mirror of
https://github.com/Xevion/Pac-Man.git
synced 2025-12-06 07:15:41 -06:00
docs: document many major functions, types, enums for important functionality
This commit is contained in:
25
src/app.rs
25
src/app.rs
@@ -12,6 +12,11 @@ use crate::constants::{CANVAS_SIZE, LOOP_TIME, SCALE};
|
||||
use crate::game::Game;
|
||||
use crate::platform::get_platform;
|
||||
|
||||
/// Main application wrapper that manages SDL initialization, window lifecycle, and the game loop.
|
||||
///
|
||||
/// Handles platform-specific setup, maintains consistent frame timing, and delegates
|
||||
/// game logic to the contained `Game` instance. The app manages focus state to
|
||||
/// optimize CPU usage when the window loses focus.
|
||||
pub struct App {
|
||||
pub game: Game,
|
||||
last_tick: Instant,
|
||||
@@ -20,6 +25,16 @@ pub struct App {
|
||||
}
|
||||
|
||||
impl App {
|
||||
/// Initializes SDL subsystems, creates the game window, and sets up the game state.
|
||||
///
|
||||
/// Performs comprehensive initialization including video/audio subsystems, platform-specific
|
||||
/// console setup, window creation with proper scaling, and canvas configuration. All SDL
|
||||
/// resources are leaked to maintain 'static lifetimes required by the game architecture.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// Returns `GameError::Sdl` if any SDL initialization step fails, or propagates
|
||||
/// errors from `Game::new()` during game state setup.
|
||||
pub fn new() -> GameResult<Self> {
|
||||
let sdl_context: &'static Sdl = Box::leak(Box::new(sdl2::init().map_err(|e| GameError::Sdl(e.to_string()))?));
|
||||
let video_subsystem: &'static VideoSubsystem =
|
||||
@@ -70,6 +85,16 @@ impl App {
|
||||
})
|
||||
}
|
||||
|
||||
/// Executes a single frame of the game loop with consistent timing and optional sleep.
|
||||
///
|
||||
/// Calculates delta time since the last frame, runs game logic via `game.tick()`,
|
||||
/// and implements frame rate limiting by sleeping for remaining time if the frame
|
||||
/// completed faster than the target `LOOP_TIME`. Sleep behavior varies based on
|
||||
/// window focus to conserve CPU when the game is not active.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// `true` if the game should continue running, `false` if the game requested exit.
|
||||
pub fn run(&mut self) -> bool {
|
||||
{
|
||||
let start = Instant::now();
|
||||
|
||||
23
src/asset.rs
23
src/asset.rs
@@ -5,17 +5,28 @@
|
||||
use std::borrow::Cow;
|
||||
use strum_macros::EnumIter;
|
||||
|
||||
/// Enumeration of all game assets with cross-platform loading support.
|
||||
///
|
||||
/// Each variant corresponds to a specific file that can be loaded either from
|
||||
/// binary-embedded data or embedded filesystem (Emscripten).
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, EnumIter)]
|
||||
pub enum Asset {
|
||||
Wav1,
|
||||
Wav2,
|
||||
Wav3,
|
||||
Wav4,
|
||||
/// Main sprite atlas containing all game graphics (atlas.png)
|
||||
AtlasImage,
|
||||
/// Terminal Vector font for text rendering (TerminalVector.ttf)
|
||||
Font,
|
||||
}
|
||||
|
||||
impl Asset {
|
||||
/// Returns the relative file path for this asset within the game's asset directory.
|
||||
///
|
||||
/// Paths are consistent across platforms and used by the Emscripten backend
|
||||
/// for filesystem loading. Desktop builds embed assets directly and don't
|
||||
/// use these paths at runtime.
|
||||
#[allow(dead_code)]
|
||||
pub fn path(&self) -> &str {
|
||||
use Asset::*;
|
||||
@@ -35,7 +46,17 @@ mod imp {
|
||||
use crate::error::AssetError;
|
||||
use crate::platform::get_platform;
|
||||
|
||||
/// Returns the raw bytes of the given asset.
|
||||
/// Loads asset bytes using the appropriate platform-specific method.
|
||||
///
|
||||
/// On desktop platforms, returns embedded compile-time data via `include_bytes!`.
|
||||
/// On Emscripten, loads from the filesystem using the asset's path. The returned
|
||||
/// `Cow` allows zero-copy access to embedded data while supporting owned data
|
||||
/// when loaded from disk.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// Returns `AssetError::NotFound` if the asset file cannot be located (Emscripten only),
|
||||
/// or `AssetError::Io` for filesystem I/O failures.
|
||||
pub fn get_asset_bytes(asset: Asset) -> Result<Cow<'static, [u8]>, AssetError> {
|
||||
get_platform().get_asset_bytes(asset)
|
||||
}
|
||||
|
||||
23
src/audio.rs
23
src/audio.rs
@@ -114,9 +114,11 @@ impl Audio {
|
||||
}
|
||||
}
|
||||
|
||||
/// Plays the "eat" sound effect.
|
||||
/// Plays the next waka eating sound in the cycle of four variants.
|
||||
///
|
||||
/// If audio is disabled or muted, this function does nothing.
|
||||
/// Automatically rotates through the four eating sound assets. The sound plays on channel 0 and the internal sound index
|
||||
/// advances to the next variant. Silently returns if audio is disabled, muted,
|
||||
/// or no sounds were loaded successfully.
|
||||
#[allow(dead_code)]
|
||||
pub fn eat(&mut self) {
|
||||
if self.disabled || self.muted || self.sounds.is_empty() {
|
||||
@@ -136,9 +138,11 @@ impl Audio {
|
||||
self.next_sound_index = (self.next_sound_index + 1) % self.sounds.len();
|
||||
}
|
||||
|
||||
/// Instantly mute or unmute all channels.
|
||||
/// Instantly mutes or unmutes all audio channels by adjusting their volume.
|
||||
///
|
||||
/// If audio is disabled, this function does nothing.
|
||||
/// Sets all 4 mixer channels to zero volume when muting, or restores them to
|
||||
/// their default volume (32) when unmuting. The mute state is tracked internally
|
||||
/// regardless of whether audio is disabled, allowing the state to be preserved.
|
||||
pub fn set_mute(&mut self, mute: bool) {
|
||||
if !self.disabled {
|
||||
let channels = 4;
|
||||
@@ -151,12 +155,19 @@ impl Audio {
|
||||
self.muted = mute;
|
||||
}
|
||||
|
||||
/// Returns `true` if the audio is muted.
|
||||
/// Returns the current mute state regardless of whether audio is functional.
|
||||
///
|
||||
/// This tracks the user's mute preference and will return `true` if muted
|
||||
/// even when the audio system is disabled due to initialization failures.
|
||||
pub fn is_muted(&self) -> bool {
|
||||
self.muted
|
||||
}
|
||||
|
||||
/// Returns `true` if the audio system is disabled.
|
||||
/// Returns whether the audio system failed to initialize and is non-functional.
|
||||
///
|
||||
/// Audio can be disabled due to SDL2_mixer initialization failures, missing
|
||||
/// audio device, or failure to load any sound assets. When disabled, all
|
||||
/// audio operations become no-ops.
|
||||
#[allow(dead_code)]
|
||||
pub fn is_disabled(&self) -> bool {
|
||||
self.disabled
|
||||
|
||||
@@ -4,6 +4,11 @@ use std::time::Duration;
|
||||
|
||||
use glam::UVec2;
|
||||
|
||||
/// Target frame duration for 60 FPS game loop timing.
|
||||
///
|
||||
/// Calculated as 1/60th of a second (≈16.67ms).
|
||||
///
|
||||
/// Written out explicitly to satisfy const-eval constraints.
|
||||
pub const LOOP_TIME: Duration = Duration::from_nanos((1_000_000_000.0 / 60.0) as u64);
|
||||
|
||||
/// The size of each cell, in pixels.
|
||||
@@ -14,9 +19,16 @@ pub const BOARD_CELL_SIZE: UVec2 = UVec2::new(28, 31);
|
||||
/// The scale factor for the window (integer zoom)
|
||||
pub const SCALE: f32 = 2.6;
|
||||
|
||||
/// The offset of the game board from the top-left corner of the window, in cells.
|
||||
/// Game board offset from window origin to reserve space for HUD elements.
|
||||
///
|
||||
/// The 3-cell vertical offset (24 pixels) provides space at the top of the
|
||||
/// screen for score display, player lives, and other UI elements.
|
||||
pub const BOARD_CELL_OFFSET: UVec2 = UVec2::new(0, 3);
|
||||
/// The offset of the game board from the top-left corner of the window, in pixels.
|
||||
|
||||
/// Pixel-space equivalent of `BOARD_CELL_OFFSET` for rendering calculations.
|
||||
///
|
||||
/// Automatically calculated from the cell offset to maintain consistency
|
||||
/// when the cell size changes. Used for positioning sprites and debug overlays.
|
||||
pub const BOARD_PIXEL_OFFSET: UVec2 = UVec2::new(BOARD_CELL_OFFSET.x * CELL_SIZE, BOARD_CELL_OFFSET.y * CELL_SIZE);
|
||||
/// The size of the canvas, in pixels.
|
||||
pub const CANVAS_SIZE: UVec2 = UVec2::new(
|
||||
@@ -24,22 +36,24 @@ pub const CANVAS_SIZE: UVec2 = UVec2::new(
|
||||
(BOARD_CELL_SIZE.y + BOARD_CELL_OFFSET.y) * CELL_SIZE,
|
||||
);
|
||||
|
||||
/// An enum representing the different types of tiles on the map.
|
||||
/// Map tile types that define gameplay behavior and collision properties.
|
||||
#[derive(Debug, Clone, Copy, PartialEq)]
|
||||
pub enum MapTile {
|
||||
/// An empty tile.
|
||||
/// Traversable space with no collectible items
|
||||
Empty,
|
||||
/// A wall tile.
|
||||
Wall,
|
||||
/// A regular pellet.
|
||||
/// Small collectible. Implicitly a traversable tile.
|
||||
Pellet,
|
||||
/// A power pellet.
|
||||
/// Large collectible. Implicitly a traversable tile.
|
||||
PowerPellet,
|
||||
/// A tunnel tile.
|
||||
/// Special traversable tile that connects to tunnel portals.
|
||||
Tunnel,
|
||||
}
|
||||
|
||||
/// The raw layout of the game board, as a 2D array of characters.
|
||||
/// ASCII art representation of the classic Pac-Man maze layout.
|
||||
///
|
||||
/// Uses character symbols to define the game world. This layout is parsed by `MapTileParser`
|
||||
/// to generate the navigable graph and collision geometry.
|
||||
pub const RAW_BOARD: [&str; BOARD_CELL_SIZE.y as usize] = [
|
||||
"############################",
|
||||
"#............##............#",
|
||||
|
||||
@@ -2,19 +2,36 @@ use bevy_ecs::{entity::Entity, event::Event};
|
||||
|
||||
use crate::map::direction::Direction;
|
||||
|
||||
/// Player input commands that trigger specific game actions.
|
||||
///
|
||||
/// Commands are generated by the input system in response to keyboard events
|
||||
/// and processed by appropriate game systems to modify state or behavior.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub enum GameCommand {
|
||||
/// Request immediate game shutdown
|
||||
Exit,
|
||||
/// Set Pac-Man's movement direction
|
||||
MovePlayer(Direction),
|
||||
/// Cycle through debug visualization modes
|
||||
ToggleDebug,
|
||||
/// Toggle audio mute state
|
||||
MuteAudio,
|
||||
/// Restart the current level with fresh entity positions and items
|
||||
ResetLevel,
|
||||
/// Pause or resume game ticking logic
|
||||
TogglePause,
|
||||
}
|
||||
|
||||
/// Global events that flow through the ECS event system to coordinate game behavior.
|
||||
///
|
||||
/// Events enable loose coupling between systems - input generates commands, collision
|
||||
/// detection reports overlaps, and various systems respond appropriately without
|
||||
/// direct dependencies.
|
||||
#[derive(Event, Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub enum GameEvent {
|
||||
/// Player input command to be processed by relevant game systems
|
||||
Command(GameCommand),
|
||||
/// Physical overlap detected between two entities requiring gameplay response
|
||||
Collision(Entity, Entity),
|
||||
}
|
||||
|
||||
|
||||
50
src/game.rs
50
src/game.rs
@@ -48,16 +48,37 @@ use crate::{
|
||||
texture::sprite::{AtlasMapper, SpriteAtlas},
|
||||
};
|
||||
|
||||
/// The `Game` struct is the main entry point for the game.
|
||||
/// Core game state manager built on the Bevy ECS architecture.
|
||||
///
|
||||
/// It contains the game's state and logic, and is responsible for
|
||||
/// handling user input, updating the game state, and rendering the game.
|
||||
/// Orchestrates all game systems through a centralized `World` containing entities,
|
||||
/// components, and resources, while a `Schedule` defines system execution order.
|
||||
/// Handles initialization of graphics resources, entity spawning, and per-frame
|
||||
/// game logic coordination. SDL2 resources are stored as `NonSend` to respect
|
||||
/// thread safety requirements while integrating with the ECS.
|
||||
pub struct Game {
|
||||
pub world: World,
|
||||
pub schedule: Schedule,
|
||||
}
|
||||
|
||||
impl Game {
|
||||
/// Initializes the complete game state including ECS world, graphics, and entity spawning.
|
||||
///
|
||||
/// Performs extensive setup: creates render targets and debug textures, loads and parses
|
||||
/// the sprite atlas, renders the static map to a cached texture, builds the navigation
|
||||
/// graph from the board layout, spawns Pac-Man with directional animations, creates
|
||||
/// all four ghosts with their AI behavior, and places collectible items throughout
|
||||
/// the maze. Registers event types and configures the system execution schedule.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `canvas` - SDL2 rendering context with static lifetime for ECS storage
|
||||
/// * `texture_creator` - SDL2 texture factory for creating render targets
|
||||
/// * `event_pump` - SDL2 event polling interface for input handling
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// Returns `GameError` for SDL2 failures, asset loading problems, atlas parsing
|
||||
/// errors, or entity initialization issues.
|
||||
pub fn new(
|
||||
canvas: &'static mut Canvas<Window>,
|
||||
texture_creator: &'static mut TextureCreator<WindowContext>,
|
||||
@@ -289,7 +310,12 @@ impl Game {
|
||||
Ok(Game { world, schedule })
|
||||
}
|
||||
|
||||
/// Spowns all four ghosts at their starting positions with appropriate textures.
|
||||
/// Creates and spawns all four ghosts with unique AI personalities and directional animations.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// Returns `GameError::Texture` if any ghost sprite cannot be found in the atlas,
|
||||
/// typically indicating missing or misnamed sprite files.
|
||||
fn spawn_ghosts(world: &mut World) -> GameResult<()> {
|
||||
// Extract the data we need first to avoid borrow conflicts
|
||||
let ghost_start_positions = {
|
||||
@@ -394,9 +420,21 @@ impl Game {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Ticks the game state.
|
||||
/// Executes one frame of game logic by running all scheduled ECS systems.
|
||||
///
|
||||
/// Returns true if the game should exit.
|
||||
/// Updates the world's delta time resource and runs the complete system pipeline:
|
||||
/// input processing, entity movement, collision detection, item collection,
|
||||
/// audio playback, animation updates, and rendering. Each system operates on
|
||||
/// relevant entities and modifies world state, with the schedule ensuring
|
||||
/// proper execution order and data dependencies.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `dt` - Frame delta time in seconds for time-based animations and movement
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// `true` if the game should terminate (exit command received), `false` to continue
|
||||
pub fn tick(&mut self, dt: f32) -> bool {
|
||||
self.world.insert_resource(DeltaTime(dt));
|
||||
|
||||
|
||||
@@ -11,25 +11,37 @@ use tracing::debug;
|
||||
|
||||
use crate::error::{GameResult, MapError};
|
||||
|
||||
/// The starting positions of the entities in the game.
|
||||
/// Predefined spawn locations for all game entities within the navigation graph.
|
||||
///
|
||||
/// These positions are determined during map parsing and graph construction.
|
||||
pub struct NodePositions {
|
||||
/// Pac-Man's starting position in the lower section of the maze
|
||||
pub pacman: NodeId,
|
||||
/// Blinky starts at the ghost house entrance
|
||||
pub blinky: NodeId,
|
||||
/// Pinky starts in the left area of the ghost house
|
||||
pub pinky: NodeId,
|
||||
/// Inky starts in the right area of the ghost house
|
||||
pub inky: NodeId,
|
||||
/// Clyde starts in the center of the ghost house
|
||||
pub clyde: NodeId,
|
||||
}
|
||||
|
||||
/// The main map structure containing the game board and navigation graph.
|
||||
/// Complete maze representation combining visual layout with navigation pathfinding.
|
||||
///
|
||||
/// Transforms the ASCII board layout into a fully connected navigation graph
|
||||
/// while preserving tile-based collision and rendering data. The graph enables
|
||||
/// smooth entity movement with proper pathfinding, while the grid mapping allows
|
||||
/// efficient spatial queries and debug visualization.
|
||||
#[derive(Resource)]
|
||||
pub struct Map {
|
||||
/// The node map for entity movement.
|
||||
/// Connected graph of navigable positions.
|
||||
pub graph: Graph,
|
||||
/// A mapping from grid positions to node IDs.
|
||||
/// Bidirectional mapping between 2D grid coordinates and graph node indices.
|
||||
pub grid_to_node: HashMap<IVec2, NodeId>,
|
||||
/// A mapping of the starting positions of the entities.
|
||||
/// Predetermined spawn locations for all game entities
|
||||
pub start_positions: NodePositions,
|
||||
/// The raw tile data for the map.
|
||||
/// 2D array of tile types for collision detection and rendering
|
||||
tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
|
||||
}
|
||||
|
||||
@@ -162,7 +174,18 @@ impl Map {
|
||||
})
|
||||
}
|
||||
|
||||
/// Builds the house structure in the graph.
|
||||
/// Constructs the ghost house area with restricted access and internal navigation.
|
||||
///
|
||||
/// Creates a multi-level ghost house with entrance control, internal movement
|
||||
/// areas, and starting positions for each ghost. The house entrance uses
|
||||
/// ghost-only traversal flags to prevent Pac-Man from entering while allowing
|
||||
/// ghosts to exit. Internal nodes are arranged in vertical lines to provide
|
||||
/// distinct starting areas for each ghost character.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// Tuple of node IDs: (house_entrance, left_center, center_center, right_center)
|
||||
/// representing the four key positions within the ghost house structure.
|
||||
fn build_house(
|
||||
graph: &mut Graph,
|
||||
grid_to_node: &HashMap<IVec2, NodeId>,
|
||||
@@ -296,7 +319,10 @@ impl Map {
|
||||
))
|
||||
}
|
||||
|
||||
/// Builds the tunnel connections in the graph.
|
||||
/// Creates horizontal tunnel portals for instant teleportation across the maze.
|
||||
///
|
||||
/// Establishes the tunnel system that allows entities to instantly travel from the left edge of the maze to the right edge.
|
||||
/// Creates hidden intermediate nodes beyond the visible tunnel entrances and connects them with zero-distance edges for instantaneous traversal.
|
||||
fn build_tunnels(
|
||||
graph: &mut Graph,
|
||||
grid_to_node: &HashMap<IVec2, NodeId>,
|
||||
|
||||
@@ -4,16 +4,21 @@ use crate::constants::{MapTile, BOARD_CELL_SIZE};
|
||||
use crate::error::ParseError;
|
||||
use glam::IVec2;
|
||||
|
||||
/// Represents the parsed data from a raw board layout.
|
||||
/// Structured representation of parsed ASCII board layout with extracted special positions.
|
||||
///
|
||||
/// Contains the complete board state after character-to-tile conversion, along with
|
||||
/// the locations of special gameplay elements that require additional processing
|
||||
/// during graph construction. Special positions are extracted during parsing to
|
||||
/// enable proper map builder initialization.
|
||||
#[derive(Debug)]
|
||||
pub struct ParsedMap {
|
||||
/// The parsed tile layout.
|
||||
/// 2D array of tiles converted from ASCII characters
|
||||
pub tiles: [[MapTile; BOARD_CELL_SIZE.y as usize]; BOARD_CELL_SIZE.x as usize],
|
||||
/// The positions of the house door tiles.
|
||||
/// Two positions marking the ghost house entrance (represented by '=' characters)
|
||||
pub house_door: [Option<IVec2>; 2],
|
||||
/// The positions of the tunnel end tiles.
|
||||
/// Two positions marking tunnel portals for wraparound teleportation ('T' characters)
|
||||
pub tunnel_ends: [Option<IVec2>; 2],
|
||||
/// Pac-Man's starting position.
|
||||
/// Starting position for Pac-Man (marked by 'X' character in the layout)
|
||||
pub pacman_start: Option<IVec2>,
|
||||
}
|
||||
|
||||
@@ -21,15 +26,18 @@ pub struct ParsedMap {
|
||||
pub struct MapTileParser;
|
||||
|
||||
impl MapTileParser {
|
||||
/// Parses a single character into a map tile.
|
||||
/// Converts ASCII characters from the board layout into corresponding tile types.
|
||||
///
|
||||
/// # Arguments
|
||||
/// Interprets the character-based maze representation: walls (`#`), collectible
|
||||
/// pellets (`.` and `o`), traversable spaces (` `), tunnel entrances (`T`),
|
||||
/// ghost house doors (`=`), and entity spawn markers (`X`). Special characters
|
||||
/// that don't represent tiles in the final map (like spawn markers) are
|
||||
/// converted to `Empty` tiles while their positions are tracked separately.
|
||||
///
|
||||
/// * `c` - The character to parse
|
||||
/// # Errors
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// The parsed map tile, or an error if the character is unknown.
|
||||
/// Returns `ParseError::UnknownCharacter` for any character not defined
|
||||
/// in the game's ASCII art vocabulary.
|
||||
pub fn parse_character(c: char) -> Result<MapTile, ParseError> {
|
||||
match c {
|
||||
'#' => Ok(MapTile::Wall),
|
||||
|
||||
@@ -10,29 +10,29 @@ mod desktop;
|
||||
#[cfg(target_os = "emscripten")]
|
||||
mod emscripten;
|
||||
|
||||
/// Platform abstraction trait that defines cross-platform functionality.
|
||||
/// Cross-platform abstraction layer providing unified APIs for platform-specific operations.
|
||||
pub trait CommonPlatform {
|
||||
/// Sleep for the specified duration using platform-appropriate method.
|
||||
/// Platform-specific sleep function (required due to Emscripten's non-standard sleep requirements).
|
||||
///
|
||||
/// Provides access to current window focus state, useful for changing sleep algorithm conditionally.
|
||||
fn sleep(&self, duration: Duration, focused: bool);
|
||||
|
||||
/// Get the current time in seconds since some reference point.
|
||||
/// This is available for future use in timing and performance monitoring.
|
||||
#[allow(dead_code)]
|
||||
fn get_time(&self) -> f64;
|
||||
|
||||
/// Initialize platform-specific console functionality.
|
||||
/// Configures platform-specific console and debugging output capabilities.
|
||||
fn init_console(&self) -> Result<(), PlatformError>;
|
||||
|
||||
/// Get canvas size for platforms that need it (e.g., Emscripten).
|
||||
/// This is available for future use in responsive design.
|
||||
/// Retrieves the actual display canvas dimensions.
|
||||
#[allow(dead_code)]
|
||||
fn get_canvas_size(&self) -> Option<(u32, u32)>;
|
||||
|
||||
/// Load asset bytes using platform-appropriate method.
|
||||
/// Loads raw asset data using the appropriate platform-specific method.
|
||||
|
||||
fn get_asset_bytes(&self, asset: Asset) -> Result<Cow<'static, [u8]>, AssetError>;
|
||||
}
|
||||
|
||||
/// Get the current platform implementation.
|
||||
/// Returns the appropriate platform implementation based on compile-time target.
|
||||
#[allow(dead_code)]
|
||||
pub fn get_platform() -> &'static dyn CommonPlatform {
|
||||
#[cfg(not(target_os = "emscripten"))]
|
||||
|
||||
@@ -9,6 +9,13 @@ use crate::map::builder::Map;
|
||||
use crate::systems::components::{Collider, ItemCollider, PacmanCollider};
|
||||
use crate::systems::movement::Position;
|
||||
|
||||
/// Detects overlapping entities and generates collision events for gameplay systems.
|
||||
///
|
||||
/// Performs distance-based collision detection between Pac-Man and collectible items
|
||||
/// using each entity's position and collision radius. When entities overlap, emits
|
||||
/// a `GameEvent::Collision` for the item system to handle scoring and removal.
|
||||
/// Collision detection accounts for both entities being in motion and supports
|
||||
/// circular collision boundaries for accurate gameplay feel.
|
||||
pub fn collision_system(
|
||||
map: Res<Map>,
|
||||
pacman_query: Query<(Entity, &Position, &Collider), With<PacmanCollider>>,
|
||||
|
||||
@@ -14,10 +14,7 @@ use crate::{
|
||||
},
|
||||
};
|
||||
|
||||
/// Ghost AI system that handles randomized movement decisions.
|
||||
///
|
||||
/// This system runs on all ghosts and makes periodic decisions about
|
||||
/// which direction to move in when they reach intersections.
|
||||
/// Autonomous ghost AI system implementing randomized movement with backtracking avoidance.
|
||||
pub fn ghost_movement_system(
|
||||
map: Res<Map>,
|
||||
delta_time: Res<DeltaTime>,
|
||||
|
||||
@@ -4,7 +4,10 @@ use crate::map::graph::Graph;
|
||||
use bevy_ecs::component::Component;
|
||||
use glam::Vec2;
|
||||
|
||||
/// A unique identifier for a node, represented by its index in the graph's storage.
|
||||
/// Zero-based index identifying a specific node in the navigation graph.
|
||||
///
|
||||
/// Nodes represent discrete movement targets in the maze. The index directly corresponds to the node's position in the
|
||||
/// graph's internal storage arrays.
|
||||
pub type NodeId = usize;
|
||||
|
||||
/// A component that represents the speed and cardinal direction of an entity.
|
||||
@@ -24,15 +27,19 @@ pub enum BufferedDirection {
|
||||
Some { direction: Direction, remaining_time: f32 },
|
||||
}
|
||||
|
||||
/// Pure spatial position component - works for both static and dynamic entities.
|
||||
/// Entity position state that handles both stationary entities and moving entities.
|
||||
///
|
||||
/// Supports precise positioning during movement between discrete navigation nodes.
|
||||
/// When moving, entities smoothly interpolate along edges while tracking exact distance remaining to the target node.
|
||||
#[derive(Component, Debug, Copy, Clone, PartialEq)]
|
||||
pub enum Position {
|
||||
Stopped {
|
||||
node: NodeId,
|
||||
},
|
||||
/// Entity is stationary at a specific graph node.
|
||||
Stopped { node: NodeId },
|
||||
/// Entity is traveling between two nodes.
|
||||
Moving {
|
||||
from: NodeId,
|
||||
to: NodeId,
|
||||
/// Distance remaining to reach the target node.
|
||||
remaining_distance: f32,
|
||||
},
|
||||
}
|
||||
@@ -82,9 +89,21 @@ impl Position {
|
||||
))
|
||||
}
|
||||
|
||||
/// Moves the position by a given distance towards it's current target node.
|
||||
/// Advances movement progress by the specified distance with overflow handling.
|
||||
///
|
||||
/// Returns the overflow distance, if any.
|
||||
/// For moving entities, decreases the remaining distance to the target node.
|
||||
/// If the distance would overshoot the target, the entity transitions to
|
||||
/// `Stopped` state and returns the excess distance for chaining movement
|
||||
/// to the next edge in the same frame.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `distance` - Distance to travel this frame (typically speed × delta_time)
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// `Some(overflow)` if the target was reached with distance remaining,
|
||||
/// `None` if still moving or already stopped.
|
||||
pub fn tick(&mut self, distance: f32) -> Option<f32> {
|
||||
if distance <= 0.0 || self.is_at_node() {
|
||||
return None;
|
||||
|
||||
@@ -17,7 +17,12 @@ use crate::{
|
||||
},
|
||||
};
|
||||
|
||||
// Handles player input and control
|
||||
/// Processes player input commands and updates game state accordingly.
|
||||
///
|
||||
/// Handles keyboard-driven commands like movement direction changes, debug mode
|
||||
/// toggling, audio muting, and game exit requests. Movement commands are buffered
|
||||
/// to allow direction changes before reaching intersections, improving gameplay
|
||||
/// responsiveness. Non-movement commands immediately modify global game state.
|
||||
pub fn player_control_system(
|
||||
mut events: EventReader<GameEvent>,
|
||||
mut state: ResMut<GlobalState>,
|
||||
@@ -69,6 +74,11 @@ fn can_traverse(entity_type: EntityType, edge: Edge) -> bool {
|
||||
edge.traversal_flags.contains(entity_flags)
|
||||
}
|
||||
|
||||
/// Executes frame-by-frame movement for Pac-Man.
|
||||
///
|
||||
/// Handles movement logic including buffered direction changes, edge traversal validation, and continuous movement between nodes.
|
||||
/// When stopped, prioritizes buffered directions for responsive controls, falling back to current direction.
|
||||
/// Supports movement chaining within a single frame when traveling at high speeds.
|
||||
pub fn player_movement_system(
|
||||
map: Res<Map>,
|
||||
delta_time: Res<DeltaTime>,
|
||||
|
||||
@@ -1,11 +1,19 @@
|
||||
use crate::error::{AnimatedTextureError, GameError, GameResult, TextureError};
|
||||
use crate::texture::sprite::AtlasTile;
|
||||
|
||||
/// Frame-based animation system for cycling through multiple sprite tiles.
|
||||
///
|
||||
/// Manages automatic frame progression based on elapsed time.
|
||||
/// Uses a time banking system to ensure consistent animation speed regardless of frame rate variations.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct AnimatedTexture {
|
||||
/// Sequence of sprite tiles that make up the animation frames
|
||||
tiles: Vec<AtlasTile>,
|
||||
/// Duration each frame should be displayed (in seconds)
|
||||
frame_duration: f32,
|
||||
/// Index of the currently active frame in the tiles vector
|
||||
current_frame: usize,
|
||||
/// Accumulated time since the last frame change (for smooth timing)
|
||||
time_bank: f32,
|
||||
}
|
||||
|
||||
@@ -25,6 +33,16 @@ impl AnimatedTexture {
|
||||
})
|
||||
}
|
||||
|
||||
/// Advances the animation by the specified time delta with automatic frame cycling.
|
||||
///
|
||||
/// Accumulates time in the time bank and progresses through frames when enough
|
||||
/// time has elapsed. Supports frame rates independent of game frame rate by
|
||||
/// potentially advancing multiple frames in a single call if `dt` is large.
|
||||
/// Animation loops automatically when reaching the final frame.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `dt` - Time elapsed since the last tick (typically frame delta time)
|
||||
pub fn tick(&mut self, dt: f32) {
|
||||
self.time_bank += dt;
|
||||
while self.time_bank >= self.frame_duration {
|
||||
|
||||
@@ -8,8 +8,10 @@ use std::collections::HashMap;
|
||||
|
||||
use crate::error::TextureError;
|
||||
|
||||
/// Atlas frame mapping data loaded from JSON metadata files.
|
||||
#[derive(Clone, Debug, Deserialize)]
|
||||
pub struct AtlasMapper {
|
||||
/// Mapping from sprite name to frame bounds within the atlas texture
|
||||
pub frames: HashMap<String, MapperFrame>,
|
||||
}
|
||||
|
||||
@@ -72,10 +74,19 @@ impl AtlasTile {
|
||||
}
|
||||
}
|
||||
|
||||
/// High-performance sprite atlas providing fast texture region lookups and rendering.
|
||||
///
|
||||
/// Combines a single large texture with metadata mapping to enable efficient
|
||||
/// sprite rendering without texture switching. Caches color modulation state
|
||||
/// to minimize redundant SDL2 calls and supports both named sprite lookups
|
||||
/// and optional default color modulation configuration.
|
||||
pub struct SpriteAtlas {
|
||||
/// The combined texture containing all sprite frames
|
||||
texture: Texture<'static>,
|
||||
/// Mapping from sprite names to their pixel coordinates within the texture
|
||||
tiles: HashMap<String, MapperFrame>,
|
||||
default_color: Option<Color>,
|
||||
/// Cached color modulation state to avoid redundant SDL2 calls
|
||||
last_modulation: Option<Color>,
|
||||
}
|
||||
|
||||
@@ -89,6 +100,12 @@ impl SpriteAtlas {
|
||||
}
|
||||
}
|
||||
|
||||
/// Retrieves a sprite tile by name from the atlas with fast HashMap lookup.
|
||||
///
|
||||
/// Returns an `AtlasTile` containing the texture coordinates and dimensions
|
||||
/// for the named sprite, or `None` if the sprite name is not found in the
|
||||
/// atlas. The returned tile can be used for immediate rendering or stored
|
||||
/// for repeated use in animations and entity sprites.
|
||||
pub fn get_tile(&self, name: &str) -> Option<AtlasTile> {
|
||||
self.tiles.get(name).map(|frame| AtlasTile {
|
||||
pos: U16Vec2::new(frame.x, frame.y),
|
||||
|
||||
Reference in New Issue
Block a user