity is hidden
#[allow(dead_code)] // Used in tests
pub fn is_hidden(&self) -> bool {
!self.0
}
/// Makes the entity visible
pub fn show(&mut self) {
self.0 = true;
}
/// Toggles the visibility state
pub fn toggle(&mut self) {
self.0 = !self.0;
}
}
/// Enum to identify which texture is being rendered to in the combined render system
#[derive(Debug, Clone, Copy)]
enum RenderTarget {
Backbuffer,
Debug,
}
#[allow(clippy::type_complexity)]
pub fn dirty_render_system(
mut dirty: ResMut<RenderDirty>,
changed: Query<(), Or<(Changed<Renderable>, Changed<Position>, Changed<Visibility>)>>,
removed_renderables: RemovedComponents<Renderable>,
) {
if changed.iter().count() > 0 || !removed_renderables.is_empty() {
dirty.0 = true;
}
}
/// Component for Renderables to store an exact pixel position
#[derive(Component)]
pub struct PixelPosition {
pub pixel_position: Vec2,
}
/// A non-send resource for the map texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource.
pub struct MapTextureResource(pub Texture);
/// A non-send resource for the backbuffer texture. This just wraps the texture with a type so it can be differentiated when exposed as a resource.
pub struct BackbufferResource(pub Texture);
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
pub fn render_system(
canvas: &mut Canvas<Window>,
map_texture: &NonSendMut<MapTextureResource>,
atlas: &mut SpriteAtlas,
map: &Res<Map>,
dirty: &Res<RenderDirty>,
renderables: &Query<
(
Entity,
&Renderable,
Option<&Position>,
Option<&PixelPosition>,
Option<&Visibility>,
),
Or<(With<Position>, With<PixelPosition>)>,
>,
errors: &mut EventWriter<GameError>,
) {
if !dirty.0 {
return;
}
// Clear the backbuffer
canvas.set_draw_color(sdl2::pixels::Color::BLACK);
canvas.clear();
// Copy the pre-rendered map texture to the backbuffer
if let Err(e) = canvas.copy(&map_texture.0, None, None) {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Collect and filter visible entities, then sort by layer
let mut visible_entities: Vec<_> = renderables
.iter()
.filter(|(_, _, _, _, visibility)| visibility.copied().unwrap_or_default().is_visible())
.collect();
visible_entities.sort_by_key(|(_, renderable, _, _, _)| renderable.layer);
visible_entities.reverse();
// Render all visible entities to the backbuffer
for (_entity, renderable, position, pixel_position, _visibility) in visible_entities {
let pos = if let Some(position) = position {
position.get_pixel_position(&map.graph)
} else {
Ok(pixel_position
.expect("Pixel position should be present via query filtering, but got None on both")
.pixel_position)
};
match pos {
Ok(pos) => {
let dest = Rect::from_center(
Point::from((pos.x as i32, pos.y as i32)),
renderable.sprite.size.x as u32,
renderable.sprite.size.y as u32,
);
renderable
.sprite
.render(canvas, atlas, dest)
.err()
.map(|e| errors.write(TextureError::RenderFailed(e.to_string()).into()));
}
Err(e) => {
errors.write(e);
}
}
}
}
/// Combined render system that renders to both backbuffer and debug textures in a single
/// with_multiple_texture_canvas call for reduced overhead
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
pub fn combined_render_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
map_texture: NonSendMut<MapTextureResource>,
mut backbuffer: NonSendMut<BackbufferResource>,
mut debug_texture: NonSendMut<DebugTextureResource>,
mut atlas: NonSendMut<SpriteAtlas>,
mut ttf_atlas: NonSendMut<TtfAtlasResource>,
batched_lines: Res<BatchedLinesResource>,
debug_state: Res<DebugState>,
timings: Res<SystemTimings>,
timing: Res<crate::systems::profiling::Timing>,
map: Res<Map>,
dirty: Res<RenderDirty>,
renderables: Query<
(
Entity,
&Renderable,
Option<&Position>,
Option<&PixelPosition>,
Option<&Visibility>,
),
Or<(With<Position>, With<PixelPosition>)>,
>,
colliders: Query<(&Collider, &Position)>,
cursor: Res<CursorPosition>,
mut errors: EventWriter<GameError>,
) {
if !dirty.0 {
return;
}
// Prepare textures and render targets
let textures = [
(&mut backbuffer.0, RenderTarget::Backbuffer),
(&mut debug_texture.0, RenderTarget::Debug),
];
// Record timing for each system independently
let mut render_duration = None;
let mut debug_render_duration = None;
let result = canvas.with_multiple_texture_canvas(textures.iter(), |texture_canvas, render_target| match render_target {
RenderTarget::Backbuffer => {
let start_time = Instant::now();
render_system(
texture_canvas,
&map_texture,
&mut atlas,
&map,
&dirty,
&renderables,
&mut errors,
);
render_duration = Some(start_time.elapsed());
}
RenderTarget::Debug => {
if !debug_state.enabled {
return;
}
let start_time = Instant::now();
debug_render_system(
texture_canvas,
&mut ttf_atlas,
&batched_lines,
&debug_state,
&timings,
&timing,
&map,
&colliders,
&cursor,
);
debug_render_duration = Some(start_time.elapsed());
}
});
if let Err(e) = result {
errors.write(TextureError::RenderFailed(e.to_string()).into());
}
// Record timings for each system independently
let current_tick = timing.get_current_tick();
if let Some(duration) = render_duration {
timings.add_timing(SystemId::Render, duration, current_tick);
}
if let Some(duration) = debug_render_duration {
timings.add_timing(SystemId::DebugRender, duration, current_tick);
}
}
pub fn present_system(
mut canvas: NonSendMut<&mut Canvas<Window>>,
mut dirty: ResMut<RenderDirty>,
backbuffer: NonSendMut<BackbufferResource>,
debug_texture: NonSendMut<DebugTextureResource>,
debug_state: Res<DebugState>,
) {
if dirty.0 {
// Copy the backbuffer to the main canvas
canvas.copy(&backbuffer.0, None, None).unwrap();
// Copy the debug texture to the canvas
if debug_state.enabled {
canvas.set_blend_mode(BlendMode::Blend);
canvas.copy(&debug_texture.0, None, None).unwrap();
}
canvas.present();
dirty.0 = false;
}
}

551
pacman/src/systems/state.rs Normal file
View File

@@ -0,0 +1,551 @@
use std::mem::discriminant;
use tracing::{debug, info};
use crate::constants;
use crate::events::StageTransition;
use crate::map::direction::Direction;
use crate::systems::{EntityType, ItemCollider, SpawnTrigger, Velocity};
use crate::{
map::builder::Map,
systems::{
AudioEvent, Blinking, DirectionalAnimation, Dying, Frozen, Ghost, GhostCollider, GhostState, LinearAnimation, Looping,
NodeId, PlayerControlled, Position, Visibility,
},
};
use bevy_ecs::{
entity::Entity,
event::{EventReader, EventWriter},
query::{With, Without},
resource::Resource,
system::{Commands, Query, Res, ResMut, Single},
};
use crate::events::{GameCommand, GameEvent};
#[cfg(not(target_os = "emscripten"))]
use bevy_ecs::system::NonSendMut;
#[cfg(not(target_os = "emscripten"))]
use sdl2::render::Canvas;
#[cfg(not(target_os = "emscripten"))]
use sdl2::video::{FullscreenType, Window};
#[derive(Resource, Clone)]
pub struct PlayerAnimation(pub DirectionalAnimation);
#[derive(Resource, Clone)]
pub struct PlayerDeathAnimation(pub LinearAnimation);
/// Tracks whether the beginning sound has been played for the current startup sequence
#[derive(Resource, Debug, Default, Clone, Copy)]
pub struct IntroPlayed(pub bool);
/// A resource to track the overall stage of the game from a high-level perspective.
#[derive(Resource, Debug, PartialEq, Eq, Clone, Copy)]
pub enum GameStage {
Starting(StartupSequence),
/// The main gameplay loop is active.
Playing,
/// Short freeze after Pac-Man eats a ghost to display bonus score
GhostEatenPause {
remaining_ticks: u32,
ghost_entity: Entity,
ghost_type: Ghost,
node: NodeId,
},
/// The player has died and the death sequence is in progress. At the end, the player will return to the startup sequence or game over.
PlayerDying(DyingSequence),
/// The game has ended.
GameOver,
}
#[derive(Resource, Debug, PartialEq, Eq, Clone, Copy)]
pub enum PauseState {
Inactive,
Active { remaining_ticks: Option<u32> },
}
impl Default for PauseState {
fn default() -> Self {
Self::Active { remaining_ticks: None }
}
}
impl PauseState {
pub fn active(&self) -> bool {
matches!(
self,
PauseState::Active { remaining_ticks: None }
| PauseState::Active {
remaining_ticks: Some(1..=u32::MAX)
}
)
}
/// Ticks the pause state
/// # Returns
/// `true` if the state changed significantly (e.g. from active to inactive or vice versa)
pub fn tick(&mut self) -> bool {
match self {
// Permanent states
PauseState::Active { remaining_ticks: None } | PauseState::Inactive => false,
// Last tick of the active state
PauseState::Active {
remaining_ticks: Some(1),
} => {
*self = PauseState::Inactive;
true
}
// Active state with remaining ticks
PauseState::Active {
remaining_ticks: Some(ticks),
} => {
*self = PauseState::Active {
remaining_ticks: Some(*ticks - 1),
};
false
}
}
}
}
pub fn handle_pause_command(
mut events: EventReader<GameEvent>,
mut pause_state: ResMut<PauseState>,
mut audio_events: EventWriter<AudioEvent>,
) {
for event in events.read() {
match event {
GameEvent::Command(GameCommand::TogglePause) => {
*pause_state = match *pause_state {
PauseState::Active { .. } => {
info!("Game resumed");
audio_events.write(AudioEvent::Resume);
PauseState::Inactive
}
PauseState::Inactive => {
info!("Game paused");
audio_events.write(AudioEvent::Pause);
PauseState::Active { remaining_ticks: None }
}
}
}
GameEvent::Command(GameCommand::SingleTick) => {
// Single tick should not function while the game is playing
if matches!(*pause_state, PauseState::Active { remaining_ticks: None }) {
return;
}
*pause_state = PauseState::Active {
remaining_ticks: Some(1),
};
audio_events.write(AudioEvent::Resume);
}
_ => {}
}
}
}
pub fn manage_pause_state_system(mut pause_state: ResMut<PauseState>, mut audio_events: EventWriter<AudioEvent>) {
let changed = pause_state.tick();
// If the pause state changed, send the appropriate audio event
if changed {
// Since the pause state can never go from inactive to active, the only way to get here is if the game is now paused...
audio_events.write(AudioEvent::Pause);
}
}
#[cfg(not(target_os = "emscripten"))]
pub fn handle_fullscreen_command(mut events: EventReader<GameEvent>, mut canvas: NonSendMut<&mut Canvas<Window>>) {
for event in events.read() {
if let GameEvent::Command(GameCommand::ToggleFullscreen) = event {
let window = canvas.window_mut();
let current = window.fullscreen_state();
let target = match current {
FullscreenType::Off => FullscreenType::Desktop,
_ => FullscreenType::Off,
};
if let Err(e) = window.set_fullscreen(target) {
tracing::warn!(error = ?e, "Failed to toggle fullscreen");
} else {
let on = matches!(target, FullscreenType::Desktop | FullscreenType::True);
info!(fullscreen = on, "Toggled fullscreen");
}
}
}
}
pub trait TooSimilar {
fn too_similar(&self, other: &Self) -> bool;
}
impl TooSimilar for GameStage {
fn too_similar(&self, other: &Self) -> bool {
discriminant(self) == discriminant(other) && {
// These states are very simple, so they're 'too similar' automatically
if matches!(self, GameStage::Playing | GameStage::GameOver) {
return true;
}
// Since the discriminant is the same but the values are different, it's the interior value that is somehow different
match (self, other) {
// These states are similar if their interior values are similar as well
(GameStage::Starting(startup), GameStage::Starting(other)) => startup.too_similar(other),
(GameStage::PlayerDying(dying), GameStage::PlayerDying(other)) => dying.too_similar(other),
(
GameStage::GhostEatenPause {
ghost_entity,
ghost_type,
node,
..
},
GameStage::GhostEatenPause {
ghost_entity: other_ghost_entity,
ghost_type: other_ghost_type,
node: other_node,
..
},
) => ghost_entity == other_ghost_entity && ghost_type == other_ghost_type && node == other_node,
// Already handled, but kept to properly exhaust the match
(GameStage::Playing, _) | (GameStage::GameOver, _) => unreachable!(),
_ => unreachable!(),
}
}
}
}
/// A resource that manages the multi-stage startup sequence of the game.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum StartupSequence {
/// Stage 1: Text-only stage
/// - Player & ghosts are hidden
/// - READY! and PLAYER ONE text are shown
/// - Energizers do not blink
TextOnly {
/// Remaining ticks in this stage
remaining_ticks: u32,
},
/// Stage 2: Characters visible stage
/// - PLAYER ONE text is hidden, READY! text remains
/// - Ghosts and Pac-Man are now shown
CharactersVisible {
/// Remaining ticks in this stage
remaining_ticks: u32,
},
}
impl Default for GameStage {
fn default() -> Self {
Self::Playing
}
}
impl TooSimilar for StartupSequence {
fn too_similar(&self, other: &Self) -> bool {
discriminant(self) == discriminant(other)
}
}
/// The state machine for the multi-stage death sequence.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum DyingSequence {
/// Initial stage: entities are frozen, waiting for a delay.
Frozen { remaining_ticks: u32 },
/// Second stage: Pac-Man's death animation is playing.
Animating { remaining_ticks: u32 },
/// Third stage: Pac-Man is now gone, waiting a moment before the level restarts.
Hidden { remaining_ticks: u32 },
}
impl TooSimilar for DyingSequence {
fn too_similar(&self, other: &Self) -> bool {
discriminant(self) == discriminant(other)
}
}
/// A resource to store the number of player lives.
#[derive(Resource, Debug)]
pub struct PlayerLives(pub u8);
impl Default for PlayerLives {
fn default() -> Self {
Self(3)
}
}
/// Handles startup sequence transitions and component management
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
pub fn stage_system(
mut game_state: ResMut<GameStage>,
player_death_animation: Res<PlayerDeathAnimation>,
player_animation: Res<PlayerAnimation>,
mut player_lives: ResMut<PlayerLives>,
map: Res<Map>,
mut commands: Commands,
mut audio_events: EventWriter<AudioEvent>,
mut stage_event_reader: EventReader<StageTransition>,
mut blinking_query: Query<Entity, With<Blinking>>,
player: Single<(Entity, &mut Position), With<PlayerControlled>>,
mut item_query: Query<(Entity, &EntityType), With<ItemCollider>>,
mut ghost_query: Query<(Entity, &Ghost, &mut Position, &mut GhostState), (With<GhostCollider>, Without<PlayerControlled>)>,
mut intro_played: ResMut<IntroPlayed>,
) {
let old_state = *game_state;
let mut new_state_opt: Option<GameStage> = None;
// Handle stage transition requests before normal ticking
for event in stage_event_reader.read() {
let StageTransition::GhostEatenPause {
ghost_entity,
ghost_type,
} = *event;
let pac_node = player.1.current_node();
debug!(ghost = ?ghost_type, node = pac_node, "Ghost eaten, entering pause state");
new_state_opt = Some(GameStage::GhostEatenPause {
remaining_ticks: 30,
ghost_entity,
ghost_type,
node: pac_node,
});
}
let new_state: GameStage = new_state_opt.unwrap_or_else(|| match *game_state {
GameStage::Playing => {
// This is the default state, do nothing
*game_state
}
GameStage::GhostEatenPause {
remaining_ticks,
ghost_entity,
ghost_type,
node,
} => {
if remaining_ticks > 0 {
GameStage::GhostEatenPause {
remaining_ticks: remaining_ticks.saturating_sub(1),
ghost_entity,
ghost_type,
node,
}
} else {
debug!("Ghost eaten pause ended, resuming gameplay");
GameStage::Playing
}
}
GameStage::Starting(sequence) => match sequence {
StartupSequence::TextOnly { remaining_ticks } => {
// Play the beginning sound once at the start of TextOnly stage
if !intro_played.0 {
audio_events.write(AudioEvent::PlaySound(crate::audio::Sound::Beginning));
intro_played.0 = true;
}
if remaining_ticks > 0 {
GameStage::Starting(StartupSequence::TextOnly {
remaining_ticks: remaining_ticks.saturating_sub(1),
})
} else {
GameStage::Starting(StartupSequence::CharactersVisible { remaining_ticks: 60 })
}
}
StartupSequence::CharactersVisible { remaining_ticks } => {
if remaining_ticks > 0 {
GameStage::Starting(StartupSequence::CharactersVisible {
remaining_ticks: remaining_ticks.saturating_sub(1),
})
} else {
info!("Startup sequence completed, beginning gameplay");
GameStage::Playing
}
}
},
GameStage::PlayerDying(sequence) => match sequence {
DyingSequence::Frozen { remaining_ticks } => {
if remaining_ticks > 0 {
GameStage::PlayerDying(DyingSequence::Frozen {
remaining_ticks: remaining_ticks.saturating_sub(1),
})
} else {
let death_animation = &player_death_animation.0;
let remaining_ticks = (death_animation.tiles.len() * death_animation.frame_duration as usize) as u32;
debug!(animation_frames = remaining_ticks, "Starting player death animation");
GameStage::PlayerDying(DyingSequence::Animating { remaining_ticks })
}
}
DyingSequence::Animating { remaining_ticks } => {
if remaining_ticks > 0 {
GameStage::PlayerDying(DyingSequence::Animating {
remaining_ticks: remaining_ticks.saturating_sub(1),
})
} else {
GameStage::PlayerDying(DyingSequence::Hidden { remaining_ticks: 60 })
}
}
DyingSequence::Hidden { remaining_ticks } => {
if remaining_ticks > 0 {
GameStage::PlayerDying(DyingSequence::Hidden {
remaining_ticks: remaining_ticks.saturating_sub(1),
})
} else {
player_lives.0 = player_lives.0.saturating_sub(1);
if player_lives.0 > 0 {
info!(remaining_lives = player_lives.0, "Player died, returning to startup sequence");
GameStage::Starting(StartupSequence::CharactersVisible { remaining_ticks: 60 })
} else {
info!("All lives lost, game over");
GameStage::GameOver
}
}
}
},
GameStage::GameOver => *game_state,
});
if old_state == new_state {
return;
}
if !old_state.too_similar(&new_state) {
debug!(old_state = ?old_state, new_state = ?new_state, "Game stage transition");
}
match (old_state, new_state) {
(GameStage::Playing, GameStage::GhostEatenPause { ghost_entity, node, .. }) => {
// Freeze the player & non-eaten ghosts
commands.entity(player.0).insert(Frozen);
commands.entity(ghost_entity).insert(Frozen);
for (entity, _, _, state) in ghost_query.iter_mut() {
// Only freeze ghosts that are not currently eaten
if *state != GhostState::Eyes {
debug!(ghost = ?entity, "Freezing ghost");
commands.entity(entity).insert(Frozen);
}
}
// Hide the player & eaten ghost
commands.entity(player.0).insert(Visibility::hidden());
commands.entity(ghost_entity).insert(Visibility::hidden());
// Spawn bonus points entity at Pac-Man's position
commands.trigger(SpawnTrigger::Bonus {
position: Position::Stopped { node },
// TODO: Doubling score value for each consecutive ghost eaten
value: 200,
ttl: 30,
});
}
(GameStage::GhostEatenPause { ghost_entity, .. }, GameStage::Playing) => {
// Unfreeze and reveal the player & all ghosts
commands.entity(player.0).remove::<Frozen>().insert(Visibility::visible());
for (entity, _, _, _) in ghost_query.iter_mut() {
commands.entity(entity).remove::<Frozen>().insert(Visibility::visible());
}
// Reveal the eaten ghost and switch it to Eyes state
commands.entity(ghost_entity).insert(GhostState::Eyes);
}
(_, GameStage::PlayerDying(DyingSequence::Frozen { .. })) => {
// Freeze the player & ghosts
commands.entity(player.0).insert(Frozen);
for (entity, _, _, _) in ghost_query.iter_mut() {
commands.entity(entity).insert(Frozen);
}
}
(GameStage::PlayerDying(DyingSequence::Frozen { .. }), GameStage::PlayerDying(DyingSequence::Animating { .. })) => {
// Hide the ghosts
for (entity, _, _, _) in ghost_query.iter_mut() {
commands.entity(entity).insert(Visibility::hidden());
}
// Start Pac-Man's death animation
commands
.entity(player.0)
.remove::<DirectionalAnimation>()
.insert((Dying, player_death_animation.0.clone()));
// Play the death sound
audio_events.write(AudioEvent::PlaySound(crate::audio::Sound::PacmanDeath));
}
(_, GameStage::PlayerDying(DyingSequence::Hidden { .. })) => {
// Pac-Man's death animation is complete, so he should be hidden just like the ghosts.
// Then, we reset them all back to their original positions and states.
// Freeze the blinking power pellets, force them to be visible (if they were hidden by blinking)
for entity in blinking_query.iter_mut() {
commands.entity(entity).insert(Frozen).insert(Visibility::visible());
}
// Delete any fruit entities
for (entity, _) in item_query
.iter_mut()
.filter(|(_, entity_type)| matches!(entity_type, EntityType::Fruit(_)))
{
commands.entity(entity).despawn();
}
// Reset the player animation
commands
.entity(player.0)
.remove::<(Dying, LinearAnimation, Looping)>()
.insert((
Velocity {
speed: constants::mechanics::PLAYER_SPEED,
direction: Direction::Left,
},
Position::Stopped {
node: map.start_positions.pacman,
},
player_animation.0.clone(),
Visibility::hidden(),
Frozen,
));
// Reset ghost positions and state
for (ghost_entity, ghost, _, _) in ghost_query.iter_mut() {
commands.entity(ghost_entity).insert((
GhostState::Normal,
Position::Stopped {
node: match ghost {
Ghost::Blinky => map.start_positions.blinky,
Ghost::Pinky => map.start_positions.pinky,
Ghost::Inky => map.start_positions.inky,
Ghost::Clyde => map.start_positions.clyde,
},
},
Frozen,
Visibility::hidden(),
));
}
}
(_, GameStage::Starting(StartupSequence::CharactersVisible { .. })) => {
// Unhide the player & ghosts
commands.entity(player.0).insert(Visibility::visible());
for (entity, _, _, _) in ghost_query.iter_mut() {
commands.entity(entity).insert(Visibility::visible());
}
}
(GameStage::Starting(StartupSequence::CharactersVisible { .. }), GameStage::Playing) => {
// Unfreeze the player & ghosts & blinking
commands.entity(player.0).remove::<Frozen>();
for (entity, _, _, _) in ghost_query.iter_mut() {
commands.entity(entity).remove::<Frozen>();
}
for entity in blinking_query.iter_mut() {
commands.entity(entity).remove::<Frozen>();
}
// Reset intro flag for the next round
intro_played.0 = false;
}
(_, GameStage::GameOver) => {
// Freeze blinking
for entity in blinking_query.iter_mut() {
commands.entity(entity).insert(Frozen);
}
}
_ => {}
}
*game_state = new_state;
}

View File

@@ -0,0 +1,65 @@
use glam::U16Vec2;
use crate::{map::direction::Direction, texture::sprite::AtlasTile};
/// A sequence of tiles for animation, backed by a vector.
#[derive(Debug, Clone)]
pub struct TileSequence {
tiles: Vec<AtlasTile>,
}
impl TileSequence {
/// Creates a new tile sequence from a slice of tiles.
pub fn new(tiles: &[AtlasTile]) -> Self {
Self { tiles: tiles.to_vec() }
}
/// Returns the tile at the given frame index, wrapping if necessary
pub fn get_tile(&self, frame: usize) -> AtlasTile {
if self.tiles.is_empty() {
// Return a default or handle the error appropriately
// For now, let's return a default tile, assuming it's a sensible default
return AtlasTile {
pos: U16Vec2::ZERO,
size: U16Vec2::ZERO,
color: None,
};
}
self.tiles[frame % self.tiles.len()]
}
pub fn len(&self) -> usize {
self.tiles.len()
}
/// Checks if the sequence contains any tiles.
pub fn is_empty(&self) -> bool {
self.tiles.is_empty()
}
}
/// A collection of tile sequences for each cardinal direction.
#[derive(Debug, Clone)]
pub struct DirectionalTiles {
pub up: TileSequence,
pub down: TileSequence,
pub left: TileSequence,
pub right: TileSequence,
}
impl DirectionalTiles {
/// Creates a new DirectionalTiles with different sequences per direction
pub fn new(up: TileSequence, down: TileSequence, left: TileSequence, right: TileSequence) -> Self {
Self { up, down, left, right }
}
/// Gets the tile sequence for the given direction
pub fn get(&self, direction: Direction) -> &TileSequence {
match direction {
Direction::Up => &self.up,
Direction::Down => &self.down,
Direction::Left => &self.left,
Direction::Right => &self.right,
}
}
}

View File

@@ -0,0 +1,5 @@
pub mod animated;
pub mod sprite;
pub mod sprites;
pub mod text;
pub mod ttf;

View File

@@ -0,0 +1,110 @@
use anyhow::Result;
use glam::U16Vec2;
use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget, Texture};
use std::collections::HashMap;
use tracing::debug;
use crate::error::TextureError;
/// Atlas frame mapping data loaded from JSON metadata files.
#[derive(Clone, Debug)]
pub struct AtlasMapper {
/// Mapping from sprite name to frame bounds within the atlas texture
pub frames: HashMap<String, MapperFrame>,
}
#[derive(Copy, Clone, Debug)]
pub struct MapperFrame {
pub pos: U16Vec2,
pub size: U16Vec2,
}
/// A single tile within a sprite atlas, defined by its position and size.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
pub struct AtlasTile {
pub pos: U16Vec2,
pub size: U16Vec2,
pub color: Option<Color>,
}
impl AtlasTile {
pub fn render<C: RenderTarget>(
&self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
dest: Rect,
) -> Result<(), TextureError> {
let color = self.color.unwrap_or(atlas.default_color.unwrap_or(Color::WHITE));
self.render_with_color(canvas, atlas, dest, color)?;
Ok(())
}
pub fn render_with_color<C: RenderTarget>(
&self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
dest: Rect,
color: Color,
) -> Result<(), TextureError> {
let src = Rect::new(self.pos.x as i32, self.pos.y as i32, self.size.x as u32, self.size.y as u32);
if atlas.last_modulation != Some(color) {
atlas.texture.set_color_mod(color.r, color.g, color.b);
atlas.last_modulation = Some(color);
}
canvas.copy(&atlas.texture, src, dest).map_err(TextureError::RenderFailed)?;
Ok(())
}
}
/// High-performance sprite atlas providing fast texture region lookups and rendering.
///
/// Combines a single large texture with metadata mapping to enable efficient
/// sprite rendering without texture switching. Caches color modulation state
/// to minimize redundant SDL2 calls and supports both named sprite lookups
/// and optional default color modulation configuration.
pub struct SpriteAtlas {
/// The combined texture containing all sprite frames
texture: Texture,
/// Mapping from sprite names to their pixel coordinates within the texture
tiles: HashMap<String, MapperFrame>,
default_color: Option<Color>,
/// Cached color modulation state to avoid redundant SDL2 calls
last_modulation: Option<Color>,
}
impl SpriteAtlas {
pub fn new(texture: Texture, mapper: AtlasMapper) -> Self {
let tile_count = mapper.frames.len();
let tiles = mapper.frames.into_iter().collect();
debug!(tile_count, "Created sprite atlas");
Self {
texture,
tiles,
default_color: None,
last_modulation: None,
}
}
/// Retrieves a sprite tile by name from the atlas with fast HashMap lookup.
///
/// Returns an `AtlasTile` containing the texture coordinates and dimensions
/// for the named sprite, or `None` if the sprite name is not found in the
/// atlas. The returned tile can be used for immediate rendering or stored
/// for repeated use in animations and entity sprites.
pub fn get_tile(&self, name: &str) -> Result<AtlasTile, TextureError> {
let frame = self.tiles.get(name).ok_or_else(|| {
debug!(tile_name = name, "Atlas tile not found");
TextureError::AtlasTileNotFound(name.to_string())
})?;
Ok(AtlasTile {
pos: frame.pos,
size: frame.size,
color: self.default_color,
})
}
}

View File

@@ -0,0 +1,133 @@
//! A structured representation of all sprite assets in the game.
//!
//! This module provides a set of enums to represent every sprite, allowing for
//! type-safe access to asset paths and avoiding the use of raw strings.
//! The `GameSprite` enum is the main entry point, and its `to_path` method
//! generates the correct path for a given sprite in the texture atlas.
use crate::{
map::direction::Direction,
systems::{FruitType, Ghost},
};
/// Represents the different sprites for Pac-Man.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum PacmanSprite {
/// A moving Pac-Man sprite for a given direction and animation frame.
Moving(Direction, u8),
/// The full, closed-mouth Pac-Man sprite.
Full,
/// A single frame of the dying animation.
Dying(u8),
}
/// Represents the color of a frightened ghost.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum FrightenedColor {
Blue,
White,
}
/// Represents the different sprites for ghosts.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GhostSprite {
/// The normal appearance of a ghost for a given type, direction, and animation frame.
Normal(Ghost, Direction, u8),
/// The frightened appearance of a ghost, with a specific color and animation frame.
Frightened(FrightenedColor, u8),
/// The "eyes only" appearance of a ghost after being eaten.
Eyes(Direction),
}
/// Represents the different sprites for the maze and collectibles.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum MazeSprite {
/// A specific tile of the maze.
Tile(u8),
/// A standard pellet.
Pellet,
/// An energizer/power pellet.
Energizer,
}
/// Represents the different effect sprites that can appear as bonus items.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum EffectSprite {
Bonus(u32),
}
/// A top-level enum that encompasses all game sprites.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum GameSprite {
Pacman(PacmanSprite),
Ghost(GhostSprite),
Maze(MazeSprite),
Fruit(FruitType),
Effect(EffectSprite),
}
impl GameSprite {
/// Generates the asset path for the sprite.
///
/// This path corresponds to the filename in the texture atlas JSON file.
pub fn to_path(self) -> String {
match self {
GameSprite::Pacman(PacmanSprite::Moving(dir, frame)) => format!(
"pacman/{}_{}.png",
dir.as_ref(),
match frame {
0 => "a",
1 => "b",
_ => panic!("Invalid animation frame"),
}
),
GameSprite::Pacman(PacmanSprite::Full) => "pacman/full.png".to_string(),
GameSprite::Pacman(PacmanSprite::Dying(frame)) => format!("pacman/death/{}.png", frame),
// Ghost sprites
GameSprite::Ghost(GhostSprite::Normal(ghost_type, dir, frame)) => {
let frame_char = match frame {
0 => 'a',
1 => 'b',
_ => panic!("Invalid animation frame"),
};
format!(
"ghost/{}/{}_{}.png",
ghost_type.as_str(),
dir.as_ref().to_lowercase(),
frame_char
)
}
GameSprite::Ghost(GhostSprite::Frightened(color, frame)) => {
let frame_char = match frame {
0 => 'a',
1 => 'b',
_ => panic!("Invalid animation frame"),
};
let color_str = match color {
FrightenedColor::Blue => "blue",
FrightenedColor::White => "white",
};
format!("ghost/frightened/{}_{}.png", color_str, frame_char)
}
GameSprite::Ghost(GhostSprite::Eyes(dir)) => format!("ghost/eyes/{}.png", dir.as_ref().to_lowercase()),
// Maze sprites
GameSprite::Maze(MazeSprite::Tile(index)) => format!("maze/tiles/{}.png", index),
GameSprite::Maze(MazeSprite::Pellet) => "maze/pellet.png".to_string(),
GameSprite::Maze(MazeSprite::Energizer) => "maze/energizer.png".to_string(),
// Fruit sprites
GameSprite::Fruit(fruit) => format!("edible/{}.png", Into::<&'static str>::into(fruit)),
// Effect sprites
GameSprite::Effect(EffectSprite::Bonus(value)) => match value {
100 | 200 | 300 | 400 | 700 | 800 | 1000 | 2000 | 3000 | 5000 => format!("effects/{}.png", value),
_ => {
tracing::warn!("Invalid bonus value: {}", value);
"effects/100.png".to_string()
}
},
}
}
}

187
pacman/src/texture/text.rs Normal file
View File

@@ -0,0 +1,187 @@
//! This module provides text rendering using the texture atlas.
//!
//! The TextTexture system renders text from the atlas using character mapping.
//! It supports a subset of characters with special handling for characters that
//! can't be used in filenames.
//!
//! # Example Usage
//!
//! ```rust
//! use pacman::texture::text::TextTexture;
//! use sdl2::pixels::Color;
//!
//! // Create a text texture with 1.0 scale (8x8 pixels per character)
//! let mut text_renderer = TextTexture::new(1.0);
//!
//! // Set default color for all text
//! text_renderer.set_color(Color::WHITE);
//!
//! // Render text with default color
//! text_renderer.render(&mut canvas, &mut atlas, "Hello", position)?;
//!
//! // Render text with specific color
//! text_renderer.render_with_color(&mut canvas, &mut atlas, "World", position, Color::YELLOW)?;
//!
//! // Set scale for larger text
//! text_renderer.set_scale(2.0);
//!
//! // Calculate text width for positioning
//! let width = text_renderer.text_width("GAME OVER");
//! let height = text_renderer.text_height();
//! ```
//!
//! # Supported Characters
//!
//! - Letters: A-Z, a-z
//! - Numbers: 0-9
//! - Common symbols: ! ? . , : ; - _ ( ) [ ] { } < > = + * / \ | & @ # $ % ^ ~ ` ' "
//! - Space character
//!
//! # Character Mapping
//!
//! Most characters use their literal name (e.g., "A.png", "1.png").
//! Special characters use alternative names:
//! - `"` → "text/_double_quote.png"
//! - `'` → "text/_single_quote.png"
//! - `\` → "text/\\backslash.png"
//! - ` ` (space) → "text/space.png"
//!
//! # Memory Optimization
//!
//! The system caches character tiles in a HashMap to avoid repeated
//! atlas lookups. Only tiles for used characters are stored in memory.
use anyhow::Result;
use glam::UVec2;
use sdl2::pixels::Color;
use sdl2::render::{Canvas, RenderTarget};
use std::collections::HashMap;
use crate::texture::sprite::{AtlasTile, SpriteAtlas};
/// Converts a character to its tile name in the atlas.
fn char_to_tile_name(c: char) -> Option<String> {
let name = match c {
// Letters A-Z
'A'..='Z' | '0'..='9' => format!("text/{c}.png"),
// Special characters
'!' => "text/!.png".to_string(),
'-' => "text/-.png".to_string(),
'"' => "text/_double_quote.png".to_string(),
'/' => "text/_forward_slash.png".to_string(),
// Skip spaces for now - they don't have a tile
' ' => return None,
// Unsupported character
_ => return None,
};
Some(name)
}
/// A text texture that renders characters from the atlas.
#[derive(Debug)]
pub struct TextTexture {
char_map: HashMap<char, AtlasTile>,
scale: f32,
default_color: Option<Color>,
}
impl Default for TextTexture {
fn default() -> Self {
Self {
scale: 1.0,
char_map: Default::default(),
default_color: None,
}
}
}
impl TextTexture {
/// Creates a new text texture with the given scale.
pub fn new(scale: f32) -> Self {
Self {
scale,
..Default::default()
}
}
#[allow(dead_code)]
pub fn get_char_map(&self) -> &HashMap<char, AtlasTile> {
&self.char_map
}
pub fn get_tile(&mut self, c: char, atlas: &mut SpriteAtlas) -> Result<Option<&AtlasTile>> {
if self.char_map.contains_key(&c) {
return Ok(self.char_map.get(&c));
}
if let Some(tile_name) = char_to_tile_name(c) {
let tile = atlas.get_tile(&tile_name)?;
self.char_map.insert(c, tile);
Ok(self.char_map.get(&c))
} else {
Ok(None)
}
}
/// Renders a string of text at the given position using the default color.
pub fn render<C: RenderTarget>(
&mut self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
text: &str,
position: UVec2,
) -> Result<()> {
let color = self.default_color.unwrap_or(Color::WHITE);
self.render_with_color(canvas, atlas, text, position, color)
}
/// Renders a string of text at the given position with a specific color.
pub fn render_with_color<C: RenderTarget>(
&mut self,
canvas: &mut Canvas<C>,
atlas: &mut SpriteAtlas,
text: &str,
position: UVec2,
color: Color,
) -> Result<()> {
let mut x_offset = 0;
let char_width = (8.0 * self.scale) as u32;
let char_height = self.text_height();
for c in text.chars() {
// Get the tile from the char_map, or insert it if it doesn't exist
if let Some(tile) = self.get_tile(c, atlas)? {
// Render the tile with the specified color
let dest = sdl2::rect::Rect::new((position.x + x_offset) as i32, position.y as i32, char_width, char_height);
tile.render_with_color(canvas, atlas, dest, color)?;
}
// Always advance x_offset for all characters (including spaces)
x_offset += char_width;
}
Ok(())
}
/// Calculates the width of a string in pixels at the current scale.
pub fn text_width(&self, text: &str) -> u32 {
let char_width = (8.0 * self.scale) as u32;
let mut width = 0;
for c in text.chars() {
if char_to_tile_name(c).is_some() || c == ' ' {
width += char_width;
}
}
width
}
/// Calculates the height of text in pixels at the current scale.
pub fn text_height(&self) -> u32 {
(8.0 * self.scale) as u32
}
}

269
pacman/src/texture/ttf.rs Normal file
View File

@@ -0,0 +1,269 @@
//! TTF font rendering using pre-rendered character atlas.
//!
//! This module provides efficient TTF font rendering by pre-rendering all needed
//! characters into a texture atlas at startup, avoiding expensive SDL2 font
//! surface-to-texture conversions every frame.
use glam::{UVec2, Vec2};
use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::render::{Canvas, RenderTarget, Texture, TextureCreator};
use sdl2::ttf::Font;
use sdl2::video::WindowContext;
use std::collections::HashMap;
use crate::error::{GameError, TextureError};
/// Character atlas tile representing a single rendered character
#[derive(Clone, Copy, Debug)]
pub struct TtfCharTile {
pub pos: UVec2,
pub size: UVec2,
pub advance: u32, // Character advance width for proportional fonts
}
/// TTF text atlas containing pre-rendered characters for efficient rendering
pub struct TtfAtlas {
/// The texture containing all rendered characters
texture: Texture,
/// Mapping from character to its position and size in the atlas
char_tiles: HashMap<char, TtfCharTile>,
/// Cached color modulation state to avoid redundant SDL2 calls
last_modulation: Option<Color>,
/// Cached maximum character height
max_char_height: u32,
}
const TTF_CHARS: &str = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.,:-/()ms μµ%± ";
impl TtfAtlas {
/// Creates a new TTF text atlas by pre-rendering all needed characters.
///
/// This should be called once at startup. It renders all characters that might
/// be used in text rendering into a single texture atlas for efficient GPU rendering.
pub fn new(texture_creator: &TextureCreator<WindowContext>, font: &Font) -> Result<Self, GameError> {
// Calculate character dimensions and advance widths for proportional fonts
let mut char_tiles = HashMap::new();
let mut max_height = 0u32;
let mut total_width = 0u32;
let mut char_metrics = Vec::new();
// First pass: measure all characters
for c in TTF_CHARS.chars() {
if c == ' ' {
// Handle space character specially - measure a non-space character for height
let space_height = font.size_of("0").map_err(|e| GameError::Sdl(e.to_string()))?.1;
let space_advance = font.size_of(" ").map_err(|e| GameError::Sdl(e.to_string()))?.0;
char_tiles.insert(
c,
TtfCharTile {
pos: UVec2::ZERO, // Will be set during population
size: UVec2::new(0, space_height), // Space has no visual content
advance: space_advance,
},
);
max_height = max_height.max(space_height);
char_metrics.push((c, 0, space_height, space_advance));
} else {
let (advance, height) = font.size_of(&c.to_string()).map_err(|e| GameError::Sdl(e.to_string()))?;
char_tiles.insert(
c,
TtfCharTile {
pos: UVec2::ZERO, // Will be set during population
size: UVec2::new(advance, height),
advance,
},
);
max_height = max_height.max(height);
total_width += advance;
char_metrics.push((c, advance, height, advance));
}
}
// Calculate atlas dimensions (pack characters horizontally for better space utilization)
let atlas_size = UVec2::new(total_width, max_height);
// Create atlas texture as a render target
let mut atlas_texture = texture_creator
.create_texture_target(None, atlas_size.x, atlas_size.y)
.map_err(|e| GameError::Sdl(e.to_string()))?;
atlas_texture.set_blend_mode(sdl2::render::BlendMode::Blend);
// Second pass: calculate positions
let mut current_x = 0u32;
for (c, width, _height, _advance) in char_metrics {
if let Some(tile) = char_tiles.get_mut(&c) {
tile.pos = UVec2::new(current_x, 0);
current_x += width;
}
}
Ok(Self {
texture: atlas_texture,
char_tiles,
last_modulation: None,
max_char_height: max_height,
})
}
/// Renders all characters to the atlas texture using a canvas.
/// This must be called after creation to populate the atlas.
pub fn populate_atlas<C: RenderTarget>(
&mut self,
canvas: &mut Canvas<C>,
texture_creator: &TextureCreator<WindowContext>,
font: &Font,
) -> Result<(), GameError> {
let mut render_error: Option<GameError> = None;
let result = canvas.with_texture_canvas(&mut self.texture, |atlas_canvas| {
// Clear with transparent background
atlas_canvas.set_draw_color(Color::RGBA(0, 0, 0, 0));
atlas_canvas.clear();
for c in TTF_CHARS.chars() {
if c == ' ' {
// Skip rendering space character - it has no visual content
continue;
}
// Render character to surface
let surface = match font.render(&c.to_string()).blended(Color::WHITE) {
Ok(s) => s,
Err(e) => {
render_error = Some(GameError::Sdl(e.to_string()));
return;
}
};
// Create texture from surface
let char_texture = match texture_creator.create_texture_from_surface(&surface) {
Ok(t) => t,
Err(e) => {
render_error = Some(GameError::Sdl(e.to_string()));
return;
}
};
// Get character tile info
let tile = match self.char_tiles.get(&c) {
Some(t) => t,
None => {
render_error = Some(GameError::Sdl(format!("Character '{}' not found in atlas tiles", c)));
return;
}
};
// Copy character to atlas
let dest = Rect::new(tile.pos.x as i32, tile.pos.y as i32, tile.size.x, tile.size.y);
if let Err(e) = atlas_canvas.copy(&char_texture, None, dest) {
render_error = Some(GameError::Sdl(e.to_string()));
return;
}
}
});
// Check the result of with_texture_canvas and any render error
if let Err(e) = result {
return Err(GameError::Sdl(e.to_string()));
}
if let Some(error) = render_error {
return Err(error);
}
Ok(())
}
/// Gets a character tile from the atlas
pub fn get_char_tile(&self, c: char) -> Option<&TtfCharTile> {
self.char_tiles.get(&c)
}
}
/// TTF text renderer that uses the pre-rendered character atlas
pub struct TtfRenderer {
scale: f32,
}
impl TtfRenderer {
pub fn new(scale: f32) -> Self {
Self { scale }
}
/// Renders a string of text at the given position with the specified color
pub fn render_text<C: RenderTarget>(
&self,
canvas: &mut Canvas<C>,
atlas: &mut TtfAtlas,
text: &str,
position: Vec2,
color: Color,
) -> Result<(), TextureError> {
let mut x_offset = 0.0;
// Apply color modulation once at the beginning if needed
if atlas.last_modulation != Some(color) {
atlas.texture.set_color_mod(color.r, color.g, color.b);
atlas.texture.set_alpha_mod(color.a);
atlas.last_modulation = Some(color);
}
for c in text.chars() {
// Get character tile info first to avoid borrowing conflicts
let char_tile = atlas.get_char_tile(c);
if let Some(char_tile) = char_tile {
if char_tile.size.x > 0 && char_tile.size.y > 0 {
// Only render non-space characters
let dest = Rect::new(
(position.x + x_offset) as i32,
position.y as i32,
(char_tile.size.x as f32 * self.scale) as u32,
(char_tile.size.y as f32 * self.scale) as u32,
);
// Render the character directly
let src = Rect::new(
char_tile.pos.x as i32,
char_tile.pos.y as i32,
char_tile.size.x,
char_tile.size.y,
);
canvas.copy(&atlas.texture, src, dest).map_err(TextureError::RenderFailed)?;
}
// Advance by character advance width (proportional spacing)
x_offset += char_tile.advance as f32 * self.scale;
} else {
// Fallback for unsupported characters - use a reasonable default
x_offset += 8.0 * self.scale;
}
}
Ok(())
}
/// Calculate the width of a text string in pixels
pub fn text_width(&self, atlas: &TtfAtlas, text: &str) -> u32 {
let mut total_width = 0u32;
for c in text.chars() {
if let Some(char_tile) = atlas.get_char_tile(c) {
total_width += (char_tile.advance as f32 * self.scale) as u32;
} else {
// Fallback for unsupported characters
total_width += (8.0 * self.scale) as u32;
}
}
total_width
}
/// Calculate the height of text in pixels
pub fn text_height(&self, atlas: &TtfAtlas) -> u32 {
// Find the maximum height among all characters
(atlas.max_char_height as f32 * self.scale) as u32
}
}